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Vanishing theorems and
singularities in birational
geometry

– Monograph –

December 8, 2014

Typeset using Springer Monograph Class svmono.cls





Preface

This is a preliminary draft of monograph. It builds on lectures notes on a course
that Lawrence Ein gave at the University of Catania in Summer 1998, and later
again at Hong Kong University in Fall 1999, on lecture notes from the courses that
Tommaso de Fernex taught at the University of Utah in Fall 2006, Spring 2010,
and Spring 2012, and on lecture notes for the courses taught by Mircea Mustaţă in
Winter and Fall 2013 at University of Michigan.

This draft has been typeset using an edited version of the Springer Monograph
class svmono.cls.

v





Contents

1 Ample, nef, and big line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 The Serre criterion for ampleness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Intersection numbers of line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 The ample and nef cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 The Nakai-Moishezon ampleness criterion . . . . . . . . . . . . . . . 15
1.3.2 The nef cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Morphisms to projective varieties and faces of the nef cone . 25
1.3.4 Examples of Mori and nef cones . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.5 Ample and nef vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Big line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.1 Iitaka dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.2 Big line bundles: basic properties . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.3 The big cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.4 Big and nef divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.5 Asymptotic base loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5.1 The stable base locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.5.2 The augmented base locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5.3 The non-nef locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.5.4 Stability in N1(X)R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.5.5 Cones defined by base loci conditions . . . . . . . . . . . . . . . . . . . 55

1.6 The relative setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.6.1 Relatively ample line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.6.2 The relative ample and nef cones . . . . . . . . . . . . . . . . . . . . . . . 62
1.6.3 Relatively big line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.6.4 The negativity lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.7 Asymptotic invariants of linear systems . . . . . . . . . . . . . . . . . . . . . . . . 71
1.7.1 Graded sequences of ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.7.2 Divisors over X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.7.3 Asymptotic invariants of graded sequences . . . . . . . . . . . . . . . 73
1.7.4 Asymptotic invariants of big divisors . . . . . . . . . . . . . . . . . . . . 75
1.7.5 Invariants of pseudo-effective divisors . . . . . . . . . . . . . . . . . . . 83

vii



viii Contents

1.7.6 Divisorial Zariski decompositions . . . . . . . . . . . . . . . . . . . . . . 87
1.7.7 Asymptotic invariants in the relative setting . . . . . . . . . . . . . . 90

1.8 Finitely generated section rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
1.8.1 The ring of sections of a line bundle . . . . . . . . . . . . . . . . . . . . 92
1.8.2 Finite generation and asymptotic invariants . . . . . . . . . . . . . . 97
1.8.3 Relative section rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2 Vanishing theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.1 Kodaira-Akizuki-Nakano vanishing . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.1.1 Cyclic covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.1.2 The de Rham complex with log poles . . . . . . . . . . . . . . . . . . . 108
2.1.3 Cohomology of smooth complex affine algebraic varieties . . 111
2.1.4 The proof of the Akizuki-Nakano vanishing theorem . . . . . . 113

2.2 The Kawamata–Viehweg vanishing theorem . . . . . . . . . . . . . . . . . . . . 114
2.3 Grauert–Riemenschneider and Fujita vanishing theorems . . . . . . . . . 120
2.4 Castelnuovo-Mumford regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.5 Seshadri constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.6 Relative vanishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.7 The injectivity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.8 Higher direct images of canonical line bundles . . . . . . . . . . . . . . . . . . 145

3 Singularities of pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.1 Pairs and log discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.1.1 The canonical divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.1.2 Divisors over X , revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.1.3 Log discrepancy for pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.1.4 Log canonical and klt singularities . . . . . . . . . . . . . . . . . . . . . . 155
3.1.5 Log discrepancy for triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.1.6 Plt, canonical, and terminal pairs . . . . . . . . . . . . . . . . . . . . . . . 161

3.2 Shokurov-Kollár connectedness theorem . . . . . . . . . . . . . . . . . . . . . . . 167
3.3 Rational singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.4 Log canonical thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

3.4.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.4.2 First properties of log canonical thresholds . . . . . . . . . . . . . . . 179
3.4.3 Semicontinuity of log canonical thresholds . . . . . . . . . . . . . . . 179
3.4.4 Log canonical thresholds and Hilbert–Samuel multiplicity . . 179

3.5 Log canonical centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.6 m-adic semicontinuity of log canonical thresholds . . . . . . . . . . . . . . . 179
3.7 ACC for log canonical thresholds on smooth varieties . . . . . . . . . . . . 179
3.8 Minimal log discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4 Multiplier ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.1 Multiplier ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.1.1 Definition and first properties . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.1.2 Nadel vanishing theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



Contents ix

4.2 Asymptotic multiplier ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.2.1 Multiplier ideals for graded sequences . . . . . . . . . . . . . . . . . . . 190
4.2.2 Basic properties of asymptotic multiplier ideals . . . . . . . . . . . 191
4.2.3 Asymptotic multiplier ideals of big and pseudo-effective

divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.3 Adjoint ideals, the restriction theorem, and subadditivity . . . . . . . . . . 198

4.3.1 Adjoint ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.3.2 The restriction theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.3.3 Asymptotic adjoint ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.3.4 Subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.4 Further properties of multiplier ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.5 Kawakita’s inversion of adjunction for log canonical pairs . . . . . . . . 206
4.6 Analytic approach to multiplier ideals . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.7 Bernstein-Sato polynomials, V -filtrations, and multiplier ideals . . . . 206

5 Applications of multiplier ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.1 Asymptotic invariants of divisors, revisited . . . . . . . . . . . . . . . . . . . . . 207

5.1.1 Asymptotic invariants via multiplier ideals . . . . . . . . . . . . . . . 207
5.1.2 Asymptotic invariants of big and pseudo-effective divisors . . 209
5.1.3 Zariski decompositions, revisited . . . . . . . . . . . . . . . . . . . . . . . 212

5.2 Global generation of adjoint line bundles . . . . . . . . . . . . . . . . . . . . . . . 214
5.3 Singularities of theta divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.4 Ladders on Del Pezzo and Mukai varieties . . . . . . . . . . . . . . . . . . . . . . 214
5.5 Skoda-type theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6 Finite generation of the canonical ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7 Extension theorems and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8 The canonical bundle formula and subadjunction . . . . . . . . . . . . . . . . . . 219

9 Arc spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.1 Jet schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.2 Arc schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
9.3 The birational transformation rule I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.3.1 Cylinders in the space of arcs of a smooth variety . . . . . . . . . 240
9.3.2 The key result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.4 First applications: classical and stringy E-functions . . . . . . . . . . . . . . 253
9.4.1 The Hodge-Deligne polynomial . . . . . . . . . . . . . . . . . . . . . . . . 253
9.4.2 Hodge numbers of K-equivalent varieties . . . . . . . . . . . . . . . . 257
9.4.3 Stringy E-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.4.4 Historical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9.5 Introduction to motivic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.5.1 The Grothendieck group of varieties . . . . . . . . . . . . . . . . . . . . 269
9.5.2 Motivic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.5.3 The motivic zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280



x Contents

9.5.4 A brief summary of Archimedean and p-adic zeta functions 287
9.6 Applications to singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

9.6.1 Divisorial valuations and cylinders . . . . . . . . . . . . . . . . . . . . . . 290
9.6.2 Applications to log canonical thresholds . . . . . . . . . . . . . . . . . 297
9.6.3 Applications to minimal log discrepancies: semicontinuity . . 300
9.6.4 Characterization of locally complete intersection rational

singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.7 The birational transformation rule II: the general case . . . . . . . . . . . . 300

9.7.1 Spaces of arcs of singular varieties . . . . . . . . . . . . . . . . . . . . . . 300
9.7.2 The general birational transformation formula . . . . . . . . . . . . 300

9.8 Inversion of adjunction for locally complete intersection varieties . . 300
9.9 The formal arc theorem and the curve selection lemma . . . . . . . . . . . 300

9.9.1 Complete rings and the Weierstratrass preparation theorem . 300
9.9.2 The formal arc theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
9.9.3 The curve selection lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

9.10 The Nash problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.10.1 The Nash map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.10.2 The Nash problem. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.10.3 The Nash problem for surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 318
9.10.4 Counterexamples for the Nash problem . . . . . . . . . . . . . . . . . . 318

10 Birational rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
10.1 Factorization of planar Cremona maps . . . . . . . . . . . . . . . . . . . . . . . . . 323
10.2 Birational rigidity of cubic surfaces of Picard number one . . . . . . . . . 327
10.3 The method of maximal singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.4 Multiplicities and log canonical thresholds . . . . . . . . . . . . . . . . . . . . . 333

10.4.1 Basic properties of multiplicities . . . . . . . . . . . . . . . . . . . . . . . 333
10.4.2 Multiplicity bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

10.5 Log discrepancies via generic projections . . . . . . . . . . . . . . . . . . . . . . 340
10.6 Special restriction properties of multiplier ideals . . . . . . . . . . . . . . . . . 343
10.7 Birationally rigid Fano hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 343

A Elements of convex geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
A.1 Basic facts about convex sets and convex cones . . . . . . . . . . . . . . . . . 345
A.2 The dual of a closed convex cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A.3 Faces of closed convex cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
A.4 Extremal subcones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
A.5 Polyhedral cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
A.6 Monoids and cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
A.7 Fans and fan refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
A.8 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
A.9 Convex piecewise linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360



Contents xi

B Birational maps and resolution of singularities . . . . . . . . . . . . . . . . . . . . 365
B.1 A few basic facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
B.2 Birational maps and exceptional loci . . . . . . . . . . . . . . . . . . . . . . . . . . 367
B.3 Resolutions of singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

C Finitely generated graded rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

D Integral closure of ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

E Constructible sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385





Notation and conventions

This is a somewhat random list of conventions and notation, that will probably be
adjusted in time.

All schemes are assumed to be separated. With the exception of a few sections,
we work with schemes of finite type over a ground field k. In Chapter 1, we only
require k to be infinite1, but starting with Chapter 2, for the sake of simplicity, we
assume most of the time that k is algebraically closed. For the same reason, we only
consider projective schemes and morphisms, instead of arbitrary complete schemes
and proper morphisms. When we start making use of resolutions of singularities
and vanishing theorems, we will assume, in addition, that the characteristic of k is
zero. If X is a projective scheme over k and F is a coherent sheaf on X , we put
hi(X ,F ) = dimk H i(X ,F ).

A variety is an irreducible and reduced, separated scheme of finite type over k.
A curve is a variety of dimension one. For every scheme X of finite type over k, we
denote by CDiv(X) the group of Cartier divisors on X (with the operation written
additively), and by Pic(X) the Picard group of X . We denote by OX (D) the line
bundle associated to the Cartier divisor D. We usually identify an effective Cartier
divisor on X with the corresponding subscheme of X .

Remark 0.0.1. It is well-known that if X is an integral scheme, then for every L ∈
Pic(X), there is a Cartier divisor D on X such that L ' OX (D). By a result of
[Nak63], the same holds if X is a projective scheme over a field k. This is easy to
see when k is infinite. Indeed, in this case one can write L 'L1⊗L −1

2 , with L1
and L2 very ample line bundles. If si ∈ Γ (X ,Li) are general, for i = 1,2, then si
defines an effective Cartier divisor Di with OX (Di)'Li, hence L 'OX (D1−D2).

It follows from the above remark that in many cases it makes no difference
whether we state things in terms of Cartier divisors or line bundles. However, it
is sometimes more convenient to use Cartier divisors for reasons of notation.
1 We make this assumption in order to simplify some arguments, and to avoid having to extend
too often the ground field; the key advantage is that it allows us to consider general elements in a
linear system.
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2 Contents

If A is an abelian group, then we will use the notation AQ and AR for A⊗Z Q
and A⊗Z R, respectively. In particular, we will consider the groups CDiv(X)Q,
CDiv(X)R, Pic(X)Q and Pic(X)R. Note that we always write the operation on
Pic(X)Q and Pic(X)R additively.

An element of CDiv(X)Q is called a Q-Cartier Q-divisor and an element of
CDiv(X)R is called an R-Cartier R-divisor. An effective R-Cartier R-divisor is an
element of CDiv(X)R that can be written as ∑

r
i=1 tiDi, where each Di is an effective

Cartier divisor and ti ∈ R≥0.

Remark 0.0.2. Note that a Q-Cartier Q-divisor is effective if and only if it can
be written as λF , for a Cartier divisor F and λ ∈ Q≥0. Indeed, suppose that
D ∈ CDiv(X)Q can be written as D = ∑

r
i=1 αiDi, with ai ∈ R≥0 and Di Cartier divi-

sors. After possibly enlarging the set of Di’s, we may assume that we can also write
D = ∑

r
i=1 biDi, with bi ∈Q. If W is the linear span of D1, . . . ,Dr in CDiv(X)Q, then

a general property of convex cones (see Corollary A.5.8) implies that since D lies
in the intersection of W with the convex cone generated by the Di in WR, then we
can write D = ∑

r
i=1 a′iDi, with a′i ∈Q≥0 for all i. If m is a positive integer such that

ma′i ∈ Z for all i, then D = 1
m F , where F = ∑

r
i=1(ma′i)Di is a Cartier divisor.

For a normal variety X , we denote by Div(X) the abelian group of divisors on X
(a divisor is a Weil divisor). Recall that we have an injective group homomorphism
CDiv(X) ↪→ Div(X). An R-divisor (or Q-divisor) D on X is an element of Div(X)R
(resp. Div(X)Q). In this case D is called R-Cartier (Q-Cartier) if it lies in the im-
age of CDiv(X)R (resp. CDiv(X)Q). Note that this is compatible with the above
terminology for Cartier divisors. If D is an R-divisor, then we denote by OX (D) the
corresponding subsheaf of K(X); its sections over U ⊆ X are given by the nonzero
rational functions φ such that divX (φ) + D is effective on U . Of course, if D is a
Cartier divisor, then this is isomorphic to the line bundle associated to D.

An R-divisor is effective if all its coefficients are non-negative. Note that if D is
a Cartier divisor on a normal variety, then D is effective as a Cartier divisor if and
only if it is effective as a Weil divisor. The same is true for R-divisors, but this is
less obvious.

Lemma 0.0.3. If X is a normal variety and D ∈ CDiv(X)R, then D is effective as an
R-divisor if and only if it is effective as an element of CDiv(X)R.

Proof. It is clear that if D is effective as an element of CDiv(X)R, then it is also
effective as an R-divisor. Note also that the converse is clear if D ∈ CDiv(X)Q.
In general, let us write D = t1D1 + . . .+ trDr, with Di Cartier divisors and ti ∈ R.
Consider the prime divisors E1, . . . ,EN that appear in D1, . . . ,Dr and let M be the
free abelian group they generate. If σ is the convex cone generated by E1, . . . ,EN in
MR and L is the linear subspace over Q generated by D1, . . . ,Dr, then it follows from
general results about rational polyhedral cones that σ ∩LR is a rational polyhedral
cone (see Corollary A.5.5). Therefore we can write D = ∑

s
j=1 Fj, with each Fj ∈

σ ∩L. As we have mentioned, each such Fj is effective as an element of CDiv(X)R,
hence D has the same property.
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Remark 0.0.4. If X is not normal, then it can happen that a Cartier divisor D on X is
not effective, but its image in CDiv(X)Q is effective (equivalently, there is a positive
integer m such that mD is effective). For example, if X = Speck[x,y]/(x2 − y3),
then the Cartier divisor D on X defined by x/y is not effective, but 2D is effective.
However, such pathologies do not occur on normal varieties.





Chapter 1
Ample, nef, and big line bundles

1.1 The Serre criterion for ampleness

In this section, we review some basic properties of ample line bundles that follow
easily from Serre’s cohomological criterion for ampleness. Throughout this section
we work over a Noetherian affine scheme S = Spec(R) (we will later be interested
in the case when R is a field or a finitely generated algebra over a field).

Definition 1.1.1. A line bundle on a Noetherian scheme X is ample if for every
coherent sheaf F on X , the sheaf F ⊗L m is globally generated for m� 0. If X is
a proper scheme over S, then a line bundle L on X is said to be very ample over S if
there is a closed immersion f : X ↪→ PN

S such that f ∗OPN
S
(1)∼= L . It is a basic fact

that L ∈ Pic(X) is ample if and only if L m is very ample over S for some positive
integer m (see [Har77, Chap. II.7]).

An easy consequence of the definition is that for every line bundles L , M on
X as above, with L ample, we have M ⊗L m very ample (over S) for m� 0. In
particular, if X has an ample line bundle, then we can write M 'L1⊗L −1

2 , with
L1 and L2 very ample. It is also easy to see that if L and M are (very) ample line
bundles on X , then so is L ⊗M .

Definition 1.1.2. A Cartier divisor D on X is ample (or very ample over S) if OX (D)
has this property.

Remark 1.1.3. Suppose that X is a proper scheme over a field k and K/k is a field
extension. If L is a line bundle on X and LK is the pull-back of L to the scheme
XK = X ×Speck SpecK, then L is ample if and only if LK is ample. Indeed, note
first that for every m≥ 1, we have

Γ (XK ,L m
K )' Γ (X ,L m)⊗k K.

Therefore L m is globally generated if and only if L m
K is globally generated, and

in this case the map defined by L m
K is obtained from the map defined by L m by

5
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extending scalars. Therefore one map is a closed immersion if and only if the other
one is.

Remark 1.1.4. Suppose that X is a proper scheme over S, f : T → S is a morphism,
with T a Noetherian affine scheme, and g : XT = X ×S T → X is the canonical pro-
jection. It is clear from definition that if L is very ample over S, then g∗(L ) is very
ample over T . This immediately implies that if L is ample, then g∗(L ) is ample.

The following ampleness criterion is well-known. We refer to [Har77, Chap.
III.5] for a proof.

Theorem 1.1.5. For a line bundle L on a proper scheme X over S, the following
properties are equivalent:

i) L is ample.
ii) (Asymptotic Serre vanishing). For every coherent sheaf F on X, we have

H i(X ,F ⊗L m) = 0 for all i > 0 and all m� 0.

We use the characterization of ampleness given in the above theorem to prove
some basic properties of this notion.

Lemma 1.1.6. If L is an ample line bundle on a proper scheme X over S and Y is
a closed subscheme of X, then L |Y is ample.

Proof. The assertion follows easily from definition.

Proposition 1.1.7. Let L be a line bundle on a proper scheme X over S. If X1, . . . ,Xr
are the irreducible components of X, considered with the reduced scheme structures,
then L is ample if and only if L |Xi is ample for 1≤ i≤ r. In particular, L is ample
if and only if its restriction to the reduced subscheme Xred is ample.

Before proving the proposition, we give a general lemma.

Lemma 1.1.8. If F is a coherent sheaf on a Noetherian scheme X, then F has a
finite filtration

F = Fm ⊇Fm−1 ⊇ . . .⊇F1 ⊇F0 = 0,

such that for every i with 1 ≤ i ≤ m, the annihilator AnnOX (Fi/Fi−1) defines an
integral closed subscheme Zi of X.

Proof. Arguing by Noetherian induction, we may assume that the assertion holds
whenever AnnOX (F ) is nonzero. Suppose that AnnOX (F ) = 0. If X is not reduced,
let I be the ideal defining Xred in X . Let us consider the smallest integer d ≥ 2
such that I d = 0. Since both I F and F/I F are annihilated by I d−1 6= 0, it
follows from the induction hypothesis that both these sheaves have filtrations as in
the lemma. By concatenating these filtrations, we deduce that also F has a filtration
with the required property.

We may thus assume that X is reduced and let X1, . . . ,Xr be the irreducible com-
ponents of X , considered with the reduced scheme structures. If r = 1, then X is an
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integral scheme, and we are done since AnnOX (F ) = 0. Suppose now that r ≥ 2. If
I j is the ideal defining X j in X , then I1∩ . . .∩Ir = 0. Since I1F is annihilated
by I2 ∩ . . .∩Ir 6= 0, and F/I1F is annihilated by I1 6= 0, it follows from the
induction hypothesis that both I1F and F/I1F admit filtrations as in the lemma.
By concatenating these, we obtain such a filtration also for F . This completes the
proof of the lemma.

Proof of Proposition 1.1.7. We only need to prove the first assertion in the propo-
sition: the last one follows from the fact that X and Xred have the same irreducible
components. If L is ample on X , then each L |Xi is ample by Lemma 1.1.6.

Conversely, suppose that each L |Xi is ample. We need to show that for every
coherent sheaf F on X , we have

H j(X ,F ⊗L m) = 0 for all j ≥ 1 and m� 0. (1.1)

Note that if
0→F ′→F →F ′′→ 0

is an exact sequence, and F ′ and F ′′ satisfy (1.1), then so does F (it is enough
to tensor the above exact sequence with L m, and consider the corresponding coho-
mology long exact sequence). If Z is an integral closed subscheme of X , then Z is
a closed subscheme of some Xi, hence L |Z is ample by Lemma 1.1.6. By consid-
ering a filtration of F as in Lemma 1.1.8, we conclude that F satisfies (1.1). This
completes the proof of the proposition.

Proposition 1.1.9. If f : Y → X is a finite morphism between two proper schemes
over S and L is an ample line bundle on X, then its pull-back f ∗L is ample.
Conversely, if f is also surjective and f ∗L is ample, then L is ample.

Proof. If L is ample and G is any coherent sheaf on Y , then using the projection
formula and the fact that f is finite we get

H i(Y,G ⊗ ( f ∗L )m)' H i(X , f∗(G ⊗ ( f ∗L )m))' H i(X ,( f∗G )⊗L m) = 0

for all i > 0 and m� 0. Therefore f ∗L is ample.
Conversely, suppose that f is surjective and f ∗L is ample. For every irreducible

component Y ′ of Y , there is an irreducible component X ′ of X such that f induces
a finite, surjective morphism X ′ → Y ′. We deduce using Proposition 1.1.7 that we
may assume that X and Y are irreducible and reduced.

Arguing by Noetherian induction, we may assume that the restriction of L to ev-
ery closed subscheme of X different from X is ample. It follows from Lemma 1.1.10
below that we can find a coherent sheaf G on Y equipped with a morphism

φ : f∗G →F⊕d ,

where d is the degree of f , which restricts to an isomorphism over a nonempty open
subset of X . Note that this suffices to prove that
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H i(X ,F ⊗L m) = 0 for i > 0 and m� 0,

and thus that L is ample. Indeed, by the inductive assumption, we have

H i(X ,ker(φ)⊗L m) = 0 = H i(X ,coker(φ)⊗L m)

for all i > 0 and m� 0. Therefore the vanishing of H i(X ,F ⊗L m) for i > 0 and
m� 0 will follow from the vanishing of H i(X ,( f∗G )⊗L m), and it is enough to
note, as above, that

H i(X ,( f∗G )⊗L m)' H i(Y,G ⊗ ( f ∗L )m) = 0 for i≥ 1 and m� 0.

Lemma 1.1.10. If f : Y → X is a finite, surjective morphism of integral schemes and
F is a coherent sheaf on X, then there is a coherent sheaf G on Y and a morphism

φ : f∗G →F⊕d ,

where d is the degree of f , which restricts to an isomorphism over a nonempty open
subset of X.

Proof. We fix d elements s1, . . . ,sd ∈ K(Y ) forming a basis for K(Y ) over K(X).
These elements generate an OY -coherent sheaf M , and there is an induced OX -
linear map ψ : O⊕d

X → f∗M which restricts to an isomorphism over a suitable open
subset of X . We consider the coherent sheaf G := H omOY (M , f !F ), where f !F
is the coherent sheaf on Y such that f∗( f !F )'H omOX ( f∗OY ,F ). Note that

f∗G = f∗H omOY (M , f !F )∼= H omOX ( f∗M ,F )

(see [Har77, Exercise III.6.10]). Then, composing with ψ , we obtain a map

φ : f∗G →H omOX (O⊕d
X ,F )∼= F⊕d

which, by construction, restricts to an isomorphism over an open subset of X .

Corollary 1.1.11. If f : X→ Pn
S is a proper morphism over S and L = f ∗(OPn

S
(1)),

then L is ample if and only if f is finite.

Proof. If f is finite, since OPn
S
(1) is ample on Pn

S(1), we conclude that L is ample by
Proposition 1.1.9. Conversely, if L is ample, then f has finite fibers (the restriction
of L to each fiber is both ample and trivial, hence the fiber is 0-dimensional). Since
f is proper, we conclude that f is finite.
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1.2 Intersection numbers of line bundles

Our goal in this section is to define the intersection numbers of divisors and give
their main properties, following [Kle66]. For similar presentations, see also [Băd01]
and [Deb01]. All schemes are of finite type over a fixed infinite field k. For a co-
herent sheaf M on a complete scheme X , we denote by χ(M ) its Euler-Poincaré
characteristic

χ(M ) :=
dim(X)

∑
i=0

(−1)ihi(X ,M ).

Both in this section and the next one, while we state the results for complete
schemes, we only give the proofs in the projective case whenever this simplifies
the argument. We leave the general case as an exercise for the reader.

Proposition 1.2.1. (Snapper) Let X be a complete scheme. If L1, . . . ,Lr are line
bundles on X and F is a coherent sheaf on X, then the function

Zr 3 (m1, . . . ,mr)→ χ(F ⊗L m1
1 ⊗ . . .⊗L mr

r ) ∈ Z

is polynomial, of total degree ≤ dim(Supp(F )).

Proof. We give the proof under the assumption that X is projective. We prove the
assertion by induction on d = dim(Supp(F )). If d =−1, then the assertion is clear
(we make the convention that dim( /0) =−1 and the zero polynomial has degree−1).
Since X is projective, we can find very ample effective Cartier divisors A and B on
X such that L1 'OX (A−B). Furthermore, by taking A and B to be general in their
linear systems, we may assume that no associated points of F lie on A or B. On one
hand, this gives exact sequences

0→F ⊗OX (−B)⊗L m1−1
1 →F ⊗L m1

1 →F ⊗OA⊗L m1
1 → 0

and

0→F ⊗OX (−B)⊗L m1−1
1 →F ⊗L m1−1

1 →F ⊗OB⊗L m1−1
1 → 0.

By tensoring these with L m2
2 ⊗ . . .⊗L mr

r and taking the long exact sequences in
cohomology, we obtain using the additivity of the Euler-Poincaré characteristic

χ(F ⊗L m1
1 ⊗ . . .⊗L mr

r )−χ(F ⊗L m1−1
1 ⊗ . . .⊗L mr

r )

= χ(F ⊗OA⊗L m1
1 ⊗ . . .⊗L mr

r )−χ(F ⊗OB⊗L m1−1
1 ⊗ . . .⊗L mr

r ).

On the other hand, the assumption on A and B also gives dim(Supp(F ⊗OA)) ≤
d− 1 and dim(Supp(F ⊗OB)) ≤ d− 1. It follows from these inequalities and the
inductive assumption that the function

Zr 3 (m1, . . . ,mn)→ χ(F ⊗L m1
1 ⊗ . . .⊗L mr

r )−χ(F ⊗L m1−1
1 ⊗ . . .⊗L mr

r )
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is polynomial of total degree ≤ (d−1). Since the same assertion clearly also holds
with respect to the other variables, it is an elementary exercise to deduce that the
function

Zr 3 (m1, . . . ,mn)→ χ(F ⊗L m1
1 ⊗ . . .⊗L mr

r )

is polynomial, of total degree ≤ d.

Definition 1.2.2. Suppose that L1, . . . ,Lr are line bundles on a complete scheme
X and F is a coherent sheaf on X with dim(Supp(F )) ≤ r. The intersection
number (L1 · . . . ·Lr;F ) is defined as the coefficient of m1 · · ·mr in the polyno-
mial P(m1, . . . ,mr) such that P(m1, . . . ,mr) = χ(F ⊗L m1

1 ⊗ . . .⊗L mr
r ) for all

(m1, . . . ,mr) ∈ Zr.

If F = OY , for a closed subscheme Y of X , then we write (L1 · . . . ·Lr ·Y ) instead
of (L1 · . . . ·Lr;OY ) and simply (L1 · . . . ·Lr) if Y = X . Furthermore, if L1 =
. . . = Lr = L , then we write (L r;F ), (L r ·Y ) and (L r) for the corresponding
intersection numbers (similar conventions will also be used if only some of the Li
are equal). If D1, . . . ,Dr are Cartier divisors on X and F is as above, then we also
write (D1 · . . . ·Dr;F ) for (OX (D1) · . . . ·OX (Dr);F ) and similarly for the other
variants of intersection numbers.

The following lemma allows us to describe the intersection numbers as alternat-
ing sums of Euler-Poincaré characteristics.

Lemma 1.2.3. Let P be a polynomial in r variables with coefficients in a ring R such
that the total degree of P is ≤ r. The coefficient of x1 · · ·xr in P is equal to

∑
J⊆{1,...,r}

(−1)|J|P(δJ,1, . . . ,δJ,r),

where the sum is over all subsets J of {1, . . . ,r} (including the empty subset) and
where δJ, j =−1 if j ∈ I and δJ, j = 0 if j 6∈ J.

Proof. The assertion follows by induction on r, the case r = 1 being trivial. For the
induction step, it is enough to note that the coefficient of x1 · · ·xr in P is equal to the
coefficient of x1 · · ·xr−1 in

Q(x1, . . . ,xr−1) = P(x1, . . . ,xr−1,0)−P(x1, . . . ,xr−1,−1),

whose total degree is ≤ (r− 1). This in turn follows by considering the effect of
taking the difference on the right-hand side for each of the monomials in P.

Corollary 1.2.4. If L1, . . . ,Lr are line bundles on a complete scheme X and F is
a coherent sheaf on X with dim(Supp(F ))≤ r, then

(L1 · . . . ·Lr;F ) = ∑
J⊆{1,...,r}

(−1)|J|χ(F ⊗ (⊗ j∈JL
−1
j )).

We can now prove the basic properties of intersection numbers.
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Proposition 1.2.5. Let L1, . . . ,Lr be line bundles on the complete scheme X and
F a coherent sheaf on X, with dim(Supp(F ))≤ r.

i) If dim(Supp(F )) < r, then (L1 · . . . ·Lr;F ) = 0.
ii) The intersection number (L1 · . . . ·Lr;F ) is an integer. The map

Pic(X)r 3 (L1, . . . ,Lr)→ (L1 · . . . ·Lr;F ) ∈ Z

is multilinear and symmetric.
iii) If Y1, . . . ,Ys are the r-dimensional irreducible components of Supp(F ) (with re-

duced scheme structures) and ηi is the generic point of Yi, then

(L1 · . . . ·Lr;F ) =
s

∑
i=1

`OX ,ηi
(Fηi) · (L1 · . . . ·Lr ·Yi). (1.2)

iv) (Projection formula) Suppose that f : X → Y is a surjective morphism of com-
plete varieties, with dim(X) ≤ r. If there are line bundles Mi on Y such that
Li ' f ∗(Mi) for every i, then (L1 · . . . ·Lr) = d · (M1 · . . . ·Mr) if f is generi-
cally finite of degree d, and (L1 · . . . ·Lr) = 0, otherwise.

v) If Lr = OX (D) for some effective Cartier divisor D, then

(L1 · . . . ·Lr) = (L1|D · . . . ·Lr−1|D),

with the convention that when r = 1, the right-hand side is equal to h0(OD).
vi) If k′ is a field extension of k, we put X ′ = X ×Speck Speck′, and L ′

i and F ′ are
the pull-backs of Li and F , respectively, to X ′, then

(L1 · . . . ·Lr;F ) = (L ′
1 · . . . ·L ′

r ;F ′).

Proof. The assertion in i) follows from definition and Proposition 1.2.1. The fact
that intersection numbers are integers is clear by Corollary 1.2.4. The symmetry of
the application in ii) is obvious, hence in order to prove ii) we only need to show
that

((L1⊗L ′
1) ·L2 · . . . ·Lr;F )− (L1 ·L2 · . . . ·Lr;F )− (L ′

1 ·L2 · . . . ·Lr;F ) = 0.
(1.3)

An easy computation using the formula in Corollary 1.2.4 shows that the difference
in (1.3) is equal to −(L1 ·L ′

1 ·L2 · . . . ·Lr;F ), which vanishes by i).
We note that iii) clearly holds if dim(Supp(F )) < r. It follows from definition

and the additivity of the Euler-Poincaré characteristic that if

0→F ′→F →F ′′→ 0

is an exact sequence of coherent sheaves on X , then

(L1 · . . . ·Lr;F ) = (L1 · . . . ·Lr;F ′)+(L1 · . . . ·Lr;F ′′). (1.4)
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Since `OX ,ηi
(Fηi) = `OX ,ηi

(F ′
ηi

)+ `OX ,ηi
(F ′′

ηi
) for every i, we conclude that if (1.2)

holds for two of F ′, F , and F ′′, then it also holds for the third one.
Recall that by Lemma 1.1.8, F has a finite filtration such that the annihilator of

each of the successive quotients is the ideal of an integral closed subscheme of X . We
conclude that in order to prove (1.2), we may assume that X is an integral scheme.
We also see that if G is another sheaf such that we have a morphism φ : F → G
that is an isomorphism at the generic point η ∈ X , then iii) holds for F if and only
if it holds for G (note that in this case both ker(φ) and coker(φ) are supported in
dimension < r). In particular, by replacing F by F ⊗OX (D), where D is a suitable
effective very ample divisor, we may assume that F is generated by global sections.
If d = `OX ,η

(Fη) and s1, . . . ,sd ∈ Γ (X ,F ) are general sections, then the induced
morphism O⊕d

X → F is an isomorphism at η . Since (1.2) clearly holds for O⊕d
X ,

this completes the proof of iii).
In order to prove iv), note first that the additivity of the Euler-Poincaré character-

istic, the Leray spectral sequence, and the projection formula imply that

χ(L m1
1 ⊗ . . .⊗L mr

r ) = ∑
i≥0

(−1)i
χ(Ri f∗(OX )⊗M m1

1 ⊗ . . .⊗M mr
r ),

hence by definition of intersection numbers we have

(L1 · . . . ·Lr) = ∑
i≥0

(−1)i(M1 · . . . ·Mr;Ri f∗(OX )).

If f is not generically finite, then all intersection numbers on the right-hand side
are zero since dim(Y ) < r. Suppose now that f is generically finite and deg( f ) = d.
In this case Ri f∗(OX ) is supported on a proper subscheme of Y for all i ≥ 1, while
`OY,η

(( f∗(OX )η) = d if η is the generic point of Y . The formula in iv) now follows
from iii) and i).

In order to prove v), we use Corollary 1.2.4 by considering first the subsets con-
tained in {1, . . . ,r−1}, and then the ones contaning r. We obtain

(L1 · . . .Lr−1 ·O(D)) = ∑
J⊆{1,...,r−1}

(−1)|J|χ(⊗i∈JL
−1

i )

+ ∑
J⊆{1,...,r−1}

(−1)|J|+1
χ(OX (−D)⊗(⊗i∈JL

−1
i ))= ∑

J⊆{1,...,r−1}
(−1)|J|χ(⊗i∈JL

−1
i |D)

= (L1|D · . . . ·Lr−1|D),

where the second equality follows by tensoring the exact sequence

0→ OX (−D)→ OX → OD→ 0

with ⊗i∈JL
−1

i , and using the additivity of the Euler-Poincaré characteristic.
The equality in vi) is an immediate consequence of the definition of intersection

numbers and of the fact that for every sheaf M on X , if M ′ is its pull-back to X ′,
then hi(X ,M ) = hi(X ′,M ′) for every i.



1.2 Intersection numbers of line bundles 13

Remark 1.2.6. Suppose that X is a Cohen–Macaulay scheme of pure dimension n
and D1, . . . ,Dn are effective Cartier divisors on X such that dim(D1∩ . . .∩Di) = n− i
for 1 ≤ i ≤ n. In this case, at every point x ∈ D1 ∩ . . .∩Di, the local equations of
D1, . . . ,Di form a regular sequence in OX ,x. Applying the assertion in v) above on
X ,D1, . . . ,D1∩ . . . ,∩Dn−1, we obtain

(D1 · . . . ·Dn) = h0(OD1∩...∩Dn).

If, in addition, the intersection points are smooth k-rational points of X and of each
of the Di and the intersection is transversal, then (D1 · . . . ·Dn) is equal to the number
of intersection points.

Remark 1.2.7. Suppose that X is a projective r-dimensional scheme and L1, . . . ,Ls
are ample line bundles on X , for some s≤ r. In this case, there is a positive integer
m and a closed subscheme Y of X of dimension r− s such that

(L1 · . . . ·Ls ·L ′
1 · . . . ·L ′

r−s) =
1
m

(L ′
1 · . . . ·L ′

r−s ·Y ) (1.5)

for every L ′
1, . . . ,L

′
r−s ∈ Pic(X). Indeed, if mi is a positive integer, for 1 ≤ i ≤ s,

such that L mi
i is very ample and if Di ∈ |Lmi

i | is a general element, then the closed
subscheme Y = D1 ∩ . . .∩Ds has dimension r− s and a repeated application of
Proposition 1.2.5 v) gives the equality in (1.5), with m = ∏

s
i=1 mi.

Remark 1.2.8. It is easy to see that properties i)–v) in Proposition 1.2.5 uniquely
determine the intersection numbers (L1 · . . . ·Lr;F ). Indeed, we argue by induc-
tion on r. It follows from iii) that a general such intersection number is determined
if we know the intersection numbers of the form (L1 · . . .Lr) when X is an r-
dimensional complete variety. Moreover, by Chow’s lemma we can find a bira-
tional morphism f : X ′ → X , with X ′ a projective variety, and property iv) gives
(L1 · . . .Lr) = ( f ∗L1 · . . . · f ∗Lr). Therefore we may assume that X is projective.
By multilinearity, if we write L1 ' OX (A−B), with A and B effective very ample
Cartier divisors, then

(L1 · . . . ·Lr) = (OX (A) ·L2 · . . . ·Lr)− (OX (B) ·L2 · . . . ·Lr).

On the other hand, property v) gives (OX (A) ·L2 · . . . ·Lr) = (L2|A · . . . ·Lr|A) and
(OX (B) ·L2 · . . . ·Lr) = (L2|B · . . . ·Lr|B), and we are thus done by induction.

Remark 1.2.9. If Q(x) is a polynomial in one variable of degree d and we consider
the polynomial in r variables P(x1, . . . ,xr) = Q(x1 + . . .+ xr), then the total degree
of P is d and the coefficient of x1 · · ·xr in P is d! ·a, where a is the coefficient of xd

in Q. It follows that if L is a line bundle on an n-dimensional complete scheme X ,
then

χ(L m) =
(L n)

n!
mn + lower order terms in m.

This expression is known as the asymptotic Riemann-Roch formula.
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Remark 1.2.10. Suppose that L is a very ample line bundle on the n-dimensional
projective scheme X . The polynomial PX such that PX (m) = χ(L m) is the Hilbert
polynomial of X corresponding to the projective embedding X ↪→ PN given by L
(see [Har77, Exer. III.5.2]). In particular, it follows from Remark 1.2.9 that the de-
gree of X with respect to this embedding is equal to (L n). Note that this is pos-
itive: if H1, . . . ,Hn are general hyperplanes in PN , then a repeated application of
Proposition 1.2.5 v) implies that the degree of X is equal to h0(OX∩H1∩...∩Hn) and
X ∩H1∩ . . .∩Hn is always non-empty.

Example 1.2.11. Suppose that X is a complete curve (recall our convention that in
this case X is irreducible and reduced). If D is an effective Cartier divisor on X , then
the intersection number (D) on X is equal to h0(OD) (in particular, it is nonnegative).
Therefore the intersection number (L ) of a line bundle on X is equal to the usual
degree deg(L ) on X . By applying Corollary 1.2.4 for L −1, we obtain

deg(L ) =−deg(L −1) = χ(L )−χ(OX ),

which is the Riemann-Roch theorem for a line bundle on X .

Example 1.2.12. Let X be a smooth projective surface. If L1 and L2 are line bun-
dles on X , then the formula in Corollary 1.2.4 applied to L −1

1 and L −1
2 gives

(L1 ·L2) = (L −1
1 ·L −1

2 ) = χ(OX )−χ(L1)−χ(L2)+ χ(L1⊗L2).

If we take L2 = ωX ⊗L −1
1 , then L1⊗L2 = ωX and Serre duality gives χ(L1) =

χ(L2) and χ(ωX ) = χ(OX ). The above formula implies

(L 2
1 )− (L1 ·ωX ) = 2χ(L )−2χ(OX ),

the Riemann-Roch theorem for a line bundle on X .

Proposition 1.2.13. Let π : X → T be a proper flat morphism of relative dimension
n. If L1, . . . ,Ln are line bundles on X and for every t ∈ T we consider the corre-
sponding line bundles L1|Xt , . . . ,Ln|Xt on the fiber Xt , then the function

T 3 t→ (L1|Xt · . . . ·Ln|Xt )

is locally constant.

Proof. The assertion follows from the definition of intersection numbers and the
fact that under our assumption, every line bundle L on X is flat over T , hence the
function T 3 t→ χ(L |Xt ) is locally constant.

1.3 The ample and nef cones

Our goal in this section is to introduce the ample and nef cones of a projective
scheme, and discuss the relation between them. This is based on the theorems of
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Nakai-Moishezon and Kleiman. We keep the assumption that all schemes are of
finite type over an infinite field. Our presentation follows the one in [Laz04a, Chap.
1].

1.3.1 The Nakai-Moishezon ampleness criterion

The following basic theorem describes ampleness in terms of intersection numbers
with subvarieties.

Theorem 1.3.1 (Nakai-Moishezon). A line bundle L on the complete scheme X
is ample if and only if for every subvariety V of X with r = dim(V ) > 0, we have
(L r ·V ) > 0.

Proof. For simplicity, we only give the argument when X is projective (see [Har70,
Theorem 5.1] for a proof in the general case). If L is ample, then some multiple
M = L d is very ample and (L r ·V ) = 1

dr (M r ·V ). We have seen in Remark 1.2.10
that (M r ·V ) is the degree of V under the embedding given by M , which is positive.
Therefore (L r ·V ) > 0.

Suppose now that (L r ·V ) > 0 for every r ≥ 1 and every r-dimensional subvari-
ety V of X . It follows from Proposition 1.2.5 iii) that the same inequality holds for
all r-dimensional closed subschemes V of X . Arguing by Noetherian induction, we
may assume that L |Y is ample for every closed subscheme Y of X , different from
X . Using Proposition 1.1.7, we deduce that we may assume that X is an integral
scheme. Let n = dim(X). If n = 0, then every line bundle on X is ample. Suppose
now that n > 0.
Claim. We have h0(X ,L m) > 0 for m� 0. Let us suppose that this is the case.
Since X is integral, it follows that we have an effective Cartier divisor D such that
OX (D)'L m. For every positive integer p, we get a short exact sequence

0→L (p−1)m→L pm→L pm|D→ 0,

and a corresponding long exact sequence

H0(X ,L pm)
φ→H0(D,L pm|D)→H1(X ,L (p−1)m)

ψ→H1(X ,L pm)→H1(D,L pm|D).

Since L |D is ample by the inductive assumption, we have H1(D,L pm|D) = 0 for
p� 0, hence h1(X ,L pm) ≤ h1(X ,L (p−1)m) for p� 0. Therefore the sequence
(h1(X ,L pm))p≥1 is eventually constant, which in turn implies that for p� 0, in the
above exact sequence ψ is an isomorphism, hence φ is surjective. Since the base-
locus of L pm is clearly contained in D, while the ampleness of L |D implies that
L pm|D is globally generated for p� 0, we conclude that L pm is globally gener-
ated. Let f : X → PN be the map defined by |L pm|, so that L pm ' f ∗(OPN (1)). If
C is a curve contracted by f , then the projection formula gives (L ·C) = 0, a con-
tradiction. This shows that f is a finite morphism, and since L pm is the pull-back
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induced by f of an ample line bundle, the ampleness of L follows from Proposi-
tion 1.1.9.

Therefore in order to complete the proof of the theorem it is enough to prove the
above claim. Since X is projective, we can find effective Cartier divisors A and B
on X such that L ' OX (A−B). For every integer m, we consider the short exact
sequences

0 // OX (−A)⊗L m //

∼=��

L m // L m|A // 0

0 // OX (−B)⊗L m−1 // L m−1 // L m−1|B // 0.

Since both L |A and L |B are ample by the inductive assumption, we have

hi(A,L m|A) = 0 = hi(B,L m−1|B) for every i≥ 1 and all m� 0.

We deduce from the corresponding long exact sequences in cohomology that for
m� 0 and i≥ 2 we have

hi(X ,L m−1) = hi(X ,OX (−B)⊗L m−1) = hi(X ,OX (−A)⊗L m) = hi(X ,L m).

On the other hand, by asymptotic Riemann-Roch we have

χ(L m) = h0(X ,L m)−h1(X ,L m)+ ∑
i≥2

(−1)ihi(X ,L m)

=
(L n)

n!
mn + lower order terms.

Since by assumption (L n) > 0 and each sequence (hi(X ,L m))m≥1 is eventually
constant, this implies that h0(X ,L m) > 0 for m� 0, which completes the proof of
the theorem.

Remark 1.3.2. The easy implication in the above theorem admits the following gen-
eralization: if L1, . . . ,Lr ∈ Pic(X) are ample line bundles and Y is an r-dimensional
closed subscheme of X , then (L1 · . . . ·Lr ·Y ) > 0. Indeed, this is an immediate con-
sequence of Remark 1.2.7.

Remark 1.3.3. It is not true that in order to check the ampleness of L in Theo-
rem 1.3.1 one can just check that the intersection of L with each curve is positive.
In fact, there is a smooth projective surface X and a line bundle L on X such that
(L ·C) > 0 for every curve C in X , but (L 2) = 0, see Example 1.3.36 below. One
should contrast this phenomenon with the statement of Theorem 1.3.18 below.
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1.3.2 The nef cone

We now turn to a weaker notion of positivity for line bundles, which turns out to be
very important.

Definition 1.3.4. A line bundle L on a complete scheme X is nef 1 if (L ·C) ≥ 0
for every curve C in X .

Example 1.3.5. An important example of nef line bundles is provided by semiample
ones. Recall that a line bundle L on a complete scheme X is semiample if some
multiple L m, with m a positive integer, is globally generated. If L is semiample,
then L is nef: if C is a curve on X , then L m|C is globally generated for some m > 0;
in particular, it has nonzero sections, and therefore (L ·C) = deg(L |C)≥ 0.

On the other hand, it is very easy to give examples of nef line bundles that are
not semiample. Suppose that X is a smooth projective curve of genus g ≥ 1, over
an algebraically closed field k. Recall that the degree zero line bundles on X are
parametrized by a g-dimensional abelian variety, the Picard variety Pic0(X). If k is
uncountable, all points of Pic0(X) but a countable set are non-torsion2 (note that
the degree zero line bundles L on X with L m ' OX correspond precisely to the
m-torsion points of Pic0(X), which form a finite set). It is now enough to remark
that every degree zero line bundle on X is nef, and it is semiample if and only if it is
torsion.

For various technical reasons that will hopefully become clear in the following
chapters, in birational geometry it is very useful to work not only with divisors and
line bundles, but to allow also rational, and even real coefficients. We now introduce
this formalism, as well as the ambient vector space for the ample and the nef cones.

Let Z1(X) denote the free abelian group generated by the curves in X . By taking
the intersection number of a line bundle with a curve we obtain a Z-bilinear map

Pic(X)×Z1(X)→ Z, (L,α =
r

∑
i=1

aiCi) 7→ (L ·α) :=
r

∑
i=1

ai(L ·Ci).

The numerical equivalence of line bundles is defined by

L1 ≡L2 if (L1 ·C) = (L2 ·C) for every curve C ⊆ X .

If L ≡ 0, then L is numerically trivial. The quotient of Pic(X) by the subgroup of
numerically trivial line bundles is the Néron-Severi group N1(X) = Pic(X)/≡. The
following is a fundamental result, known as the theorem of the base. For a proof,
see [LN59].

1 This terminology stands for numerically effective or numerically eventually free.
2 This can fail over countable fields. In fact, if k = Fp is the algebraic closure of a finite field, then
every degree zero line bundle on X is torsion. Indeed, note that every such line bundle is defined
over some finite field. On the other hand, the set of points of an abelian variety with values in a
finite field is finite, hence form a finite group.
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Theorem 1.3.6. The group N1(X) is finitely generated.

We note that by definition N1(X) is also torsion-free. Therefore it is a finitely
generated free abelian group and its rank ρ = ρ(X) is the Picard rank of X .

By tensoring with R, the above Z-bilinear map gives an R-bilinear map

Pic(X)R×Z1(X)R→ R.

The Néron-Severi vector space of X is N1(X)R'Rρ . Note that this can be identified
with Pic(X)R/≡, where for α,β ∈ Pic(X)R we have α ≡ β if and only if α−β is
a linear combination of numerically trivial line bundles.

Remark 1.3.7. In fact, for α ∈ Pic(X)Λ , with Λ being either Q or R, we have α ≡ 0
if and only if (α ·C) = 0 for every curve C in X . Indeed, if L⊆ Pic(X) is the subgroup
of numerically trivial line bundles, then by considering the intersection number of a
line bundle with all curves on C we obtain an inclusion N1(X) ↪→ ZJ , where J is the
set of all curves in X . The map N1(X)Λ ↪→ ZJ⊗Z Λ obtained by tensoring with Λ is
injective and our assertion follows from the fact that the canonical map ZJ⊗ZΛ →
Λ J is an injection. This is clearly true when Λ = Q and therefore in order to check
the injectivity when Λ = R it is enough to show that for every Q-vector space V ,
the canonical map QJ ⊗Q V → V J is injective. Since V is the union of its finite-
dimensional subspaces, it is enough to check this when V is finite-dimensional,
when the assertion is straightforward.

We also have the following dual picture. We say that α,β ∈ Z1(X)R are numer-
ically equivalent, and write α ≡ β , if (L ·α) = (L ·β ) for every L ∈ Pic(X) (or
equivalently, for every L ∈ Pic(X)R). We put N1(X)R := Z1(X)R/ ≡. It follows
from definition that the intersection pairing induces an inclusion j1 : N1(X)R ↪→
Hom(N1(X)R,R), hence N1(X)R is a finite-dimensional R-vector space. Further-
more, since by definition also j2 : N1(X)R→ Hom(N1(X)R,R) is injective, it fol-
lows that both j1 and j2 are bijective. In other words, the induced bilinear form

N1(X)R×N1(X)R→ R

is non-degenerate. In what follows, we always identify N1(X)R with the dual of
N1(X)R via this pairing.

We denote by ∼, ∼Q and ∼R the linear equivalence relation on CDiv(X),
CDiv(X)Q, and CDiv(X)R, respectively. By definition, two divisors in CDiv(X)Q
or CDiv(X)R are linearly equivalent if their difference is a finite sum of principal
Cartier divisors with rational, respectively real, coefficients. In particular, note that
if D and E are Cartier divisors on X , then D∼Q E if and only if mD∼mE for some
positive integer m. If D and E are elements of CDiv(X) or CDiv(X)R, we write
D≡ E if the corresponding elements of Pic(X)R are numerically equivalent.

Definition 1.3.8. If X is a complete scheme, let NE(X) denote the convex cone in
N1(X)R generated by the classes of curves in X . The closure NE(X) of NE(X) is
the Mori cone of X .
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The nef cone Nef(X) of X is the dual of NE(X), that is,

Nef(X) = {α ∈ N1(X)R | (α ·C)≥ 0 for every curve C ⊆ X}.

Note that Nef(X) is a closed convex cone in N1(X)R whose dual is the Mori cone
NE(X). We refer to Appendix A for a review of duality for closed convex cones.

We say that an element of CDiv(X)R or Pic(X)R is nef if its image in N1(X)R
is nef (that is, lies in Nef(X)). Of course, for line bundles we recover our previous
definition.

Proposition 1.3.9. Let f : X → Y be a morphism of complete schemes.

i) If L ∈ Pic(Y ) is such that L ≡ 0, then f ∗L ≡ 0. Therefore by pulling-back line
bundles we obtain a linear map f ∗ : N1(Y )R → N1(X)R that takes N1(Y ) and
N1(Y )Q to N1(X) and N1(X)Q, respectively.

ii) The dual of the map in i) is f∗ : N1(X)R→N1(Y )R that takes the class of a curve
C to deg(C/ f (C)) f (C) if f (C) is a curve, and to 0, otherwise. This induces a map
NE(X)→ NE(Y ).

iii) If f is surjective, then f ∗ : N1(Y )R→ N1(X)R is injective.
iv) If α ∈N1(Y )R is nef, then f ∗(α) is nef. The converse also holds if f is surjective.

Proof. If C is a curve on X and L ∈ Pic(Y ), then by the projection formula we have
( f ∗L ·C) = 0 if f (C) is a point and ( f ∗L ·C) = deg(C/ f (C)) · (L · f (C)) if f (C)
is a curve. Moreover, if f is surjective, then given any curve C′ in Y , there is a curve
C in X with f (C) = C′ (see, for example, Corollary B.1.2). All the assertions in the
proposition follow from these facts.

Definition 1.3.10. If X is any scheme and Z is a closed subscheme of X that is
complete, we say that α ∈ Pic(X)R is nef on Z if its image in Pic(Z)R is nef. If
D ∈ CDiv(X)R, we say that D is nef on Z if the corresponding element in Pic(X)R
is nef on Z.

Remark 1.3.11. If Y is a closed r-dimensional subscheme of the complete scheme X
and αi,α

′
i ∈ Pic(X)R, with 1≤ i≤ r are such that αi ≡ α ′i for every i, then

(α1 · . . . ·αr ·Y ) = (α ′1 · . . . ·α ′r ·Y ).

Indeed, it is enough to check this when αi = α ′i ∈ Pic(X) for 2 ≤ i ≤ r. Using
the basic properties in Proposition 1.2.5 we see that we may assume that Y = X
is an integral scheme. Moreover, we may apply Chow’s lemma to construct a
proper, birational map f : Y ′ → Y , with Y ′ projective. Since f ∗(α1) ≡ f ∗(α ′1) by
Proposition 1.3.9, an application of the projection formula implies that we may re-
place Y by Y ′ and thus assume that Y is projective. In this case, after writing each
αi = OX (Ai−Bi), for Ai and Bi very ample Cartier divisors, we reduce to the case
when αi = OX (Ai) for all 2 ≤ i ≤ r, with Ai very ample Cartier divisors. In this
case, it follows from Remark 1.2.7 that we can find a positive integer m and a one-
dimensional subscheme Z in X such that
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(α1 · . . . ·αr ·Y ) =
1
m

(α1 ·Z) and (α ′1 ·α2 · . . . ·αr ·Y ) =
1
m

(α ′1 ·Z).

If the one-dimensional irreducible components of Z are C1, . . . ,Cd (considered
with reduced scheme structure) and if `(OZ,Ci) = ei, then it follows from Propo-
sition 1.2.5 iii) that (α1 ·Z) = ∑

d
i=1 ei(α1 ·Ci) and (α ′1 ·Z) = ∑

d
i=1 ei(α ′1 ·Ci). Since

(α1 ·Ci) = (α ′1 ·Ci) for every i by assumption, we obtain the desired equality.

Remark 1.3.12. If L and L ′ are two numerically equivalent line bundles, then L
is ample if and only if L ′ is ample (one says that ampleness is a numerical prop-
erty). Indeed, it follows from the previous remark that (L r ·V ) = (L ′r ·V ) for every
r-dimensional subvariety V of X , and we can use the ampleness criterion from The-
orem 1.3.1.

It follows from Remark 1.3.11 that if Y is a closed r-dimensional subscheme
of a complete scheme X , and α1, . . . ,αr ∈ N1(X)R, then the intersection product
(α1 · . . . ·αr ·Y ) is a well-defined real number. Furthermore, the map

N1(X)r
R→ R, (α1, . . . ,αr)→ (α1 · . . . ·αr ·Y )

is multilinear, hence continuous.
We now introduce the other cone that we are concerned with in this section.

Definition 1.3.13. The ample cone Amp(X) of a projective scheme X is the convex
cone in N1(X)R generated by the classes of ample line bundles, that is, it is the set of
classes of Cartier divisors of the form t1A1 + . . .+ trAr, where r is a positive integer,
the Ai are ample Cartier divisors, and the ti are positive real numbers. An element
α ∈N1(X)R is ample if it lies in Amp(X). We say that α in CDiv(X)R or in Pic(X)R
is ample if the image of α in N1(X)R is ample.

Remark 1.3.14. If Y is an r-dimensional closed subscheme of the projective scheme
X and α1, . . . ,αr ∈ Amp(X), then (α1 · . . . ·αr ·Y ) > 0. Indeed, it follows from defi-
nition that this intersection number is a linear combination with positive coefficients
of numbers of the form (L1 · . . . ·Lr ·Y ), where Li ∈ Pic(X) are ample, and we can
apply Remark 1.3.2. This observation implies that if L ∈ Pic(X) and λ ∈R>0, then
λL ∈Amp(X) if and only if the line bundle L is ample (therefore our new defini-
tion is compatible with the definition in the case of line bundles). We also see that
ampleness of Cartier Q-divisors can be easily reduced to the case of Cartier divisors
(for example, the Nakai-Moshezon ampleness criterion extends trivially to elements
of Pic(X)Q).

Lemma 1.3.15. For every ample Cartier divisor D on a projective scheme X, there
are ample Cartier divisors A1, . . . ,Ar on X such that the images of D,A1, . . . ,Ar in
N1(X)R give an R-basis of this vector space.

Proof. Since D 6≡ 0, we can find Cartier divisors A1, . . . ,Ar such that the images of
D,A1, . . . ,Ar give a basis of N1(X)R. Since we may replace each Ai by Ai +mD, for
m� 0, and since these divisors are ample, we obtain the assertion in the lemma.
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Lemma 1.3.16. For every projective scheme X, the ample cone Amp(X) is open in
N1(X)R.

Proof. It is enough to show that if α ∈ CDiv(X)R is ample and D1, . . . ,Dr are arbi-
trary Cartier divisors, then α +∑

r
i=1 tiDi is ample if 0≤ ti� 1 for all i (for example,

choose Cartier divisors E1, . . . ,En whose classes give a basis of N1(X)R, and let
D1, . . . ,Dr be E1,−E1, . . . ,En,−En). We may replace α by a numerically equivalent
divisor, hence we may assume that α = ∑

m
j=1 s jA j, for ample Cartier divisors A j and

s j ∈ R>0. Clearly, it is enough to prove that A1 +∑
r
i=1 tiDi is ample for 0 ≤ ti� 1.

We choose m� 0 such that rDi +mA1 is ample for every i. In this case

A1 +
r

∑
i=1

tiDi =

(
1−

r

∑
j=1

mti
r

)
A1 +

r

∑
i=1

ti
r
(rDi +mA1)

is ample if 0≤ ti < 1
m for every i.

Corollary 1.3.17. For every projective variety X, the Mori cone NE(X) is strongly
convex.

Proof. It follows from Lemma 1.3.16 that the interior of Nef(X) is non-empty, since
it contains Amp(X). Therefore Nef(X) is full-dimensional, which implies that its
dual NE(X) is strongly convex (see Appendix A).

Theorem 1.3.18 (Kleiman). If X is a complete scheme and α ∈N1(X)R is nef, then
for every closed subscheme Y of X we have (αn ·Y )≥ 0, where n = dim(Y ).

Proof. It is clear that we may replace X by Y and thus assume that Y = X . We argue
by induction on n. We may assume that n≥ 2, as otherwise there is nothing to prove.
If X1, . . . ,Xr are the n-dimensional irreducible components of X and ei = `(OX ,Xi),
then it follows from Proposition 1.2.5 that

(αn) =
r

∑
i=1

ei · (αn ·Xi),

hence it is enough to consider the case when X is irreducible and reduced. By
Chow’s lemma, there is a proper, birational morphism f : X ′ → X , with X ′ pro-
jective. Since f ∗(α) is nef and (αn) = ( f ∗(α)n) by the projection formula, after
replacing X by X ′ we may and will assume that X is projective.

We first show that the result holds if α is the class of a nef Cartier divisor D on
X . Let H be a fixed very ample effective Cartier divisor on X . For every t ∈ R, we
put Dt = D+ tH and let P(t) = (Dn

t ). Note that

P(t) = (Dn)+n(Dn−1 ·H)t + . . .+(Hn)tn,

hence P is a polynomial function of t, with deg(P) = n, and positive top-degree
coefficient. We assume that P(0) < 0 and aim to obtain a contradiction. Since P(t) >
0 for t � 0, it follows that P has positive roots. Let t0 > 0 be the largest root of P.
Note that P(t) > 0 for all t > t0.
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Claim. For every subscheme W of X different from X , we have (Dd
t ·W ) > 0 for all

t > 0, where d = dim(W ).

Indeed, we can write

(Dd
t ·W ) = td(Hd ·W )+

d

∑
i=1

(
d
i

)
td−i(Hd−i ·Di ·W ).

Since H is ample and dim(W ) < n, it follows from our inductive assumption and
Remark 1.2.7 that (Hd−i ·Di ·W )≥ 0 for 1≤ i≤ d, while (Hd ·W ) > 0. This proves
the claim.

Since (Dn
t ) > 0 for every t > t0, we deduce using the claim and the Nakai-

Moishezon criterion that Dt is ample for every t ∈ Q, with t > t0. Note also that
we can write

P(t) = (Dn−1
t ·D)+ t(Dn−1

t ·H).

It follows using again Remark 1.2.7 that if t > t0 is rational, then (Dn−1
t ·D) ≥ 0

and (Dn−1
t ·H) ≥ 0 (we use the fact that Dt is ample for such t, while both D and

H are nef). By continuity, these inequalities must hold also for t = t0. Therefore the
fact that P(t0) = 0 implies (Dn−1

t0 ·H) = 0. However, this contradicts the claim for
W = H and t = t0. This completes the proof in the case α ∈ N1(X), and the case
α ∈ N1(X)Q is an immediate consequence.

Suppose now that α ∈N1(X)R is nef. We use Lemma 1.3.15 to choose β1, . . . ,βρ ∈
N1(X) ample and giving a basis of N1(X)R. For every ε > 0, consider the set

{α + t1β1 + . . .+ tρ βρ | 0 < ti < ε for all i}.

This is an open set in N1(X)R, hence it must contain an element αε ∈ N1(X)Q. It is
clear that αε is nef, hence the case already proved gives (αn

ε )≥ 0. Since limε→0 αε =
α , we conclude (αn)≥ 0. This completes the proof of the theorem.

Corollary 1.3.19. If X is a projective scheme and α,β ∈N1(X)R, with α ample and
β nef, then α +β is ample.

Proof. We prove this in three steps. Suppose first that both α and β lie in N1(X)Q.
After replacing α and β by mα and mβ for a positive integer m that is divisible
enough, we see that it is enough to show that if D,E ∈ CDiv(X) are such that D
is ample and E is nef, then D + E is ample. By the Nakai-Moishezon criterion, it
is enough to show that for every subvariety V of X of dimension r ≥ 1, we have
((D+E)r ·V ) > 0. Note that

((D+E)r ·V ) =
r

∑
i=0

(
r
i

)
(Di ·Er−i ·V ).

Since D is ample and E is nef we have (Dr ·V ) > 0, while Theorem 1.3.18 and
Remark 1.2.7 imply (Di ·Er−i ·V )≥ 0 for 1≤ i≤ r. Therefore D+E is ample.

Suppose now that β ∈ N1(X)Q and α is arbitrary. We may assume that β = bG,
where b ∈Q>0 and G is the class of a nef line bundle, and α = a1H1 + . . .+amHm,



1.3 The ample and nef cones 23

where m ≥ 1, the Hi are classes of ample line bundles, and the ai are positive real
numbers. If a′1 is a positive rational number with a′1 < a1, then a′1H1 +bG is ample
by the case we have already proved, hence

a1H1 + . . .+amHm +bG = (a′1H1 +bG)+(a1−a′1)H1 +a2H2 + . . .+amHm

is ample. Therefore α +β is ample also in this case.
Let us prove now the general case. We apply Lemma 1.3.15 to choose a basis of

N1(X)R of the form α1, . . . ,αρ , where the αi are classes of ample line bundles. It
follows from Lemma 1.3.16 that there is ε > 0 such that the set

U := {α− t1α1− . . .− tρ αρ | 0 < ti < ε for all i}

is contained in the ample cone. Since U + β is open in N1(X)R, it contains a class
β ′ ∈ N1(X)Q. By assumption, β ′−β is ample, hence β ′ is clearly nef. Since

α +β = (t1α1 + . . .+ tρ αρ)+β
′,

for t1, . . . , tρ > 0 and β ′ ∈N1(X)Q, we conclude that α +β is ample by the case that
we already proved.

Corollary 1.3.20. If X is a projective scheme, then

i) Amp(X) is the interior of Nef(X).
ii) Nef(X) is the closure of Amp(X).

Proof. Since Amp(X) is open by Lemma 1.3.16, the ample cone of X is contained
in the interior of the nef cone. Conversely, suppose that α lies in the interior of the
nef cone. If α ′ ∈ N1(X)R is any ample class, then α− tα ′ ∈ Nef(X) for 0 < t� 1.
In this case α is ample by Corollary 1.3.19. This proves that Amp(X) is the interior
of Nef(X).

The assertion in ii) is now a consequence of the general fact that every closed
convex cone is the closure of its relative interior (see Corollary A.3.6). We could
also argue directly: we only need to show that every α ∈ Nef(X) lies in the closure
of the ample cone. For every β ∈ Amp(X), we have αm := α + 1

m β ∈ Amp(X) by
Corollary 1.3.19. Since limm→∞ αm = α , this shows that α lies in the closure of
Amp(X).

Corollary 1.3.21. If X is a projective scheme, α1, . . . ,αn ∈ N1(X)R, and Y is a
closed n-dimensional subscheme of X, then (α1 · . . . ·αn ·Y )≥ 0.

Proof. We have seen this in Remark 1.3.14 when the αi are ample. The assertion in
the corollary follows since the closure of the ample cone is the nef cone.

Corollary 1.3.22. If X is a projective scheme, then α ∈N1(X)R is ample if and only
if (α · γ) > 0 for every γ ∈ NE(X)r{0}.

Remark 1.3.23. It is easy to see that (α ·γ) > 0 for every γ ∈NE(X)r{0} if and only
if for some (any) norm ‖ − ‖ on N1(X)R, there is η > 0 such that (α ·C)≥ η · ‖C ‖
for every curve C in X (equivalently, (α · γ)≥ η · ‖ γ ‖ for every γ ∈ NE(X)).
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Proof of Corollary 1.3.22. We refer to Appendix A for some basic facts about
closed convex cones that we are going to use. It follows from Corollary 1.3.20 that
α is ample if and only if α is in the interior of Nef(X). Note that since this interior
is non-empty, it is equal to the relative interior of the cone, which is the complement
of the union of the faces of Nef(X) different from Nef(X). Each such face is of the
form Nef(X)∩ γ⊥ for some nonzero γ ∈ NE(X), which gives the assertion in the
corollary.

Remark 1.3.24. By definition, L ∈ Pic1(X)R is ample if and only if it is numerically
equivalent to a linear combination of ample line bundles with positive real coeffi-
cients. In fact, in this case L is equal to such a combination. Indeed, suppose that
L≡ ∑

r
i=1 aiAi, with ai > 0 and all Ai ample line bundles. We can thus write

L =
r

∑
i=1

aiAi +
s

∑
j=1

b jB j,

with b j ∈ R, and all B j numerically trivial line bundles. If s > 0, let us choose a
positive integer m > b1

a1
. Since we can write

a1A1 +b1B1 =
b1

m
(A1 +mB1)+

ma1−b1

m
A1

and both A1 and A1 +mB1 are ample line bundles, we obtain our assertion by induc-
tion on s.

Remark 1.3.25. Suppose that X is a projective scheme over k and k′ is a field ex-
tension of k. If L is a line bundle on X , then we denote by L ′ its pull-back
to X ′ = X ×Speck Speck′. The map L → L ′ induces a group homomorphism
Pic(X)→ Pic(X ′). Recall that by Remark 1.1.3, we have L ample if and only if L ′

is ample. We deduce that L is nef if and only if L ′ is nef: indeed, if M ∈ Pic(X)
is ample, then L is nef if and only if L m⊗M is ample for every m > 0, which
is the case if and only if L ′m ⊗M ′ is ample for every m > 0, which is equiv-
alent to L ′ being nef. Since L is numerically trivial if and only if both L and
L −1 are nef, we deduce that L ≡ 0 if and only if L ′ ≡ 0. Therefore we have
an injective group homomorphism φk′/k : N1(X)→ N1(X ′) inducing an injective
linear map φk′/k,R : N1(X)R → N1(X ′)R. Given α ∈ N1(X), by considering a se-
quence (αm)m≥1 with αm ∈ Amp(X), α −αm ∈ N1(X)Q, and limm→∞ αm = α , we
see that α is ample if and only if some α −αm is ample, which is the case if and
only if φk′/k,R(α)− φk′/k,R(αm) is ample for some m, which in turn is equivalent
to φk′/k,R(α) being ample. Therefore we have Amp(X) = φ

−1
k′/k,R(Amp(X ′)), and

arguing as before, we deduce Nef(X) = φ
−1
k′/k,R(Nef(X ′)).
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1.3.3 Morphisms to projective varieties and faces of the nef cone

Our next goal is to relate the faces of the nef cone to morphisms from X to projective
varieties. We begin by recalling an important concept.

Definition 1.3.26. A proper morphism of schemes f : X → Y is a fiber space if
f∗(OX ) = OY .

It is clear that every fiber space is dominant and if X is integral or normal scheme,
then Y has the same property. Furthermore, it is a consequence of Zariski’s Main
Theorem that every fiber space has connected fibers (see [Har77, Cor. III.11.3]).

Example 1.3.27. If f : X → Y is a proper, birational morphism of varieties and Y
is normal, then f is a fiber space. Indeed, we may assume that Y is affine. In this
case Γ (Y,OY ) ↪→ Γ (X ,OX ) is a finite homomorphism between subrings of K(X) =
K(Y ), hence it is an isomorphism since Γ (Y,OY ) is normal.

Recall that every proper morphism f : X → Y admits a factorization (the Stein
factorization)

X
g→W = S pec( f∗(OX )) h→ Y,

in which h is finite and g is, by definition, a fiber space. In particular, if X is integral
or normal, then so is W .

Remark 1.3.28. Suppose that the ground field has characteristic 0. If f : X → Y is
a proper, dominant morphism of varieties, with Y normal and f having connected
fibers, then f is a fiber space. Indeed, if X

g→W h→ Y is the Stein factorization of f ,
it follows that h is bijective. We deduce from generic smoothness that h is birational.
Since Y is normal, we conclude that h is an isomorphism.

In the following proposition, for a fixed scheme X , we consider equivalence
classes of fiber spaces f : X → Y , where we identify f with f ′ : X → Y ′ if there
is an isomorphism φ : Y →Y ′ such that φ ◦ f = f ′. Both the statement of the propo-
sition and its proof make use of some basic facts about closed convex cones, for
which we refer to Appendix A.

Proposition 1.3.29. For every complete scheme X, there is a natural bijection taking
f to τ( f ), between equivalence classes of fiber spaces f : X→Y , with Y a projective
scheme, and faces of the nef cone Nef(X) that contain in their relative interior the
numerical class of a globally generated line bundle. The class of a curve C in X lies
in the face of NE(X) corresponding to τ( f ) if and only if C is contracted by f .

Proof. The key observation is that a fiber space f : X → Y is uniquely determined
(up to equivalence) by the curves in X that are contracted by f . Indeed, note first that
two (closed) points x1,x2 ∈ X lie in the same fiber of f if and only if they are joined
by a chain of curves that are contracted by f (since the fibers are connected, this is a
consequence of Proposition B.1.4). Since f is surjective, continuous, and closed, it
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follows that as a topological space, Y is the quotient of X by the equivalence relation
generated by x1 ∼ x2 if x1 and x2 both lie on a curve contracted by f . Since f is a
fiber space, the sheaf of rings on Y is uniquely determined by the map of topological
spaces X → Y , being equal to f∗(OX ). This proves the assertion at the beginning of
the proof.

Suppose now that f : X → Y is a fiber space, with Y a projective scheme. We
attach to f the smallest face τ( f ) of Nef(X) that contains f ∗(Nef(Y )). Note that if
LY is an ample line bundle on Y , then LY lies in the interior of Nef(Y ) by Corol-
lary 1.3.20, and this implies that τ( f ) is the smallest face of Nef(X) containing
f ∗(LY ) (therefore the globally generated line bundle f ∗(LY ) lies in the relative
interior of τ( f )). This implies that the face of NE(X) corresponding to τ( f ) is

NE(X)∩ τ( f )⊥ = NE(X)∩ f ∗(LY )⊥.

This shows that the class of a curve C in X lies in NE(X)∩ τ( f )⊥ if and only if
( f ∗(LY ) ·C) = 0, which is the case if and only if f (C) is a point. We have seen that
the equivalence class of f is determined by the curves contracted by f , hence the
map taking f to τ( f ) is injective.

In order to see that this map is also surjective, let τ be a face of Nef(X) containing
the numerical class of a globally generated line bundle L in its relative interior.
Therefore we have a morphism g : X → PN such that L ' g∗(OPN (1)) and let X

g→
Z h→ PN be its Stein factorization. In this case g is a fiber space and there is an
ample line bundle LZ = h∗(OPN (1)) on Z such that τ is the smallest face of Nef(X)
containing g∗(LZ). Therefore τ = τ(g). This completes the proof of the proposition.

Remark 1.3.30. Given a complete scheme X , we can put an order relation on the
set of equivalence classes of fiber spaces X → Y , with Y projective, as follows. If
f : X → Y and f ′ : X → Y ′ are such fiber spaces, then we put f ≺ f ′ if there is
a morphism φ : Y → Y ′ such that φ ◦ f = f ′. Arguing as in the proof of Proposi-
tion 1.3.29, we see that f ≺ f ′ if and only if every curve on X that is contracted
by f is also contracted by f ′ (in particular, this implies that f ≺ f ′ and f ′ ≺ f
if and only if f and f ′ lie in the same equivalence class). Note that if f ≺ f ′,
then f ′∗(Nef(X ′))⊆Nef(X), hence τ( f ′)⊆ τ( f ). Conversely, if τ( f ′)⊆ τ( f ), then
NE(X)∩τ( f )⊥ ⊆NE(X)∩τ( f ′)⊥. In particular, every curve on X that is contracted
by f is also contracted by f ′, hence f ≺ f ′.

1.3.4 Examples of Mori and nef cones

We now discuss a few examples of nef cones and Mori cones. For more examples,
see [Laz04a, Chap. 1.5]. We assume that the ground field is algebraically closed.

Example 1.3.31. If X is a projective curve (recall that by assumption X is irre-
ducible and reduced), then the map Pic(X)→ Z, L → deg(L ) induces an iso-
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morphism N1(X)R 'R, with the nef cone being the half-line generated by the class
of an ample line bundle on X .

Example 1.3.32. If X is a smooth projective surface, then the map that takes a curve
C in X to the line bundle OX (C) induces an isomorphism N1(X)R→ N1(X)R. We
always use this isomorphism to identify these two vector spaces in the case of a
surface. Note that we have Nef(X) ⊆ NE(X), since for every ample line bundle L
on X , there is an irreducible curve C with OX (C)'L m, for some m≥ 1.

The intersection pairing becomes a non-degenerate bilinear form on N1(X)R '
Rρ . The Hodge Index theorem says that the signature of this form is (1,ρ−1) (see
[Har77, Thm. V.1.9]; we also recall the argument in Remark 1.4.22 below).

Example 1.3.33. Let π : X → Pn be the blow-up of Pn at a point q, with n≥ 2. Let
H be the inverse image of a hyperplane not passing through q and E = π−1(q) the
exceptional divisor. The line bundles OX (E) and OX (H) clearly generate Pic(X).
Note that E ' Pn−1 and OE(−E) ' OPn−1(1). Since OE(H) ' OE , we conclude
that

(Hn) = (OPn(1)n) = 1,(E i ·Hn−i) = 0 for 1≤ i≤ n−1, and (En) = (−1)n−1.

In particular, we see that the classes of E and H give a basis for N1(X).
Suppose that D = aE + bH is nef. If ` is a line in Pn passing through q and ˜̀ is

its proper transform, then
(E · ˜̀) = 1 = (H · ˜̀),

hence a+b≥ 0. On the other hand, if C is a line in E ' Pn−1, then (D ·C) =−a≥
0. Since we can write D = −a(H − E) + (a + b)H, we conclude that Nef(X) is
contained in the cone generated by the classes of H and H−E. In order to see that
these two cones are equal, it is enough to note that both OX (H) and OX (H −E)
are globally generated. For OX (H) = π∗OPn(1) this is clear, while the fact that
OX (H−E) is globally generated follows from the fact that if Iq is the ideal defining
q in Pn, then Iq⊗OPn(1) is globally generated. The above description of Nef(X)
implies that the Mori cone of X is generated by ˜̀and C.

Example 1.3.34. Let X be an abelian surface. We first show that in this case
Nef(X) = NE(X). Indeed, note first that if C is a curve on any smooth surface X ,
then OX (C) is nef if and only if (C2)≥ 0 (this is due to the fact that if C′ is any curve
on X different from C, then (C ·C′)≥ 0). If X is an abelian surface, if C′ is a trans-
late of C different from C, then by Proposition 1.2.13 we have (C2) = (C ·C′) ≥ 0.
Therefore OX (C) is nef, which implies that NE(X)⊆ Nef(X).

Claim. 3 If L is a line bundle on X such that (L 2) > 0, then there is C > 0 such
that either h0(X ,L m)≥Cm2 for all m� 0, or h0(X ,L −m)≥Cm2 for all m� 0.

3 We now give the argument when ωX = OX . However, the assertion in the claim holds on every
smooth projective surface, see Example 1.4.21 below.
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Since X is an abelian surface, the canonical line bundle ωX is trivial, hence the
Riemann-Roch theorem for L m gives

χ(L m) =
1
2
(L 2) ·m2 + χ(OX ).

Furthermore, Serre duality gives h2(X ,L m) = h0(X ,L −m), hence

h0(X ,L m)+h0(X ,L −m)≥ 1
2
(L 2) ·m2 + χ(OX ).

For every m≥ 1, we can not have both h0(X ,L m) > 0 and h0(X ,L −m) > 0 (in that
case, we would get L ' OX , a contradiction with (L 2) > 0), and we obtain the
assertion in the claim.

One way of distinguishing the two situations in the above claim is by choosing
an ample line bundle H. We see that if (L 2) > 0 and (L ·H) > 0, then there is
C > 0 such that h0(X ,L m)≥Cm2 for all m� 0. In fact, we have

Nef(X) = {α ∈ N1(X)R | (α2)≥ 0,(α ·H)≥ 0}.

The inclusion “⊆” is trivial; the reverse inclusion follows easily using the fact that
every α ∈ N1(X)Q with (α2) > 0 and (α ·H) > 0 lies in NE(X) by the above dis-
cussion, hence in Nef(X).

Suppose that ρ := dimR N1(X)R ≥ 3 (for example, this is the case if X = E×E,
where E is an elliptic curve; one can check using the intersection matrix that the
curves {p}×E, E×{p}, and the diagonal are linearly independent in N1(X)R). If
e1 ∈ N1(X)R is the class of an ample line bundle, by the Hodge Index theorem we
can complete this to a basis e1, . . . ,eρ of N1(X)R such that the intersection form is
given by (

(u1, . . . ,uρ),(v1, . . . ,vρ)
)
→ u1v1−

ρ

∑
i=2

uivi.

It follows that in this basis, the nef cone is given by

{(u1, . . . ,uρ) | u1 ≥ 0, u2
1 ≥

ρ

∑
i=2

u2
i }.

In particular, we see that this is not a polyhedral cone. In fact, it has infinitely many
extremal rays and most of these are not rational.

Example 1.3.35. If X is a smooth projective surface and C is a curve on X with
(C2) < 0, then the class of C in N1(X)R lies on an extremal ray of NE(X). Indeed,
let H be an ample Cartier divisor on X and let t0 ∈ R be such that D = H + t0C has
the property that (D ·C) = 0. Note that t0 > 0. By Corollary 1.3.22, for any choice
of a norm ‖ − ‖ on N1(X)R, we can find η > 0 such that (H ·C′) ≥ η · ‖ C′ ‖ for
every curve C′ on X . It follows that if C′ 6= C, then

(D ·C′)≥ (H ·C′)≥ η · ‖C′ ‖ .
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This easily implies that D is nef and NE(X)∩D⊥ is the ray containing the class of
C (moreover, the only curve whose class lies on this ray is C).

Note that the face of NE(X) containing the class of C corresponds to a fiber space
f : X → Y if and only if there is a morphism f : X → Y , with Y normal, such that
f (C) is a point p ∈ Y , and f is an isomorphism over Y r{p}. There is always such
f if C ' P1 (see the proof of [Har77, Thm. V.5.7]), but in general there is no such
morphism , see [Har77, Example V.5.7.3].

Example 1.3.36. We assume that char(k) = 0 and let π : X → Y be a ruled surface
over a smooth projective curve Y of genus g. Therefore X = P(E ) for a rank two
vector bundle E on Y . We assume that deg(E ) is even, in which case we may as-
sume that deg(E ) = 0: if L ∈ Pic(Y ) is such that deg(L ) = − 1

2 deg(E ), then we
have X ' P(E ⊗L ) and deg(E ⊗L ) = 0. The Picard group of X is generated by
π∗(Pic(Y )) ' Pic(Y ) and O(1). Therefore N1(X)R is generated by the class f of a
fiber of π and the class h of O(1). Note that we have

( f 2) = 0, ( f ·h) = 1, and (h2) = 0

(see [Har77, Chap. V.2] for a proof of the last formula). In particular, we see that h
and f give a basis of N1(X)R.

We first note that Nef(X) is contained in the convex cone σ ⊆ N1(X)R gener-
ated by h and f . Indeed, if a f +bh is ample, then ((a f +bh) · f ) = b > 0, and also
((a f + bh)2) = 2ab > 0, hence a > 0. Note also that the morphism π : X → Y dis-
tinguishes a face of Nef(X) generated by f , and which is also a face of NE(X). We
now distinguish two cases, depending on whether E is semistable.

Case 1. If E is not semistable, then there is a surjective map E → L , with L ∈
Pic(Y ) and d = deg(L ) < 0. This corresponds to a section s : Y → X and if C =
s(Y ), then (C · f ) = 1 and s∗(O(1)) ' L , hence (C · h) = d. Therefore the class
of C in N1(X)R is d f + h, hence (C2) = 2d < 0. It follows from Example 1.3.35
that d f + h is an extremal ray of NE(X), hence NE(X) is the cone generated by
{ f ,d f +h}, while Nef(X) is generated by { f ,−d f +h}.

Case 2. If E is semistable, then we show that Nef(X) = NE(X) is the cone spanned
by f and h. In order to prove this assertion, it is enough to show that if C is any
curve in X with class a f + bh, then a,b ≥ 0. Given such C, we have OX (C) '
π∗(M )⊗O(m) for some M ∈ Pic(Y ) and some m ∈ Z. Since f is nef, we have
(C · f )≥ 0, hence m≥ 0. The existence of C gives

0 6= H0(X ,π∗(M )⊗O(m))' H0(Y,M ⊗π∗(O(m)))' H0(Y,M ⊗Symm(E )),

hence we have a nonzero map M−1 φ→ Symm(E ). On the other hand, since the
ground field has characteristic zero, all symmetric powers Sym j(E ) are semistable,
of degree 0 (see [Har70, Thm. I.10.5]). The existence of φ then implies that
deg(M−1) ≤ 0. Since the class of C in N1(X)R is equal to deg(M ) f + mh, this
proves our assertion.
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Suppose now that E is stable, and furthermore, that all symmetric powers
Symm(E ) are stable. With the above notation, we see that deg(M ) > 0. In other
words, there is no curve C on X whose class lies on the extremal ray generated by
O(1). In particular, this gives an example of a nef line bundle such that no multi-
ple is numerically equivalent to a line bundle with a nonzero section. We also see
that for such X , the convex cone in N1(X)R generated by the numerical classes of
curves in X is not closed. Finally, note that in this case O(1) has the property that
(O(1) ·C) > 0 for every curve C on X , but (O(1)2) = 0. We mention that Hartshorne
showed in [Har70, Thm. I.10.5] that when k = C, on every curve of genus g≥ 2 there
are rank 2, degree 0 vector bundles E such that Symm(E ) is stable for every m.

1.3.5 Ample and nef vector bundles

We end this section with a brief discussion of ampleness and nefness for vector
bundles. While these notions will not play an important role in what follows, we
will make use of them for constructing examples. Rather than giving an in-depth
treatment of ample and nef vector bundles, we just discuss the properties that we
will need. For a detailed introduction, we refer the reader to [Laz04b, Chapter 6.1].

Let X be a complete scheme over k. A locally free sheaf E on X is ample or
nef if the line bundle OP(E )(1) on P(E ) has the corresponding property. Note that
when E is a line bundle, we recover the previously defined notions. We collect in
the following proposition some basic properties of ample and nef vector bundles.

Proposition 1.3.37. Let E be a locally free sheaf on the complete scheme X.

i) If there is a surjective map E → E ′, with E ′ locally free, and E is ample (nef),
then E ′′ is ample (respectively, nef) as well.

ii) If f : Y → X is a finite surjective morphism, where Y is a complete scheme, then
E is ample (nef) if and only if f ∗(E ) is ample (respectively, nef).

iii) If m is a positive integer such that Symm(E ) is ample (nef), then E is ample
(respectively, nef).

iv) If E is globally generated and L is an ample line bundle, then E ⊗L is ample.
v) If E = L1⊕ . . .⊕Lr, where the Li are ample (nef) line bundles, then E is ample

(respectively, nef).

Proof. The surjection E → E ′ induces a closed embedding P(E ′) ↪→P(E ) such that
OP(E )(1) restricts to OP(E ′)(1). This gives the assertion in i). Suppose now that f is a
morphism as in ii). This induces a finite surjective morphism g : P( f ∗(E ))→ P(E )
such that g∗(OP(E )(1)) ' OP( f ∗(E ))(1). The assertion in ii) about ampleness then
follows from Proposition 1.1.9, while the assertion concerning nefness is clear.

In order to prove iii), it is enough to note that there is a closed embedding
P(E ) ↪→ P(Symm(E )) such that the restriction of OP(Symm(E )) restricts to OP(E )(m).
For the assertion in iv), we use the fact that a surjection O⊕r

X → E induces a surjec-
tion L ⊕r → E ⊗L . By i), it is enough to show that L ⊕r is ample. However, we
have an isomorphism
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P(L ⊕r)' X×Pr−1

such that the line bundle O(1) on the left-hand side corresponds on the right-hand
side to p∗(L )⊗ q∗(OPr−1(1)), which is clearly ample (here p and q are the two
projections). This gives iv).

Suppose now that L1, . . . ,Lr are ample line bundles on X . Let M be a fixed
ample line bundle. It follows from Lemma 1.3.38 below that there is a positive
integer m such that M−1⊗L i1⊗ . . .⊗L ir

r is globally generated for all nonnegative
integers i1, . . . , ir with i1 + . . .+ ir = m. We can write Symm(E )'M ⊗E ′, where

E ′ =⊕i1+...+ir=mM−1⊗L i1 ⊗ . . .⊗L ir
r

is globally generated, hence Symm(E ) is ample by iv). We thus conclude that E is
ample using iii).

Consider now the case when L1, . . . ,Lr are nef and let π : P(E )→ X be the
projection. Let L be a fixed ample line bundle on X . For every positive inte-
ger d, consider the embedding P(E ) ↪→ P(Symd(E )) and let φ : P(E )→ X and
ψ : P(Symd(E ))→ X be the canonical projections. Since Symd(E )⊗L is a direct
sum of ample line bundles, it is ample by what we have already proved. This im-
plies that OP(Symm(E ))(1)⊗ψ∗(L ) is ample, hence its restriction to P(E ), equal
to OP(E )(d)⊗ φ ∗(L ) is ample. Since this holds for every d > 0, it follows that
OP(E )(1) is nef.

Lemma 1.3.38. If L1, . . . ,Lr are ample line bundles on the projective scheme X,
then for every coherent sheaf F on X, there is a positive integer m such that F ⊗
L i1

1 ⊗ . . .⊗L ir
r is globally generated for all nonnegative integers i1, . . . , ir, with

i1 + . . .+ ir ≥ m.

Proof. We prove the assertion by induction on r ≥ 1, the case r = 1 being clear.
If r ≥ 1, we use the ampleness of L1 and the inductive hypothesis to find m1 such
that L i1

1 is globally generated for i1 ≥ m1 and F ⊗L i2
2 ⊗ . . .⊗L ir

r is globally
generated if i2 + . . . + ir ≥ m1. We now use again the ampleness of L1 and the
inductive hypothesis to find m2 ≥ m1 such that F ⊗L i1

1 ⊗ . . .⊗L ir
r is globally

generated if either i1 ≥m2 and i2 + . . .+ ir < m1 or i1 < m1 and i2 + . . .+ ir ≥m2. It
is straightforward to see that m = m1 +m2 satisfies the conclusion of the lemma.

1.4 Big line bundles

In this section we introduce and discuss the basic properties of another class of line
bundles that play a fundamental role in birational geometry, the big line bundles.
Recall that we work over a fixed infinite ground field k.
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1.4.1 Iitaka dimension

We begin by presenting Iitaka’s classification of line bundles L according to the
rate of growth for h0(L m). We do this in the more general context of graded linear
series, following [BCL]. Let us recall this concept from [Laz04a].

Definition 1.4.1. Let X be an arbitrary variety. A graded linear series V• on X con-
sists of a sequence (Vm)m≥1, where each Vm is a k-linear subspace of H0(X ,L m)
for some L ∈ Pic(X), with the property that for every p,q ≥ 1, multiplication
of sections induces a linear map Vp ⊗Vq → Vp+q. We make the convention that
V0 = k ⊆ H0(X ,OX ).

From now on, we assume that X is a complete variety. An important example is
provided by the complete graded linear series V• with Vm = H0(X ,L m) for every
m≥ 1. Another example is given by the restricted linear series

Wm = Im
(
H0(Y,L m)→ H0(X ,L m|X )

)
,

where L is a line bundle on the complete variety Y and X is a subvariety of Y .
Let V• be a graded linear series on X . Suppose first that there is q ≥ 1 such that

Vq 6= 0. For every such q, we consider the rational map φq : X 99K P(Vq) defined by
|Vq| and denote by Yq the closure of its image. Note that for every r ≥ 1, multipli-
cation of sections gives a linear map Symr(Vq)→ Vrq and we have a commutative
diagram

X
φrq //_________

φq

���
�
� P(Vrq)

���
�
�

P(Vq)
� � ι // P(Symr(Vq))

with ι the Veronese embedding and the right vertical map a linear projection fol-
lowed by a linear embedding. We thus have a rational dominant map τrq,q : Yrq 99KYq
such that φq ◦ τrq,q = φrq. In particular, we have dim(Yrq)≥ dim(Yq). The Iitaka di-
mension of V• is

κ(V•) := max{dim(Yq) |Vq 6= 0}.

The above discussion shows that dim(Ym) = κ(V•) whenever m is divisible enough.
By convention, when Vq = 0 for all q ≥ 1, we put κ(V•) =−∞. Therefore we have
κ(V•) ∈ {−∞,0,1, . . . ,dim(X)}. If V• is the complete graded linear series corre-
sponding to L , then κ(L ) = κ(V•) is the the Iitaka dimension of L . A line bundle
L on X is big if κ(L ) = dim(X).

Remark 1.4.2. It follows from definition and the above discussion that for every line
bundle L on X , we have κ(L ) = κ(L m) for every m≥ 1. We may therefore define
κ(D) for every D ∈ CDiv(X)Q as κ(OX (mD)), where m is any positive integer such
that mD is a Cartier divisor.



1.4 Big line bundles 33

Example 1.4.3. It follows from definition that κ(V•) = 0 if and only if dimk(Vq)≤ 1
for every q, with equality for some q≥ 1.

Our goal is to give two equivalent descriptions for the Iitaka dimension. We
begin with an algebraic one. Given X and V• as above, the section ring of V• is
R(X ,V•) :=

⊕
m≥0 Vm, with the product induced by multiplication of sections. Since

the tensor product of two nonzero sections is nonzero, it follows from Lemma C.0.5
that R(X ,V•) is a domain. We denote by K(X ,V•) its field of fractions.

Proposition 1.4.4. If V• is a graded linear series on the complete variety X, then the
following hold:

i) There is q such that τrq,q : Yrq 99K Yq is birational for every r ≥ 1.
ii) We have trdegkK(X ,V•) = 1+κ(V•), with the convention that the right-hand side

is 0 when κ(V•) =−∞.

Before proving the proposition, we make some preparations. For every q≥ 1 such
that Vq 6= 0, let R(q) ⊆ R(X ,V•) denote the k-subalgebra generated by the degree q
part Vq. Note that R(q) is again a graded domain and we consider the following
subring of the fraction field of R(q):

K(q) :=
{a

b
| a,b ∈ R(q) homogeneous of the same degree, b 6= 0

}
.

Similarly, we put

K(0) :=
{a

b
| a,b ∈ R(X ,V•)homogeneous of the same degree, b 6= 0

}
.

It is clear that each K(q) is a subfield of K(X ,V•) and K(0) =
⋃

q,Vq 6=0 K(q). Fur-

thermore, for every r ≥ 1 and every a
b ∈ K(q), we may write a

b = abr−1

br , hence
K(q) ⊆ K(qr). Let k(X) denote the function field of X .

Given a,b ∈ Vq, with b 6= 0, the quotient a
b defines a rational function on X . In

this way we obtain a field homomorphism K(0) ↪→ k(X).

Lemma 1.4.5. With the above notation, for every q ≥ 1 such that Vq 6= 0, the in-
duced homomorphism K(q) ↪→ k(X) identifies K(q) with the image of k(Yq) under
the homomorphism induced by the dominant rational map φq : X 99K Yq.

Proof. Let s ∈Vq be nonzero and let U ⊆ X be the complement of the zero-locus of
s. We have a corresponding hyperplane Hs in P(Vq) and if W = Yq r Hs, then

O(W )'
{ a

sm | m≥ 0,a ∈ R(q)
mq

}
,

which identifies the function field of Yq with K(q).

Lemma 1.4.6. With the above notation, if Vq 6= 0 for some q≥ 1, then

trdegkK(X ,V•) = trdegkK(0) +1.



34 1 Ample, nef, and big line bundles

Proof. If s is a nonzero homogeneous element of degree q in R(X ,V•), then it is clear
that s is transcendental over K(0), giving the inequality “≥” in the statement. On the
other hand, if t is another such homogenous element of degree m, then tq

sm ∈ K(0).
Since K(X ,V•) is generated over k by such homogeneous elements, we deduce the
inequality “≤” in the lemma.

Proof of Proposition 1.4.4. We have see that K(0) is a subfield of k(X). We know
that k(X) is finitely generated over k, hence also K(0) is finitely generated over k.
Since K(0) =

⋃
q K(q) and K(q) ⊆ Kq′ whenever q divides q′, it follows that K(0) =

K(m) if m is divisible enough. In particular, we get the assertion in i).
It is clear that ii) holds when κ(V•) =−∞. On the other hand, if κ(V•)≥ 0, then

it follows from what we have shown so far and Lemma 1.4.6 that if m is divisible
enough, then

trdegkK(X ,V•)−1 = trdegkK(0) = trdegkK(m) = dim(Ym) = κ(V•).

This proves ii).

Our next goal is to give a description of the Iitaka dimension of V• in terms of
the rate of growth of dimk(Vm). We begin with the following general bound for the
asymptotic rate of growth of the space of global sections of twists by powers of a
given line bundle.

Proposition 1.4.7. If X is an n-dimensional complete scheme, then for every coher-
ent sheaf F on X and every L ∈ Pic(X), there is C > 0 such that

h0(X ,F ⊗L m)≤C ·mn for all m� 0.

Proof. Suppose first that X is projective. Let us write L ' OX (A−B), with A and
B very ample Cartier divisors. For every m, if we choose E general in the linear
system |mB|, then a local equation of E is a nonzero divisor on F , in which case we
have an inclusion

H0(X ,F ⊗L m) ↪→ H0(X ,F ⊗OX (mA)).

Since A is very ample, we know that there is a polynomial P ∈Q[t] with deg(P)≤ n
such that h0(X ,F ⊗OX (mA)) = P(m) for m� 0. Therefore h0(X ,F ⊗L m) ≤
P(m)≤C ·mn for a suitable C > 0 and all m� 0.

If X is complete, we first reduce to the case when X is an integral scheme using
Lemma 1.1.8. We then use Chow’s lemma and Lemma 1.1.10 to reduce to the case
when X is projective. We leave the details to the interested reader.

Proposition 1.4.8. If V• is a graded linear series on the complete variety X, then
there are positive constants α,β such that

α ·mκ(V•) ≤ dimk(Vm)≤ β ·mκ(V•)

for all m divisible enough, with the convention that m−∞ = 0 for every m.
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Proof. It is clear that the assertion holds when κ(V•) =−∞, hence we assume that
d := κ(V•) ≥ 0. Let L ∈ Pic(X) be such that Vq ⊆ H0(X ,L q) for every q ≥ 1. In
order to prove the lower-bound in the proposition, note that by Proposition 1.4.4,
we have trdegkK(X ,V•) = d + 1. Let s1, . . . ,sd+1 ∈ R(X ,V•) be homogeneous and
algebraically independent over k. After replacing each of them by a suitable power,
we may assume that si ∈Vq for all i. In this case

dim(Vqm)≥
(

m+d
m

)
≥ (qm)d

d! ·qd

for every m≥ 1.
Let us prove now the upper bound in the proposition. Note first that if d = 0, then

dimk(Vq) ≤ 1 for every q, hence the upper-bound clearly holds. Suppose now that
d ≥ 1 and let q be a positive integer such that dim(Yq) = d. Let

U := {x ∈ X | s(x) 6= 0 for some s ∈Vq}.

It is easy to see that there is a subvariety T of X which intersects U , with dim(T ) =
dim(Yq), and such that φq(T ∩U) is dense in Yq. Indeed, if π : Y → X is a birational
map such that φq ◦π is a morphism (for example, the projection onto the first com-
ponent of the graph of φq), then by Corollary B.1.2, we can find a subvariety W of
Y , with dim(W ) = dim(Yq), such that W ∩π−1(U) 6= /0, and W surjects onto Yq. It is
then clear that we may take T = π(W ).

For every positive integer r, the rational map φrq is defined on U and satisfies
τrq,q ◦ φrq = φq, hence φrq(T ∩U) is dense in Yrq. Since every element of |Vrq| is
mapped by φrq to the intersection of Yrq with a hyperplane in P(Vrq), and Yrq is
non-degenerate in P(Vrq) by construction, it follows that the composition

Vrq ↪→ H0(X ,L rq)→ H0 (T,L rq|T )

is injective. Proposition 1.4.7 thus implies

dimk(Vrq)≤ h0(T,L rq|T )≤C · (rq)d

for some C > 0 and all r� 0.

Remark 1.4.9. In general, it is not the case that if L1 and L2 are numerically equiv-
alent line bundles on the complete variety X , then κ(L1) = κ(L2). Consider, for
example, two degree 0 line bundles L1 and L2 on a smooth, projective curve X , with
L1 non-torsion (hence κ(L1) =−∞) and L2 torsion (hence κ(L2) = 0). However,
we will see in Corollary 1.4.16 that bigness only depends on the numerical equiva-
lence class.

Definition 1.4.10. If X is a complete, smooth variety, then the Kodaira dimension
of X is κ(X) := κ(ωX ). One says that X is of general type if κ(X) = dim(X), that
is, if ωX is big.
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Remark 1.4.11. It is easy to see that the Kodaira dimension is a birational invariant.
Indeed, if X and Y are birational complete varieties, then any birational map between
them induces an isomorphism of k-vector spaces

H0(X ,ωm
X )' H0(Y,ωm

Y )

for every m≥ 1 (for example, the case m = 1 is proved in [Har77, Theorem II.8.19]
and the same proof works for every m ≥ 1). The assertion now follows using the
description of the Iitaka dimension in Proposition 1.4.8.

1.4.2 Big line bundles: basic properties

We now study in more detail big line bundles. We begin by introducing an invariant
that measures the rate of growth for the spaces of sections of the multiples of a
given line bundle. If L is a line bundle on the n-dimensional complete variety X ,
the volume of L is given by

volX (L ) := limsup
m→∞

h0(X ,L m)
mn/n!

.

Note that this is finite by Proposition 1.4.7. It is clear that if L is big, then
volX (L ) > 0 and the converse will follow from Theorem 1.4.13 below, at least
when X is projective. The volume of a line bundle is an important invariant that only
depends on its numerical class. One can extend the volume function from N1(X) to a
continuous function on N1(X)R. Furthermore, the limit superior in the definition is,
in fact, a limit. We do not prove these facts about the volume function since we will
not need them. For a thorough study of volumes of divisors, we refer to [Laz04b,
Chap. 2.2.C].

Example 1.4.12. With the above notation, if L is ample, then it follows from
asymptotic Riemann-Roch and Serre vanishing that volX (L ) = (L n).

In the following theorem we collect some equivalent descriptions of big line
bundles on projective varieties.

Theorem 1.4.13. If L is a line bundle on the n-dimensional projective variety X,
then the following are equivalent:

i) volX (L ) > 0.
ii) There are Cartier divisors A and E, with A ample and E effective, such that

L d ' OX (A+E) for some positive integer d.
iii) There is C > 0 such that

h0(X ,L m)≥C ·mn for all m� 0.
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iv) For every q > 0 that is divisible enough, the rational map φq : X 99KP(H0(X ,L q))
is birational onto its image.

v) L is big.

Before giving the proof of the theorem, we prove the following lemma.

Lemma 1.4.14 (Kodaira). If L is a line bundle on the complete variety X such that
volX (L ) > 0, then for every effective Cartier divisor D, we have

h0(X ,L m⊗OX (−D)) > 0

for infinitely many m.

Proof. The hypothesis on L is equivalent to the existence of C > 0 such that
h0(X ,L m) ≥ C ·mn for infinitely many m, where n = dim(X). For a fixed m ≥ 1,
we have an exact sequence

0→L m⊗OX (−D)→L m→L m|D→ 0.

It follows that if h0(X ,L m⊗OX (−D)) = 0, then h0(X ,L m) ≤ h0(D,L m|D). On
the other hand, by Proposition 1.4.7, there is C′ > 0 such that h0(D,L m|D) ≤ C′ ·
mn−1 for all m� 0. We conclude that h0(X ,L m⊗OX (−D)) > 0 for infinitely many
m.

Proof of Theorem 1.4.13. The implication i)⇒ii) follows from Lemma 1.4.14. In-
deed, if volX (L ) > 0 and A is an effective ample Cartier divisor, then there is a
nonzero section in H0(X ,L d⊗OX (−A)) for some d > 0, which gives the assertion
in ii).

We now suppose that ii) holds and prove iii). Since A is ample, it follows from
asymptotic Serre vanishing that if 0 < C < (An)

n! , then for every i with 0≤ i≤ d−1,
we have

h0(X ,L i⊗OX (mA)) = χ(X ,L i⊗OX (mA)) > C ·mn for all m� 0.

We deduce that if C′ < C/dn and m� 0, then by writing m = d · bm/dc+ i, with
0≤ i≤ d−1, we have

h0(X ,L m) = h0(X ,L i⊗OX (bm/dcA+ bm/dcE))

≥ h0(X ,L i⊗OX (bm/dcA))≥C′ ·mn.

We thus obtain the assertion in iii).
Let us show also that ii) implies iv). After possibly replacing L by some power,

we may assume that there is an effective Cartier divisor E such that the line bundle
M := L ⊗OX (−E) is very ample. For every m ≥ 1, multiplication by the section
defining mE gives an injective map H0(X ,M m) ↪→ H0(X ,L m). Let us denote by
Wm its image. Let f1 : X 99K Pn1 and f2 : X 99K Pn2 be the rational maps defined by
|Wm| and, respectively, the complete linear series |L m|. Note that f1 agrees on the
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complement of Supp(E) with the map defined by |M m|, which is a closed embed-
ding. On the other hand, there is a projection ψ : Pn2 99K Pn1 such that ψ ◦ f2 = f1.
This implies that f2 is birational onto its image. Since the implications iii)⇒i) and
iv)⇒v) are clear and v)⇒i) follows from Proposition 1.4.8, this completes the proof
of the theorem.

Remark 1.4.15. Once we know that a big line bundle L satisfies the property in
Theorem 1.4.13 iii), the proof of Lemma 1.4.14 implies that for every effective
Cartier divisor D, we have h0(X ,L m⊗OX (−D)) > 0 for all m� 0.

Theorem 1.4.13 implies, in particular, that bigness is a numerical property.

Corollary 1.4.16. If L1 and L2 are numerically equivalent line bundles on a pro-
jective variety X, then L1 is big if and only if L2 is big.

Proof. Suppose that L1 is big. It follows from Theorem 1.4.13 that there are Cartier
divisors A and E, with A ample and E effective, such that L d

1 'OX (A+E) for some
positive integer d. In this case L2 ' OX ((A + D)+ E) for some Cartier divisor D,
numerically equivalent to zero. Since A + D is numerically equivalent to A, hence
ample, we conclude that L2 is big applying again Theorem 1.4.13.

The next lemma shows that when checking the bigness of L , we may replace
the powers L m by F ⊗L m for every coherent sheaf F with support X .

Lemma 1.4.17. If F is a coherent sheaf on the n-dimensional complete variety X,
with Supp(F ) = X, and L is a line bundle on X, then L is big if and only if there
is C > 0 such that

h0(X ,F ⊗L m)≥C ·mn for m� 0.

Proof. Note that by Theorem 1.4.13, L is big if and only if we have the lower
bound in the lemma when F = OX . Let us say that F satisfies property (?)L if it
satisfies the property in the lemma. We need to show that if Supp(F ) = X , then F
satisfies (?)L if and only if OX does. Suppose first that X is projective.

We claim that if D is an effective Cartier divisor that does not contain any asso-
ciated points of F , then F satisfies (?)L if and only if F ⊗OX (D) does. Indeed,
it follows from the exact sequence

0→F →F ⊗OX (D)→F ⊗OD(D)→ 0

that
0≤ h0(X ,F ⊗OX (D)⊗L m)−h0(X ,F ⊗L m)

≤ h0(D,F ⊗OD(D)⊗L m)≤C1 ·mn−1,

where the second bound holds for some C1 > 0 and all m� 0 by Proposition 1.4.7.
This proves our claim. In particular, after twisting F by a suitable effective ample
Cartier divisor, we may assume that F is globally generated.

Let r = `OX ,η
(Fη) > 0, where η is the generic point of X . If s1, . . . ,sr are gen-

eral elements in Γ (X ,F ), then the induced map O⊕r
X

φ→F is an isomorphism at η .
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Therefore the sheaves ker(φ) and coker(φ) are supported on an (n−1)-dimensional
subscheme and since O⊕r

X is torsion-free, we have ker(φ) = 0. The short exact se-
quence

0→ O⊕r
X →F → coker(φ)→ 0

induces after tensoring with L m and passing to the long exact sequences in coho-
mology

0≤ h0(X ,F ⊗L m)− r ·h0(X ,L m)≤ h0(X ,coker(φ)⊗L m)≤C′ ·mn−1

for some C′ > 0 and all m� 0 (where the last inequality follows from Proposi-
tion 1.4.7). Therefore F satisfies (?)L if and only if L is big.

If X is complete, then we apply Chow’s lemma, Lemma 1.1.10, and Proposi-
tion 1.4.7 to reduce to the projective case. The details are left to the reader.

Proposition 1.4.18. If f : X→Y is a surjective, generically finite morphism of com-
plete varieties, then L ∈ Pic(Y ) is big if and only if f ∗L is big.

Proof. Since the support of f∗(OX ) is Y , it follows from Lemma 1.4.17 that L is
big if and only if there is C > 0 such that

h0(Y, f∗(OX )⊗L m)≥Cmn for all m� 0, (1.6)

where n = dim(X) = dim(Y ). The projection formula implies

h0(Y, f∗(OX )⊗L m) = h0(X , f ∗(L )m),

hence (1.6) is equivalent to f ∗(L ) being big.

Remark 1.4.19. If f : X→Y is a surjective morphism of complete varieties such that
dim(X) > dim(Y ) and L is a line bundle on Y , then f ∗(L ) is never big. Indeed,
the projection formula implies

h0(X , f ∗(L )m) = h0(Y, f∗(OX )⊗L m)

and by Lemma 1.4.7, the right-hand side is bounded above by a polynomial of de-
gree dim(Y ) < dim(X).

Remark 1.4.20. The assertion in Corollary 1.4.16 holds even if X is assumed to be
complete, instead of projective. Indeed, by Chow’s lemma we have a birational mor-
phism f : Y → X , with Y projective. If L1 are numerically equivalent line bundles
on X , then f ∗(L1) and f ∗(L2) are numerically equivalent. Since Li is big if and
only if f ∗(Li) is big, for i = 1,2, by Corollary 1.4.18, we see that L1 big implies
L2 big by using Corollary 1.4.16.

Example 1.4.21. If L is a line bundle on a smooth projective surface X such that
(L 2) > 0, then either L or L −1 is big. Indeed, arguing as in Example 1.3.34, we
see that Riemann-Roch together with Serre duality imply
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h0(X ,L m)+h0(X ,ωX ⊗L −m)≥ χ(L m) =
(L 2)

2
m2− (ωX ·L )

2
m+ χ(OX ).

(1.7)
Note also that if for some m both h0(X ,L m) and h0(X ,ωX ⊗L −m) are positive,
then multiplication by nonzero global sections of L m and ωX ⊗L −m induces em-
beddings

H0(X ,ωX ⊗L −m) ↪→ H0(X ,ωX ) and H0(X ,L m) ↪→ H0(X ,ωX ).

In particular, h0(X ,L m)+ h0(X ,ωX ⊗L −m) ≤ 2h0(X ,ωX ) and by (1.7) this fails
for m � 0. It follows that there is m0 such that for every m ≥ m0, we have
h0(X ,L m) = 0 or h0(X ,ωX ⊗L −m) = 0. If there is d ≥m0 such that h0(X ,L d) >
0, then h0(X ,L dm) > 0 for every m ≥ 1 and therefore there is C > 0 such that
h0(X ,L dm) ≥ C · (dm)n for m � 0. In this case L d is big and therefore L is
big. On the other hand, if h0(X ,L m) = 0 for all m ≥ m0, then there is C > 0
such that h0(X ,ωX ⊗L −m) ≥ C ·mn for all m� 0, in which case L −1 is big by
Lemma 1.4.17.

Remark 1.4.22. One can use the assertion in Example 1.4.21 to give an argument for
the Hodge Index theorem. Suppose that X is a smooth projective surface. In order
to show that the intersection form on N1(X)R ' Rρ has signature (1,ρ − 1), it is
enough to show that for every ample divisor H and every divisor D 6≡ 0 such that
(D ·H) = 0, we have (D2) < 0. Note first that (D2) ≤ 0. Indeed, if (D2) > 0, then
we have seen in Example 1.4.21 that either OX (−D) or OX (D) is big. In particular,
some multiple of these line bundles has sections, and therefore (D ·H) = 0 implies
that OX (D)'OX , which contradicts (D2) > 0.

Suppose now that (D2) = 0. Since D 6≡ 0, we can find a divisor E such that (D ·E)
is nonzero. After replacing E by (H2)E− (E ·H)H , we may assume, in addition,
that (E ·H) = 0. If Dm = mD+E, then (Dm ·H) = 0, hence by what we have already
seen

m(D ·E)+(E2) = (D2
m)≤ 0.

Since (D ·E) 6= 0, this can not hold for all m ∈ Z, giving a contradiction. Therefore
(D2) < 0.

1.4.3 The big cone

It follows from Corollary 1.4.16 that bigness is well-defined for elements of N1(X).
Our next goal is to study this notion in N1(X)R. In this section we assume that X is
a projective variety.

Definition 1.4.23. We say that α ∈ N1(X)Q is big if a multiple of α is the image
of a big line bundle. It follows from Corollary 1.4.16 that this is independent of the
inverse image in Pic(X) of the multiple of α . Furthermore, since a line bundle is big
if and only if a multiple is big, the definition is also independent of which multiple
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of α is chosen. We say that an element of CDiv(X)Q or Pic(X)Q is big if its image
in N1(X)Q is big.

Definition 1.4.24. The pseudo-effective cone PEff(X)⊆N1(X)R of a projective va-
riety X is the closure of the set of classes of effective R-Cartier R-divisors in X . An
element of CDiv(X)R or Pic(X)R is pseudo-effective if its image in N1(X)R lies in
PEff(X).

Remark 1.4.25. Note that since the set of classes of effective R-Cartier R-divisors is
a convex cone in N1(X)R, we get that PEff(X) is a closed convex cone in N1(X)R.

Definition 1.4.26. The big cone Big(X) of a projective variety X is the convex cone
in N1(X)R generated by classes of big line bundles.

Remark 1.4.27. Note that we have the inclusions

Amp(X)⊆ Big(X)⊆ PEff(X)

(the second inclusion follows from the fact that PEff(X) is a convex cone, while for
every big line bundle L , we have h0(X ,L m) > 0 for m� 0). Furthermore, since
PEff(X) is closed and Nef(X) = Amp(X), we deduce Nef(X)⊆ PEff(X).

Proposition 1.4.28. Let X be a projective variety.

i) If D ∈ CDiv(X)R, then the class of D lies in the big cone if and only if we can
write D = A+E, for some A,E ∈ CDiv(X)R, with A ample and E effective. Fur-
thermore, we may assume that E ∈ N1(X)Q.

ii) In particular, D ∈ CDiv(X)Q is big if and only if its class in N1(X)R lies in the
big cone.

iii) We have Big(X) = PEff(X) and Big(X) is the interior of PEff(X).

Proof. In order to prove i), suppose first that D = A + E, with A ample and E ef-
fective. Let us show that in this case we may assume that E ∈ CDivQ. Indeed, we
can write E = t1E1 + . . .+ trEr, with Ei effective Cartier divisors and ti ∈ R>0. If
t ′i ∈ Q>0 are such that 0 < ti− t ′i � 1 and E ′ = ∑

r
i=1 t ′i Ei, then E ′ ∈ CDiv(X)Q is

effective and D−E ′ is ample by the openness of the ample cone.
Therefore we may assume that we have D = A+E as above, such that in addition

E has rational coefficients. Let A′ be a fixed ample effective Cartier divisor. If λ ∈
Q>0 is such that λ � 1, then we write

D = (A−λA′)+(λA′+E),

and A−λA′ is ample by the openness of the ample cone. Since λA′+ E is big by
Theorem 1.4.13, and the class of A−λA′ lies in Amp(X)⊆ Big(X), it follows that
the class of D lies in Big(X).

Conversely, suppose that we can write D ≡ λ1D1 + . . .+ λsDs, with s ≥ 1, Di ∈
CDiv(X) big, and λi ∈ R>0. By Proposition 1.4.13, we can write Di = Ai + Ei, for
some Ai,Ei ∈ CDiv(X)Q, with Ai ample and Ei effective. In this case D = A + E,
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where A−∑
s
i=1 λiAi is numerically trivial (hence A is ample) and E = ∑

s
i=1 λiEi is

effective. This completes the proof of i).
The assertion in ii) follows from i) and Theorem 1.4.13. Let us prove iii). It

is enough to show that Big(X) is the interior of PEff(X). The fact that Big(X) =
PEff(X) is then a consequence of the general fact that every closed convex cone is
the closure of its relative interior (see Corollary A.3.6).

Recall first that Big(X)⊆ PEff(X). Moreover, it follows from i) that

Big(X) =
⋃

D≥0

([D]+Amp(X)),

where the union is over the effective Cartier R-divisors. Since Amp(X) is open by
Lemma 1.3.16, we conclude that Big(X) is open, hence it is contained in the interior
of PEff(X).

Suppose now that the class of a Cartier R-divisor D lies in the interior of PEff(X).
This implies that if A is a fixed ample Cartier R-divisor, then D− 1

m A is pseudo-
effective for m� 0. Therefore in order to complete the proof of iii) it is enough to
show that if H,F ∈ CDiv(X)R are such that H is ample and F is pseudo-effective,
then the class of H + F lies in the big cone. By definition, there is a sequence
(Fm)m≥1 of effective R-Cartier R-divisors such that limm→∞ Fm = F in N1(X)R.
Since we can write H +F = (H +F−Fm)+Fm and H +F−Fm is ample for m� 0
by openness of the ample cone, we conclude that the class of H + F lies in Big(X)
by i).

Definition 1.4.29. We say that α ∈ N1(X)R is big if it lies in Big(X). We also say
that an element of CDiv(X)R or Pic(X)R is big if its image in N1(X)R is big.
Note that by Theorem 1.4.28 and Proposition 1.4.28, in the case of elements of
CDiv(X)Q, Pic(X)Q, and N1(X)Q we recover our previous definition.

Remark 1.4.30. Since Big(X) is the interior of PEff(X), we deduce that if D and E
are Cartier R-divisors, with D big and E pseudo-effective, D+E is big (see Corol-
lary A.3.5).

Example 1.4.31. If X is a smooth projective surface, then under the canonical iden-
tification N1(X)R ' N1(X)R, the cone PEff(X) gets identified to NE(X).

Remark 1.4.32. If f : X → Y is a surjective morphism of projective varieties, then
f ∗ : N1(Y )R ↪→ N1(X)R induces an injective map PEff(Y ) ↪→ PEff(X). Indeed, this
follows from the fact that PEff(Y ) is generated as a closed convex cone by the classes
of L ∈ Pic(Y ) with h0(Y,L )≥ 1, and for such L we also have h0(X , f ∗(L ))≥ 1.

Note that if f is generically finite, then α ∈N1(Y )R is big if and only if f ∗(α) is
big. If α ∈N1(Y )Q, this follows from Proposition 1.4.18. In the general case, there is
a sequence (αm)m≥1, with limm→∞ αm = 0, and αm ∈Amp(X) and αm−α ∈N1(X)Q
for all m. We have α big if and only if α −αm big for m� 0, which is the case if
and only if f ∗(α)− f ∗(αm) is big for m� 0. This is equivalent with f ∗(α) being
big (note that each f ∗(αm) is clearly big, being a positive linear combination of
pull-backs of ample Cartier divisor classes).
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We deduce that if f is generically finite, then α ∈ N1(Y )R is pseudo-effective if
and only if f ∗(α) is pseudo-effective. Indeed, if β ∈ N1(Y )R is big, then f ∗(β ) is
big, and we have the following equivalences:

α is pseudo-effective ⇔ α +
1
m

β is big for all m≥ 1

⇔ f ∗
(

α +
1
m

β

)
is big for all m≥ 1⇔ f ∗(α) is pseudo-effective.

We now show that on a smooth variety, we can characterize the bigness in terms
of the rate of growth of the space of sections also for R-divisors.

Proposition 1.4.33. If X is a smooth n-dimensional projective variety, then an R-
divisor D on X is big if and only if there is C > 0 such that h0(X ,OX (mD))≥Cmn

for all m� 0.

Proof. Recall that by definition, we have OX (mD) = OX (bmDc). Suppose first that
D is big, hence we can write D = A+E, with A ample and E effective. Since bmDc≥
bmAc, we see that it is enough to prove the assertion when D is ample. In this case
we can write D = ∑

r
i=1 aiAi, where the Ai are ample Cartier divisors and the ai are

positive real numbers (see Remark 1.3.24). Since

bmDc ≥
r

∑
i=1
bmaiAic,

it is clear that it is enough to prove the assertion when D = aA, for an ample Cartier
divisor A and for a ∈ R>0. When 0 < t ≤ 1, there are only finitely many sheaves of
the form OX (btAc); let these be F1, . . . ,Fs. Since A is ample and Supp(Fi) = X
for all i, it follows that there is C′ > 0 such that h0(X ,Fi⊗OX (mA)) ≥C′ ·mn for
all i and all m� 0. We conclude that if C < C′ ·an, then

h0(X ,OX (bmaAc))≥C′ · (bmac)n ≥C′ · (ma−1)n ≥C ·mn

for all m� 0.
Conversely, if there is C as in the proposition, we prove that D is big by arguing

as in the proof of Kodaira’s lemma. Let us write D = ∑
s
i=1 λiFi. Let A be an effective,

very ample Cartier divisor on X , that does not contain any of the Fi. It order to show
that D is effective, it is enough to prove that h0(X ,OX (mD−A))≥ 1 for some m≥ 1.
Using the short exact sequence

0→ H0(X ,OX (bmDc−A))→ H0(X ,OX (bmDc))→ H0(X ,OX (bmDc)|A),

we see that it is enough to show that there is C′ > 0 such that

h0(X ,OX (bmDc)|A)≤C′ ·mn−1 for m� 0. (1.8)

Let D′= dDe. By the assumption on A, the natural inclusion OX (bmDc) ↪→OX (mD′)
induces an inclusion
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H0(X ,OX (bmDc)|A) ↪→ H0(X ,OX (mD′)|A),

and it follows from Proposition 1.4.7 that there is C′ > 0 such that (1.8) holds. This
completes the proof of the proposition.

1.4.4 Big and nef divisors

Of particular importance are divisors that are both nef and big. Our next goal is to
give two different characterizations for such divisors.

Proposition 1.4.34. If X is a projective variety and D ∈ CDiv(X)R, then D is big
and nef if and only if there E ∈ CDiv(X)R effective and Am ∈ CDiv(X)R ample, for
m ≥ 1, such that D = Am + 1

m Em for all m (or for all m� 0). Furthermore, in this
case we may assume that E ∈ CDiv(X)Q.

Proof. If there are divisors E and Am as in the statement, it first follows from Propo-
sition 1.4.28 that D is big. Furthermore, since D− 1

m E is ample, hence nef for all
m� 0, and limm→∞(D− 1

m E) = D in N1(X)R, it follows that D is nef.
Conversely, suppose that D is big and nef. It follows from Proposition 1.4.28 that

there are A ∈ CDiv(X)R and E ∈ CDiv(X)Q, with A ample and E an effective, such
that D = A+E. Since we can write

D =
1
m

((m−1)D+A)+
1
m

E

and (m− 1)D + A is ample, as a sum of ample and nef divisors, it follows that D
satisfies the property in the proposition.

Our next goal is to describe big divisors among the nef ones in terms of the top
self-intersection. While the result also holds for real coefficients, we only prove it
for Q-divisors.

Theorem 1.4.35. If X is an n-dimensional complete variety and D ∈ CDiv(X)Q is
nef, then D is big if and only if (Dn) > 0.

We give a proof following [Laz04a, Thm. 2.2.16], in which the subtle implication
is deduced from the following more general numerical criterion, due to Siu, for a
difference of two nef divisors to be big.

Theorem 1.4.36. If X is an n-dimensional complete variety and D,E ∈ CDiv(X)Q
are nef, such that

(Dn) > n · (Dn−1 ·E), (1.9)

then D−E is big.
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Proof. By Chow’s lemma, there is a birational morphism f : X ′ → X , with X ′ a
projective variety. Note that D′ := f ∗(D) and E ′ := f ∗(E) are nef and condition (1.9)
holds with D and E replaced by D′ and E ′, respectively. Furthermore, if f ∗(D−E)
is big, then D−E is big by Corollary 1.4.18, hence after replacing X by X ′, we may
and will assume that X is projective.

If A is an ample Cartier divisor on X , then the condition in (1.9) still holds after
replacing D and E by D+εA and E +εA, respectively, where ε ∈Q>0 is close to 0.
Therefore we may and will assume that both D and E are ample. Furthermore, the
condition in (1.9) is still satisfied if we replace D and E by multiples mD and mE,
and it is enough to show that m(D−E) is big. Therefore we may and will assume
that both D and E are very ample Cartier divisors.

For a positive integer m, we want to give a lower bound for the dimension
of H0(X ,OX (mD−mE)). In order to do this, we choose general Cartier divisors
E1, . . . ,Em linearly equivalent to E, put G = E1 + . . .+ Em, and use the short exact
sequence

0→ OX (mD−mE)→ OX (mD)→ OG(mD)→ 0.

This gives the lower bound

h0(X ,OX (mD−mE))≥ h0(X ,OX (mD))−h0(G,OG(mD)). (1.10)

Since the Ei are chosen general, it follows that at every point in X , the equations
of those of the Ei passing through the point form a regular sequence. We deduce that
we have an injective map

OG ↪→⊕iOEi ,

and by tensoring this with OX (mD) and taking global sections, we obtain

h0(G,OG(mD))≤
m

∑
i=1

h0(Ei,OEi(mD)). (1.11)

On the other hand, for every i we have a short exact sequence

0→ OX (mD−E)→ OX (mD)→ OEi(mD)→ 0.

Since D is ample, we see that for m� 0 we have H1(X ,OX (mD−E)) = 0. There-
fore we obtain

h0(Ei,OEi(mD)) = h0(X ,OX (mD))−h0(X ,OX (mD−E)),

hence the left-hand side is independent of the choice of Ei. Using one more time the
ampleness of D, we conclude that there is a polynomial P ∈Q[t] of degree ≤ n−1
such that h0(Ei,OEi(mD)) = P(m) for m� 0. Furthermore, the coefficient of tn−1

in P is (Dn−1·E)
(n−1)! . Since h0(X ,OX (mD)) = P1(m) for some P1 ∈Q[t] of degree n, with

the coefficient of tn equal to (Dn)
n! , we conclude from (1.10) and (1.11) that
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h0(X ,OX (mD−mE))≥ P1(m)−mP(m)

=
1
n!
(
(Dn)−n · (Dn−1 ·E)

)
mn + lower order terms.

Since (Dn)−n · (Dn−1 ·E) > 0, we conclude that D−E is big.

Proof of Theorem 1.4.35. If D is nef and (Dn) > 0, then it follows from Theo-
rem 1.4.36 that D is big (by taking E = 0). Conversely, suppose that D is nef and
big. Since D is big, we can write D = A + E, for A,E ∈ CDiv(X)Q, with A ample
and E effective. In this case we have

(Dn) = (Dn−1 ·A)+(Dn−1 ·E) = (Dn−2 ·A2)+(Dn−2 ·A ·E)+(Dn−1 ·E) = . . .

= (An)+
n

∑
i=1

(Dn−i ·Ai−1 ·E).

Since E is effective, D is nef, and A is ample, we have (Dn−i ·Ai−1 ·E) ≥ 0 for
1≤ i≤ n and (An) > 0. Therefore (Dn) > 0.

Remark 1.4.37. Note that if D is big but not nef, then (Dn) can be arbitrarily nega-
tive. Indeed, suppose for example that X is the blow-up of P2 at a point, and let us use
the notation in Example 1.3.33. We have seen that PEff(X) = NE(X) is generated
by E and H−E. Therefore Dm = H +mE is big for every m≥ 1 and (D2

m) = 1−m2.

Example 1.4.38. If X is a complete variety and D is an effective Cartier divisor such
that OD(D) is ample, then D is big and nef. Indeed, using the long exact sequence
in cohomology corresponding to

0→ OX ((m−1)D)→ OX (mD)→ OD(mD)→ 0

and arguing as in the proof of Theorem 1.3.1, we see that the ampleness of OD(D)
implies that

h0(X ,OX (mD))−h0(X ,OX ((m−1)D)) = h0(D,OD(mD)) for m� 0.

Since the right-hand side is a polynomial function of degree n− 1, where n =
dim(X), it follows that OX (D) is big. On the other hand, we have (OX (D)n) =
(OD(D)n−1) > 0, hence OX (D) is also nef.

1.5 Asymptotic base loci

In this section we introduce different flavors of asymptotic base loci that can be
associated to a line bundle, following [ELM+06]. We then use these notions to de-
scribe various subcones of the pseudo-effective cone. We work over an algebraically
closed ground field k.
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1.5.1 The stable base locus

Recall first that if X is a complete scheme and L ∈ Pic(X), then the base-locus of
L is defined as the scheme-theoretic intersection

Bs(L ) :=
⋂

s∈H0(X ,L )

Z(s),

where we denote by Z(s) the zero-locus of s ∈ H0(X ,L ).

Definition 1.5.1. The stable base locus of L is the closed subset

SB(L ) :=
⋂

m≥1

Bs(L m)red ⊆ X .

Note that if s ∈H0(X ,L m), then we have a section s⊗d ∈H0(X ,L md) such that
Z(s⊗d)red = Z(s)red. This implies that for every positive integers m and d, we have

Bs(L m)red ⊇ Bs(L md)red.

It follows by the Noetherian property of X that the following holds:

Lemma 1.5.2. If L is a line bundle on the complete scheme X, then for m ∈ Z>0
divisible enough, we have

SB(L ) = Bs(L m)red.

In particular, this implies that the stable base locus is invariant under replacing
L by a power.

Corollary 1.5.3. If L is a line bundle on the complete scheme X, then SB(L ) =
SB(L d) for every positive integer d.

We can therefore extend the definition of the stable base locus to elements of
Pic(X)Q.

Definition 1.5.4. If X is a projective scheme and λL ∈ Pic(X)Q, for some λ ∈Q>0
and L ∈ Pic(X), then we put SB(λL ) := SB(L ). It follows from Corollary 1.5.3
that this definition is independent of choices. We also define SB(D), for D a Q-
Cartier Q-divisor, to be the stable base locus of the corresponding element of
Pic(X)Q.

Example 1.5.5. Note that a line bundle L on X is semiample if and only if SB(L )
is empty.

Example 1.5.6. It is easy to give examples of numerically equivalent line bundles
whose stable base loci are different (consider, as in Example 1.3.5, two degree 0
line bundles on a smooth projective curve, one of them torsion and the other one
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non-torsion). We now give such an example in which both line bundles are big and
nef (see [Laz04b, Example 10.3.3] for a different presentation).

Let C ⊂ Pn be a smooth, projective curve of genus g ≥ 1 over an uncount-
able algebraically closed field. Consider the projective cone Y ↪→ Pn+1 over C and
f : X → Y the blow-up of the vertex. We have an induced morphism g : X →C and
if E is the exceptional divisor of f , then g induces an isomorphism g|E : E 'C.

Let A be an ample line bundle on Y , B a degree 0 line bundle on C, and put
L = f ∗(A)⊗ g∗(B). Note that when we vary B, we obtain numerically equivalent
line bundles on X , which are all big and nef, since f is birational and A is ample. If
B is torsion, then clearly SB(L ) = /0. On the other hand, since L |E corresponds to
B ∈ Pic(C) via g|E , it follows that if B is non-torsion, then E ⊆ SB(L ) (in fact, this
is an equality).

Lemma 1.5.7. If α,β ∈ Pic(X)Q, then SB(α +β )⊆ SB(α)∪SB(β ). In particular,
if β is ample (or semiample), then SB(α +β )⊆ SB(α).

Proof. The assertion is a consequence of the fact that given L1,L2 ∈ Pic(X), we
have

Bs(L1⊗L2)red ⊆ Bs(L1)red∪Bs(L2)red,

which in turn follows from the observation that if s1 ∈H0(X ,L1) and s2 ∈H0(X ,L2),
then

Z(s1⊗ s2)red = Z(s1)red∪Z(s2)red.

1.5.2 The augmented base locus

We will consider two variants of asymptotic base loci that are attached to small per-
turbations of a given divisor. They have the advantage that only depend on the nu-
merical class of a divisor, and moreover, they can also be defined for R-coefficients.
In what follows X is a fixed projective scheme. We first introduce an upper approx-
imation of the stable base locus.

Definition 1.5.8. If D ∈ Pic(X)R, then the augmented base locus of α is

B+(D) :=
⋂

β∈QD

SB(D−A),

where
QD = {A ∈ Pic(X)R | A ample and D−A ∈ Pic(X)Q}.

We also define the augmented base locus of an R-Cartier R-divisor as the augmented
base locus of the corresponding element in Pic(X)R.

Remark 1.5.9. It follows from Lemma 1.5.7 that if D ∈ Pic(X)Q, then SB(D) ⊆
B+(D).
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In order to simplify formulations, it will be convenient to make the following
convention: if D ∈ Pic(X)R and U is a subset of N1(X)R, we say that D lies in U
if the image of D in N1(X)R lies in U .

Proposition 1.5.10. The augmented base locus of D is a closed subset of X. Fur-
thermore, there is an open neighborhood U of 0 in N1(X)R such that B+(D) =
SB(D−A) for every A ∈ QD∩U .

Proof. Since B+(D) is an intersection of closed subsets of X , it is clear that it
is closed. Note now that if A1,A2 ∈ QD are such that A1 − A2 is ample, then by
Lemma 1.5.7 we have

SB(D−A2)⊆ SB(D−A1). (1.12)

By the Noetherian property, we may choose A0 ∈QD with Z = SB(D−A0) min-
imal. If A ∈ QD is such that A0−A is ample (which is the case if A lies in a suitable
open neighborhood of 0 in N1(X)R), then by (1.12) we have SB(D−A) ⊆ Z, and
the minimality in the choice of A0 implies that this is in fact an equality.

Furthermore, given any A′ ∈QD, we can find A ∈QD such that A0−A and A′−A
are both ample, and therefore

Z = SB(D−A)⊆ SB(D−A′).

This implies that Z = B+(D) and by what we have already proved, completes the
proof of the proposition.

Remark 1.5.11. If D and A are Cartier divisors, with A ample, it follows from Propo-
sition 1.5.10 that B+(D) = SB(mD−A) for any m ∈ Z, with m� 0.

Remark 1.5.12. Note that if V is a subvariety of X , then V 6⊆ B+(D) if and only if
we can find A ∈ CDiv(X)R ample and E ∈ CDiv(X)Q effective with V 6⊆ Supp(E)
and D = A + E in Pic(X)R. In this case, we may restrict E to V to get an effective
Q-Cartier Q-divisor, hence the restriction to S of the numerical class of D is big. We
also mention that it is enough to find A and E as above, but with E possibly an R-
Cartier R-divisor: arguing as in the proof of Proposition 1.4.28 one can show that we
can write A+E = A′+E ′, where E is a Cartier Q-divisor and Supp(E) = Supp(E ′).

Proposition 1.5.13. If D1,D2 ∈ Pic(X)R and D1 ≡ D2, then B+(D1) = B+(D2).

Proof. We have a bijective map QD1 → QD2 that takes A1 to A2 = A1 +(D2−D1).
Since we have D1−A1 = D2−A2, we obtain the equality B+(D1) = B+(D2).

As a consequence of Proposition 1.5.13, we can define in the obvious way the
augmented base locus B+(α) for α ∈ N1(X)R. In what follows, if α ∈ N1(X)R, we
also put

Qα = {β ∈ Amp(X) | α−β ∈ N1(X)Q}.

Remark 1.5.14. If D ∈ Pic(X)R, then

i) B+(D) = /0 if and only if D is ample.
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ii) Assuming that X is a variety, B+(D) 6= X if and only if D is big.

Indeed, it follows from Proposition 1.5.10 that B+(D) is empty if and only if there
is A ∈ QD such that SB(D−A) = /0. In this case D is a sum of an ample and a nef
divisor, hence it is ample. Conversely, if D is ample, then we can find A ∈ QD such
that D−A is ample, hence SB(D−A) = /0. The assertion in ii) is an immediate
consequence of Remark 1.5.12.

Lemma 1.5.15. If α1,α2 ∈ N1(X)R, then

B+(α1 +α2)⊆ B+(α1)∪B+(α2).

In particular, if α2 ∈ Amp(X), then B+(α1 +α2)⊆ B+(α1).

Proof. Let us write α1,α2 as the images of D1,D2 ∈Pic(X)R. By Proposition 1.5.10,
we can find A1 ∈QD1 and A2 ∈QD2 such that B+(α1) = SB(D1−A1) and B+(α2) =
SB(D2−A2). It is clear that (A1 + A2) ∈ QD1+D2 and using Lemma 1.5.7 and the
definition of the augmented base locus, we obtain

B+(α1 +α2)⊆ SB(D1 +D2−A1−A2)
⊆ SB(D1−A1)∪SB(D2−A2) = B+(α1)∪B+(α2).

Proposition 1.5.16. If α ∈ N1(X)R and λ > 0, then B+(α) = B+(λα).

Proof. Clearly, it is enough to show that B+(α)⊇B+(λα), since applying this with
(α,λ ) replaced by (λα,λ−1) would give the reverse inclusion. Let D ∈ Pic(X)R be
such that its class is α , and consider A ∈ QD. We choose A′ ∈ QλD, whose class
is close enough to 0, such that λA−A′ is ample. In this case, if λ ′ ∈ Q>0 is close
enough to λ , we have that (λD−A′)−λ ′(D−A) is ample, and using Lemma 1.5.7
we obtain

B+(λD)⊆ SB(λD−A′)⊆ SB(λ ′(D−A)) = SB(D−A).

Since this holds for every A ∈ QD, we obtain B+(λD)⊆ B+(D).

Proposition 1.5.17. If α ∈ N1(X)R, then there is an open subset W of α such that
B+(α ′)⊆ B+(α) for every α ′ ∈W , with equality if α−α ′ is ample.

Proof. Let us write α as the image of D ∈ Pic(X)R. We need to find an open
neighborhood W of α such that for every D′ ∈ Pic(X)R that lies in W , we have
B+(D′)⊆ B+(D), with equality if D−D′ is ample.

It follows from Proposition 1.5.10 that there is an open neighborhood U of 0 in
N1(X)R such that B+(D) = SB(D−A) whenever A∈QD∩U . Fix B∈QD∩U and
let V be an open neighborhood of 0 such that B−V ⊆ Amp(X) and V +V ⊆U .
We show that W = α−V satisfies the conditions in the proposition.
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Suppose first that D′ ∈W is such that D−D′ is ample. Using Lemma 1.5.15, we
first obtain B+(D)⊆ B+(D′). On the other hand, let G ∈QD′ ∩V . This first implies
B+(D′) ⊆ SB(D′−G). We also see that D− (D′−G) = (D−D′)+ G is ample, it
lies in V +V ⊆U , and D′−G ∈N1(X)Q. Therefore D− (D′−G) ∈QD∩U , and
by assumption we get B+(D) = SB(D′−G) ⊇ B+(D′). We conclude that in this
case B+(D) = B+(D′).

Suppose now that D′ ∈W is arbitrary. Note that in this case D′−(D−B)∈B−V ,
hence it is ample. Therefore

B+(D′)⊆ SB(D−B) = B+(D).

This completes the proof of the proposition.

The augmented base locus was introduced in [Nak00], where this locus was de-
scribed for a nef Q-divisor, as follows.

Theorem 1.5.18. If X is a smooth projective variety over an algebraically closed
field of characteristic 0, and L ∈ Pic(X)Q is nef, then

B+(L ) =
⋃

L |V 6=big

V,

where the union is over all subvarieties V of X such that L |V is not big.

The proof in [Nak00] relies on the Kawamata-Viehweg vanishing theorem. The
same result was proved for arbitrary schemes in positive characteristic in [CMM14],
by making use of the Frobenius morphism. A uniform proof for schemes in arbitrary
characteristic, relying on Fujita’s vanishing theorem, has been recently announced
in [Bir].

We note that in the context of the theorem, since L is nef, for a subvariety V of
X the restriction L |V is not big if and only if d = dim(V ) > 0 and (L d ·V ) = 0.
We also note that the inclusion “⊇” in the theorem is clear and holds without the
assumption that L is nef: indeed, if V is not contained in B+(L ), then it follows
from Remark 1.5.12 that there are A,E ∈ Pic(X)Q, with A ample and E represented
by an effective divisor whose support does not contain V , such that D = A + E. In
this case E|V is pseudoeffective and A|V is ample, hence L |V is big.

Remark 1.5.19. We also mention the following fact, due to Keel, which is particular
to positive characteristic, see [Kee99] and [CMM14]. Suppose that X is a projective
variety over an algebraically closed field k of characteristic p > 0, and L ∈ Pic(X)Q
is nef. In this case SB(L ) = SB

(
L |B+(L )

)
.

One can use this to recover the following result of Artin: if k = Fp and dim(X) =
2, then every nef and big line bundle L on X is semiample. Indeed, in this case
every irreducible component C of B+(L ) is a curve such that deg(L |C) = 0, and
therefore L |C is torsion. This implies that L |B+(L ) is torsion, hence semiample,
which implies L semiample.
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1.5.3 The non-nef locus

We now consider what happens if instead of subtracting a “small” ample divisor we
add such a divisor. We keep the assumption that X is a projective scheme.

Definition 1.5.20. If D ∈ Pic(X)R, then the non-nef locus4 of D is

B–(D) :=
⋃

A∈Q−D

SB(D+A).

It follows from Lemma 1.5.7 that if D ∈ Pic(X)Q, then B–(D) ⊆ SB(D). Fur-
thermore, arguing as in the proof of Proposition 1.5.13, we see that the following
holds:

Proposition 1.5.21. If D1,D2 ∈ Pic(X)R and D1 ≡ D2, then B–(D1) = B–(D2).

Similar arguments with those used in the proofs of Proposition 1.5.16 and
Lemma 1.5.15 give the following.

Proposition 1.5.22. If D, D1, and D2 are in Pic(X)R and λ > 0, then

i) B–(α) = B–(λα).
ii) B–(D1 + D2) ⊆ B–(D1) + B–(D2); in particular, if D2 is ample, then we have

B–(D1 +D2)⊆ B–(D1).

It follows from Proposition 1.5.21 that we may define in the obvious way B–(α)
when α ∈ N1(X)R. The following proposition shows that B–(D) is always a count-
able union of Zariski closed subsets.

Proposition 1.5.23. If D ∈ Pic(X)R, then for every sequence (Am)m≥1 of elements
in Q−D, whose classes in N1(X)R converge to 0, we have

B–(D) =
⋃

m≥1

SB(D+Am).

Proof. The inclusion “⊇” follows from definition. Suppose that A is any element in
Q−D. For m� 0, the difference A−Am is ample, hence SB(D+A)⊆ SB(D+Am).
By letting A run over Q−D, we obtain the inclusion “⊆” in the proposition.

Remark 1.5.24. One can choose the sequence (Am)m≥1 in Proposition 1.5.23 such
that, in addition, each Am−Am+1 is ample. In this case the union is non-decreasing:
SB(D+Am)⊆ SB(D+Am+1) for all m.

Remark 1.5.25. It can happen that B–(D) is not closed in X , though such an example
has only recently been obtained in [Les].

4 This is sometimes called the diminished base locus or the restricted base locus of D.
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In light of Proposition 1.5.23, it is convenient to work with B–(D) when the
ground field k is uncountable. For example, in this case it follows that a subvariety
V of X is contained in B–(D) if and only if it is contained in some SB(D + A),
with A ∈ Q−D. On the other hand, when k is countable, the non-nef locus does not
provide the correct formulation for many statements. Because of this restriction,
we will avoid in general working with B–(D) and work instead with all subsets
SB(D+A), where A varies over Q−D.

Remark 1.5.26. If D ∈ Pic(X)R, then

i) B–(D) = /0 if and only if D is nef (which explains the name of B–(D)).
ii) If k is uncountable, then B–(D) = X if and only if D is not pseudoeffective (in

general, the latter condition is equivalent to SB(D+A) = X for some A ∈ Q−D).

Indeed, for i) note that B–(D) = /0 if and only if D + A is semiample for every
A ∈ Q−D. This clearly holds if D is ample (since in this case D + A is ample), and
one can see that the converse holds by considering a sequence (Am)m≥1 of elements
in Q−D with the classes of Am in N1(X)Q converging to 0. Indeed, if D + Am is
semiample for all such m, then D + Am is nef and by passing to limit we obtain D
nef.

It is easy to see that D is pseudoeffective if and only if D + A is big (or pseu-
doeffective) for every A ∈ Q−D (for the “if” part, consider a sequence (Am)m≥1 of
elements in Q−D with classes in N1(X)R converging to 0). The assertion in ii) is an
immediate consequence.

Example 1.5.27. It is easy to give examples of big line bundles L on projective
varieties such that SB(L ) 6= B+(L ): for example, it is enough to consider L that is
is globally generated, but not ample (in which case SB(L ) is empty, while B+(L )
is nonempty). In order to find an example of a big line bundle L such that SB(L ) 6=
B–(L ), it is enough to take L big and nef, but not semiample (in which case B–(L )
is empty, but SB(L ) is not). For an explicit example, see Example 1.5.6.

1.5.4 Stability in N1(X)R

We now use the asymptotic base loci introduced so far to define a notion of “sta-
bility” for line bundles (and more generally, for elements of Pic(X)R), which is
satisfied when the stable base loci do not change in some neighborhood.

Definition 1.5.28. We say that D ∈ Pic(X)R is stable if there is A ∈ Q−D such that
B+(D) = SB(D+A).

Arguing as in the proof of Proposition 1.5.13, we see that the stability of D only
depends on the numerical class of D. Therefore we can consider the stability of the
elements in N1(X)R. We denote by Stab(X) the set of stable α ∈ N1(X)R.
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Remark 1.5.29. If k is uncountable, then D ∈ Pic(X)R is stable if and only if
B+(D) = B–(D). Indeed, this follows from the inclusion

⋃
m≥1 SB(D + Am) ⊆

B+(D), where (Am)m≥1 is as in Remark 1.5.24.

Proposition 1.5.30. If α ∈ N1(X)R, then the following are equivalent:

i) α is stable.
ii) There is an open neighborhood U of α such that SB(L ) is independent of L ∈

Pic(X)Q with image in U .
iii) There is an open neighborhood U of α such that B+(α) = B+(α ′) for every

α ′ ∈U .

Proof. We first show i)⇒iii). Suppose that α is the class of D ∈ Pic(X)R and that
A ∈Q−D is such that B+(D) = SB(D+A). We choose an open neighborhood U of
α that satisfies the condition in Proposition 1.5.17 and such that A+D−D′ is ample
whenever D′ lies in U . This implies that for every D′ in U , we have

SB(D+A)⊆ B+(D+A)⊆ B+(D′)⊆ B+(D),

hence all these inclusions are equalities and B+(D) = B+(D′).
Suppose now that U is an open neighborhood of α such that B+(α ′) = Z for

every α ′ ∈ U . If L ∈ Pic(X)Q lies in U , then there is H ∈ Pic(X)Q ample such
that both L −H and L +H lie in U . In this case we have

B+(L +H)⊆ SB(L )⊆ SB(L −H)⊆ B+(L −H),

hence all these inclusions are equalities and SB(L ) = Z.
In order to prove ii)⇒i), suppose that U is an open neighborhood of α that

satisfies ii). If we choose A′ ∈ QD and A ∈ Q−D whose images in N1(X)R are close
enough to 0, the classes of D+A and D−A′ are in U , hence

B+(D) = SB(D−A′) = SB(D+A),

so that D is stable.

Since the condition in Proposition 1.5.30 iii) clearly defines an open cone in
N1(X), we obtain

Corollary 1.5.31. The set Stab(X) is an open cone in N1(X)R.

Corollary 1.5.32. For every α ∈ N1(X)R, there is an open neighborhood U of α

such that α ′ is stable for every α ′ ∈ U , with α −α ′ ample. In particular, the set
S tab(X) is dense5 in N1(X)R.

Proof. The second assertion follows immediately from the first one, which in turn is
a consequence of the description of stable elements of N1(X)R in Proposition 1.5.30
iii) and of Proposition 1.5.17.

5 We will show in Proposition 1.5.36 below that, in fact, the complement of Stab(X) has Lebesgue
measure zero.
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Example 1.5.33. Suppose, for example, that X = BlQ1,Q2(Pn) is the blow-up of Pn

at two points Q1 and Q2. In this case Pic(X) = N1(X) is freely generated by the
classes of the exceptional divisors E1 and E2 and of the pull-back H of a hyperplane
in Pn. An R-divisor D = αH−β1E1−β2E2 is big if and only if

α > max{β1,β2,0}.

We now describe a decomposition of the stable classes inside the big cone in five
open cones, such that the stable base loci for the rational points are constant in each
of these cones.

Consider first the region defined by α > β1 > 0 and β2 < 0. All elements of
N1(X)Q in this region have stable base locus equal to E2. Similarly, in the region
α > β2 > 0 and β1 < 0, all elements of N1(X)Q have stable base locus equal to E1.
In the region α > 0 and β1,β2 < 0 the stable base locus is equal to E1∪E2.

If β1,β2 > 0, then we have two regions. The first one, given by α > β1 + β2 is
the ample cone. In the other one, given by 0 < α < β1 +β2, the stable base locus of
each element of N1(X)Q is equal to the proper transform of the line joining Q1 and
Q2. The union of these five regions is the set of stable big classes in N1(X)R.

Question 1.5.34. Is it always possible to write Stab(X) as a disjoint union of open
convex cones such that the stable base locus is constant for the line bundles in each
cone?

1.5.5 Cones defined by base loci conditions

We now use the asymptotic base loci to define some natural cones in N1(X)R. Sup-
pose that X is a fixed projective scheme and Z is an irreducible closed subset of X .
We define

CZ := {α ∈ N1(X)R | Z 6⊆ B+(α)}

and CZ as the set of classes of those D ∈ Pic(X)R with the property that for every
A ∈ Q−D, we have Z 6⊆ SB(D + A) (note that if D1 ≡ D2, then this condition is the
same for D1 and D2). Note that when k is uncountable, we have

CZ = {α ∈ N1(X)R | Z 6⊆ B–(α)}.

Proposition 1.5.35. For every irreducible closed subset Z of X, the following hold:

i) CZ is an open convex cone.
ii) CZ is a closed convex cone.

iii) CZ is the interior of CZ and CZ is the closure of CZ .

Proof. By Proposition 1.5.17, there is an open neighborhood U of α such that
B+(α ′)⊆ B+(α) for every α ′ ∈U . In particular, if Z 6⊆ B+(α), then Z 6⊆ B+(α ′),
hence CZ is open. The fact that CZ is a convex cone follows from the fact that Z is
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irreducible and B+(α1 +α2)⊆B+(α1)∪B+(α2) (see Lemma 1.5.15) and B+(α) =
B+(λα) for λ > 0 (see Proposition 1.5.16). This completes the proof of i).

When k is uncountable, the fact that CZ is a convex cone follows as above, using
the corresponding properties of the non-nef locus (see Proposition 1.5.22). We leave
the general case as an exercise for the reader. Let us prove now that CZ is closed.
Suppose that αm ∈ CZ for every m ≥ 1 and limm→∞ αm = α . We choose D and Dm
for all m, whose classes are equal to α and αm, respectively. Given A ∈ Q−D, we
choose m� 0 such that A +(D−Dm) is ample, and then choose A′ ∈ Q−Dm such
that (D+A)− (Dm +A′) is ample. In this case SB(D+A)⊆ SB(Dm +A′), hence Z
is not contained in SB(D+A). We thus conclude that α ∈ CZ .

In order to prove iii), it is enough to show the first assertion (recall that every
closed convex cone is the closure of its relative interior). Since we have already
seen that CZ is open, it is enough to show that if α lies in the interior of CZ , then
it lies in CZ . Suppose that this is not the case, hence Z ⊆ B+(α). Let us choose
D ∈N1(X)R whose numerical class is α . By assumption, we can find A ample such
that D−A ∈ CZ , hence for every A′ ∈ QA−D, we have Z 6⊆ SB(D−A + A′). On
the other hand, there is such A′ with A−A′ is ample, in which case Z ⊆ B+(D) ⊆
SB(D−A+A′), a contradiction.

We use these cones to show that the set of elements of N1(X)R that are not stable
is small, in the following sense.

Proposition 1.5.36. For every projective scheme X, the complement of Stab(X) in
N1(X)R has Lebesgue measure zero.

Proof. It follows from definition that D ∈ Pic(X)R is unstable if and only if
B+(D) 6⊆ SB(D + A) for every A ∈ Q−D. Note that given A1,A2 ∈ Q−D, there is
A ∈ Q−D such that SB(D + A1)∪ SB(D + A2) ⊆ SB(D + A) (it is enough to take
A ∈ Q−D such that A1−A and A2−A are both ample). Since B+(D) has finitely
many irreducible components, it follows that D is not stable if and only if there is a
closed irreducible subset Z of X such that Z ⊆ B+(D) but Z 6⊆ SB(D+A) for every
A ∈ Q−D (furthermore, Z can be taken to be an irreducible component of B+(D)).
Therefore

N1(X)R r Stab(X) =
⋃
Z

(CZ rCZ), (1.13)

where the union is over all irreducible closed subsets of X . Since the boundary of a
closed convex cone has Lebesgue measure zero, in order to complete the proof of
the proposition, it is enough to show that we may only take the union in (1.13) over
countably many subsets Z ⊆ X .

We have seen that it is enough to consider the union in (1.13) over the irre-
ducible components Z of B+(α), where α ∈ N1(X)R. On the other hand, it fol-
lows from Proposition 1.5.17 that for every such α , there is α ′ ∈ N1(X)Q with
B+(α) = B+(α ′). Since there are countably many such α ′ and for each of these,
the augmented base locus has only finitely many irreducible components, it follows
that we only need to consider countably many Z.
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We now introduce some natural cones of the pseudoeffective cone of a projective
variety X . For every j with 0≤ j ≤ n−1, where n = dim(X), we put

Mov j(X) = {α ∈ N1(X)R | codim(B+(α))≥ j +1}

and let Mov j(X) denote the set of classes of D in Pic(X)R with codim(SB(D+A))≥
j +1 for every A ∈ Q−D. Note that if k is uncountable, then

Mov j(X) = {α ∈ N1(X)R | codim(B–(α))≥ j +1}.

Proposition 1.5.37. With the above notation, Mov j(X) is a closed convex cone and
Mov j(X) is its interior.

Proof. Note that by definition, Mov j(X) is the intersection of all cones CZ , where
Z varies over the irreducible closed subsets of X with codim(Z) ≤ j. Therefore
Mov j(X) is a closed convex cone by Proposition 1.5.35. The argument for the fact
that Mov j(X) is the interior of Mov j(X) is the same as in the proof of Proposi-
tion 1.5.35.

Remark 1.5.38. It is not hard to see that Mov j(X) is the closed convex cone gener-
ated by the classes of

{L ∈ Pic(X) | codim(Bs(L ))≥ j +1}.

Note that we have

Movn−1(X)⊆Movn−2(X)⊆ . . .⊆Mov1(X)⊆Mov0(X) = PEff(X).

Note also that if α ∈ Pic(X)Q is such that SB(α) is zero-dimensional, then α is
nef6. This easily implies the fact that Movn−1(X) = Nef(X). For n ≥ 2, the cone
Mov1(X) is called the movable cone and plays an important role in understanding
the rational maps from X to other projective varieties.

1.6 The relative setting

In this section we treat the relative versions of some of the notions that we previously
encountered. We also discuss in some detail the notion of projective morphism, since
the one we use is slightly different from the one in [Har77].

6 It is a theorem of Zariski that in this case SB(α) is empty, but we do not need this fact.
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1.6.1 Relatively ample line bundles

All schemes are assumed to be Noetherian, but in the beginning we do not make any
other assumptions.

Definition 1.6.1. If f : X → S is a proper morphism of schemes, a line bundle L
on X is f -ample (or ample over S) if for every affine open subset U ⊆ S, the line
bundle L | f−1(U) is ample in the sense of Definition 1.1.1. Recall also that L is
f -very ample (or very ample over S) if there is a closed immersion j : X ↪→ Pn

S of
schemes over S, such that j∗(OPn

S
(1))'L . When S = Speck, we recover, of course,

the definition of ample and very ample line bundles on a complete scheme over k.

Remark 1.6.2. It follows from definition that if f : X→ S is a proper morphism, then
L ∈ Pic(X) is f -ample if and only if L d is f -ample for some (any) d > 0. If L is
f -very ample, then L d is f -very ample for every positive integer d (this follows by
composing a given embedding into Pn

S with a Veronese embedding Pn
S ↪→ PN

S , where
N =

(n+d
d

)
−1).

We have the following equivalent descriptions of relative ampleness.

Proposition 1.6.3. If f : X → S is a proper morphism of schemes and L ∈ Pic(X),
then the following are equivalent:

i) L is f -ample.
ii) For every coherent sheaf F on X, we have Ri f∗(F ⊗L m) = 0 for all i≥ 1 and

all m� 0.
iii) For every coherent sheaf F on X, the natural map

f ∗ f∗(F ⊗L m)→F ⊗L m

is surjective for m� 0.

Proof. Note that if U ⊆ S is an open subset, then for every coherent sheaf G on
f−1(U), there is a coherent sheaf F on X with F | f−1(U) ' G . Furthermore, if U is
affine, then

Ri f∗(F ⊗L m)|U = 0 if and only if H i
(

f−1(U),G ⊗L m| f−1(U)

)
= 0.

Similarly, the map f ∗ f∗(F ⊗L m)→ F ⊗L m is surjective on U if and only if
G ⊗L m| f−1(U) is generated by global sections. Therefore the equivalences in the
proposition follow from Definition 1.1.1 and Theorem 1.1.5.

Remark 1.6.4. The description in Proposition 1.6.3 implies, in particular, that when
S is affine, L is ample over S if and only if it is ample. More generally, given
any proper morphism f : X → S and any affine open cover S =

⋃
i Ui, a line bundle

L ∈ Pic(X) is f -ample if and only if L | f−1(Ui) is ample for every i . This implies
that for a line bundle on X , the property of being f -ample is local on the base. We
point out, however, that the existence of an f -ample line bundle on X is not local on
the base.
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Remark 1.6.5. If f : X → S is a proper morphism of schemes and L ∈ Pic(X) is f -
ample, then for every M ∈ Pic(S), the line bundle L ⊗ f ∗(M ) is f -ample. Indeed,
it is enough to consider restrictions to subsets of the form f−1(U), where U ⊆ X is
an open subset such that M |U is trivial.

Remark 1.6.6. Let f : X → S be a proper morphism and L ∈ Pic(X) an f -ample
line bundle. For every morphism u : T → S, if g : X ×S T → T and v : X ×S T → X
are the canonical projections, then v∗(L ) is g-ample. Indeed, when both S and T
are affine, the assertion follows from Remark 1.1.4; the general case follows from
this using the fact that the ampleness property is local on the base.

Remark 1.6.7. If f : X → S is proper and L , M ∈ Pic(X), with L being f -ample,
then M ⊗L m is f -ample for all m� 0. This follows from the corresponding as-
sertion when S is affine, due to the fact that it is enough to check ampleness over a
finite affine open cover of S.

Definition 1.6.8. A morphism f : X → S is a projective morphism if there is a qua-
sicoherent graded OS-algebra A =

⊕
i≥0 Ai, with

i) A0 and A1 coherent OS-modules.
ii) A locally generated by A1 as an OS-algebra,

such that X 'Pro j(A ), as schemes over S. Of course, the structure morphism of
X to Spec(k) is projective if and only if X is a projective scheme. In general, our
definition is slightly weaker than the one in [Har77, Chap. II.7]. However, the two
definitions agree, for example, if S has an ample line bundle, see Proposition 1.6.14
below.

Example 1.6.9. For every scheme X , if Z is a closed subscheme defined by the ideal
IZ , then the blow-up Y of X along Z is a projective scheme over X . Indeed, we have
Y = Pro j

(⊕
i≥0 I i

Z
)
.

Proposition 1.6.10. A morphism of schemes f : X → S is projective if and only if f
is proper and there is L ∈ Pic(X) which is f -ample.

Proof. It is clear that if f is a projective morphism and A is as in the definition, then
f is proper and the line bundle corresponding to O(1) on Pro j(A ) is f -ample.
Conversely, suppose that f is proper and L ∈ Pic(X) is f -ample. Let X =

⋃
i Ui be

a finite affine open cover of S. Let us choose d such that for every i, the line bundle
L d | f−1(Ui) is very ample over Ui and the natural map

Symm
O(Ui)H

0( f−1(Ui),L d)→ H0( f−1(Ui),L dm)

is surjective for every m≥ 1. In this case the OS-algebra A :=
⊕

i≥0 f∗(L i) satisfies
the conditions in Definition 1.6.8 and X 'Pro j(A ) over S.

Example 1.6.11. If f : X → S is a finite morphism, then it follows from definition
that every line bundle on X is f -ample (note that every line bundle on an affine
scheme is ample). In particular, f is projective by Proposition 1.6.10.
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Remark 1.6.12. Note that Remark 1.6.6 and the description of projective morphisms
in Proposition 1.6.10 imply that projective morphisms are closed under base-change.

Remark 1.6.13. If f : X → Y and g : Y → Z are proper morphisms and L ∈ Pic(X)
is (g◦ f )-ample, then L is also f -ample. Indeed, if U ⊆ Z is an affine open subset,
then L | f−1(g−1(U)) is ample. In particular, it is ample over g−1(U). We deduce that
if g◦ f is projective, then also f is projective.

It is clear that if f : X → S is a proper morphism, then any f -very ample line
bundle on X is f -ample.

Proposition 1.6.14. If f : X → S is a proper morphism, L ∈ Pic(X) is f -ample,
and S has an ample line bundle M , then there is d > 0 such that L d⊗ f ∗(M )m is
f -very ample for every m� 0.

Proof. We choose d and A as in the proof of Proposition 1.6.10. Since M is am-
ple, it follows that A1⊗M m is globally generated for all m� 0. In this case, the
OS-algebra A (m) :=

⊕
i≥0(Ai⊗M im) is a graded quotient of some OS[x0, . . . ,xN ],

which induces a closed immersion

j : X 'Pro j(A (m)) ↪→Pro j(OS[x0, . . . ,xN ]) = PN
S

such that j∗(OPN
S
(1))'L d⊗ f ∗(M )m.

Proposition 1.6.15. Let X
f→Y

g→ Z be two proper morphisms of schemes and con-
sider L ∈ Pic(X) and M ∈ Pic(Y ).

i) If L is f -very ample and M is g-very ample, then L ⊗ f ∗(M ) is (g ◦ f )-very
ample.

ii) If L is f -ample and M is g-ample, then L ⊗ f ∗(M )m is (g ◦ f )-ample for all
m� 0.

Proof. If L is f -very ample, then there is a closed immersion i : ↪→ Pn1
Y such that

i∗(OPn1
Y

(1))'L . Similarly, if M is g-very ample, then we have a closed immersion

j : Y ↪→ Pn2
Z such that j∗(OPn2

Z
(1)) 'M . We then obtain an embedding φ : X ↪→

PN×Z as the composition

X
i

↪→ Pn1 ×Y
id× j
↪→ Pn1 ×Pn2 ×Z

ψ×id
↪→ PN×Z,

where N = n1n2 + n1 + n2 and ψ is the Segre embedding. Since φ ∗(OPN
Z
(1)) '

L ⊗ f ∗(M ), it follows that L ⊗ f ∗(M ) is (g◦ f )-very ample.
If L is f -ample and M is g-ample, then in order to check the assertion in ii) it

is enough to do it over each element of a finite affine open cover of Z. Therefore
we may assume that Z is affine, in which case M is ample. It follows from Propo-
sition 1.6.14 that there are d and m1 such that L d ⊗ f ∗(M )m is f -very ample for
all m ≥ m1. Applying Proposition 1.6.14 for g, we see that there is m2 such that
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M m is g-very ample for every m ≥ m2. We deduce from i) that L d ⊗ f ∗(M )m is
(g ◦ f )-very ample for every m ≥ m1 + m2. If m3 is such that dm3 ≥ m1 + m2, we
conclude that L ⊗ f ∗(M )m is f -ample for every m≥ m3.

Example 1.6.16. Suppose that X is a projective scheme over a field and Z ↪→ X is
a closed subscheme defined by the ideal IZ . Let f : Y → X be the blow-up of X
along Z, with exceptional divisor E. If M ∈ Pic(X) is such that IZ ⊗M is glob-
ally generated, then the argument in the proof of Proposition 1.6.14 implies that
f ∗(M )⊗OY (−E) is f -very ample. Therefore f ∗(M )m⊗OY (−mE) is f -very am-
ple for every m > 0, and Proposition 1.6.15 implies that f ∗(M m⊗M ′)⊗OY (−mE)
is a very ample line bundle on Y for every very ample line bundle M ′ on X .

Using the description of projective morphisms in Proposition 1.6.10 and part ii)
in Proposition 1.6.15, we obtain the following.

Corollary 1.6.17. A composition of two projective morphisms is again projective.

Remark 1.6.18. If f : X → S is a projective morphism and S has an ample line bun-
dle, then there is an effective Cartier divisor A on X such that OX (A) is f -ample.
Indeed, since S has an ample line bundle, it follows from Proposition 1.6.14 that
there is a closed immersion j : X ↪→ PN × S of schemes over S. If H is a general
hyperplane in PN , then we may take A = (H×S)∩X .

The following proposition provides a very useful criterion for relative ampleness.
For a morphism f : X → S and for a (not-necessarily-closed) point s ∈ S, we denote
by Xs the fiber of X over s. If L is a line bundle on X , we denote by L |Xs the
pull-back of L to Xs.

Proposition 1.6.19. If f : X→ S is a proper morphism and L ∈ Pic(X) is such that
L |Xs is ample for some s ∈ S, then there is an affine open neighborhood U of s such
that L | f−1(U) is ample.

Proof. The argument we give follows [KM98, Prop. 1.41]. Without any loss of gen-
erality, we may assume that S = Spec(A) and let p ⊆ A be the prime ideal corre-
sponding to s.

We first show that given any coherent sheaf F on X , we have H i(X ,F⊗L m)p =
0 for all m� 0. This clearly holds if i > dim(X×SpecA SpecAp), hence it is enough
to show that if i > 0 and the property holds for (i +1) and all coherent sheaves F ,
then it also holds for i and all coherent sheaves F . If u1, . . . ,uN ∈ A generate p, then
we have an exact sequence on X

F⊕N φ→F →F ⊗A A/p→ 0, (1.14)

where φ = (u1, . . . ,uN). By assumption, for m� 0 we have

H i+1(X ,ker(φ)⊗L m)p = 0 and H i+1(X , Im(φ)⊗L m)p = 0,

hence by tensoring (1.14) with L m, taking the long exact sequence in cohomology,
and localizing at p, we obtain an exact sequence
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H i(X ,F ⊗L m)⊕N
p → H i(X ,F ⊗L m)p→ H i(Xs,F ⊗L m|Xs)→ 0.

Since L |Xs is ample and i > 0, it follows that H i(Xs,F⊗L m|Xs) = 0 for m� 0. We
conclude that if m� 0, then H i(X ,F ⊗L m)⊗A k(p) = 0 and Nakayama’s lemma
implies H i(X ,F ⊗L m)p = 0.

We apply the above property with F = p ·OX to deduce that for m� 0, the map

H0(X ,L m)⊗A k(p)→ H0(Xs,L
m|Xs)

is surjective. Since L m|Xs is globally generated for m � 0, it follows that for
some positive integer m, we have a morphism O⊕N

X
ψ→ L m that is surjective over

Speck(s). Therefore coker(ψ)⊗ k(p) = 0, hence Nakayama’s lemma implies that
after possibly localizing at an element in Arp, we may assume that ψ is surjective.
We thus have an induced morphism j : X → PN−1

A such that j∗O(1) 'L m. Since
L |Xs is ample, the corresponding morphism over Speck(p) is finite. It follows that
if W ⊆ j(X) is the open subset over which j has zero-dimensional fibers, the image
in S of j(X) rW does not contain s. Therefore after possibly replacing S with an
affine open neighborhood of s, we may assume that j is finite, hence L is ample by
Proposition 1.1.9.

Corollary 1.6.20. If f : X → S is a proper morphism, then L ∈ Pic(X) is f -ample
if and only if L |Xs is ample for every s ∈ S. Moreover, if the schemes are of finite
type over a field, then it is enough to only consider the closed points s ∈ S.

Proof. It follows from Remark 1.6.6 that if L is f -ample, then L |X s is ample on
Xs for every s ∈ S. The converse follows from Proposition 1.6.19.

From now on, we assume that all our schemes are of finite type over a field k. By
combining Corollary 1.6.20 with Theorem 1.3.1, we obtain the following.

Corollary 1.6.21. If f : X → S is a proper morphism, then L ∈ Pic(X) is f -ample
if and only if for every closed subvariety V of X with r = dim(V ) > 0 and such that
f (V ) is a point7, we have (L r ·V ) > 0.

1.6.2 The relative ample and nef cones

We now turn to the definition of the relative Néron-Severi group. We fix a proper
morphism f : X → S of schemes of finite type over k. We say that L ∈ Pic(X) is f -
numerically trivial if (L ·C) = 0 for every curve C on X such that f (C) is a point, or
equivalently, if L |Xs is numerically trivial for every (closed) point s∈ S. For two line
bundles L1,L2 ∈ Pic(X), we write L1≡ f L2 if L1⊗L −1

2 is f -numerically trivial.

7 This implies that V is a complete variety over k. Therefore the intersection number (L r ·V ) is
defined as (L |rV ), even though X might not be complete over k.
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The quotient of Pic(X) by this equivalence relation is denoted by N1(X/S). A rela-
tive version of Theorem 1.3.6 says that N1(X/S) is a finitely generated (torsion-free)
abelian group. We get the corresponding vector spaces N1(X/S)Q and N1(X/S)R,
which can also be obtained by taking the quotient of Pic(X)Q and Pic(X)R, respec-
tively, by the equivalence relation defined similarly.

We also have the dual picture: the group Z1(X/S) is the free abelian group on the
set of all curves on X that are mapped by f to a point. We say that α ∈ Z1(X/S)
is f -numerically trivial if (L ·α) = 0 for every L ∈ Pic(X). For α,β ∈ Z1(X/S),
we write α ≡ f β if α − β is f -numerically trivial. The quotient of Z1(X/S) by
this equivalence relation is denoted by N1(X/S) and by tensoring with Q and R we
obtain the vector spaces N1(X/S)Q and N1(X/S)R. It follows from definitions that
the intersection pairing induces a non-degenerate pairing

N1(X/S)R×N1(X/S)R→ R.

One defines the relative Mori cone NE(X/S) to be the closed convex cone in
N1(X/S)R generated by the classes of curves C ⊆ X that map to points. The dual
of NE(X/S) is the f -nef cone Nef(X/S), consisting of f -nef classes. Explicitly,
α ∈ Pic(X)R is f -nef if (α ·C)≥ 0 for every curve C ⊆ X such that f (C) is a point,
or equivalently, if α is nef on every fiber Xs, where s ∈ S is a closed point.

If f is projective, then the f -ample cone Amp(X/S) of X/S is the convex cone
generated by f -ample line bundle classes (note that by Corollary 1.6.21, if we have
L1 ≡ f L2 in Pic(X), then L1 is f -ample if and only if L2 is f -ample). One defines
in the obvious way what it means for an element in Pic(X)R to be f -nef or f -
ample, in terms of the corresponding class in N1(X/S)R. Note that by definition,
L ∈ Pic(X) is f -nef if and only if L |Xs is nef for every s ∈ S.

Remark 1.6.22. If g : Y → X is a morphism of proper schemes over S, then it is
easy to see that the pull-back of line bundles induces a linear map g∗ : N1(X/S)→
N1(Y/S) which takes Nef(X/S) to Nef(Y/S).

Example 1.6.23. If f : X → S is a projective morphism as above, then L ∈ Pic(X)
is f -base-point free if the canonical morphism f ∗ f∗(L )→L is surjective; equiv-
alently, for every affine open subset U ⊆ X , the restriction L | f−1(U) is globally
generated. We say that L is f -semiample if L m is f -base-point free for some posi-
tive integer m. It is clear that if L m is f -base-point free for some m≥ 1, then L m|Xs

is globally generated for every s ∈ S. In particular, if L is f -semiample, then L is
f -nef.

The same argument used in the absolute case gives the fact that if f is projec-
tive, then N1(X/S)R has a basis consisting of classes of f -ample line bundles and
Amp(X/S) is open in N1(X/S)R.

Lemma 1.6.24. Let f : X → S be a projective morphism. If α ∈ N1(X/S)R, then α

is f -ample if and only if α|Xs is ample on Xs for every closed point s ∈ S.

Proof. The “only if” part is clear. Suppose now that α|Xs is ample for every closed
point s ∈ S. After choosing a basis of N1(X/S)R consisting of classes of f -ample
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line bundles, we can find a sequence of elements αm ∈ N1(X/S)Q such that α−αm
is f -ample for every m and limm→∞ αm = α . For every closed point s ∈ S, there
is m(s) such that αm(s)|Xs is ample. By applying Proposition 1.6.19 to a suitable
multiple of αm(s), we deduce that there is an affine open neighborhood U = Us of
s such that αm(s)| f−1(Us) is ample. If s1, . . . ,sr are such that S = Us1 ∪ . . .∪Usr and
if m� 0 is such that αm−αm(si) is f -ample for 1 ≤ i ≤ r, then we see that αm is
f -ample and therefore α is f -ample.

It is now clear that if α ∈Amp(X/S) and β ∈Nef(X/S), then α +β ∈Amp(X/S):
indeed, this follows from the fact that the same property holds in each N1(Xs)R. One
then deduces as in the absolute case that Nef(X/S) is the closure of Amp(X/S) and
Amp(X/S) is the interior of Nef(X/S).

Remark 1.6.25. The argument in the proof of Lemma 1.6.24 shows that if f is pro-
jective and α ∈N1(X/S)R is such that α|Xs is ample for some s ∈ S, then there is an
open neighborhood U of s such that α| f−1(U) is ample over U . In particular, we see
that for every α ∈ N1(X/S)R, the set

{s ∈ S | α|Xs is ample}

is open in S.

Remark 1.6.26. Let f : X → S be a projective morphism. If α ∈ N1(X/S)R and β ∈
N1(X/S)R is any f -ample class, then α|Xs is nef if and only if (α + 1

n β )|Xs is ample
for every n≥ 1. It follows from Remark 1.6.25 that the set

{s ∈ S | α|Xs is nef}

is the complement of a countable union of closed subsets in X . We refer to [Les] for
an example over C in which the complement of the above set is indeed not Zariski
closed.

Remark 1.6.27. The analogue of Proposition 1.6.15 fails if we replace “ f -ample”
by “ f -nef”. Suppose, for example, that k is algebraically closed, X = C×C, where
C is an elliptic curve, and f : X → C is the projection onto the first component. If
D1 = C×{p} for some p ∈C and D2 is the diagonal, then D1 ≡ f D2. In particular,
D = D1−D2 is f -nef. On the other hand, for every divisor M on C, the sum D +
f ∗(M) is not nef: indeed, ((D+ f ∗(M))2) = (D2) =−2.

Remark 1.6.28. If f : X → S is a morphism between two complete schemes over k,
then we have a surjective linear map

N1(X)R/ f ∗(N1(S)R)→ N1(X/S)R. (1.15)

In general, this is not an isomorphism. Suppose, for example, that f is the mor-
phism in Remark 1.6.27. In this case N1(X)R/ f ∗(N1(S)R) has dimension≥ 2, while
N1(X/S)R has dimension 1, being generated by the class of D1. However, we will
see in Example 1.6.37 below, as a consequence of the negativity lemma, that (1.15)
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is an isomorphism if f is birational morphism, X and S are normal, and S is Q-
factorial.

1.6.3 Relatively big line bundles

We now consider the relative version of big line bundles.

Definition 1.6.29. Let f : X → S be a surjective, proper morphism of varieties over
k and let L ∈ Pic(X). If K is the function field of S, XK = X×Speck SpecK, and LK
is the pull-back of L to XK , then L is f -big if LK is big on XK .

Proposition 1.6.30. Let f : X → S be a surjective, proper morphism of varieties.

i) If L ∈ Pic(X) and m is a positive integer, then L is f -big if and only if L m is
f -big.

ii) If g : Y → X is a proper, surjective, generically finite morphism, then L is f -big
if and only if g∗(L ) is ( f ◦g)-big.

Proof. Both assertions follow from definition, using the corresponding properties
of line bundles on XK .

If f : X → S is a proper, surjective morphism of varieties, then the role of line
bundles with nonzero sections is played by those L ∈ Pic(X) such that f∗(L ) 6= 0.
Note that if this is the case, then rank( f∗(L )) > 0.

Remark 1.6.31. If f : X → S is as above and there is an ample line bundle on S,
then a Cartier divisor D on X has the property that f∗(OX (D)) 6= 0 if and only if
there is a Cartier divisor B on S and an effective Cartier divisor D′ on X such that
D∼ f ∗(B)+D′. Moreover, in this case we may assume that −B is ample. Indeed, it
is clear that if we have such B and D′, then

f∗(OX (D))' OS(B)⊗ f∗(OX (D′))⊇ OS(B)⊗ f∗(OX ) 6= 0.

Conversely, if f∗(OX (D)) 6= 0 and A is an ample Cartier divisor on X , then

H0(X ,OX (D+ f ∗(mA)))' H0(S, f∗(OX (D))⊗OS(mA)) 6= 0

for m� 0, hence there is an effective Cartier divisor D′ on X such that D ∼ D′−
m f ∗(A).

Let f : X → S be a proper, surjective morphism of varieties and let L ∈ Pic(X).
If f∗(L m) 6= 0 for some m ≥ 1, then the canonical morphism f ∗( f∗(L m))→L m

induces a rational map

φL m,S : X 99KPro j(SymOS
( f∗(L m)))
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(since we are only interested in this as a rational map, it is enough to consider this
over an open subset U of X such that f∗(L m)|U is locally free). Note that over K,
this induces the rational map defined by L m

K .

Proposition 1.6.32. Let f : X → S be a proper, surjective morphism of varieties,
of relative dimension r (that is, dim(X)− dim(S) = r). For any L ∈ Pic(X), the
following are equivalent:

i) L is f -big.
ii) There is m > 0 (equivalently, for all m divisible enough), the rational map φL m,S

is defined and its image dominates S, with relative dimension r.
iii) There is C > 0 such that

rank( f∗(L m)) > C ·mr for all m� 0.

Proof. The equivalence between i) and ii) follows from definition. On the other
hand, if U is an affine open subset of S, then the function field K of S is the fraction
field of O(U) and

h0(XK ,L m
K ) = dimK(H0( f−1(U),L m)⊗O(U) K) = rank( f∗(L m)).

Therefore the equivalence between i) and iii) follows from Proposition 1.4.8.

In the projective case, we have the following extension of Theorem 1.4.13.

Proposition 1.6.33. Let f : X → S be a surjective, projective morphism of varieties
over k, of relative dimension r. For every line bundle L on X, the following are
equivalent:

i) L is f -big.
ii) For all m ∈ Z>0 divisible enough, the rational map φL m,S is defined and it is

birational onto its image.
iii) There is C > 0 such that

rank( f∗(L m)) > C ·mr for all m� 0.

iv) There are Cartier divisors A and E on X, with A being f -ample and f∗OX (E) 6= 0,
such that L d 'OX (A+E) for some d ≥ 1.

Proof. If K is the function field of S, then the equivalence between i), ii), and iii)
follows by applying Theorem 1.4.13 to LK ∈ Pic(XK). If A and E are as in iv),
then after replacing S by an affine open subset, we may assume that E is effective.
Since the pull-backs of A and E to XK are ample and effective, respectively, then we
conclude that LK is big by Theorem 1.4.13. For the implication iii)⇒iv), we choose
an f -ample Cartier divisor A on X . After possibly replacing A by a multiple, we may
assume that its pull-back to XK can be written as a difference of two effective Cartier
divisors. In this case, it follows from Lemma 1.4.14, applied to LK , that there is d
such that f∗(L d ⊗OX (−A)) 6= 0, giving the assertion in iv). This completes the
proof of the proposition.
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It follows from Proposition 1.6.33 that if f : X → S is a surjective, projective
morphism of varieties, and L1,L2 ∈ Pic(X) are such that L1 ≡ f L2, then L1 is
f -big if and only if L2 is f -big. Indeed, it is enough to use the equivalent condition
iv), since f -ampleness is invariant with respect to adding an f -numerically trivial
line bundle.

We now introduce the relative versions of the big and pseudo-effective cones.
Suppose that f : X → S is a projective, surjective morphism of varieties. The f -big
cone Big(X/S) is the convex cone generated in N1(X/S)R by the classes of f -big
line bundles on X . The f -pseudo-effective cone PEff(X/S) is the closed convex
cone generated in N1(X/S)R by the classes of Cartier divisors D on X such that
f∗(OX (D)) 6= 0. Using the description of f -big line bundles in Proposition 1.6.33iv),
we see as in the proof of Proposition 1.4.28 that a divisor D ∈ CDiv(X)R is f -big if
and only if we can write D = A + E, where A,E ∈ CDiv(X)R are such that A is f -
ample and E = ∑

r
i=1 λiBi, with λi ≥ 0 and Bi Cartier divisors, with f∗(OX (Bi)) 6= 0

(moreover, one can always arrange to have λi ∈Q for all i). Using this, one sees that
Big(X/S) is the interior of PEff(X/S) and PEff(X/S) is the closure of Big(X/S).

1.6.4 The negativity lemma

We end this section with two applications of the Hodge index theorem that are very
useful in birational geometry. We work over an algebraically closed ground field,
that in the beginning is assumed of arbitrary characteristic. If f : X →Y is a proper,
surjective morphism of varieties and E is a prime divisor on X , we say that E is
f -exceptional if codimY f (E) ≥ 2 (note that when f is birational and Y is normal,
this agrees with the definition in Appendix B). A divisor D on X is f -exceptional if
all prime divisors in D are f -exceptional.

Theorem 1.6.34 (Negativity lemma). Let f : X → Y be a surjective, generically
finite, projective morphism of varieties, with X normal, and let D ∈ CDiv(X)R be
such that −D is f -nef.

i) If every prime divisor that appears in D with negative coefficient is f -exceptional,
then in fact D is effective.

ii) If f has connected fibers and D is effective, then for every y ∈ f (Supp(D)), we
have f−1(y)⊆ Supp(D).

The key ingredient for the proof of Theorem 1.6.34 is the following easy appli-
cation of the Hodge index theorem.

Proposition 1.6.35. If f : X → Y is a projective, surjective morphism of surfaces,
with X smooth, and if E1, . . . ,Em are prime divisors on X that are contracted by f ,
then the intersection matrix (Ei ·E j)1≤i, j≤m is negative definite.

Proof. We need to show that if D = ∑
m
i=1 aiEi, and some ai is nonzero, then (D2) <

0. Suppose first that f is a morphism of projective varieties. If H is an ample Cartier
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divisor on Y , then ( f ∗(H) ·Ei) = 0 for 1≤ i≤m. Since ( f ∗(H)2) = deg( f ) · (H2) >
0, it follows from the Hodge index theorem that (D2)≤ 0, with equality if and only
if D≡ 0. Let us write D = D+−D−, where D+ and D− are effective divisors without
common components. Suppose that D≡ 0, hence D+ ≡D−. By assumption, at least
one of D+ and D− is nonzero. Suppose, for example, that D+ is nonzero. In this
case we have

0≥ (D2
+) = (D+ ·D−)≥ 0,

hence (D2
+) = 0 and D+≡ 0. On the other hand, since D+ is a nonzero effective divi-

sor, we have (D+ ·M) > 0 for every ample divisor M on X . Therefore the hypothesis
that D≡ 0 leads to a contradiction, and we conclude that (D2) < 0.

Suppose now that S is arbitrary. Since (Ei ·E j) = 0 whenever Ei and E j lie in
different fibers, it is enough to prove the proposition when all Ei lie in a fiber f−1(s).
After replacing S by an affine open neighborhood of s, we may assume that S is
affine. Let S and X be projective varieties containing S and X , respectively, as open
subsets. After replacing X by its blow-up along a suitable closed subscheme whose
support does not intersect X , we may assume that f extends to a morphism g : X →
S. Furthermore, we may consider a resolution of singularities8 X ′ → X that is an
isomorphism over X , and after replacing X by X ′, we may assume that X is smooth.
Since g is a morphism of projective surfaces and g contracts each Ei, we may apply
the case we have already proved to get the assertion in the proposition.

Proof of Theorem 1.6.36. The assertions are local on Y , hence we may and will as-
sume that Y is affine. Part ii) is easy: since f−1(y) is connected, if f−1(y)∩Supp(D)
is a proper, nonempty subset of f−1(y), then there is a curve C ⊆ f−1(y) such that
C∩Supp(D) is a nonempty, proper subset of C (see Corollary B.1.5). This implies
(D ·C) > 0. Since C is contained in a fiber of f , this contradicts the fact that −D is
f -nef.

We note that if g : X̃ → X is a proper, generically finite, surjective morphism,
with X̃ normal, then we may replace f and D by f ◦ g and g∗(D), respectively.
Indeed, if X0 is the union of the prime divisors that appear with negative coefficient
in D, then by assumption codimY f (X0) ≥ 2. Since D|XrX0 is effective, it follows
that the restriction of f ∗(D) to g−1(X r X0) is effective, and therefore every prime
divisor on X̃ that appears with negative coefficient in g∗(D) is supported in g−1(X0),
hence it is ( f ◦g)-exceptional. Since−g∗(D) is ( f ◦g)-nef and we have the equality
of Weil divisors g∗(g∗(D)) = deg(g) ·D, we conclude that it is enough to prove the
theorem for the morphism f ◦g and the divisor g∗(D). This first implies, by applying
Chow’s lemma and then taking the normalization, that we may assume that X is
quasi-projective. Suppose now that g : X̃ → X is an alteration (that is, a projective,
surjective, generically finite morphism), with X̃ smooth. Such an alteration exists by
[dJ96], hence we may and will assume that X is smooth.

By assumption, we may write D = A+B, where A and B have no common com-
ponents, A is effective, and all prime divisors in B are f -exceptional. We prove that
D is effective by induction on n = dim(X) = dim(Y )≥ 2. We first consider the case

8 Since we are in dimension 2, such a resolution exists in arbitrary characteristic, see [Lip78].
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n = 2 and write B = P−N, such that P and N are effective, without common com-
ponents. Since −D is f -nef, the components of N lie in fibers of f , and A, P, and N
are effective, without common components, we obtain

−(N2)≤ (A ·N)+(P ·N)− (N2) = (D ·N)≤ 0.

We then deduce from Proposition 1.6.35 that N = 0. This completes the proof of the
case n = 2.

We now prove the induction step. Let n ≥ 3. We first show that if E is a prime
divisor on X with dim( f (E)) > 0, then its coefficient in D is nonnegative. Let V be
an open subset of Y such that f is finite over V . Suppose that we can find a closed
codimension 1 subvariety H ⊂ X , with the following properties:

1) H ∩ f−1(V ) 6= /0.
2) H is not equal to any of the prime divisors that appear in D.
3) For every prime divisor F that appears in B, we have dim( f (F ∩H))≤ n−3.
4) E ∩H is not contained in the union of the other prime divisors that appear in D.

Given such H, the restriction u : H → f (H) of f is generically finite by 1). If
v : H̃ → H is the normalization of H and w = u ◦ v, then w is generically finite.
The divisor v∗(D|H) is well-defined by 2), and −v∗(D|H) is w-nef. We can write
v∗(D|H) = v∗(A|H) + v∗(B|H), with v∗(A|H) effective, and all prime divisors in
v∗(B|H) are w-exceptional by 3). Therefore the induction assumption implies that
v∗(D|H) is effective and it follows from 4) that the coefficient of E in D is nonnega-
tive.

We now show that we can find such H when dim( f (E)) > 0. Since Y is affine,
we can choose a closed subset Z of Y defined by a nonzero element in O(Y ) such
that the following hold:

a) Z does not contain f (F) for any prime divisor F that appears in D.
b) Z does not contain f (W ) for any irreducible component W of X r f−1(V ).
c) Z contains the image of a point p ∈ E which does not lie on any other prime

divisor that appears in D.

If H is an irreducible component of f−1(Z) that contains p, then H satisfies 1)-4)
above.

In fact, we will only use the fact that for every E with dim( f (E)) = n− 2, its
coefficient in D is non-negative. In order to treat the other prime divisors, consider
a locally closed embedding of X in a projective space and let W be a general hyper-
plane section of X . Note that W satisfies the following conditions:

α) W is irreducible and smooth by Bertini’s theorem. Furthermore, if D = ∑
r
i=1 aiDi,

with the Di distinct prime divisors, then the W ∩Di are non-empty, irreducible
and pairwise distinct (the irreducibility is a consequence of a version of Bertini’s
theorem, see [Jou83, Théorème 6.3]).

β ) For every i, we have f (Di ∩W ) = f (Di) if dim f (Di) ≤ n− 2 and dim f (Di ∩
W ) = n−2 if dim f (Di) = n−1. In particular, Di∩W is f |W -exceptional if and
only if either Di is f -exceptional, or dim( f (Di)) = n−2.
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γ) W ∩ f−1(V ) 6= /0.

Note that D|W = ∑
r
i=1 ai(Di ∩W ). The hypothesis, together with what we have al-

ready proved, implies that ai ≥ 0 for those i such that Di∩W is not f |W -exceptional.
Since −D|W is f |W -nef, we obtain applying the inductive hypothesis that D|W is ef-
fective. This implies that D is effective, and therefore completes the proof of the
theorem.

We will usually apply Theorem 1.6.34 for birational morphisms of normal vari-
eties, when it takes the following form.

Corollary 1.6.36. If f : X →Y is a proper, birational morphism of normal varieties
and D ∈ CDiv(X)R is such that −D is f -nef, then the following hold:

i) D is effective if and only if f∗(D) is effective.
ii) If D is effective, then for every y ∈ f (Supp(D)), we have f−1(y)⊆ Supp(D).

Proof. It is clear that if D is effective, then f∗(D) is effective. All other assertions
follow from Theorem 1.6.34

Example 1.6.37. If f : X → S is a projective, birational morphism of normal vari-
eties and S is Q-factorial, then every D ∈ CDiv(X)R which is f -numerically trivial
can be written as f ∗(E), for some E ∈ CDiv(S)R. Indeed, let E = f∗(D). This is
Q-Cartier since S is Q-factorial, hence we may consider D′ = D− f ∗(E). It is clear
that also D′ is f -numerically trivial, and since f∗(D′) = 0, it follows from Corol-
lary 1.6.36 that D′ = 0.

We end with another useful application of Proposition 1.6.35, due to Fujita. In
this case we assume that the ground field has characteristic zero.

Proposition 1.6.38. If f : X → Y is a projective, surjective morphism of varieties,
with X smooth, then for every effective f -exceptional divisor E on X, we have
f∗(OX (E)|E) = 0.

Proof. The statement is local on Y , hence we may assume that Y is affine. If
dim(Y )≤ 1, then no divisor on X is f -exceptional, hence we may assume dim(Y )≥
2. We prove the proposition by induction on dim(X) + dim(Y ) and first treat the
case dim(X) = dim(Y ) = 2. Let us write E = ∑

m
i=1 aiEi, where the Ei are pairwise

distinct prime f -exceptional divisors. We argue by induction on N := ∑i ai, the case
N = 0 being trivial. If N ≥ 1, then it follows from Proposition 1.6.35 that (E2) < 0.
Therefore there is i such that (E ·Ei) < 0, in which case H0(X ,OX (E)|Ei) = 0.

On the other hand, if F = E−Ei, then we have an exact sequence

0→ OX (F)|F → OX (E)|E → OX (E)|Ei → 0.

This gives an exact sequence

0→ H0(X ,OX (F)|F)→ H0(X ,OX (E)|E)→ H0(X ,OX (E)|Ei).
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We have seen that the third group vanishes and the first one also vanishes by induc-
tion on N. Therefore the group in the middle vanishes as well, proving the statement
in dimension 2.

We now give the induction step. Note that if Z is a general member of a base-
point free linear system on X , then Z is smooth by Kleiman’s version of Bertini’s
theorem and E|Z is an effective divisor on Z. Moreover, if H0(X ,OX (E)|E) 6= 0,
then H0(Z,OZ(E|Z)|E|Z ) 6= 0. It follows that if we can choose Z such that E|Z is
f |Z-exceptional, then we are done by induction. If dim f (Supp(E))≥ 1, we choose
Z = f ∗(H), where H is a general member of any base-point free linear system on Y .
In this case dim f (Supp(E|Z)) = dim f (Supp(E))−1 and dim( f (Z)) = dim(Y )−1,
hence E|Z is f |Z-exceptional. Suppose now that f (Supp(E)) is 0-dimensional. We
consider a locally closed embedding of X in a projective space and let Z be a general
hyperplane section. In this case dim( f (Z)) = dim(Y ) if dim(X) > dim(Y ), while
dim( f (Z)) = dim(Y )−1 if f is generically finite. Therefore E|Z is f |Z-exceptional,
unless dim(X) = dim(Y ) = 2. This completes the proof of the theorem.

1.7 Asymptotic invariants of linear systems

In this section we define and study, following [Nak04] and [ELM+06], asymptotic
invariants of linear systems |L m|, where L is a line bundle on a projective variety
X . We associate such invariants, more generally, to certain sequences of ideals that
we now introduce. As usual, we work over an infinite ground field k.

1.7.1 Graded sequences of ideals

Let X be an arbitrary variety.

Definition 1.7.1. A graded sequence of ideals on X is a sequence a• = (am)m≥1 of
coherent ideals on X such that

ap ·aq ⊆ ap+q for all p,q≥ 1.

We say that the graded sequence a• is nonzero if some ap is nonzero. We make the
convention that a0 = OX .

Example 1.7.2 (Trivial graded sequences). If b is an ideal on X , then by taking
am = bm for every m ≥ 1, we obtain a graded sequence of ideals. This is a trivial
example: studying invariants for such graded sequences is equivalent to studying
invariants for ideals. However, as we will see in Section 1.8, one is often interested
in criteria that guarantee that a given graded sequence is of this form.

Example 1.7.3 (Graded sequence of a valuation). Suppose that X = SpecA is an
affine variety and v : k(X)→ R∪{∞} is a real valuation of the function field of X
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such that v(A)⊆R≥0∪{∞}. If we put am = { f ∈ A | v( f )≥m}, then a• is a graded
sequence.

Example 1.7.4 (Graded sequence of a graded linear series). Suppose that V• is
a graded linear series on X (see Definition 1.4.1). For every m ≥ 1, let am be the
ideal defining the base-locus of Vm, that is, if Vm ⊆ H0(X ,L m), then evaluation of
sections induces a surjective map

Vm⊗OX � am⊗L m.

It follows from the definition of a graded linear series that a• is a graded sequence
of ideals on X . An important example is when X is complete and Vm = H0(X ,L m)
for all m≥ 1.

We will also consider the following generalization of the concept of graded se-
quence of ideals. Given an arbitrary monoid S and a variety X , an S-graded sequence
of ideals on X is a family a• = (au)u∈S of coherent ideals on X indexed by S such
that a0 = OX and au · av ⊆ au+v for all u,v ∈ S. Note that our previous notion of
graded sequence is equivalent to that of an N-graded sequence in the above sense.

Example 1.7.5. Let X be a complete variety and L1, . . . ,Lr line bundles on X . For
every u = (u1, . . . ,ur) ∈ Nr, let au be the ideal defining the base-locus of the line
bundle L u1

1 ⊗ . . .⊗L ur
r . It is clear that a• is an Nr-graded sequence of ideals.

Example 1.7.6. Suppose that S is a monoid and a• is an S-graded sequence of ideals
on X . For every u ∈ S, we have a graded sequence of ideals a•u = (amu)m≥1.

1.7.2 Divisors over X

In order to attach asymptotic invariants to a graded sequence of ideals on X , we use
divisors over X . This notion will play an important role in Chapter 3, but for now,
we only need the definition and some related terminology.

Let X be an arbitrary variety and f : Y→X a birational morphism, with Y normal.
A prime divisor E on Y defines a discrete valuation ordE of the function field K(Y ) =
K(X), called a divisorial valuation. The corresponding DVR is the local ring OY,E ,
that with a slight abuse of notation we also denote by OX ,E . The center cX (E) of
E on X is the closure of f (E). Note that we have a canonical local homomorphism
OX ,cX (E) ↪→ OY,E .

We identify two such divisors lying on varieties Y1 and Y2 as above if they give
the same valuation. An equivalence class is a divisor over X . In particular, if Y ′→Y
is a proper morphism of normal varieties and E is a prime divisor on Y , then E and
its proper transform on Y give the same divisor over X .

If E is a divisor over X and H is a Cartier divisor on X , then we put ordE(H) :=
ordE(φ), where φ is a nonzero rational function such that H = divX (φ) in a neigh-
borhood of the generic point of cX (E). This definition extends by linearity to
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CDiv(X)R. We also define ordE(a) when a is a nonzero fractional ideal on X (that is,
a coherent subsheaf of the function field), as follows. If t is a uniformizer in the DVR
OX ,E and the OX ,E -module a ·OX ,E is generated by te, then we put ordE(a) = e. If a
is an ideal on X and we present E as a prime divisor on Y such that a ·OY = OY (−D)
for an effective Cartier divisor D (given any Y , we may achieve this condition af-
ter replacing Y by the normalization of the blow-up along a ·OY ), then ordE(a) is
the coefficient of E in D. If Z is the closed subscheme defined by a, we also write
ordE(Z) for ordE(a). Note that ordE(Z) > 0 if and only if cX (E)⊆ Z. We make the
convention that ordE(a) = ∞ if a is the zero ideal.

Remark 1.7.7. It is clear that if a and b are ideals on X , then ordE(a ·b) = ordE(a)+
ordE(b). Note also that if a⊆ b, then ordE(b)≤ ordE(a).

Remark 1.7.8. For every irreducible closed subset V of X , there is a divisor E over
X with cX (E) = V . For example, if f : Y → X is the normalization of the blow-
up of X along V , then we may take E to be any irreducible component of f−1(V )
which dominates V . If V meets the smooth locus of X , then there is a unique such
irreducible component of f−1(V ). The corresponding valuation is denoted by ordV .
In this case, if a is an ideal in X and IV is the ideal defining V , then ordV (a)≥ m if
and only if a⊆ Im

V at the generic point of V .

1.7.3 Asymptotic invariants of graded sequences

Let a• be a nonzero graded sequence of ideals on a variety X and E a divisor over
X . It is clear that the set S = {m ∈ Z>0 | am 6= 0} is closed under addition.

For every p,q≥ 1, the inclusion ap ·aq ⊆ ap+q implies

ordE(ap+q)≤ ordE(ap ·aq) = ordE(ap)+ordE(aq). (1.16)

Lemma 1.7.9 below implies that in this case we have

inf
m≥1

ordE(am)
m

= lim
m→∞

ordE(am)
m

,

where the limit is over those m ∈ S. This limit is the asymptotic order of vanishing
of a• along E, and we denote it by ordE(a•).

Lemma 1.7.9. Let S⊆Z>0 be a nonempty subset closed under addition and (αm)m∈S
a set of real numbers that satisfies αp+q ≤ αp + αq for all p,q ∈ S. In this case we
have

lim
m→∞,m∈S

αm

m
= inf

m∈S

αm

m
. (1.17)

Proof. Let T := infm∈S αm/m ∈ R∪{−∞}. We need to show that for every τ > T ,
we have αp/p < τ if p� 0, with p ∈ S. Let m ∈ S be such that αm/m < τ . It is
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enough to show that for every integer q with 0 ≤ q < m, if p = m` + q ∈ S with
`� 0, then αp/p < τ .

If there is no ` such that m`+q ∈ S, then there is nothing to prove. Otherwise, let
us choose `0 with m`0 +q ∈ S. For `≥ `0 we have

αm`+q

m`+q
≤

αm`0+q +(`− `0)αm

m`+q
.

Since the right-hand side converges to αm/m < τ for `→ ∞, it follows that

αm`+q

m`+q
< τ for `� 0,

which completes the proof.

Proposition 1.7.10. If a• and b• are nonzero graded sequences on the variety X
such that for some nonzero ideal c and for some q ∈ Z we have

c ·am ⊆ bm+q for all m� 0,

then ordE(b•)≤ ordE(a•) for all divisors E over X.

Proof. The hypothesis implies that for m� 0, if am is nonzero, then bm+q is nonzero
as well. Furthermore, we have

ordE(bm+q)
m

≤ ordE(am)
m

+
ordE(c)

m
.

By considering m with am 6= 0 and letting it go to infinity, we obtain the inequality
in the proposition.

Suppose now that S is a monoid and a• is an S-graded sequence of ideals on X .
Note that the set

S+(a•) := {u ∈ S | amu 6= 0 for some m > 0}

is a submonoid of S. Given a divisor E over X , we define a map orda•
E : S+(a•)→

R≥0 as follows. For every u ∈ T , we consider the corresponding graded sequence of
ideals a•u and put

orda•
E (u) = ordE(a•u).

Note that if q is a positive integer, then

orda•
E (qu) = q ·orda•

E (u) for every u ∈ T. (1.18)

Indeed, we have

orda•
E (qu) = lim

m→∞

ordE(aqmu)
m

= q · lim
m→∞

ordE(aqmu)
qm

= q ·orda•
E (u),
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where both limits are over those m such that aqmu 6= 0.
We will be especially interested in the case when S is a submonoid of a finitely

generated, free abelian group M. Suppose that a• is an S-graded sequence of ideals
and let us assume that the monoid S+(a•) considered above is finitely generated. If
C is the convex cone generated by T in MR, then C∩MQ consists of all 1

m u, with
u ∈ S+(a•) and m≥ 1. We extend orda•

E to C∩MQ by putting

orda•
E (u) =

1
m

orda•
E (mu),

where m is a positive integer such that mu ∈ S+(a•). It follows from (1.18) that the
definition is independent of m and we have

orda•
E (λu) = λ ·orda•

E (u) for every u ∈C, λ ∈Q>0.

1.7.4 Asymptotic invariants of big divisors

Suppose now that X is a complete variety and L ∈ Pic(X) is a line bundle such
that κ(L ) ≥ 0 (recall that by definition, this means that h0(X ,L m) ≥ 1 for some
positive integer m). We fix a divisor E over X . If a• is the graded sequence of ideals
such that am is the ideal defining the base-locus of |L m|, then the asymptotic order
of vanishing of L along E is

ordE(‖L ‖) := ordE(a•).

Note that if |L m| is nonempty and D ∈ |L m| is a general element, then ordE(D) =
ordE(am). Therefore we sometimes write ordE(|L m|) instead of ordE(am).

Example 1.7.11. It is clear that if L is semiample, then ordE(‖L ‖) = 0.

Lemma 1.7.12. With the above notation, for every positive integer q, we have

ordE(‖L q ‖) = q ·ordE(‖L ‖).

Proof. If a• is as above and S = {m ∈ Z>0 | am 6= 0}, then

ordE(‖L q ‖) = lim
m→∞,mq∈S

ordE(amq)
m

= q · lim
m→∞,mq∈S

ordE(amq)
mq

= q ·ordE(‖L ‖).

We can use this homogeneity property to define ordE(‖D ‖) when D∈CDiv(X)Q.
Given D ∈ CDiv(X)Q such that κ(D)≥ 0, we put

ordE(‖ D ‖) =
1
m
·ordE(‖ OX (mD) ‖),
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where m is such that mD is a Cartier divisor. It follows from Lemma 1.7.12 that
ordE(‖ D ‖) is well-defined. Furthermore, it is a consequence of the definition that
for every such D, we have ordE(‖ λD ‖) = λ ·ordE(‖ λD ‖) for every λ ∈Q>0.

Lemma 1.7.13. If D,D′ ∈ CDiv(X)Q are such that κ(D),κ(D′)≥ 0, then

ordE(‖ D+D′ ‖)≤ ordE(‖ D ‖)+ordE(‖ D′ ‖).

Proof. After replacing D and D′ by suitable multiples, we may assume that both D
and D′ are Cartier divisors, such that the corresponding line bundles have nonzero
sections. Let am, a′m, and bm be the ideals defining the base-loci of |mD|, |mD′|, and
|m(D+D′)|, respectively. It is clear that am ·a′m ⊆ bm for all m, hence

ordE(bm)≤ ordE(am)+ordE(a′m).

Dividing by m and letting m go to infinity gives the inequality in the lemma.

Proposition 1.7.14. Let f : X ′→ X be a birational morphism of complete varieties,
with X normal. If E is a divisor over X, then for every D∈CDiv(X)Q with κ(D)≥ 0,
we have

ordE(‖ D ‖) = ordE(‖ f ∗(D) ‖).

Proof. We first note that E can also be considered as a divisor over X ′ and for ev-
ery nonzero ideal a on X , we have ordE(a) = ordE(a ·OX ′). After rescaling D, we
may assume that D is a Cartier divisor and that |D| is nonempty. Since f is bira-
tional and X is normal, we have f∗(OX ′) ' OX . Therefore the projection formula
implies that the canonical morphism H0(X ,OX (mD))→ H0(X ′,OX ′(m f ∗(D))) is
an isomorphism for all m. It follows that if am is the ideal defining the base-
locus of |mD|, then am ·OX ′ defines the base-locus of | f ∗(mD)|. Therefore we have
ordE(|mD|) = ordE(|m f ∗(D)|) for all m≥ 1. Dividing by m and passing to the limit
gives the assertion in the proposition.

Our next goal is to show that for big divisors on projective varieties, the asymp-
totic invariants only depend on the numerical class. For this we will need the fol-
lowing fact.

Property 1.7.15. For every projective variety X , there is a line bundle A ∈ Pic(X)
such that for every nef line bundle M ∈ Pic(X), the line bundle A ⊗M is globally
generated.

We will prove this in Corollary 2.4.4 below. It will be deduced from a vanishing
theorem due to Fujita, for which we will give a proof in characteristic zero. We
now use the above property to relate the graded sequences of base-loci ideals of
numerically equivalent line bundles.

Lemma 1.7.16. Let X be a projective variety and L , L ′ line bundles on X, with
L ′ big and such that L ′⊗L −1 is nef. If a• and a′• are the graded sequences of
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ideals defining the base-loci of the multiples of L and L ′, respectively, then there
is a nonzero ideal c⊆ OX and a nonnegative integer q such that

c ·am ⊆ a′m+q for all m� 0.

Proof. We choose A as in Property 1.7.15. In particular, we have L ′m⊗L −m⊗A
globally generated for all m≥ 1. Since am⊗L m is globally generated by definition,
it follows that am⊗L ′m⊗A is globally generated for all m≥ 1. Therefore am ⊆ bm
for all m≥ 1, where bm is the ideal defining the base locus of L ′m⊗A .

On the other hand, since L ′ is big, it follows from Kodaira’s lemma (see
Lemma 1.4.14) that for q � 0, there is an effective Cartier divisor G such that
OX (G)'L ′q⊗A −1. In particular, we have OX (−G) ·bm ⊆ a′m+q. Therefore

OX (−G) ·am ⊆ OX (−G) ·bm ⊆ a′m+q.

We may thus take c = OX (−G).

Corollary 1.7.17. If X is a projective variety and D,D′ ∈ CDiv(X)Q are big and
numerically equivalent, then ordE(‖ D ‖) = ordE(‖ D′ ‖) for every divisor E over
X. Furthermore, the same result holds if we assume that X is complete and normal.

Proof. After possibly rescaling D and D′, we may assume that they are both Cartier.
In this case the first assertion follows by combining Lemmas 1.7.10 and 1.7.16. The
second assertion follows from the first one by using Chow’s lemma and Proposi-
tion 1.7.14.

In light of Corollary 1.7.17, for every projective variety X , we may consider the
function ordE(‖ − ‖) defined on Big(X)∩N1(X)Q. It follows from Lemmas 1.7.12
and 1.7.13 that this is a convex function (see Section A.8 for the definition of convex
functions). Since every convex function defined on the set of rational points of an
open convex subset of Rn is continuous (see Remark A.8.2), we obtain the continuity
of asymptotic invariants on the set of numerical classes of big Q-Cartier Q-divisors.

Proposition 1.7.18. For every projective variety X and every divisor E over X, the
function ordE(‖ − ‖) defined on Big(X)∩N1(X)Q is continuous.

We now introduce a new definition of asymptotic invariants which is more formal
and has the advantage of applying also to big R-Cartier R-divisors. We will later
show that in the case of big Q-divisors, this agrees with the above definition.

Suppose that X is a projective variety and E is a divisor over X . For every D ∈
CDiv(X)R which is big, we put

õrdE(‖ D ‖) := inf{ordE(B) | B ∈ CDiv(X)R, B≡ D, and B is effective}.

Note that since D is big, we can find B∈CDiv(X)R effective such that B≡D, hence
this invariant is well-defined. The basic properties of this invariant follow formally
from definition.
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Proposition 1.7.19. Let X be a projective variety, E a divisor over X, and D,D′ ∈
CDiv(X)R big.

i) If D≡ D′, then õrdE(‖ D ‖) = õrdE(‖ D′ ‖).
ii) õrdE(‖ λD ‖) = λ · õrdE(‖ λD ‖) for every λ ∈ R>0.

iii) The induced function õrdE(‖ − ‖) on Big(X) is convex, hence continuous.

Proof. The assertions in i) and ii) follow immediately from definition. For iii), note
that

õrdE(‖ D+D′ ‖)≤ õrdE(‖ D ‖)+ õrdE(‖ D′ ‖). (1.19)

Indeed, if B,B′ ∈ CDiv(X)R are effective and such that B ≡ D and B′ ≡ D′, then
B+B′ is effective and B+B′ ≡ D+D′. Therefore

õrdE(‖ D+D′ ‖)≤ ordE(B+B′) = ordE(B)+ordE(B′).

This implies the inequality in (1.19). Together with the assertion in ii), this implies
that õrdE(‖− ‖) is a convex function. Since every convex function on an open subset
of a finite-dimensional real vector space is continuous (see Proposition A.8.1), this
completes the proof of the proposition.

Proposition 1.7.20. If X is a projective variety and E is a divisor over X, then
ordE(‖ D ‖) = õrdE(‖ D ‖) for every big D ∈ CDiv(X)Q.

Proof. After replacing D by a suitable multiple, we may assume that D is a Cartier
divisor and h0(X ,OX (D))≥ 1. For every m≥ 1, if Fm ∈ |mD| is a general element,
then 1

m Fm is an effective divisor numerically equivalent to D. Therefore

õrdE(D)≤ inf
m≥1

ordE(Fm)
m

= inf
m≥1

ordE(|mD|)
m

= ordE(‖ D ‖).

In order to prove the reverse inequality, let us consider an arbitrary effective B ∈
CDiv(X)R, with B ≡ D. We can write B = ∑

r
i=1 aiGi, with ai nonnegative and Gi

effective Cartier divisors. If we choose sequences of nonnegative rational numbers
(ai,m)m≥1 with limm→∞ ai,m = ai and put Bm = ∑

r
i=1 ai,mGi ∈ CDiv(X)Q, then

ordE(B) = lim
m→∞

ordE(Bm). (1.20)

On the other hand, we have limm→∞ Bm = D in N1(X)Q, hence Proposition 1.7.18
implies

ordE(‖ D ‖) = lim
m→∞

ordE(‖ Bm ‖). (1.21)

It is an easy consequence of the definition of ordE(‖ Bm ‖) that ordE(‖ Bm ‖) ≤
ordE(Bm). By combining this with (1.20) and (1.21), we obtain

ordE(B) = lim
m→∞

ordE(Bm)≥ lim
m→∞

ordE(‖ Bm ‖) = ordE(‖ D ‖).

Since this holds for every effective B with B≡ D, we obtain
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õrdE(‖ D ‖)≥ ordE(‖ D ‖).

This completes the proof of the proposition.

In light of Proposition 1.7.20, from now on we write ordE(‖ D ‖) instead of
õrdE(‖ D ‖) for any big D ∈ CDiv(X)R.

Corollary 1.7.21. If X is a projective variety and E is a divisor over X, then for
every big D ∈ CDiv(X)R such that cX (E) 6⊆ B–(D), we have ordE(‖ D ‖) = 0. In
particular, ordE(‖ D ‖) for all E and all big and nef D ∈ CDiv(X)R.

Proof. Let Am ∈ CDiv(X)R be ample, with D+Am ∈ CDiv(X)Q for all m, and such
that limm→∞ Am = 0 in N1(X)R. It follows from the continuity of the asymptotic
invariants that

lim
m→∞

ordE(‖ D+Am ‖) = ordE(‖ D ‖).

On the other hand, SB(D+Am)⊆B–(D) for every m, hence by assumption cX (E) 6⊆
SB(D+Am) and therefore ordE(‖D+Am ‖) = 0. We conclude that ordE(‖D ‖) = 0.
The second assertion in the corollary is an immediate consequence since B–(D) = /0
whenever D is nef.

Corollary 1.7.22. Let f : X ′→ X be a birational morphism of projective varieties,
with X normal. If E is a divisor over X, then for every D ∈ Big(X) we have

ordE(‖ D ‖) = ordE(‖ f ∗(D) ‖).

Proof. The assertion follows by continuity from Proposition 1.7.14.

Example 1.7.23. Let f : X→ Pn be the blow-up of a point Q∈ Pn, with exceptional
divisor E. If H is the pull-back of a hyperplane in Pn, then for every a,b ∈ Z such
that aH +bE is pseudo-effective, we have

ordE(|aH +bE|) = ordE(‖ aH +bE ‖) =

{
b, if a,b≥ 0;

0, if a≥−b≥ 0.

Example 1.7.24. Let us consider again Example 1.5.6 and let L = f ∗(A)⊗g∗(B),
where B is a non-torsion line bundle on C. We have seen that ordE(|L m|) ≥ 1 for
every m≥ 1. On the other hand, L m(−E)|E corresponds via the isomorphism E 'C
to the very ample line bundle OC(1) induced by the embedding C ⊂ Pn. Suppose
that deg(OC(1)) ≥ 2g− 1. We leave it as an exercise for the reader to check that
H1(X ,L m(−2E)) = 0 for m� 1. Using the exact sequence

0→L m(−2E)→L m(−E)→L m(−E)|E → 0,

we deduce that L m(−E) is globally generated in a neighborhood of E for every
m≥ 1. Therefore ordE(|L m|) = 1 for all m≥ 1, hence ordE(‖L ‖) = 0. Note that
since L is big and nef, we knew by Corollary 1.7.21 that all asymptotic invariants
of L vanish.
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In what follows we study some further properties of the asymptotic invariants for
big R-divisors on smooth projective varieties.

Proposition 1.7.25. Let X be a smooth projective variety, E a divisor over X, and
Γ1, . . . ,Γr mutually distinct prime divisors on X. If D is a big R-divisor on X and
0≤ si ≤ ordΓi(‖ D ‖) for 1≤ i≤ r, then

i) D′ := D−∑
r
i=1 siΓi is big.

ii) ordE(‖ D′ ‖) = ordE(‖ D ‖)−∑
r
i=1 si ·ordE(Γi).

iii) The natural inclusion

H0(X ,OX (D′)) ↪→ H0(X ,OX (D))

induced by the effective divisor ∑
r
i=1 siΓi is an isomorphism.

Proof. We begin with the case when D ∈ CDiv(X)Q and all si ∈ Q. For both i)
and ii), we may multiply both D and the si by the same positive integer. Therefore
we may assume that D is an integral divisor, |D| is nonempty, and all si ∈ Z. For
every positive integer m, we have msi ≤ m · ordΓi(‖ D ‖) ≤ ordΓi(|mD|). Therefore
the natural inclusion

H0(X ,OX (mD′)) ↪→ H0(X ,OX (mD)) (1.22)

induced by multiplication with the section defining ∑
r
i=1 msiΓi is an isomorphism.

Since D is big, we deduce that D′ is big, and furthermore,

ordE(|mD|) = ordE(|mD′|)+
r

∑
i=1

msi ·ordE(Γi).

Dividing by m and letting m go to infinity gives the formula in ii).
In order to prove iii), we need to show that for every nonzero rational function φ

on X such that divX (φ)+D is effective, we have divX +D′ ≥ 0. Let m be such that
mD is an integral divisor and all msi are integers. Since (1.22) is an isomorphism,
it follows that φ m ∈ H0(X ,OX (mD)) is in the image of H0(X ,OX (mD′)), hence
divX (φ m)+ mD′ is effective. This implies that divX (φ)+ D′ is effective. We have
thus proved the assertions in the proposition when D is a Q-divisor and all si are
rational.

Suppose now that D and the si are arbitrary, as in the proposition. We consider
a sequence (Am)m≥1 of ample R-divisors such that each D−Am is a big Q-divisor
and the classes of Am in N1(X)R converge to 0. Note that for every m we have

ordΓi(‖ D ‖)≤ ordΓi(‖ D−Am ‖).

We also choose sequences (si,m)m≥1 of rational numbers, with si,m ≤ si for all i and
m, and limm→∞ si,m = si. By choosing each si− si,m small enough, we may assume
that each

Am−
r

∑
i=1

(si− si,m)Γi is ample.
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In this case D−Am−∑
r
i=1 si,mΓi is big by the case we already proved, hence

D′ =

(
D−Am−

r

∑
i=1

si,mΓi

)
+

(
Am−

r

∑
i=1

(si− si,m)Γi

)

is the sum of a big and an ample divisor, hence it is big. This proves i). Furthermore,
the case already proved gives

ordE(‖ D−Am−
r

∑
i=1

si,mΓi ‖) = ordE(‖ D−Am ‖)−
r

∑
i=1

si,m ordE(Γi).

Letting m go to infinity gives the formula in ii).
In order to prove iii), suppose that φ is a nonzero rational function such that

divX (φ)+ D is effective. Let us write D = ∑
s
j=1 λ jD j, where the D j are prime di-

visors. We choose sequences (λ j,m)m≥1 of rational numbers such that λ j,m ≥ λ j
for every j and m and limm→∞ λ j,m = λ j for all j. Each Fm = ∑

s
j=1 λ j,mD j has the

property that Fm−D is effective, hence Fm is big. Since each Fm is a Q-divisor and
divX (φ)+Fm is effective, we conclude from what we have already proved that

divX (φ)+Fm ≥
r

∑
i=1

ordΓi(‖ Fm ‖) ·Γi.

Since limm→∞ ordΓi(‖ Fm ‖) = ordΓi(‖D ‖) for every i, by letting m go to infinity, we
conclude that divX (φ)+D′ ≥ 0. This completes the proof of the proposition.

For an R-divisor D on a smooth variety, there is a more explicit description for
ordE(‖ D ‖), as follows.

Proposition 1.7.26. If X is a smooth, projective variety and D is a big R-divisor on
X, then for every divisor E over X, we have

ordE(‖ D ‖) = lim
m→∞

ordE(|bmDc|)
m

.

Proof. We first show that if D is a big R-divisor on X , then there is t0 ∈R>0 such that
the linear system |btDc| is nonempty for t ≥ t0. Indeed, we can write D = A+F , with
A ample and F effective, and since btDc ≥ btAc+btFc, it is enough to show that the
linear system |btAc| is nonempty for t � 0. Note that we can write A = ∑

r
i=1 αiAi,

with the Ai ample Cartier divisors and αi ∈ R>0 (see Remark 1.3.24). Since

btAc ≥
r

∑
i=1
btαiAic,

we may assume that A is a Cartier divisor. For 0 < t ≤ 1, there are only finitely many
possible sheaves OX (btAc). Since A is ample, we conclude that there is a positive
integer m0 such that OX (tA + mA) is globally generated for all 0 < t ≤ 1 and all
integers m≥ m0. It is then clear that |btAc| is nonempty for all t ≥ m0.
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The next step is to observe that if D1 and D2 are any two R-divisors such that the
linear systems |bD1c| and |bD2c| are nonempty, then the linear system |bD1 + D2c|
is nonempty and

ordE(|bD1 +D2c|)≤ ordE(|bD1c|)+ordE(|bD2c|)+∑
Γ

ordE(Γ ), (1.23)

where the sum is over the prime divisors Γ that appear in Supp(D1)∩ Supp(D2).
Indeed, the assertion follows from the fact that

bD1 +D2c− (bD1c+ bD2c)

is a reduced effective divisor, supported on Supp(D1)∪Supp(D2).
Given an arbitrary big R-divisor D, we conclude that for p,q� 0 we have

ordE(|b(p+q)Dc|)≤ ordE(|bpDc|)+ordE(|bqDc|)+ `D,

where `D = ∑Γ ordE(Γ ), with the sum being over all prime divisors in the support
of D. It follows from Lemma 1.7.9 that

lim
m→∞

ordE(|bmDc|)
m

= inf
m≥1

ordE(|bmDc|)+ `D

m
. (1.24)

Let us temporarily denote this limit by ψ(D). It follows from the definition and
(1.23) that for every two big R-divisors D1 and D2, we have ψ(D1 +D2)≤ψ(D1)+
ψ(D2).

We now prove that for every R-divisor D, we have

lim
λ→0

ψ(λD) = 0. (1.25)

Let t0 and `D be as above. Given 0 < λ < 1, we take m = dt0/λe, hence t0 ≤ mλ <
t0 + 1. When we vary λ , there are only finitely many linear systems |bλmDc|, and
by assumption, they are all nonempty. It follows from (1.24) that

ψ(λD)≤ ordE(|bλmDc|)+ `D

m
,

and since m goes to infinity when λ goes to 0, we obtain (1.25).
We can now show that ψ(D) = ordE(‖ D ‖) for every big R-divisor D. If D is a

Q-divisor, this is clear by taking the limit in the definition of ψ(D) over divisible
enough m. Suppose now that D is an arbitrary big R-divisor. By definition, we can
write D = ∑

r
i=1 λiFi, with Fi big Cartier divisors and λi ∈R>0. We choose sequences

(λ ′i,m)m≥1 and (λ ′′i,m)m≥1 of positive rational numbers with λ ′i,m < λi < λ ′′i,m for all m
and limm→∞ λ ′i,m = λi = limm→∞ λ ′′i,m for all i with 1≤ i≤ r. If D′m = ∑

r
i=1 λ ′i,mFi and

D′′m = ∑
r
i=1 λ ′′i,mFi, then D′m ≤ D≤ D′′m and D′m, D′′m are big for all m. We have
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ordE(‖ D′′m ‖) = ψ(D′′m)≤ ψ(D)+ψ(D′′m−D)≤ ψ(D)+
r

∑
i=1

ψ((λ ′′i,m−λi)Fi),

and by letting m go to infinity, we obtain ordE(‖ D ‖)≤ ψ(D). Similarly, we have

ψ(D)≤ ψ(D′m)+ψ(D−D′m)≤ ordE(‖ D′m ‖)+
r

∑
i=1

ψ((λi−λ
′
i,m)Fi),

hence ψ(D)≤ ordE(‖ D ‖). We thus conclude that ψ(D) = ordE(‖ D ‖).

We will return to the study of asymptotic invariants in Sections ?? and 5.1. We
will then show that at least when X is a smooth variety over an uncountable field of
characteristic zero, the vanishing of ordE(‖D ‖), for a big divisor D, is equivalent to
the fact that the center of E on X is not contained in the non-nef locus of D. We will
give two proofs of this result, first using the Kawamata-Viehweg vanishing theorem
and then using results about asymptotic multiplier ideals.

1.7.5 Invariants of pseudo-effective divisors

We now extend the function ordE(‖ − ‖) to pseudo-effective divisors. Let X be a
projective variety and E a divisor over X . If D∈CDiv(X)R is pseudo-effective, then
for every ample A ∈ CDiv(X)R, we have D+A big. We put

σE(D) := sup
A

ordE(‖ D+A ‖) ∈ R≥0∪{∞},

where the supremum is over all A∈CDiv(X)R ample. It is clear from definition that
σE(D) only depends on the numerical class of D, hence we may consider σE as a
function on the pseudo-effective cone of X .

Lemma 1.7.27. With the above notation, if (Am)m≥1 is a sequence of ample R-
Cartier R-divisors on X converging to 0 in N1(X)R, then

σE(D) = sup
m≥1

ordE(‖ D+Am ‖) = lim
m→∞

ordE(‖ D+Am ‖).

Proof. It follows from definition that ordE(‖ D + Am ‖) ≤ σE(D) for every m. On
the other hand, for every A ∈ CDiv(X)R ample, we have A−Am ample for m� 0,
hence

ordE(‖ D+A ‖)≤ ordE(‖ D+Am ‖)

for m� 0. The assertion in the lemma now follows from the definition of σE(D).

Corollary 1.7.28. If D ∈ CDiv(X)R is big, then σE(D) = ordE(‖ D ‖).
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Proof. The assertion follows from Lemma 1.7.27 and the continuity of the function
ordE(‖ − ‖) on the big cone.

Lemma 1.7.29. Let f : Y → X be a projective, birational morphism of projective n-
dimensional varieties, with Y normal, and E a prime divisor on Y . If H is an ample
Cartier divisor on Y , then for every D ∈ CDiv(X)R big, we have

ordE(‖ D ‖)≤ (Hn−1 · f ∗(D))
(Hn−1 ·E)

.

Proof. By continuity, it is enough to prove the assertion when D∈CDiv(X)Q. Let m
be a positive integer which is divisible enough, such that mD is Cartier and |mD| 6= /0.
Let F ∈ |mD| be general. If a = ordE(F), it follows from the ampleness of H that

(Hn−1 · f ∗(mD)) = (Hn−1 · f ∗(F))≥ a · (Hn−1 ·E).

Since ordE(‖ D ‖)≤ a
m , we obtain the inequality in the lemma.

Corollary 1.7.30. If X is a projective variety and E is a divisor over X, then for
every pseudo-effective D ∈ CDiv(X)R, we have σE(D) < ∞.

Proof. Let f : Y → X be a projective, birational morphism, with Y normal, such that
E is a prime divisor on Y , and let H be an ample Cartier divisor on Y . If (Am)m≥1
is a sequence of ample Q-Cartier Q-divisors on X whose classes converge to 0 in
N1(X)R, then it follows from Lemma 1.7.29 that

ordE(‖ D+Am ‖)≤
(Hn−1 · f ∗(D+Am))

(Hn−1 ·E)
.

By letting m go to infinity and using Lemma 1.7.27, we obtain

σE(D)≤ (Hn−1 · f ∗(D))
(Hn−1 ·E)

< ∞.

Proposition 1.7.31. If X is a projective variety and E is a divisor over X, then the
following hold:

i) The function σE : PEff(X)→ R≥0 is lower semi-continuous9.
ii) If D ∈ CDiv(X)R is pseudo-effective and cX (E) 6⊆ B–(D), then σE(D) = 0. In
particular, σE(D) = 0 for every nef D.

iii) For every D ∈ PEff(X) and every λ ∈ R>0, we have σE(λD) = λ ·σE(D).
iv) For every D,D′ ∈ PEff(X), we have

σE(D+D′)≤ σE(D)+σE(D′).

9 Recall that a map φ : W → R is lower semi-continuous if for every α ∈ R, the inverse image of
the interval (α,∞) is open. Equivalently, for every u0 ∈W , we have liminfu→u0 φ(u)≥ φ(u0).
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Proof. The assertion in i) follows from definition and the fact, which is easy to
check, that the supremum of every family of continuous functions is lower semi-
continuous. If D is pseudo-effective and cX (E) 6⊆ B–(D), then for every ample A
we have B–(D + A) ⊆ B–(D) and therefore cX (E) 6⊆ B–(D + A). It follows from
Corollary 1.7.21 that ordE(‖ D + A ‖) = 0 and since this holds for every A ample,
we conclude that σE(D) = 0. We thus obtain the first assertion in ii) and the second
one is an immediate consequence. The assertions in iii) and iv) follow from the
corresponding properties of ordE(‖ − ‖) on Big(X), by computing σE as a limit
using Lemma 1.7.27.

Remark 1.7.32. If D ∈ CDiv(X)R is effective, then σE(D) ≤ ordE(D). Indeed, for
every ample effective Cartier divisor A, we have

ordE

(
‖ D+

1
m

A ‖
)
≤ ordE

(
D+

1
m

A
)

= ordE(D)+
1
m

ordE(A).

By letting m go to infinity and using Lemma 1.7.27, we obtain the desired inequality.

Remark 1.7.33. Nakayama gave an example in which the function σE is not contin-
uous on the pseudo-effective cone (see [Nak04, Example IV.2.8]). In particular, we
see that in this case the function ordE(‖ − ‖) does not admit a continuous extension
to the pseudo-effective cone.

Remark 1.7.34. If D ∈ PEff(X) and B ∈ CDiv(X)R is big, then for every divisor E
over X , we have

σE(D) = lim
t→0

ordE (‖ D+ tB ‖) . (1.26)

Indeed, note first that if t > 0, then D+ tB is big and we thus have

ordE (‖ D+ tB ‖) = σE (D+ tB)≤ σE(D)+ tσE(B)

for every t > 0, hence

limsup
t→0

ordE (‖ D+ tB ‖)≤ σE(D). (1.27)

On the other hand, given any ample A∈CDiv(X)R, for 0 < t� 1 we have A− tB
ample, hence ordE(‖ D + A ‖) ≤ ordE(‖ D + tB ‖). By the definition of σE(D), we
obtain

σE(D)≤ liminf
t→0

ordE (‖ D+ tB ‖) . (1.28)

By combining (1.27) and (1.27), we deduce (1.26).

Proposition 1.7.35. If f : Y → X is a birational morphism of projective varieties,
with X normal, then for every D ∈ PEff(X) and every divisor E over X we have

σE(D) = σE( f ∗(D)).
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Proof. When D is big, this follows from Proposition 1.7.22. Suppose now that A ∈
CDiv(X)R is big, hence B = f ∗(A) has the same property. Using Remark 1.7.34, we
obtain

σE(D) = lim
m→∞

ordE

(
‖ D+

1
m

A ‖
)

= lim
m→∞

ordE

(
‖ f ∗(D)+

1
m

B ‖
)

= σE( f ∗(D)).

We have the following version of Proposition 1.7.25 for pseudo-effective divi-
sors.

Proposition 1.7.36. Let X be a smooth projective variety, E a divisor over X, and
Γ1, . . . ,Γr mutually distinct prime divisors on X. If D is a pseudo-effective R-divisor
on X and 0≤ si ≤ σΓi(‖ D ‖) for 1≤ i≤ r, then

i) D′ := D−∑
r
i=1 siΓi is pseudo-effective.

ii) σE(D′) = σE(D)−∑
r
i=1 si ·ordE(Γi).

iii) The inclusion
H0(X ,OX (D′)) ↪→ H0(X ,OX (D))

induced by the effective divisor ∑
r
i=1 siΓi is an isomorphism.

Proof. The case when D is big follows from Proposition 1.7.25. We may assume
that all si > 0 by ignoring the ones that are 0. For every m such that 1

m < si for all i,
we consider an ample R-divisor Am such that

σΓi(D)− 1
m
≤ σΓi(D+Am)≤ σΓi(D) for all i.

We may also assume that the classes of Am in N1(X)R converge to 0. For every m
as above, we choose si,m such that si− 1

m ≤ si,m ≤ si and si,m ≤ σΓi(D+Am) for all i
and m. Since all D+Am are big, we conclude that each

D+Am−
r

∑
i=1

si,mΓi is big

and by passing to limit in N1(X)R, that D′ is pseudo-effective.
Furthermore, we know that

σE

(
D+Am−

r

∑
i=1

si,mΓi

)
= σE(D+Am)−

r

∑
i=1

si,m ·ordE(Γi).

By Lemma 1.7.27, the right-hand side converges to σE(D)−∑
r
i=1 si ·ordE(Γi). Using

the lower semi-continuity of σE , we deduce that

σE(D′)≤ σE(D)−
r

∑
i=1

si ·ordE(Γi).
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On the other hand, the opposite inequality follows from Lemma 1.7.31iv) and Re-
mark 1.7.32. This completes the proof of ii).

We may assume that each Am is effective and for every prime divisor Γ on X ,
we have ordΓ (Am)≤ 1/m. Indeed, if Am ≡∑ j a jFj, where all a j are positive and all
Fj are ample Cartier divisors, then we may replace Am by ∑ j

a j
q F ′j , where q > m ·

max j a j is such that all OX (qFj) are very ample, and F ′j ∈ |qFj| are general elements.
Suppose now that φ is a nonzero rational function on X such that divX (φ)+D≥ 0.
Since each Am is effective, it follows that divX (φ)+ D + Am ≥ 0, and the big case
implies

divX (φ)+D+Am ≥
r

∑
i=1

si,mΓi. (1.29)

Since limm→∞ ordΓ (Am) = 0 for every prime divisor Γ on X , we may pass to limit in
(1.29) to deduce that divX (φ)+D′ ≥ 0. This completes the proof of the proposition.

1.7.6 Divisorial Zariski decompositions

This is a notion introduced by Nakayama. In what follows, we follow the approach
in [Nak04].

Lemma 1.7.37. Let D be a pseudo-effective R-divisor on a smooth projective vari-
ety X. If Γ1, . . . ,Γr are mutually distinct prime divisors on X such that σΓi(D) > 0
for all i, then

σE(D+ t1Γ1 + . . .+ trΓr) = σE(D)+
r

∑
i=1

ti ·ordE(Γi)

for every divisor E over X and every t1, . . . , tr ∈ R≥0.

Proof. The inequality “≤” follows from Proposition 1.7.31iv) and the fact that
σE(tiΓi) ≤ ti · ordE(Γi) for all i (see Remark 1.7.32). In order to prove the reverse
inequality, we argue by induction on m ∈ Z≥0, where we make the assumption that
ti≤m ·σΓi(D) for all i. Note that the case m = 0 is trivial. Let us prove now the induc-
tion step. Suppose that ti ≤ (m+1) ·σΓi(D) for all i. We may choose 0≤ si ≤ σΓi(D)
for each i such that ti− si ≤ m ·σΓi(D). Using the inductive hypothesis, Proposi-
tion 1.7.31, and Proposition 1.7.36, we obtain

2

(
σE(D)+

r

∑
i=1

(ti− si)
2

·ordE(Γi)

)
= 2 ·σE

(
D+

r

∑
i=1

(ti− si)
2

·Γi

)

= σE

(
2D+

r

∑
i=1

(ti− si) ·Γi

)
≤ σE

(
D+

r

∑
i=1

tiΓi

)
+σE

(
D−

r

∑
i=1

siΓi

)
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= σE

(
D+

r

∑
i=1

tiΓi

)
+σE(D)−

r

∑
i=1

si ·ordE(Γi).

We conclude that

σE

(
D+

r

∑
i=1

tiΓi

)
≥ σE(D)+

r

∑
i=1

ti ·ordE(Γi),

which completes the proof of the induction step, and therefore that of the proposi-
tion.

Corollary 1.7.38. Let D be a pseudo-effective R-divisor on a smooth projective va-
riety X. If Γ1, . . . ,Γr are mutually distinct prime divisors on X such that σΓi(D) > 0
for all i, then

σE(t1Γ1 + . . .+ trΓr) =
r

∑
i=1

ti ·ordE(Γi)

for every divisor E over X and every t1, . . . , tr ∈ R≥0.

Proof. The inequality “≤” follows from Proposition 1.7.31iv) and the fact that
σE(tiΓi) ≤ ti · ordE(Γi) for all i. Furthermore, if the inequality is strict for some
t1, . . . , tr ∈ R≥0, then another application of Proposition 1.7.31iv) gives

σE(D+ t1Γ1 + . . .+ trΓr)≤ σE(D)+σE(t1Γ1 + . . .+ trΓr) < σE(D)+
r

∑
i=1

ti ·ordE(Γi).

This contradicts Lemma 1.7.37.

Corollary 1.7.39. If D is a pseudo-effective R-divisor on a smooth projective variety
X and Γ1, . . . ,Γr are mutually distinct prime divisors on X with σΓi(D) > 0 for all
i, then the Γi are linearly independent in N1(X)R. In particular, we have r ≤ ρ =
dimR N1(X)R.

Proof. Suppose that Γ1, . . . ,Γr are linearly dependent in N1(X)R. After reordering
them, we may assume that we have a relation

d

∑
i=1

aiΓi ≡
r

∑
i=d+1

aiΓi, (1.30)

where all ai ∈ R≥0 and a1 > 0. On one hand, Corollary 1.7.38 implies

σΓ1

(
d

∑
i=1

aiΓi

)
= a1 > 0.

On the other hand, since σΓ1 only depends on the numerical class of a divisor, using
Remark 1.7.32 we deduce from (1.30)
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σΓ1

(
d

∑
i=1

aiΓi

)
= σΓ1

(
r

∑
i=d+1

aiΓi

)
= 0.

This gives a contradiction and thus proves the assertion in the corollary.

Definition 1.7.40. Let D be a pseudo-effective R-divisor on the smooth projective
variety X . By Corollary 1.7.39,

Nσ (D) := ∑
Γ

σΓ (D)Γ ,

where Γ varies over the prime divisors on X , is an R-divisor on X . Note that by
definition, this only depends on the numerical class of D. One puts Pσ (D) := D−
Nσ (D) and the decomposition

D = Nσ (D)+Pσ (D)

is the divisorial Zariski decomposition of D, while Nσ (D) and Pσ (D) are the neg-
ative and, respectively, the positive part of this decomposition. Note that Proposi-
tions 1.7.36 and 1.7.25 imply that Pσ (D) is pseudo-effective and it is big if D is
big.

Definition 1.7.41. If D is a pseudo-effective R-divisor on the smooth projective va-
riety X , one says that D has a Zariski decomposition if the divisor Pσ (D) is nef, and
in this case the decomposition D = Nσ (D)+Pσ (D) is the Zariski decomposition of
D.

Proposition 1.7.42. Let D be a pseudo-effective R-divisor on the smooth projective
variety X. If D has a Zariski decomposition, then for every projective, birational
morphism f : Y → X, with Y smooth, f ∗(D) has a Zariski decomposition and

Nσ ( f ∗(D)) = f ∗(Nσ (D)) and Pσ ( f ∗(D)) = f ∗(Pσ (D)).

Proof. If E is a prime divisor on Y , then σE( f ∗(D)) = σE(D) by Proposition 1.7.35.
On the other hand, it follows from Proposition 1.7.36 that

σE(D) = σE(Pσ (D))+ordE(Nσ (D)) = ordE(Nσ (D)),

where the second equality follows from the fact that by assumption Pσ (D) is nef.
This implies that Nσ ( f ∗(D)) = f ∗(Nσ (D)), and therefore Pσ ( f ∗(D)) = f ∗(Pσ (D)).
In particular, Pσ ( f ∗(D)) is nef, and therefore f ∗(D) has a Zariski decomposition.

Remark 1.7.43. Let D be a big Q-divisor on the smooth, projective variety X . It
follows from definition that if E is a prime divisor on X such that σE(D) > 0, then
E ⊆ SB(D). In particular, if codimX (SB(D))≥ 2, then Nσ (D) = 0. This implies that
if D is such a divisor which is not nef, then D does not have a Zariski decomposition.
Starting with dimension 3, it is easy to construct such examples (as we will see in
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Section 5.1.3, Zariski decompositions always exist in dimension 2). On the other
hand, on can ask the following: given a pseudo-effective (or big) R-divisor D on the
smooth, projective variety X , is there a projective, birational morphism f : Y → X ,
with Y smooth, such that f ∗(D) has a Zariski decomposition? Nakayama [Nak04,
Chap. IV.2] gave a 3-dimensional example for which there is no such morphism.

We will return to the discussion of the concept of (divisorial) Zariski decompo-
sition in Section 5.1.3.

1.7.7 Asymptotic invariants in the relative setting

We discuss briefly how the definitions and the basic results about asymptotic invari-
ants extend to the relative setting. Since most proofs follow as in the absolute case,
we omit them and only point out the differences from that setting. Let f : X → S
be a proper morphism of varieties. Given a line bundle L on X , for every m ≥ 1,
we consider the canonical morphism f ∗ f∗(L m)→L m. Its image can be written as
am⊗L m for a unique coherent ideal am. Note that am = 0 if and only if f∗(L m) = 0.
If U is an affine, open subset of S, then the restriction of am to f−1(U) is the ideal
defining the base locus of L m| f−1(U). It is clear that a• is a graded sequence of
ideals on X .

With the above notation, suppose that f∗(L m) is nonzero for some m ≥ 1. For
every divisor E over X , we put

ordE(‖L /S ‖) := ordE(a•).

Note that if U is an affine open subset of S that intersects the image of E, then E
also gives a divisor over f−1(U) and if LU is the restriction of L to f−1(U), then
ordE(‖L /S ‖) = ordE(‖LU/U ‖). In this way, we can always reduce the study of
asymptotic invariants in the relative setting to the case when S is affine, when almost
everything follows as in the absolute case.

In particular, we have ordE(‖L /S ‖) = 1
m · ordE(‖L m/S ‖) for every positive

integer m. Using this, we can define ordE(‖ D/S ‖) for every D ∈ CDiv(X)Q such
that f∗(OX (mD)) 6= 0 for some m such that mD is Cartier. This satisfies the following
properties:

i) ordE(‖ λD/S ‖) = λ ·ordE(‖ D/S ‖) for every λ ∈Q>0.
ii) ordE(‖D+D′/S ‖)≤ ordE(‖D/S ‖)+ordE(‖D′/S ‖) if both ordE(‖D/S ‖) and

ordE(‖ D′/S ‖) are defined.
iii) ordE(‖ D/S ‖) = 0 if OX (mD) is f -base-point free for m divisible enough.

Suppose now that f : X → S is a projective, surjective morphism of varieties.
Note that if D is f -big, then it follows from Proposition 1.6.32 that ordE(‖ D/S ‖)
is defined. Moreover, if D and D′ are f -big and D≡ f D′, then

ordE(‖ D/S ‖) = ordE(‖ D′/S ‖).
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In order to see this, we may assume that S is affine. In this case, one can prove a
variant of Lemma 1.7.16, using the fact that there is a line bundle A on X such
that for every f -nef M ∈ Pic(X), the line bundle A ⊗M is globally generated (see
Corollary 2.6.7).

We thus obtain a continuous function ordE(‖ −/S ‖) defined on the rational
points of the f -big cone Big(X/S). In fact, this can be extended to a continuous
function on the whole f -big cone. In order to describe this, we may assume that S
is affine. In this case, for every D ∈ CDiv(X)R which is f -big we put

ordE(‖ D/S ‖) := min
{

ordE(B) | B ∈ CDiv(X)R,B≡ f D, and B is effective
}

.

This is compatible with the previous definition and gives a convex, hence continuous
function on Big(X/S) (cf. Proposition 1.7.20 and 1.7.20). In particular, we see that
if D ∈ CDiv(X)R is f -big and f -nef, then ordE(‖ D/S ‖) = 0 for every divisor E
over X . As in the absolute case, we see that if µ : Y → X is a projective, birational
morphism of normal varieties, then ordE(‖ D/S ‖) = ordE(‖ µ∗(D)/S ‖) for every
D ∈ CDiv(X/S)R which is f -big.

Proposition 1.7.25 has an analogue in the relative setting as follows. Let f : X →
S be a projective, surjective morphism of varieties, with X smooth. If D∈CDiv(X)R
is f -big, Γ1, . . . ,Γr are prime divisors on X , and 0≤ si ≤ ordΓi(‖ D/S ‖), then D′ :=
D−∑

r
i=1 siΓi is f -big and for every divisor E over X , we have

ordE(‖ D′/S ‖) = ordE(‖ D/S ‖)−
r

∑
i=1

si ·ordE(Γi).

Furthermore, the natural inclusion π∗OX (D′) ↪→ π∗OX (D) induced by the effective
divisor ∑

r
i=1 siΓi is an isomorphism.

If D ∈ CDiv(X)R is pseudo-effective and E is a divisor over X , then we put

σE(D/S) := sup{ordE(‖ D+A/S ‖) | A is f − ample} .

If (Am)m≥1 is a sequence of f -ample divisors, then in fact

σE(D/S) = ∑
m≥1

ordE(‖ D+Am/S ‖) = lim
m→∞

ordE(‖ D+Am/S ‖).

If D is f -big, then ordE(‖D/S ‖) = σE(D). It is clear that we thus obtain a function
on PEff(X/S) with values in R≥0∪{∞}. The main difference from the absolute case
is that it can happen that σE(D/S) is infinite. Otherwise, the general properties of
this function given in Propositions 1.7.31, 1.7.35, 1.7.36 and Remark 1.7.34 also
hold in the relative setting.

Lemma 1.7.37 and Corollaries 1.7.38 and 1.7.39 also hold in the relative setting.
We can still define the divisorial Zariski decomposition D = Nσ (D/S)+ Pσ (X/S)
when D is f -big. When D is only f -pseudo-effective, this does not make sense
since some of the invariants σΓ (D/S) might be infinite, hence Nσ (D/S) cannot be
defined.
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1.8 Finitely generated section rings

In this section we discuss the section ring associated to a finite set of line bundles,
with a focus on the good properties that hold when such a ring is finitely generated.
Let us fix some notation for what follows. Given line bundles L1, . . . ,Lr on a vari-
ety X , for every u = (u1, . . . ,ur) ∈ Nr, we put L u = L u1

1 ⊗ . . .⊗L ur
r . Similarly, if

D1, . . . ,Dr are Cartier divisors on X and u ∈ Rr
≥0, we put Du = ∑

r
i=1 uiDi.

1.8.1 The ring of sections of a line bundle

Let X be a fixed complete variety over a field k. Given line bundles L1, . . . ,Lr on
X , the section ring of L1, . . . ,Lr is

R(X ;L1, . . . ,Lr) :=
⊕
u∈Nr

Γ (X ,L u).

Multiplication of sections makes this an Nr-graded k-algebra whose degree 0 part
is H0(X ,OX ). Note that since H0(X ,OX ) is a finite k-algebra, it follows that
R(X ;L1, . . . ,Lr) is a finitely generated k-algebra if and only if it is finitely gen-
erated as an algebra over its degree 0 part. When Li = OX (Di) for Cartier divisors
D1, . . . ,Dr, we also write R(X ;D1, . . . ,Dr) for the corresponding section ring. As we
will see, such rings are not, in general, finitely generated k-algebras. However, this
property holds in important special cases and has such nice consequences, that it is
worth studying it.

We begin by noting that R(X ;L1, . . .Lr) is a domain. This is an immedi-
ate consequence of Lemma C.0.5 and of the fact that since X is a variety, if s1
and s2 are nonzero sections of the line bundles M1 and M2, respectively, then
s1⊗s2 ∈Γ (X ,M1⊗M2) is nonzero. Since R(X ;L1, . . . ,Lr) is a domain, a general
property of graded rings (see Proposition C.0.6) implies the following often useful
fact.

Proposition 1.8.1. If X is a complete variety and L1, . . . ,Lr ∈ Pic(X), then for ev-
ery positive integers d1, . . . ,dr, the k-algebra R(X ;L1, . . . ,Lr) is finitely generated
if and only if R(X ;L d1

1 , . . . ,L dr
r ) is finitely generated.

Remark 1.8.2. One can sometimes reduce the study of the section ring of several
line bundles to that associated to one line bundle, as follows. If L1, . . . ,Lr are line
bundles on the complete variety X , let W = P(E ), where E = L1⊕ . . .⊕Lr. If we
consider the line bundle L = OP(E )(1) on W , then for every positive integer m we
have a canonical isomorphism

Γ (W,L m)'
⊕

i1+...+ir=m

Γ (X ,L i1
1 ⊗ . . .⊗L ir

r ).

We thus obtain an isomorphism of k-algebras R(X ;L1, . . . ,Lr)' R(W ;L ).
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Remark 1.8.3. If X is a complete variety and L1, . . . ,Lr ∈ Pic(X) are such that
R(X ;L1, . . . ,Lr) is a finitely generated k-algebra, then for every line bundles
M1, . . . ,Ms that lie in the submonoid of Pic(X) generated by L1, . . . ,Lr, the k-
algebra R(X ;M1, . . . ,Ms) is finitely generated, too. This follows from Proposi-
tion C.0.10.

We have the following general criterion for finite generation.

Proposition 1.8.4. If L1, . . . ,Lr are semiample line bundles on the complete variety
X, then R(X ;L1, . . . ,Lr) is finitely generated.

Proof. Proposition 1.8.1 implies that we may replace each Li by a suitable power,
hence we may and will assume that each Li is globally generated. We first consider
the case of one line bundle L which is globally generated.

Let f : X → PN be the map defined by L and consider the Stein factorization
X

g→ Y h→ PN of f . Since h is finite, the line bundle M := h∗(OPN (1)) is am-
ple on Y and by definition we have g∗(M ) ' L . Since g∗(OX ) ' OY , we have
an isomorphism of k-algebras R(X ;L ) ' R(Y ;M ). Furthermore, if m is a posi-
tive integer such that M m is very ample and gives a projectively normal embed-
ding, then R(Y ;M m) is a quotient of the homogeneous coordinate ring of Y in
the embedding given by M m. Therefore R(Y ;M m) is finitely generated, hence
R(Y ;L )' R(Y ;M ) is finitely generated by Proposition 1.8.1.

Suppose now that L1, . . . ,Lr are globally generated line bundles on X . We use
the trick described in Remark 1.8.2 to reduce to the case of one line bundle. Note
that E = L1⊕ . . .⊕Lr is a globally generated vector bundle. If π : W = P(E )→ X
is the corresponding projectivized bundle, then on W we have a surjection π∗(E )→
L = OP(E )(1). Since π∗(E ) is globally generated, it follows that L is globally
generated. The k-algebra R(W ;L ) is finitely generated by what we have already
proved and we have an isomorphism R(X ;L1, . . . ,Lr)' R(W ;L ). This completes
the proof of the proposition.

Remark 1.8.5. Let X be a complete variety and L a semiample line bundle on
X . It follows from the proof of Proposition 1.8.4 that we have a fiber space
fL : X → Proj(R(X ;L )). This is constructed as the Stein factorization of the mor-
phism defined by some globally generated L m. Since L m is the pull-back of an
ample line bundle via fL , it follows that a curve C on X is contracted if and only
if (L ·C)=0. This uniquely determines the fiber space fL up to equivalence (see
the proof of Proposition 1.3.29). In particular, fL is independent of the integer m
used in the construction. Note that we can interpret fL via Proposition 1.3.29 as the
fiber space corresponding to the face of Nef(X) containing L in its relative interior.
When L = OX (D), we also write fD instead of fL .

Suppose now that we have, in addition, a fiber space π : Z→ X . Since the canon-
ical morphism OX → π∗(OZ) is an isomorphism, it follows from the projection for-
mula that we have a canonical isomorphism R(X ,L ) ' R(Z,π∗(L )) and a com-
mutative diagram
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Z
fπ∗(L ) //

π

��

Proj(R(Z;π∗(L )))

X
fL // Proj(R(X ;L )).

We now discuss some of the consequences of the finite generation of the section
ring in the case of one line bundle. For simplicity, we assume that we work on a
normal variety. Note that R(X ;L ) is trivially finitely generated if h0(X ,L m) = 0
for all m≥ 1.

Proposition 1.8.6. Let D be a Cartier divisor on the complete, normal variety X
such that R(X ;D) is finitely generated. We denote by am the ideal defining the base-
locus of OX (mD) and assume that some am is nonzero.

i) There is a positive integer ` such that a`m = am
` for all m≥ 1.

ii) Let π : W → X be a projective, birational morphism, with W normal, which fac-
tors through the blowing-up of X along a`. If we write a` ·OW = OW (−N) and
P := π∗(`D)−N, then OW (P) is globally generated and for every positive integer
m, we have an isomorphism H0(W,OW (mP))→ H0(W,OW (`mπ∗(D))) induced
by multiplication with a section defining mN.

iii) If f : W → Proj(R(X ;D)) is the canonical morphism defined by the globally gen-
erated line bundle OX (P), then the rational map fD := f ◦π−1 is independent of
the choice of ` and π .

iv) For every divisor E over X, we have ordE(‖ D ‖) = 1
` ordE(a`).

v) If D is big, then D is nef if and only if OX (D) is semiample. Moreover, if we also
assume that X is projective, then B–(D) = SB(D).

Proof. It follows from Proposition C.0.9 that there is a positive integer ` such that
R(X ;`D) is generated in degree 1. This implies that a`m = am

` for all m≥ 1, proving
i). In particular, by the assumption on OX (D), we see that a` is nonzero.

Suppose now that π : W → X is a birational morphism with W normal, such
that a` ·OW = OW (−N) for some effective Cartier divisor N on W . It follows from
the definition of the base-locus that since P = π∗(`D)−N, then P is effective and
OW (P) is globally generated. Furthermore, the canonical map induced by the effec-
tive Cartier divisor N

H0(W,OW (P))→ H0(W,OW (π∗(`D)))

is an isomorphism.
Since X is normal, the canonical morphism OX → π∗(OW ) is an isomorphism,

hence the projection formula gives a canonical isomorphism

H0(X ,OX (mD))' H0(W,OW (π∗(mD)))

for every m ≥ 1. Since a`m = am
` for every m ≥ 1, we can run the above argument

with `D replaced by `mD, to deduce that we have canonical isomorphisms
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H0(X ,OX (m`D))' H0(W,OW (π∗(m`D)))' H0(W,OW (mP)).

In particular, we obtain the assertion in ii).
Since OW (P) is globally generated, it defines a fiber space

f = fP : W → Proj(R(W ;P))' Proj(R(X ;`D))' Proj(R(X ;D))

(see Remark 1.8.5). Let us show that f ◦π−1 does not depend on ` and π . Regarding
`, it is enough to consider what happens when we replace ` by `m for some m≥ 1.
Since a`m = am

` , the morphism π still satisfies the condition in ii). We replace P my
mP, but the resulting fiber space in unchanged (see Remark 1.8.5). In order to check
independence of π , since any two such π can be dominated by a third one, it is
enough to consider a birational morphism g : Z→W , with Z normal, and compare
the rational maps corresponding to π and π ◦ g. Note that in this case we have the
corresponding decomposition of (π ◦g)∗(`D) as g∗(P)+g∗(N) and since g is a fiber
space, we have fg∗(D) = fD ◦g (see Remark 1.8.5). This implies the equality of the
rational maps corresponding to π and π ◦g.

Since for every positive integer m, we have

ordE(a`m) = ordE(am
` ) = m ·ordE(a`),

the assertion in iv) follows from the fact that we may compute limm→∞
1
m ordE(am)

by restricting to those m that are multiple of `.
Finally, in order to prove v), suppose first that X is projective and let us prove

the second assertion. It is enough to show that SB(D) ⊆ B–(D), since the reverse
inclusion always holds. With ` as above, it is clear that SB(D) = V (a`). If V is
an irreducible component of V (a`), then there is a divisor E over X with center
V (see Remark 1.7.8). By iv), we have ordE(‖ D ‖) = 1

` ordE(a`) > 0. On the other
hand, if V 6⊆B–(D), then V 6⊆ SB

(
D+ 1

m A
)

for every ample Cartier divisor A, hence
ordE(‖ D + 1

m A ‖) = 0. Since ordE(‖ − ‖) is continuous on the big cone by Propo-
sition 1.7.18, we obtain ordE(‖ D ‖) = 0, a contradiction. This holds for every irre-
ducible component of SB(D) and therefore SB(D)⊆ B–(D).

Since SB(D) is empty if and only if OX (D) is semiample and B–(D) is empty if
and only if D is nef, we see that D is nef if and only if it is semiample. Moreover,
this holds even if X is not projective. Indeed, by Chow’s lemma we have a proper,
birational morphism h : X ′→ X such that X ′ is projective. After possibly replacing
X ′ by its normalization, we may assume that it is normal. Note that h∗(D) is big and,
since h is a fiber space, we have an isomorphism R(X ;D) ' R(X ′,h∗(D)). Finally,
D is nef or semiample if and only if h∗(D) has the same property. This completes
the proof of the proposition.

Remark 1.8.7. With the notation in Proposition 1.8.6, suppose that W is smooth and
D is big. Assertion iv) in the proposition implies that N = Nσ (`D), hence the de-
composition π∗(D) = 1

` N + 1
` P is the divisorial Zariski decomposition of π∗(D).

Furthermore, since P is nef, this is a Zarsiki decomposition.
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Example 1.8.8. If D is not big, it can happen that D is nef, the ring R(X ;L ) is
finitely generated, but OX (D) is not semiample. A trivial example is given by a non-
torsion line bundle of degree 0 on a curve. A more interesting example, in which
the section ring is different from k, is obtained as follows (see [Laz04a, Exam-
ple 2.3.16]). Let C be a smooth, projective curve of genus g ≥ 2 over an uncount-
able, algebraically closed field k and let M ∈ Pic0(X) be a non-torsion element. We
take X = P(OC⊕M ) and consider the line bundle O(1) on X . Since both OC and
M are nef on C, it follows that O(1) is nef on X (see Example 1.3.37). Note that
since H0(C,M i) = 0 for every i 6= 0, we have

H0(X ,O(m))' H0(C,Symm(OC⊕M ))' H0(C,OC).

Therefore we have a nonzero section s ∈ H0(X ,O(1)) such that H0(X ,O(m)) =
k · s⊗m for every m. On one hand, this shows that Z(s) ⊆ SB(O(1)), hence O(1) is
not semiample, but on the other hand, it implies that R(X ,O(1)) ' k[x], hence it is
a finitely generated k-algebra.

Example 1.8.9. We have described in Example 1.7.24 a big and nef line bundle L
on a surface X such that for a curve E on X we have ordE(|L m|) = 1 for all m≥ 1. It
follows from Proposition 1.8.6 that in this case the k-algebra R(X ;L ) is not finitely
generated.

Example 1.8.10. We now give an example due to Zariski [Zar61] of a big and nef
divisor D on a surface whose section ring is not finitely generated. We start with an
elliptic curve C over an uncountable, algebraically closed ground field, embedded
in P2 by a divisor ` of degree 3. We choose points P1, . . . ,P12 very general such that
the line bundle ξ = OC(4`−P1− . . .−P12) ∈ Pic0(C) is non-torsion. We consider
the blow-up π : X → P2 along P1, . . . ,P12, with exceptional divisor E. Let H be
the pull-back of the hyperplane class of P2 and C̃ the proper transform of C on X .
Therefore π induces an isomorphism C̃→C and we have C̃ = π∗(C)−E ∼ 3H−E.
Let D = H +C̃. Note that OX (H) is globally generated and big, being the pull-back
of an ample, globally generated line bundle by a birational morphism. Since C̃ is
effective, it follows that D is big. Furthermore, OX (D)|C̃ corresponds via C̃ 'C to
ξ . First, since D = H +C̃, with H being nef and C̃ a prime divisor, and (D ·C̃) = 0,
we conclude that D is nef. On the other hand, if m is a positive integer and s ∈
H0(X ,OX (mD)) is such that C̃ 6⊆ Z(s), then ξ m has a nonzero section, hence it is
trivial, a contradiction. This implies that C̃ ⊆ SB(D). In particular, OX (D) is not
semiample and using assertion v) in Proposition 1.8.6, we see that R(X ;D) is not
finitely generated.

Example 1.8.11. If L1, . . . ,Lr are line bundles on a complete toric variety X , then
the k-algebra R(X ;L1, . . . ,Lr) is finitely generated. Indeed, note first that since
P(L1⊕ . . .⊕Lr) admits a structure of toric variety (see [Oda88, pp. 58–59]), the
argument in Remark 1.8.2 implies that it is enough to prove the assertion when we
have only one line bundle L . In this case, the assertion follows easily from the
basic properties of line bundles on toric varieties (see [Ful93, Chapter 3.3]). Indeed,
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if D is a torus-invariant Cartier divisor on X such that L 'OX (D), then D defines a
polytope PD in MR = M⊗Z R, where M is a lattice (the lattice dual to that containing
the fan defining X). If one considers PD×{1} ⊆ MR×R and σ is the cone over
PD×{1}, then R(X ,L ) is isomorphic to the monoid ring k[σ ∩(M×Z)]. Since σ is
a rational polyhedral cone, it follows from Gordan’s lemma (see Lemma A.6.1) that
σ ∩ (M×Z) is a finitely generated monoid, hence R(X ;L ) is a finitely generated
k-algebra.

Example 1.8.12. It has been a long-standing conjecture that for every smooth pro-
jective variety X , the canonical ring R(X ;ωX ) is finitely generated. This has been
recently proved in [BCHM10]. We discuss in Chapter 4 the proof of this result,
following [CL12].

1.8.2 Finite generation and asymptotic invariants

In this section we study the consequences of the finite generation of the section ring
associated to several line bundles. It is convenient to state the main technical result
more generally, in terms of finitely generated Rees algebras associated to S-graded
sequences of ideals.

Let S be a submonoid of a finitely generated, free abelian group M. Given an
S-graded sequence of ideals a• on the variety X , we obtain an S-graded OX -algebra

R(a•) :=
⊕
u∈S

au,

where the multiplication is induced by the multiplication in OX . We say that an OX -
algebra R is finitely generated if for every affine open subset U in X , the OX (U)-
algebra R(U) is finitely generated (as usual, it is enough to test this for a family of
affine open subsets covering X).

Example 1.8.13. Let X be a complete variety and L1, . . . ,Lr line bundles on X such
that the k-algebra R(X ;L1, . . . ,Lr) is finitely generated. If a• is the Nr-graded se-
quence of base loci defined in Example 1.7.5, then the OX -algebra R(a•) is finitely
generated.

Recall that if a• is an S-graded sequence of ideals as above, then for every divisor
E over X , we defined in Section 1.7.3 a function

orda•
E : S+(a•) = {u ∈ S | amu 6= 0 for some m > 0}→ R≥0.

Moreover, when S+(a•) is finitely generated and C is the convex cone generated by
S+(a•) in MR, then orda•

E naturally extends as a degree one homogeneous function
to C∩MQ. The following is the key technical result of this section.
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Proposition 1.8.14. Let X be a variety, M a finitely generated, free abelian group,
and S a submonoid of M. If a• is an S-graded sequence of ideals on X such that
R(a•) is a finitely generated OX -algebra, then the following hold:

i) The monoid S+(a•) is finitely generated.
ii) For every divisor E over X, the map orda•

E is piecewise linear and convex on
C∩MQ, where C is the convex cone generated by S+(a•) in MR.

iii) Moreover, there is a rational fan ∆ with support equal to C such that for every
cone σ ∈ ∆ and every divisor E over X, the function orda•

E is linear on σ ∩MQ.
iv) There is d ∈Z>0 such that orda•

E (du) = ordE(adu) for every divisor E over X and
every u ∈ S+(a•).

Proof. Note first that we may assume that X is affine. Indeed, if X = U1 ∪ . . .∪Ur
is an affine open cover and a•|Ui is the restriction of a• to Ui, then it is clear that

S+(a•) = S+(a•|Ui) for every i and orda•
E = ord

a•|Ui
E for every divisor E over X

whose center meets Ui. It is clear that if ∆i is a fan that satisfies iii) for a•|Ui , then
any common refinement of ∆1, . . . ,∆r satisfies the condition for a• (note that such
a refinement exists by Lemma A.7.6). Similarly, if di satisfies the condition iv) for
a•|Ui , then the least common multiple of the di satisfies the condition for a•.

Suppose from now on that X = Spec(A). The monoid T := {u ∈ S | au 6= 0} is
finitely generated by Lemma C.0.3. Since S+(a•) is equal to the saturation T sat of
T , we deduce that S+(a•) is finitely generated by Proposition A.6.2.

It is easy to see that each of the functions orda•
E is convex: this follows from def-

inition as in the proof of Lemma 1.7.13. We also note that for every u ∈ S+(a•),
the ring

⊕
m≥0 amu is finitely generated by Proposition C.0.8. Applying Proposi-

tion C.0.9, we see that there is a positive integer du such that amduu = am
duu for all

positive integers m. In particular, we have ordE(amduu) = m · ordE(aduu) for every
m≥ 1 and every divisor E over X .

In order to prove the assertion in iii), hence also that in ii), consider genera-
tors y1, . . . ,yn for the A-algebra R(a•). We may assume that each yi is nonzero and
homogeneous, with deg(yi) = ui. Every element of degree u of R(a•) can be writ-
ten as a linear combination, with coefficients in A, of monomials ym1

1 · · ·ymn
n , with

∑
n
i=1 miui = u. This implies that for every u ∈ S, we have au = ∑m1,...,mn a

m1
u1 · · ·amn

un ,
where the sum is over the nonnegative integers m1, . . . ,mn such that ∑

n
i=1 miui = u.

We thus conclude that for every divisor E over X and every u ∈ T , we have

ordE(au) = min

{
n

∑
i=1

mi ·ordE(aui) | m1 . . . ,mn ∈ Z≥0,u =
n

∑
i=1

miui

}
. (1.31)

We claim that for every such E and every u ∈C∩MQ, we have

orda•
E (u) = min

{
n

∑
i=1

λi ·ordE(aui) | λ1, . . . ,λn ∈Q≥0,u =
n

∑
i=1

λiui

}
. (1.32)

Indeed, the inequality “≤” follows from the convexity of orda•
E and the fact that

orda•
E (ui) ≤ ordE(aui). In order to prove the reverse inequality, we apply (1.31) for
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duu to find nonnegative integers m1, . . . ,mn such that ∑
n
i=1 miui = duu and

n

∑
i=1

mi ·ordE(aui) = ordE(aduu) = orda•
E (duu) = du ·orda•

E (u).

It follows that if we take λi = mi/du, then ∑
n
i=1 λiui = u and orda•

E (u) = ∑i λi ·
ordE(aui). We thus have (1.32) and the assertion in iii) is now a consequence of
Proposition A.9.6.

Suppose now that ∆ is a rational fan as in iii) and let us prove iv). Fix a cone
σ ∈ ∆ and let w1, . . . ,wN be generators of σ ∩M. Let dσ be the least common
multiple of the dwi . Given u ∈ σ ∩M, we write u = ∑

N
i=1 miwi for non-negative

integers m1, . . . ,mN and we have

ordE(adσ u)≤
N

∑
i=1

mi ·ordE(adσ wi) =
N

∑
i=1

mi ·orda•
E (dσ wi) = orda•

E (dσ u)≤ ordE(adσ u).

Therefore all these inequalities are equalities. In particular, we have orda•
E (dσ u) =

ordE(adσ u). Since S+(a•) =
⋃

σ∈∆ (σ ∩M), it follows that d := lcm(dσ | σ ∈ ∆)
satisfies the condition in iv).

Remark 1.8.15. Under the assumptions of Proposition 1.8.14, when X is normal,
one can reformulate the conclusion as saying that there is a fan ∆ with support C
and a positive integer d such that for every cone σ ∈ ∆ and every u,v ∈ σ ∩M, we
have adu ·adv = adu+dv. Indeed, this is a consequence of assertions iii) and iv) in the
proposition and of the fact that two ideals a and b have the same integral closure if
and only if ordE(a) = ordE(b) for all divisors E over X (we refer to Appendix D for
the basic facts about integral closure of ideals).

We now apply Proposition 1.8.14 in the setting of finitely generated rings of
sections. Let X be a a complete variety and D1, . . . ,Dr Cartier divisors on X .

Corollary 1.8.16. With the above notation, if the section ring R(X ;D1, . . . ,Dr) is
finitely generated, then the following hold:

i) The monoid T := {u ∈ Nr | h0(X ,OX (Du))≥ 1} is finitely generated.
ii) If C is the convex cone generated by T in Rr, then there is a rational fan ∆ with

support C such that for every divisor E over X and every σ ∈ ∆ , the function
u→ ordE(‖ Du ‖) is linear on σ .

iii) There is a positive integer d such that ordE(‖ Ddu ‖) = ordE(|Ddu|) for every
u ∈ T sat.

Proof. If au is the ideal defining the base locus of OX (Du), then a• is an Nr-graded
sequence such that R(a•) is a finitely generated OX -algebra. Since orda•

E (u) =
ordE(‖Du ‖) for every u∈Qr

≥0, the assertions i)-iii) follow from Proposition 1.8.14.

Corollary 1.8.17. With the notation in Corollary 1.8.16, suppose in addition that X
is normal. If σ is a cone in ∆ and u ∈ Relint(σ)∩Zr, then the stable base locus
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SB(Du) and the rational map fDu are independent of u. Moreover, if v ∈ σ ∩Zr is
arbitrary, then SB(Dv) ⊆ SB(Du) and there is a morphism φ : Proj(R(X ;Du))→
Proj(R(X ;Dv)) such that φ ◦ fDu = fDv .

Proof. Since X is normal and the section ring R(X ;Du) is finitely generated for
every u ∈ Nr, we may apply Proposition 1.8.6 for Du. Suppose first that u,v ∈ σ ∩
Zr and w = u− v ∈ σ . Let W be a normal variety such that we have a projective,
birational morphism π : W → X and effective Cartier divisors Nu,Nv,Nw on W such
that adu ·OW = OW (−Nu), adv ·OW = OW (−Nv), and adw ·OW = OW (−Nw). By
Corollary 1.8.16, we have ordE(adu) = ordE(adv)+ ordE(adw) for every divisor E
on W , hence Nu = Nv +Nw. If we write Pu = π∗(dDu)−Nu, Pv = π∗(dDv)−Nv, and
Pw = π∗(dDw)−Nw, then Pu = Pv + Pw and the line bundles OW (Pu), OW (Pv), and
OW (Pw) are globally generated, hence nef.

We first deduce that

SB(Dv) = π(Supp(Nv))⊆ π(Supp(Nu)) = SB(Du).

Moreover, if C is a curve in W such that (Pu ·C) = 0, then (Pv ·C) = 0. This implies
that fPu ≺ fPv , that is, there is a morphism φ : Proj(R(X ;Du))→ Proj(R(X ;Dv)) such
that fPv = φ ◦ fPu . Therefore we have the equality of rational functions

fDv = fPv ◦π
−1 = φ ◦ fPu ◦π

−1 = fDu .

The second assertion in the corollary now follows from the fact that if u ∈
Relint(σ) and v ∈ σ , then mu−v ∈ σ for all integers m� 0 and we have SB(Du) =
SB(Dmu) and fDu = fDmu . By symmetry, we also obtain the first assertion.

Remark 1.8.18. Suppose that we are in the setting of Corollary 1.8.16, with X a
normal variety. In this case there is a projective, birational morphism π : W → X ,
with W normal, such that for every u ∈C∩Nr, we have a decomposition π∗(Du) =
Nu + Pu, with Nu effective, O(dPu) globally generated, and for all positive integers
m, we have an isomorphism

H0(W,OW (dmPu))' H0(W,OW (dmπ
∗(Du)))

induced by a section defining dmNu. Furthermore, the maps u→ Nu,Pu are linear.
Indeed, it is enough to consider for each maximal cone σ ∈∆ a system of generators
for σ∩Zr. If {u1, . . . ,ud} is the union of these systems of generators and π : W→X ,
with W normal, is a projective, birational morphism that factors through the blow-
up along each adui , then π satisfies the required properties. This follows easily from
Proposition 1.8.6 and Remark 1.8.15.

We keep the assumptions and notation in Corollary 1.8.16, with X a normal,
projective variety. Let Φ : Rr → N1(X)R be the linear map given by Φ(u) = Du.
Note that for every divisor E over X , Corollary 1.8.16 implies that the function
C∩Qr 3 w→ ordE(‖ Du ‖) admits a (unique) piecewise linear extension ψE to C.
It is clear that ψE is continuous.
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Corollary 1.8.19. With the above notation, if there is u ∈ Rr such that Du is big,
then the following hold:

i) For every v ∈ Zr
≥0, the divisor Dv is pseudo-effective if and only if |dDv| 6= /0.

Moreover, we have Rr
≥0 ∩Φ−1(PEff(X)) = C, hence this is a rational polyhedral

cone.
ii) For every v ∈C and every divisor E over X, we have σE(Dv) = ψE(v).
iii) For every v ∈Nr, we have B–(Dv) = SB(Dv) = Bs(|dDv|)red. In particular, Dv is
nef if and only if OX (dDv) is globally generated. Moreover, we have

Rr
≥0∩Φ

−1(Nef(X)) = {v ∈C | σE(Dv) = 0 for all divisors E over X} (1.33)

and this is a rational polyhedral cone.

Proof. If H0(X ,OX (dDv)) 6= 0, then it is clear that Dv is pseudo-effective. Con-
versely, if Dv is pseudo-effective, then for every rational number t > 0, we have
Dv + t ·Du big. Therefore v + tu lies in C and since C is a closed cone, we have
v ∈C. In this case, Corollary 1.8.16 implies that H0(X ,OX (dDv)) 6= 0. The second
assertion in i) is also clear.

Given any v ∈ C and any divisor E over X , it follows from Remark 1.7.34 that
σE(Dv) = limt→0 ordE(‖ Dv+tu ‖). On the other hand, by Proposition 1.7.19, the
map w→ ordE(‖Dw ‖) is continuous on Φ−1(Big(X)) and since the rational points
are dense in Φ−1(Big(X)), it follows that ψE(w) = ordE(‖ Dw ‖) whenever Dw is
big. In particular, we have

σE(Dv) = lim
t→0

ordE(‖ Dv+tu ‖) = lim
t→0

ψE(v+ tu) = ψE(v),

giving the assertion in ii).
We now show that if v ∈ Nr ∩C and E is a divisor over X such that σE(Dv) = 0,

then cX (E) is not contained in Bs(|dDv|). Since Dv is pseudo-effective, part i) gives
v ∈C and using part ii) we get

ordE(‖ Dv ‖) = ψE(v) = σE(Dv) = 0.

We thus conclude using Corollary 1.8.16 that ordE(|dDv|) = 0, that is, cX (E) 6⊆
Bs(|dDv|).

For every v ∈ Nr, we clearly have the inclusions

B–(Dv)⊆ SB(Dv)⊆ Bs(|dDv|)red. (1.34)

If v 6∈C, then Dv is not pseudo-effective, hence B–(Dv) = X and the above inclusions
are all equalities. Suppose now that v ∈C and let V be an irreducible component of
Bs(|dDv|)red. Consider a divisor E over X with cX (E) = V (see Remark 1.7.8). As
we have seen, in this case σE(Dv) > 0 and Proposition 1.7.31 implies V ⊆ B–(Dv).
Therefore the inclusions in (1.34) are equalities for every v ∈ Nr. This proves the
first assertion in iii) and the second one is a special case.

The inclusion “⊆” in (1.33) is a general fact (see Proposition 1.7.31), hence in
order to prove the equality we only need to show the reverse inclusion. Given v ∈C
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such that σE(Dv) = 0 for every divisor E over X , let τ be the cone in ∆ such that
v ∈ Relint(τ). For every E and every w ∈ τ , we have ψE(w) = 0. Indeed, since ψE
is linear and non-negative on τ and mv−w ∈ τ for m� 0, we deduce

σE(w) = ψE(w) = m ·ψE(v)−ψE(mv−w) =−ψE(mv−w)≤ 0,

and since σE(w)≥ 0, we conclude that σE(w) = 0. If in addition w ∈ Nr, it follows
from what we have already shown that Dw is nef. By applying this to integer points
on each of the rays of τ , we conclude that τ ⊆ Φ−1(Nef(X)), giving (1.33). More-
over, we see that Rr

≥0 ∩Φ−1(Nef(X)) is generated as a convex cone by those rays
in ∆ that are contained in it, hence it is a rational, polyhedral cone.

1.8.3 Relative section rings

In this section we consider the relative version of the finite generation of sec-
tion rings. Suppose that g : X → S is a proper morphism of varieties over k and
L1, . . . ,Lr are line bundles on X . The relative section ring of L1, . . . ,Lr is the
Nr-graded OS-algebra

R(X/S;L1, . . . ,Lr) :=
⊕
u∈Nr

g∗(L u).

Note that this is a finitely generated OS-algebra if and only if for every affine open
subset U of S, the Nr-graded O(U)-algebra

R(g−1(U);L1, . . . ,Lr) =
⊕
u∈Nr

Γ (g−1(U),L u)

is finitely generated (in fact, it is enough to only consider a family of such U that
cover X). Therefore for most questions it is enough to consider the case when
S is affine. When Li = OX (Di) for Cartier divisors D1, . . . ,Dr, we also write
R(X/S;D1, . . . ,Dr) instead of R(X/S;L1, . . . ,Lr).

Since X is a variety, it follows again from Lemma C.0.5 that for every affine open
subset U of X , the ring R(g−1(U);L1, . . . ,Lr) is a domain. In particular, it follows
from Proposition C.0.6 that for every positive integers d1, . . . ,dr, the OS-algebra
R(X/S;L1, . . . ,Lr) is finitely generated if and only if R(X/S;L d1

1 , . . . ,L dr
r ) has

this property.
Proposition C.0.10 implies that if R(X/S;L1, . . . ,Lr) is finitely generated, then

for every M1, . . . ,Ms that lie in the submonoid of Pic(X) generated by L1, . . . ,Lr,
we have R(X/S;M1, . . . ,Ms) finitely generated. We also deduce from Proposi-
tion C.0.9 that if L ∈ Pic(X) is such that R(X/S;L ) is finitely generated, then
there is a positive integer d such that R(X/S;L d) is generated in degree 1 (if we
have a finite cover S = U1∪ . . .∪U` and if di is such that Γ (g−1(Ui);L di) is gener-
ated in degree 1, then we may take d to be the least common multiple of the di). The
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following is the relative version of Proposition 1.8.4 and the proof follows as in the
absolute case, hence we omit it.

Proposition 1.8.20. If g : X → S is a proper morphism of varieties and L1, . . . ,Lr
are g-semiample line bundles on X, then R(X/S;L1, . . . ,Lr) is a finitely generated
OS-algebra.

If g : X → S is as above and M ∈ Pic(X) is semiample, then there is a canon-
ical fiber space fM : X →Pro j(R(X/S;M )), which is a morphism over S. This
is characterized by the fact that a curve C contracted by π is contracted also by
fM if and only if (M ·C) = 0. Suppose now that L is a line bundle on X such
that R(X/S;L ) is a finitely generated OS-algebra and some g∗(L m) is nonzero.
Let d be a positive integer such that R(X/S;L d) is generated in degree 1. The
image of the canonical morphism g∗g∗(L d)→ L d is equal to a⊗L d for some
nonzero ideal a. Suppose now that X is normal and π : W → X is a proper, bi-
rational morphism, with W normal, such that a ·OW = OW (−N), for an effective
Cartier divisor N. If LW := π∗(L d)⊗OW (−N), then LW is globally generated, we
have R(W/S;LW ) ' R(X/S;L d), and the rational map fL := fLW ◦π−1 : X 99K
Pro j(R(X/S;L )) is independent of m and π . When M = OX (D), for a Cartier
divisor D, we also write fD for fM . Like in the absolute case, we see that if g is
projective and L is g-big, then L is g-nef if and only if L is g-semiample.

Consider now Cartier divisors D1, . . . ,Dr on X such that R(X/S;D1, . . . ,Dr) is
a finitely generated OS-algebra. For every u = (u1, . . . ,ur) ∈ Rr

≥0, we put Du =
∑

r
i=1 uiDi. For u∈Nr, let au be the ideal in OX such that the image of g∗g∗(OX (Du))→

OX (Du) is equal to au⊗OX (Du). It is clear that a• = (au)u∈Nr is an Nr-graded se-
quence of ideals and the OX -algebra

⊕
u∈Nr au is finitely generated. Therefore we

may apply Proposition 1.8.14. We first deduce that the monoid

T := {u ∈ Nr | g∗(OX (mDu)) 6= 0}= {u ∈ Nr | au 6= 0}

is finitely generated. Moreover, if C is the convex cone generated by T , then there is
a rational fan ∆ with support C such that for every σ ∈ ∆ and every divisor E over
X , the function Qr

≥0 3 u→ ordE(‖ Du/S ‖) is linear on σ . There is also a positive
integer d such that ordE(‖ Ddu/S ‖) = ordE(adu) for every divisor E over X and
every u ∈ T sat = C∩Nr. Arguing as in the proof of Corollary 1.8.18, we see that for
every u ∈ T sat, the rational map fDu only depends on the cone in ∆ that contains u
in its relative interior.

Suppose, in addition, that g is projective and there is u ∈ Nr such that Du is
g-big. In this case, for every v ∈ Nr

≥0, the divisor Dv is pseudo-effective if and
only if adv is nonzero. If Φ : Rr → N1(X/S)R takes v to the class of Dv, then
Rr
≥0∩Φ−1(PEff(X/S)) = C, hence the left-hand side is a rational polyhedral cone.

Moreover, for every divisor E over X , the map

Rr
≥0∩Φ

−1(PEff(X/S)) 3 v→ σE(Dv/S)

coincides on each cone τ ∈ ∆ with the unique linear extension of the map τ ∩Qr 3
v→ ordE(‖ Dv/S ‖). Finally, for v ∈ Rr

≥0, the R-divisor Dv is g-nef if and only if
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v ∈C and σE(Dv) = 0 for every divisor E over X . The set of all v ∈ Rr
≥0 such that

Dv is nef is a rational polyhedral cone. All these assertions follow as in the proof
of Corollary 1.8.19. Moreover, if v ∈ Nr ∩C is such that Dv is nef, then OX (dDv) is
g-base-point free. Indeed, note first that v∈C, consider the cone τ ∈ ∆ that contains
v in its relative interior, and let v1, . . . ,vr be a system of generators of τ ∩Nr. For
every w ∈ τ , if m ∈ Z is large enough, then mv−w ∈ τ . It follows that if E is a
divisor over X , then

0 = m ·σE(Dv/S) = σE(Dmv−w/S)+σE(Dw/S)≥ σE(Dw/S),

hence σE(Dw/S) = 0. Applying this for w = vi, we conclude that ordE(‖ Dvi/S ‖
) = 0 for every divisor E over X , hence advi = OX for all i. Since each OX (Ddvi)
is g-base-point free and we can write D = ∑

r
i=1 aiDvi , with ai ∈ N, it follows that

OX (dDv) is g-base point free.



Chapter 2
Vanishing theorems

2.1 Kodaira-Akizuki-Nakano vanishing

Let X be a smooth projective variety of dimension n over an algebraically closed
field k. Recall that the canonical line bundle on X is the sheaf of top-differential
forms ωX = Ω n

X on X . One reason for the important role played by this line bundle
comes from Serre duality (see [Har77, Cor. III.7.7]: if E is a locally free sheaf on
X , then there are canonical isomorphisms

H i(X ,E )' Hn−i(X ,ωX ⊗E ∨)∗

for every i, where E ∨ is the dual of E , and W ∗ denotes the dual of a k-vector space
W .

The other important feature of ωX is its presence in vanishing theorems. As these
only hold in characteristic zero, from now on, unless explicitly mentioned otherwise,
we assume that the ground field has characteristic 0. Our main goal in this section
is to prove the following vanishing theorem.

Theorem 2.1.1 (Kodaira). If L is an ample line bundle on the smooth projective
variety X, then

H i(X ,ωX ⊗L ) = 0

for every i≥ 1.

Remark 2.1.2. By Serre duality, the assertion in the theorem is equivalent to the fact
that H i(X ,L −1) = 0 for all i < n = dim(X).

In fact, we will prove the following more general version of the above theorem,
that also treats the sheaves of lower differential forms.

Theorem 2.1.3 (Akizuki-Nakano). If L is an ample line bundle on the smooth
n-dimensional projective variety X, then

Hq(X ,Ω p
X ⊗L ) = 0

105
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for all p and q such that p+q > n.

Remark 2.1.4. Using the bilinear map Ω
p
X ⊗Ω

n−p
X → ωX , one checks that (Ω p

X )∨ '
ω
−1
X ⊗Ω

n−p
X . It thus follows from Serre duality that the vanishing in Theorem 2.1.3

is equivalent with Hq(X ,Ω p
X ⊗L −1) = 0 for all p and q with p+q < n.

There is an algebraic proof of Theorem 2.1.3 due to Deligne and Illusie [DI87].
This proceeds by reduction to positive characteristic, using the properties of the
de Rham complex of a smooth projective algebraic variety over a field k of positive
characteristic, when the variety admits a flat lifting to the ring of Witt vectors W2(k).
On the other hand, we stress that in positive characteristic the above vanishing the-
orems can fail (see [Ray78] for examples of surfaces on which Theorem 2.1.1 does
not hold).

The proof that we give for Theorem 2.1.3 uses transcendental methods. Note that
standard arguments allow us to reduce to the case when the ground field k is the field
C of complex numbers. Indeed, suppose that K/k is an extension of algebraically
closed fields, XK = X×Speck SpecK, and LK is the pull-back to XK of the line bundle
L on X . It follows from Remark 1.1.3 that L is ample if and only if LK is ample,
while

Hq(XK ,Ω p
XK
⊗LK)' Hq(X ,Ω p

X ⊗L )⊗k K.

Therefore Theorem 2.1.3 holds for (X ,L ) if and only if it holds for (XK ,LK).
Given X over k as in Theorem 2.1.3, we can find k0 ⊆ k algebraically closed and
of finite type over Q such that the pair (X ,L ) is obtained by extending the scalars
from a similar pair defined over k0. Since k0 admits an embedding in C, it follows
that it is enough to prove the theorem when k = C. In this case, we can make use of
singular cohomology and Hodge theory. Before giving the proof of Theorem 2.1.3,
we need to make some preparations.

2.1.1 Cyclic covers

Let X be any scheme of finite type over k (where k is algebraically closed, of arbi-
trary characteristic). Suppose that m is a positive integer not divisible by char(k), L
is a line bundle on X , and s ∈H0(X ,L m) is a section whose zero-locus Z(s) = D is
an effective Cartier divisor on X .

The section s induces a moprhism φs : L −m → OX , and we consider the OX -
algebra A , given as a quotient of

⊕
i≥0 L −it i by the ideal generated by utm−φs(u),

where u is a local section of L −m (here t is a variable which keeps track of
the grading). It is clear that as an OX -module, A is isomorphic to

⊕m−1
i=0 L −i;

in particular, it is coherent. The m-cyclic cover corresponding to s is the finite
map π : Y = S pec(A )→ X defined by A . Note that by construction, we have
π∗(OY )'A .

It is easy to see that if X is complete, then up to isomorphism, the construction
only depends on D, and not on the section s. Indeed, if s′ is another section defin-
ing the same divisor, then we can write s′ = λ s, for some λ ∈ k∗. Let us choose α
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such that αm = λ . If A ′ is the algebra corresponding to s′, then we have an isomor-
phism of OX -algebras A →A ′ that in degree j is given by multiplication by α− j.
Therefore in this case we also refer to Y as the m-cyclic cover corresponding to D.

It is useful to keep in mind the local description of a cyclic cover. Suppose that
U ⊆ X is an affine open subset of X on which we have a trivialization L |U ' OU .
Using the induced trivialization L m|U ' OU , we see that s|U corresponds to f ∈
O(U) and π−1(U)' Spec(O(U)[y]/(ym− f )).

We collect in the following lemmas some basic properties of this construction.
We keep the above notation.

Lemma 2.1.5. There is an effective Cartier divisor R on Y such that π∗(D) = mR
and π induces an isomorphism of schemes R' D.

Proof. We describe R locally. Suppose that U ⊆ X is an affine open subset on which
we have a trivialization L |U ' OU . Let f ∈ O(U) denote the regular function cor-
responding to s via the induced trivialization of L m|U . Consider the subscheme
defined in π−1(U)' Spec(O(U)[y]/(ym− f )) by (y). Since ym = f in O(π−1(U)),
which is a free O(U)-module, and f is a non-zero divisor on O(U), it follows that y
is a non-zero divisor in O(π−1(U)), hence it defines an effective Cartier divisor. It
is easy to see that the definition is independent of the choice of trivialization, hence
we obtain an effective Cartier divisor R on Y . By looking at the local description,
it is clear that π∗(D) = mR and the induced morphism of schemes R→ D is an
isomorphism.

Lemma 2.1.6. If R is as in Lemma 2.1.5, then π∗(L ) ' OY (R). In particular, for
every j ∈ Z we have

π∗(OY (− jR)) =
j+m−1⊕

i= j

L − j.

Proof. With the notation in the proof of Lemma 2.1.5, note that the trivialization
L |U ' OU induces a trivialization π∗(L )|π−1(U) ' Oπ−1(U). By composing this
with the isomorphism Oπ−1(U) ' OY (R)|π−1(U) given by g→ g/y, we obtain the
desired isomorphism over π−1(U). It is straightforward to check that the definition
is independent of the trivialization of L |U and therefore these isomorphisms glue to
give π∗(L )' OY (R). The last assertion follows from the fact that since π∗(OY )'⊕m−1

i=0 L −i, the projection formula gives

π∗(OY (− jR))' π∗(π∗(L − j))'L − j⊗

(
m−1⊕
i=0

L −i

)
'

j+m−1⊕
i= j

L − j.

Lemma 2.1.7. The morphism π : Y → X is étale over X r D.

Proof. It is enough to show that π is étale over any affine open subset U ⊆
X r D, and therefore we may assume that X = Spec(A) and Y = Spec(S), where
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S = A[y]/(ym− f ) and f is invertible in A. A standard computation gives ΩS/A '
Sdy/mym−1dy. Since m is invertible in k and ym−1 is invertible in S (since ym = f is
invertible), it follows that ΩS/A = 0.

Lemma 2.1.8. If X and D are both smooth, then Y and R are smooth, too.

Proof. Since X is smooth and Y r R→ X r D is étale by Lemma 2.1.7, it follows
that Y r R is smooth. On the other hand, R is smooth being isomorphic to D, and
since R is a Cartier divisor in Y , it follows that Y is smooth along R as well.

Remark 2.1.9. Under the assumptions of Lemma 2.1.8, if D = 0, then it can happen
that Y is reducible, even if X is irreducible (for example, if L = OX and s = 1, then
Y is a disjoint union of m copies of X). On the other hand, if X is irreducible and D
is nonzero, then Y is irreducible as well. Indeed, since we know that Y is smooth,
it is enough to show that it is connected. If Y1 and Y2 are non-empty open subsets
of Y such that Y = Y1tY2, since π is finite and flat, both π(Y1) and π(Y2) are open
and closed in X , hence π(Y1) = X = π(Y2). It follows that if D0 is an irreducible
component of D and R0 is the corresponding irreducible component of R, then Y1
and Y2 intersect R0. The decomposition R0 = (R0 tY1)t (R0 tY2) contradicts the
fact that R0 is connected.

2.1.2 The de Rham complex with log poles

Suppose that X is a smooth n-dimensional variety (to begin with, we make no as-
sumption on the ground field k). Recall that an effective divisor D on X has simple
normal crossings (SNC, for short) if for every p ∈ X , there are (algebraic) coordi-
nates x1, . . . ,xn in an affine neighborhood U of p1 such that D is defined in U by
an equation of the form xa1

1 · · ·xan
n , with a1, . . . ,an nonnegative integers. Note that in

this case the irreducible components of D are smooth and they intersect transversely.
Suppose that D is a reduced divisor on D, having simple normal crossings. We

now define the sheaf of 1-forms on X with log poles along D, denoted by ΩX (logD).
This is the subsheaf of ΩX ⊗K(X) described locally as follows. Suppose that U is
an affine open subset of X and x1, . . . ,xn are coordinates on U such that D is defined
in U by x1 · · ·xr. In this case ΩX (logD)|U is generated by

dx1

x1
, . . . ,

dxr

xr
,dxr+1, . . . ,dxn.

Note that this is independent of the choice of coordinates: if h ∈ O(U)∗, then for
1≤ i≤ r we have

1 This means that dx1, . . . ,dxn give a trivialization of ΩX |U , or equivalently, the map U → An

defined by x1, . . . ,xn is étale; this is also equivalent with saying that for every closed point q ∈U ,
x1− x1(q), . . . ,xn− xn(q) generate the maximal ideal in OX ,q.
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d(hxi)
hxi

=
dh
h

+
dxi

xi
∈ O(U) · dxi

xi
+

n

∑
j=1

O(U) ·dx j.

It is clear from definition that ΩX (logD) is a locally free sheaf of rank n containing
ΩX . For every nonnegative integer p, we put

Ω
p
X (logD) := ∧p

ΩX (logD).

In particular, Ω 0
X (logD) = OX and it follows easily from definition that Ω n

X (logD)'
ωX ⊗OX (D).

Recall that we have the de Rham complex Ω •X on X :

0→ OX
d→Ω

1
X

d→ . . .
d→Ω

n
X → 0.

This induces the de Rham complex Ω •X ⊗K(X) of meromorphic forms on X , and it
is easy to see that the de Rham differential preserves the forms with log poles along
D (the key fact is that d(dxi/xi) = 0). We thus obtain the de Rham complex with log
poles Ω •X (logD).

In the following two propositions we collect two facts that we will need about
forms with log poles, in the case of a smooth divisor.

Proposition 2.1.10. Let X be a smooth variety, L a line bundle on X, m a positive
integer not divisible by char(k), and s ∈ Γ (X ,L m) a section whose zero-locus is a
smooth effective divisor D. If π : Y → X is the m-cyclic cover corresponding to s,
and R is the effective divisor on Y such that π∗(D) = mR, then for every non-negative
integer p we have a canonical isomorphism

π
∗(Ω p

X (logD))'Ω
p
Y (logR).

Proof. Since both sheaves are canonically isomorphic to subsheaves of Ω
p
K(Y ), it is

enough to check that we have equality locally. Furthermore, it is enough to check
this equality for p = 1, since the general case follows by taking exterior powers. The
assertion is clear on Y rR, since π is étale on this open subset, hence π∗(ΩX ) = ΩY
on Y rR. Suppose now that U ' Spec(A) is an affine open subset in X and we have
x1, . . . ,xn coordinates on U such that L |U ' OU and s|U corresponds to tx1, with
t ∈ OX (U) invertible. Since on π−1(U)' Spec(A[y]/(ym− tx1)) we have algebraic
coordinates y,x2, . . . ,xn and

π
∗(dxi) = dxi for i≥ 2 and π

∗
(

dx1

x1

)
=

d(ym)
ym = m · dy

y
,

we obtain the identification on U for the two sheaves in the proposition, when p =
1.

Proposition 2.1.11. If X is a smooth variety and D is a smooth divisor on X, then
for every non-negative integer p, we have an exact sequence
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0→Ω
p
X (logD)⊗OX (−D) i→Ω

p
X

τ→Ω
p
D→ 0,

where i is the natural inclusion and τ is given by restriction of forms.

Proof. Since the restriction map τ is surjective, it is enough to check locally that
its kernel is equal to Ω

p
X (logD)⊗OX (−D). Let U be an affine open subset of X on

which we have coordinates x1, . . . ,xn such that D is defined by (x1). In this case, the
kernel of τ|U is

dx1∧Ω
p−1
U + x1 ·Ω p

U = Γ (U,Ω p
X (logD)⊗OX (−D)).

This gives the assertion in the proposition.

Suppose now that k = C. In this case, every smooth n-dimensional algebraic
variety over k has a canonical structure of complex n-dimensional manifold Xan.
In particular, we may consider the singular cohomology of Xan. The following is a
fundamental theorem that shows that the hypercohomology of the de Rham complex
with log poles computes the singular cohomology with complex coefficients for the
complement of an SNC divisor.

Theorem 2.1.12. (Grothendieck-Deligne) If X is a smooth complex algebraic va-
riety and D is a simple normal crossing divisor on X, then there is a canonical
isomorphism

H i(X ,Ω •X (logD))' H i(Xan r Dan;C).

Remark 2.1.13. We will use the above theorem in the case when X is projective (and
D is a smooth divisor). Note that if D = 0, then the statement follows by combining
the following consequence of GAGA

H i(X ,Ω •X )' H i(Xan,Ω •Xan)

with the fact that Ω •Xan gives a resolution of the constant sheaf CX (in the analytic
topology), which in turn is a consequence of the complex-analytic Poincaré Lemma.
The case when we also have a divisor D can be deduced without much effort by
induction on the number of irreducible components of D.

Suppose now that X is a smooth complex projective variety and D is a divisor
with simple normal crossings on X . The “stupid” filtration on the de Rham complex
induces a Hodge-to-de Rham spectral sequence

E p,q
1 = Hq(X ,Ω p

X (logD))⇒
p

H p+q(X ,Ω •X (logD)). (2.1)

The following is a fundamental consequence of Hodge theory2.

2 Deligne and Illusie gave an algebraic proof of this result in [DI87], using reduction to positive
characteristic.
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Theorem 2.1.14. If X is a smooth complex projective variety and D is a divisor with
simple normal crossings on X, then the Hodge-to-de Rham spectral sequence (2.1)
degenerates at E1.

By combining Theorems 2.1.14 and 2.1.12, we obtain the following corollary,
which is the result that we will need.

Corollary 2.1.15. If X is a smooth complex projective variety and D is a divisor
with simple normal crossings on X, then

dimC H i(Xan r Dan;C) = ∑
p+q=i

hq(X ,Ω p
X (logD))

for every i≥ 0.

2.1.3 Cohomology of smooth complex affine algebraic varieties

Our goal in this subsection is to prove the following theorem concerning the topol-
ogy of smooth affine complex varieties. In doing this, we follow the presentation in
[Laz04a, Chap. 3.1.A].

Theorem 2.1.16 (Andreotti-Frankel). If M ↪→ CN is a closed n-dimensional com-
plex submanifold, then M has the homotopy type of a CW-complex of (real) dimen-
sion ≤ n. In particular, we have H i(M,Z) = 0 and Hi(M,Z) = 0 for all i > n.

The proof of Theorem 2.1.16 uses some basic results from Morse theory, that we
briefly review. We refer the reader to [Mil63] for proofs and details. Suppose that
M is a C ∞ (real) manifold and φ : M→ R is a C ∞ map. If p ∈M is a critical point
of φ (that is, dpφ = 0), then there is a symmetric bilinear form on TpM, the Hessian
Hessp(φ). If x1, . . . ,xd are local coordinates around p, then with respect to the basis

of TpM given by ∂

∂xi
(p), this form is given by the matrix

(
∂ 2φ

∂xi∂x j
(p)
)

i, j
. One says

that the critical point p ∈ M is non-degenerate if Hessp(φ) is non-degenerate. A
lemma due to Morse asserts that if p ∈ M is non-degenerate, then one can choose
coordinates x1, . . . ,xn around p such that

φ = φ(p)− x2
1− . . .− x2

r + x2
r+1 + . . .+ x2

n

in a neighborhood of p. Of course, in this case (n−r,r) is the signature of Hessp(φ)
and one defines the index of φ at p to be r.

The function φ is a Morse function if all critical points of φ are non-degenerate.
One way to obtain Morse functions is the following.

Proposition 2.1.17. If M ( RN is a closed real submanifold, then for almost all
c ∈ RN , the function

M 3 p→ φc(p) = d(p,c)2

is a Morse function, where d(x,y) is the standard product metric on RN .
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The following fundamental result of Morse theory relates the topology of a man-
ifold to the critical points of a Morse function.

Theorem 2.1.18. Let φ : M→R be a Morse function on a C ∞ manifold M such that
for every a ∈ R, the subset φ−1((−∞,a]) ⊆ M is compact. In this case M has the
homotopy type of a CW complex, with a cell of dimension r for every non-degenerate
point of φ of index r.

Remark 2.1.19. Note that the Morse functions described in Proposition 2.1.17 sat-
isfy the condition in Theorem 2.1.18. Indeed, each subset φ−1

c ((−∞,a]) is by def-
inition bounded, and it is closed in M, which in turn is closed in RN . Therefore
φ−1

c ((−∞,a]) is compact.

By combining Theorem 2.1.18 and Proposition 2.1.17, we see that the assertion
in Theorem 2.1.16 follows from the following proposition.

Proposition 2.1.20. Let M ⊆ CN = R2N be a closed complex submanifold of (com-
plex) dimension n. For every c ∈ CN , if p ∈ M is a critical point of the function
φ : M→ R given by φ(p) = d(p,c)2, and the signature of Hessp(φ) is (s,r), then
r ≤ n.

Proof. We may clearly assume that p = 0. Furthermore, since M is an n-dimensional
complex submanifold of CN , after possibly relabeling the coordinates we may as-
sume that the projection onto the first n components induces a map M→ Cn which
is biholomorphic in a neighborhood of 0. Therefore there are holomorphic maps
f1, . . . , fN defined in a neighborhood U of 0 in Cn, with fi = zi for 1 ≤ i ≤ n, such
that around p we have

M = {( f1(z), . . . , fN(z)) | z ∈U}.

Therefore it is enough to consider the Hessian at 0 ∈ Cn for the function

g : U → R, g(z1, . . . ,zn) =
N

∑
i=1
| fi(z)− ci|2 =

N

∑
i=1

( fi(z)− ci)( fi(z)− ci),

where c = (c1, . . . ,cN). For every i with 1≤ i≤ N, let us consider the Taylor expan-
sion of fi around 0, namely fi = ∑`≥1 fi,`, with each fi,` a homogeneous polynomial
function of degree `. An easy computation gives Hess0(g) = Hess0(h), where

h(z) =
N

∑
i=1
| fi,1(z)|2−2

N

∑
i=1

Re(ci · fi,2(z)).

Since ∑
N
i=1 | fi,1(z)|2 is a positive definite real quadratic form (recall that fi(z) = zi

for 1≤ i≤ n), it follows that if V is a real subspace of Cn = R2n such that Hess0(h)
is negative definite on V , then the real quadratic form ∑

N
i=1 Re(ci · fi,2(z)) is positive

definite on V . Therefore, in order to complete the proof of the proposition, it is
enough to show that if Q is a complex, symmetric, bilinear form on Cn = R2n,
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and (a,b) is the signature of the real quadratic form z→ Re(Q(z,z)), then a ≤ n.
Note that we may find a basis of Cn such that Q(z,z) = ∑

r
i=1 z2

i . By writing zi =
ui +
√
−1vi, we see that

Re(Q(z,z)) =
r

∑
i=1

u2
i −

r

∑
i=1

v2
i ,

hence a = b = r ≤ n.

2.1.4 The proof of the Akizuki-Nakano vanishing theorem

By putting together the ingredients discussed in the previous sections, we can give
a proof of the Akizuki-Nakano vanishing theorem.

Proof of Theorem 2.1.3. As we have already mentioned, we may assume that the
ground field is C. We prove the theorem by induction on n, the case n = 0 being
trivial.

Since L is ample, there is m ≥ 1 such that L m is very ample. By Bertini’s
theorem, we can find a smooth divisor D ∈ |L m|. Let π : Y → X be the m-cyclic
cover corresponding to D, and let R be the effective divisor on Y such that π∗(D) =
mR.

Since D is ample and π is finite, it follows from Proposition 1.1.9 that π∗(D) is
ample, hence R is ample. Therefore Y r R is affine, and Theorem 2.1.16 implies

H i(Y an r Ran;C) = 0 for all i > n.

By combining this with Corollary 2.1.15, we obtain

Hq(Y,Ω p
Y (logR)) = 0 for p+q > n.

On the other hand, Proposition 2.1.10 gives Ω
p
Y (logR) ' π∗(Ω p

X (logD)) and we
deduce using the projection formula (recall that π is finite)

Hq(X ,Ω p
X (logD)⊗π∗(OY )) = 0 for p+q > n.

Since π∗(OY ) =
⊕m−1

j=0 L − j, we have

Hq(X ,Ω p
X (logD)⊗L − j) = 0 for p+q > n and 0≤ j ≤ m−1. (2.2)

Recall now that by Proposition 2.1.11, for every p≥ 0 we have an exact sequence

0→Ω
p
X (logD)⊗OX (−D)→Ω

p
X →Ω

p
D→ 0

and by tensoring with L , the long exact sequence in cohomology gives
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Hq(X ,Ω p
X (logD)⊗L −m+1)→ Hq(X ,Ω p

X ⊗L )→ Hq(D,Ω p
D⊗L |D). (2.3)

For p + q > n the first term in (2.3) vanishies by (2.2) and the third term vanishes
by the induction hypothesis, hence Hq(X ,Ω p

X ⊗L ) = 0.

2.2 The Kawamata–Viehweg vanishing theorem

Our goal in this section is to prove an important extension of Kodaira’s vanishing
theorem, due to Kawamata and Viehweg. This extension goes in two directions.
First, one replaces the “ample” condition by “big and nef”. Second, one allows
small perturbations supported on a simple normal crossing divisor. We keep the
assumption that the ground field is algebraically closed, of characteristic zero.

For a real number u, we denote by buc the largest integer that is ≤ u, and by due
the smallest integer ≥ u. If X is a normal variety and D = ∑

r
i=1 aiDi is an R-divisor

on X , with the Di pairwise distinct prime divisors, then we put

bDc :=
r

∑
i=1
baicDi and dDe :=

r

∑
i=1
daieDi.

By definition, both dDe and bDc are integral divisors on X .
If X is a smooth variety, we say that an R-divisor ∑

r
i=1 aiDi has simple normal

crossings if ∑
r
i=1 Di has simple normal crossings. We can now state the main result

of this section.

Theorem 2.2.1 (Kawamata–Viehweg). If X is a smooth projective variety and D
is a big and nef Q-divisor such that dDe−D has simple normal crossings, then

H i(X ,ωX ⊗OX (dDe)) = 0 for all i≥ 1.

We give the proof of the theorem following [KM98, Chap. 2.5]. We begin with
some preparations.

Lemma 2.2.2. Let X be a projective variety and M ∈ Pic(X). For every positive
integer m, there is a finite, surjective morphism f : Y → X from a projective variety
Y with L ∈ Pic(Y ) such that f ∗(M )'L m. Furthermore, if X is smooth and ∆ is
an effective, reduced, simple normal crossing divisor on X, we may find f such that
Y is smooth and f ∗(∆) is reduced and has simple normal crossings.

Proof. If M is very ample, then it defines an embedding j : X ↪→ PN . Consider the
finite morphism g : PN → PN given by g(x0, . . . ,xN) = (xm

0 , . . . ,xm
N), which has the

property that g∗OPN (1) ' OPN (m). Let Y be the reduced scheme structure on an
irreducible component of the fiber product of j and g that dominates X . We have a
commutative diagram
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Y � � h //

f

��

PN

g
��

X � � j // PN ,

with f finite and surjective and it is clear that if L = h∗OPN (1), then f ∗(M )'L m.
If X is smooth and ∆ is an effective, reduced divisor on X with simple normal

crossings, then we replace g by σ ◦g, where σ ∈Aut(PN) is a general element. Since
char(k) = 0, Kleiman’s version of Bertini’s theorem (see [Har77, Thm. III.10.8]) im-
plies that the fiber product of PN with X and with each intersection of irreducible
components of ∆ is again smooth, of the expected dimension (though possibly dis-
connected). After taking Y to be a connected component of the fiber product of PN

with X , we also satisfy the second condition in the lemma.
For an arbitrary line bundle M , let us write M 'M1⊗M−1

2 , for suitable very
ample line bundles M1 and M2. We first construct as above f1 : Y1 → X such
that f ∗1 (M1) ' L m

1 for some L1 ∈ Pic(Y1). The pull-back f ∗1 (M2) is ample by
Proposition 1.1.9, hence we may choose a positive integer r, relatively prime to
m, such that f ∗1 (M2)r is very ample. We then construct f2 : Y → Y1 as above such
that f ∗2 ( f ∗1 (M2))r ' L m

2 for some L2 ∈ Pic(Y ). If a and b are integers such that
ar +bm = 1 and L = f ∗2 (L1)⊗ (L a

2 ⊗ f ∗2 (M2)b)−1, then f ∗(M )'L m.

Definition 2.2.3. A normal variety X is Q-factorial if for every Weil divisor D on X ,
there is a positive integer m such that mD is Cartier. Equivalently, the Q-linear map
CDiv(X)Q→ Div(X)Q is an isomorphism.

The following lemma is a general result that is useful also in other situations.

Lemma 2.2.4. If f : Y → X is a birational projective morphism of normal varieties,
with X being Q-factorial and carrying an ample line bundle, then there is an effec-
tive exceptional Cartier divisor3 F on Y such that −F is f -ample.

Proof. Since f is projective and X has an ample line bundle, it follows from Re-
mark 1.6.18 that there is an f -ample effective Cartier divisor H on Y . Let m be a
positive integer such that m f∗(H) is Cartier. If F = f ∗(m f∗(H))−mH, then F is
effective and −F is f -ample.

Remark 2.2.5. With the notation in Lemma 2.2.4, the exceptional locus Exc( f ) is
equal to Supp(F). Indeed, if y ∈ Exc( f ), then there is a curve C ⊆ f−1( f (y)) con-
taining y (see Lemma B.2.2). Since −F is f -ample, we have (F ·C) < 0, hence
C⊆ Supp(F). In particular, y∈ Supp(F). Since by construction Supp(F)⊆ Exc( f ),
we have in fact equality. In particular, we conclude that for every projective, bira-
tional morphism f : Y → X between normal varieties, with X being Q-factorial, all
irreducible components of Exc( f ) have codimension 1 (note that this property is
local on X , hence we may assume that X is affine).

3 We refer to Appendix B for a review of some basic facts concerning exceptional divisors.
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Lemma 2.2.6. Let X be a smooth variety, L ∈ Pic(X), m a positive integer, and
s0 ∈ H0(X ,L m) defining a smooth effective divisor D. Suppose that D1, . . . ,Dr
are smooth divisors on X such that D,D1, . . . ,Dr have no common components
and D + ∑

r
i=1 Di has simple normal crossings. If f : Y → X is the m-cyclic cover

corresponding to s0 and R is the divisor on Y such that f ∗(D) = mR, then the
divisors R, f ∗(D1), . . . , f ∗(Dr) have no common components, are all smooth, and
R+∑

r
i=1 f ∗(Di) has simple normal crossings.

Proof. The assertion is clear over X r D since f is étale over this open subset by
Lemma 2.1.7. Given a point p∈D, we choose a local trivialization of L in an affine
open neighborhood U of p and a system of coordinates x1, . . . ,xn in U such that s is
described in U by x1 and every Di intersecting U is defined in U by some (x`i), with
`i ≥ 2. Note that on f−1(U) we have coordinates y,x2, . . . ,yn such that x1 = ym and
R is defined by (y). The assertions in the lemma are now clear.

The next lemma is a useful fact, in characteristic zero, about the behavior of
cohomology of vector bundles under pull-back by finite morphisms.

Lemma 2.2.7. Let f : Y → X be a finite morphism of varieties, with X normal. If E
is a locally free sheaf on X, then the canonical map of O(X)-modules

H i(X ,E )→ H i(Y, f ∗(E ))

is a split injection.

Proof. Consider the induced field extension K(X) ↪→ K(Y ) between the function
fields of X and Y and let Tr : K(Y )→ K(X) be the corresponding trace map. Since
X is normal, Tr induces a morphism of OX -modules α : g∗(OY )→ OX such that

1
deg( f )α gives a splitting of the natural inclusion j : OX ↪→ g∗(OY ).

If E is a locally free sheaf on X , we deduce that also the map

E
1⊗ j
↪→ E ⊗g∗(OY )' g∗(g∗(E ))

is a split injection. Therefore the map induced on cohomology

H i(X ,E )→ H i(X ,g∗(g∗(E )))' H i(Y, f ∗(E ))

is a split injection for every i≥ 0.

The following proposition is the tool that will allow us in the proof of Theo-
rem 2.2.1 to replace Q-divisors by integral divisors.

Proposition 2.2.8. Let X be a smooth, projective variety, F a divisor on X, and D,
E two Q-divisors on X such that F ∼Q D+E. If E has simple normal crossings and
bEc= 0, then there is a finite, surjective morphism p : W → X, with W smooth, and
a divisor DW on W such that the following conditions hold:

i) DW ∼Q p∗(D).
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ii) H i(X ,OX (−F)) is a summand of H i(W,OW (−DW )) for every i≥ 0.

Proof. Let us write E = ∑
r
i=1 aiEi. It is convenient to not require the Ei to be irre-

ducible, but require the Ei to have no common components. We prove the assertion
in the proposition by induction on r, the case r = 0 being trivial. For the induction
step, we choose a positive integer m such that ma1 ∈ Z. We apply Lemma 2.2.2
to construct a finite surjective morphism g : Z → X , with Z smooth and a divi-
sor E ′1 on Z such that ∑

r
j=1 g∗(E j) is reduced, has simple normal crossings and

g∗(E1) ∼ mE ′1. The divisor g∗(E1) corresponds to a section of OZ(E ′1)
m, hence we

may construct a corresponding m-cyclic cover h : Y → Z and put f = g ◦ h. Since
g∗(E1), . . . ,g∗(Er) are smooth, have no common components, and ∑

r
j=1 g∗(E j) has

simple normal crossings, it follows from Lemma 2.2.6 that Y is smooth, the divisors
f ∗(E j), for j ≥ 2, are smooth, without common components, and ∑

r
j=2 f ∗(E j) has

simple normal crossings.
Let ma1 = b, hence b is an integer with 0≤ b≤ m−1. We can write

g∗(F)−bE ′1 ∼Q g∗(D)+
r

∑
j=2

a jg∗(E j) (2.4)

so that if FY = h∗(g∗(F)−bE ′1), then

FY ∼Q f ∗(D)+
r

∑
j=2

a j f ∗(E j).

Therefore we may apply the inductive assumption to FY to construct a finite surjec-
tive morphism q : W →Y , with W smooth, such that there is a divisor DW on W with
q∗( f ∗(D))∼Q DW and H i(Y,OY (−FY )) a direct summand of H i(W,OW (−DW )).

By taking p = f ◦ q, we see that it is enough to show that H i(X ,OX (−F)) is
a direct summand of H i(Y,OY (−EY )). On one hand, Lemma 2.2.7 implies that
H i(X ,OX (−F)) is a direct summand of H i(Z,OZ(−g∗(F))). On the other hand,
by the definition of the m-cyclic cover, we have the decomposition

h∗(OY )'
m−1⊕
`=0

OZ(−`E ′1),

and via the projection formula this induces the decomposition

H i(Y,OY (−FY ))' H i(Z,OZ(−g∗(F)+bE ′1)⊗h∗(OY ))

'
m−1⊕
`=0

H i(Z,OZ(−g∗(F)+(b− `)E ′1)).

By taking ` = b, we deduce that H i(Z,OZ(−g∗(F))) is a direct summand of
H i(Y,OY (−EY )). We thus conclude that H i(X ,OX (−F)) is a direct summand of
H i(Y,O(−EY )), which completes the proof of the induction step.
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The next lemma gives a variant for the characterization of nef and big divisors in
Proposition 1.4.34.

Lemma 2.2.9. If D is a an R-Cartier R-divisor on the projective variety X, then D
is big and nef if and only if there is a birational morphism f : Y → X, with Y smooth
and projective, and an effective simple normal crossing R-divisor E on Y such that
f ∗(D)− 1

m E is ample for all integers m ≥ 1. Furthermore, in this case E can be
chosen a Q-divisor.

Proof. Recall first that the pull-back of an R-Cartier R-divisor is big and nef if and
only if the original divisor is big and nef (see Remark 1.4.32 and Proposition 1.3.9).
If we can find f and E as in the lemma, it follows from Proposition 1.4.34 that
f ∗(D) is big and nef, hence D is big and nef.

Conversely, suppose that D is big and nef. We first choose a resolution of sin-
gularities g : X1 → X of X . Since g∗(D) is big, it follows from Proposition 1.4.28
that we can find F ∈ CDiv(X1)Q effective such that g∗(D)−F is ample. We now
consider a log resolution h : Y → X1 of the pair (X1,F) and let f = g ◦ h. Since
X1 is smooth, hence Q-factorial, it follows from Lemma 2.2.4 that there is an h-
exceptional effective divisor G on Y such that −G is h-ample. Proposition 1.6.15
implies that h∗(g∗(D)−F)− 1

q G is ample for some positive integer q. Note also
that since G is supported on the exceptional locus of h, the divisor E = h∗(F)+ 1

q G
has simple normal crossings. The divisor

m f ∗(D)−E = h∗(g∗(D)−F)− 1
q

G+(m−1) f ∗(D)

is ample, being a sum of an ample divisor and a nef divisor, hence E satisfies the
conditions in the lemma.

Finally, we will need the following proposition which is useful also in other sit-
uations. Given a morphism f : Y → X , the proposition gives the vanishing of the
higher direct images of a sheaf F on Y when one knows the vanishing of the higher
cohomology groups of suitable twists of F .

Proposition 2.2.10. Let f : Y → X be a morphism of projective schemes, F a co-
herent sheaf on Y , and L an ample line bundle on X. If j0 ∈ Z≥0 is such that we
have H i(Y,F ⊗ f ∗(L ) j) = 0 for all i≥ 1 and j ≥ j0, then

i) Ri f∗(F ) = 0 for every i≥ 1, and
ii) H i(X , f∗(F )⊗L j) = 0 for every i≥ 1 and j ≥ j0.

Proof. Using the projection formula, we can write the Leray spectral sequence for
f and the sheaf F ⊗ f ∗(L ) j as

E p,q
2 = H p(X ,Rq f∗(F )⊗L j)⇒ H p+q(Y,F ⊗ f ∗(L ) j).

Note that for j� 0, since L is ample, we have H p(X ,Rq f∗(F )⊗L j) = 0 for all
p≥ 1. The above spectral sequence implies that for such j, we have
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H0(X ,Rq f∗(F )⊗L j)' Hq(Y,F ⊗ f ∗(L ) j) = 0 (2.5)

for all q ≥ 1, where the vanishing follows by hypothesis. Using one more time the
ampleness of L , we see that Rq f∗(F )⊗L j is generated by global sections for
j� 0, and therefore (2.5) implies Rq f∗(F ) = 0 for q≥ 1, giving the assertion in i).
The above spectral sequence for j ≥ j0 gives

H p(X ,π∗(F )⊗L j)' H p( f ,F ⊗ f ∗(L ) j) = 0

for every p≥ 1, hence ii).

We can now give the proof of the Kawamata-Viehweg vanishing theorem.

Proof of Theorem 2.2.1. Note that the vanishing in the theorem is equivalent via
Serre duality with

H i(X ,OX (−dDe)) = 0 for i < n = dim(X). (2.6)

It will be convenient to use both formulations. We divide the proof in two steps.
Step 1. We apply Proposition 2.2.8 with F = dDe to construct a finite surjective
morphism p : W → X , with W smooth, and a divisor DW on W such that DW ∼Q
p∗(D) and H i(X ,OX (−dDe)) is a direct summand of H i(W,OW (−DW )). The last
condition implies that it is enough to show that H i(W,OW (−DW )) = 0 for i < n.

First, note that we are done if D is ample. Indeed, since p is finite, we have DW
ample and H i(W,OW (−DW )) = 0 for i < n by Kodaira’s vanishing theorem.

Second, in the general case when D is big and nef, we have p∗(D) big and nef,
and therefore DW has the same property. This shows that in order to prove the theo-
rem, we may assume that D is an (integral) divisor.
Step 2. Let H be a fixed ample divisor on X . We apply Lemma 2.2.9 to construct a
projective, birational morphism f : Y → X , with Y smooth, and an effective, simple
normal crossing divisor E, such that f ∗(D)− 1

m E is ample for every m ≥ 1. For
m� 0, the coefficients of 1

m E are rational numbers in [0,1), Therefore we may
apply the case already proved for the ample Q-divisor f ∗(D+ jH)− 1

m E, with j≥ 0,
to get

H i(Y,ωY ⊗ f ∗(OX (D+ jH))) = 0 for all i≥ 1 and j ≥ 0. (2.7)

We can now apply Lemma 2.2.10 with F = ωY ⊗ f ∗(OX (D)) to conclude that

H i(X , f∗(ωY )⊗OX (D)) = 0 for all i≥ 1.

Since f∗(ωY )'ωX by Corollary B.2.6, we obtain the vanishing in the theorem.
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2.3 Grauert–Riemenschneider and Fujita vanishing theorems

In this section we give some easy, but important consequences of the Kawamata–
Viehweg vanishing theorem. We begin with a result concerning the vanishing of the
higher direct images of the canonical line bundle via a birational morphism.

Corollary 2.3.1 (Grauert–Riemenschneider). If f : Y → X is a birational mor-
phism between projective varieties, with Y smooth, and D ∈ CDiv(X)Q is nef and
such that dDe−D is a simple normal crossing divisor, then

Ri f∗(ωY ⊗OY (dDe)) = 0 for all i≥ 1.

In particular, Ri f∗(ωY ) = 0 for all i≥ 1.

Proof. Let H be an ample Cartier divisor on X . If j is a positive integer, then
E = D + f ∗( jH) is a nef and big Q-divisor on Y and dEe−E has simple normal
crossings. Therefore Theorem 2.2.1 implies

H i(Y,ωY ⊗OY (dDe+ j f ∗(H))) = 0 for all i, j ≥ 1.

Proposition 2.2.10 then implies Ri f∗(ωY ⊗OY (dDe)) = 0 for all i≥ 1.

Remark 2.3.2. If f : Y → X is any projective, birational morphism of varieties, with
Y smooth, then Ri f∗(ωY ) = 0 for all i≥ 1. Indeed, since the assertion is local on X ,
we may assume that X is affine. Consider an open immersion j : X ↪→ X , with X a
projective variety. In this case we can find a Cartezian diagram

Y //

f

��

Y

g

��
X

j // X

such that Y is a smooth projective variety. By Corollary 2.3.1, we have Rig∗(ωỸ )= 0,
hence Ri f∗(ωY ) = 0 for all i≥ 1. Getting the full relative version of Corollary 2.3.1
is more subtle. However, this is a consequence of the relative version of the
Kawamata–Viehweg vanishing theorem that we discuss in Section 2.6.

For an arbitrary variety X , one can define an analogue of the canonical line bundle
that on projective varieties satisfies a Kodaira-type vanishing theorem. This is the
Grauert–Riemenschneider sheaf ωGR

X , defined as follows. If X is an arbitrary variety
and f : Y → X is a resolution of singularities, then

ω
GR
X := f∗(ωY ).

Remark 2.3.3. Note that this is independent of the chosen resolution. Indeed, using
Proposition B.3.3, we see that it is enough to check that if g : Z→ Y is a projective
birational morphism, with Z smooth, then ( f ◦g)∗(ωZ)' f∗(ωY ). This is clear, since
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g∗(ωZ)'ωY by Proposition B.2.6. In particular, this shows that if X is smooth, then
ωGR

X ' ωX .

Corollary 2.3.4. If X is a projective variety and L ∈ Pic(X) is big and nef, then

H i(X ,ωGR
X ⊗L ) = 0 for all i≥ 1.

Proof. Let f : Y →X be a resolution of singularities. It follows from Corollary 2.3.1
that

Ri f∗(ωY ⊗ f ∗(L ))' Ri f∗(ωY )⊗L = 0 for all i≥ 1.

Therefore the Leray spectral sequence for f and ωY ⊗ f ∗(L ) gives isomorphisms

H p(Y,ωY ⊗ f ∗(L ))' H p(X ,ωGR
X ⊗L ) for all p≥ 0. (2.8)

On the other hand, f ∗(L ) is big and nef, hence the left-hand side of (2.8) vanishes
by Theorem 2.2.1. This completes the proof of the corollary.

We now turn to a theorem due to Fujita [Fuj83], which gives a version of asymp-
totic Serre vanishing in which one is able to twist by arbitrary nef line bundles.

Theorem 2.3.5 (Fujita). If X is a projective scheme, L ∈ Pic(X) is ample, and F
is a coherent sheaf on X, then there is a positive integer m such that

H i(X ,F ⊗L m⊗L ′) = 0 for all i≥ 1 and L ′ ∈ Pic(X) nef. (2.9)

Proof. We prove the theorem by induction on n = dim(X), the case n = 0 being
trivial. We say that the theorem holds for F if we can find m such that (2.9) is
satisfied (note that in this case all integers m′ ≥m have the same property). Suppose
now that we have an exact sequence of coherent sheaves on X

0→F ′→F →F ′′→ 0.

After tensoring this with L m⊗L ′, with m large enough, we see using the long exact
sequence in cohomology that if the theorem holds for both F ′ and F ′′, then it also
holds for F . By Lemma 1.1.8, every F has a finite filtration with each successive
quotient having support on an integral closed subscheme of X . Moreover, given a
coherent sheaf F supported on a closed subscheme Y of X , if the theorem holds for
F as a sheaf on Y , then it also does when considering F as a sheaf on X . Therefore
we may assume that X is an integral scheme.

It is clear that for every integer `, the theorem holds for F if and only if it holds
for F ⊗L `. Let j� 0 be such that F ⊗L j is globally generated. By considering
r general sections in H0(X ,F ⊗L j), where r = rank(F ), we obtain a morphism
φ : O⊕r

X →F⊗L j, which is an isomorphism at the generic point of X . In particular,
φ has to be injective. Since the theorem holds for coker(φ), which is supported in
dimension < n, we see that it is enough show that the theorem holds for F = L d ,
for some integer d.
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The key fact is that the theorem holds for the sheaf ωGH
X . Indeed, Corollary 2.3.4

implies that H i(X ,ωGH
X ⊗L ⊗L ′) = 0 for every i ≥ 1 and every nef line bundle

L ′, since L ⊗L ′ is ample.
It follows from definition that ωGH

X is a torsion-free rank one sheaf on X and
therefore its dual (ωGH

X )∨ has the same properties. Furthermore, the canonical map
to the double dual ωGH

X → (ωGH
X )∨∨ is injective. We claim that there is an integer

q and an injective morphism ωGH
X ↪→L q. Indeed, if q is such that (ωGH

X )∨⊗L q

is globally generated, then any nonzero section of this sheaf induces a short exact
sequence

0→ OX → (ωGH
X )∨⊗L q→ G → 0,

where G is a torsion sheaf. Applying H omOX (−,OX ) to this exact sequence gives
an injective map ((ωGH

X )∨⊗L q)∨ ↪→OX , hence an inclusion ψ : ωGH
X ↪→L q. Since

the theorem holds for coker(ψ), which is supported in dimension < n, and also for
ωGH

X , it follows that it holds for L q. As we have seen, this implies that the theorem
holds for all coherent sheaves on X .

Remark 2.3.6. The above proof of Theorem 2.3.5 made use of vanishing theorems,
and is thus restricted to characteristic zero. However, the result also holds in pos-
itive characteristic, in which case the proof makes explicit use of the Frobenius
morphism, see [Fuj83].

2.4 Castelnuovo-Mumford regularity

In this section we review the definition and basic results concerning Castelnuovo-
Mumford regularity. In the presence of vanishing results, this notion can be applied
to obtain global generation of sheaves. On the other hand, it is a topic of indepen-
dent interest, that has attracted a lot of attention in connection with a diverse set of
topics, from the construction of Hilbert schemes to complexity of graded free reso-
lutions. Unless stated otherwise, in this section we work over a field k of arbitrary
characteristic.

Definition 2.4.1. Let X be a projective scheme and L an ample and globally gen-
erated line bundle on X . Given an integer m, a coherent sheaf F on X is m-regular
with respect to L if

H i(X ,F ⊗L m−i) = 0 for all i≥ 1.

If X = Pn and L = OPn(1), we simply say that F is m-regular.

Remark 2.4.2. If X and L are as in the above definition, then L defines a morphism
f : X → P(H0(X ,L )) ' Pn such that f ∗(OPn(1)) ' L . The morphism is finite
since L is ample (see Corollary 1.1.11). Using this and the projection formula, we
obtain

H i(X ,F ⊗L j)' H i(Pn, f∗(F )⊗OPn( j)) for every i and j. (2.10)
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Therefore F is m-regular with respect to L if and only if f∗(F ) is m-regular as a
sheaf on Pn. This can be used to reduce the study of the general notion of regularity
to that of sheaves on the projective space.

The following is the basic result concerning Castelnuovo-Mumford regularity.

Theorem 2.4.3 (Mumford). Let X be a projective scheme and L a line bundle on
X which is ample and globally generated. If F is a coherent sheaf on X that is
m-regular with respect to L , then

i) F is m′-regular with respect to L for every m′ ≥ m, that is,

H i(X ,F ⊗L j) = 0 for all i≥ 1 and j ≥ m− i.

ii) The natural map induced by multiplication of sections

H0(X ,L )⊗H0(X ,F ⊗L m)→ H0(X ,F ⊗L m+1)

is surjective.
iii) The sheaf F ⊗L m is globally generated.

Proof. Note first that the assertion in iii) follows from i) and ii). Indeed, ii) implies
that if F ⊗L m+1 is globally generated, then F ⊗L m is globally generated. Fur-
thermore, by i) the same holds if we replace F by F ⊗L j for every j ≥ 0. Since
L is ample, we have F ⊗L m+ j globally generated for j� 0, and a repeated ap-
plication of ii) implies that F ⊗L m is globally generated.

Let us consider the finite morphism f : X→ P(H0(X ,L ))' Pn defined by L . It
follows from (2.10) that it is enough to prove the assertions in i) and ii) for the sheaf
f∗(F ) on Pn. Therefore we may and will assume that X = Pn and L = OPn(1).
After replacing F by F ⊗L m, we may assume that m = 0.

If V = H0(Pn,OPn(1)), then the natural surjective map V ⊗OPn(−1)→ OPn in-
duced by evaluating the sections of OPn(1) gives an exact Koszul complex

0→∧n+1V⊗OPn(−n−1)
dn+1→ . . .→∧iV⊗OPn(−i)

di→ . . .→V⊗OPn(−1)
d1→OPn→ 0.

Let Ei = ker(di), for 1≤ i≤ n+1, hence En+1 = 0, and we also put E0 = OPn . Note
that each Ei is locally free and the above complex breaks into short exact sequences

(Ci) 0→ Ei→∧iV ⊗OPn(−i)→ Ei−1→ 0,

with 1≤ i≤ n+1.
Let us prove i). Recall that we assume m = 0, and it is enough to show that F is

1-regular, that is, H j(Pn,F (1− j)) = 0 for every j, with 1≤ j≤ n. For 0≤ i≤ n−1,
the long exact sequence in cohomology for (Ci+1)⊗F (1− j) gives

∧i+1V ⊗H i+ j(F (−i− j))→ H i+ j(Ei⊗F (1− j))→ H i+ j+1(Ei+1⊗F (1− j)).

Since the first term vanishes by hypothesis, we obtain by letting i vary
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h j(F (1− j))≤ . . .≤ hi+ j(Ei⊗F (1− j))≤ hi+ j+1(Ei+1⊗F (1− j))

≤ . . .≤ hn+ j(En⊗F (1− j)) = 0.

Therefore h j(F (1− j)) = 0 for every j ≥ 1, which completes the proof of i).
The long exact sequence in cohomology for (C1)⊗F (1) gives

V ⊗H0(Pn,F )→ H0(Pn,F (1))→ H1(Pn,E1⊗F (1)),

hence in order to prove ii), it is enough to show that H1(Pn,E1⊗F (1)) = 0. For
1≤ i≤ n, the long exact sequence in cohomology for (Ci+1)⊗F (1) gives

∧i+1V ⊗H i(Pn,F (−i))→ H i(Pn,Ei⊗F (1))→ H i+1(Pn,Ei+1⊗F (1)).

Since the first term vanishes by assumption, we obtain

h1(E1⊗F (1))≤ . . .≤ hi(Ei⊗F (1))≤ hi+1(Ei+1⊗F (1))

≤ . . .≤ hn+1(En+1⊗F (1)) = 0.

This completes the proof of ii), hence that of the theorem.

If L is ample and globally generated on X , then for every coherent sheaf F
there is m such that F is m-regular with respect to L (this simply follows from
Serre’s asymptotic vanishing). The (Castelnuovo-Mumford) regularity of F is the
smallest m with this property.

One can combine Fujita’s vanishing theorem with Castelnuovo-Mumford regu-
larity to obtain the following uniform global generation result for twists by nef line
bundles.

Corollary 2.4.4. If X is a projective scheme over an algebraically closed field k,
then there is a line bundle A on X such that for every nef L ∈ Pic(X), we have
L ⊗A globally generated.

Proof. Let M be a very ample line bundle on X and let n = dim(X). It follows
from Theorem 2.3.5 that there is q such that H i(X ,M q ⊗L ′) = 0 for all i ≥ 1
and all nef line bundles L ′ on X . In particular, if L is a nef line bundle, then
H i(X ,M q+n−i⊗L ) for all positive integers i. We put A = M q+n. We see that if
L is nef, then L ⊗A is 0-regular with respect to M and therefore Theorem 2.4.3
implies that L ⊗A is globally generated.

Remark 2.4.5. Everything in this section works if instead of working over a ground
field, we work over a Noetherian ring, and by further globalizing, over a Noetherian
scheme. We thus obtain analogous notions and results in the relative case. More
precisely, suppose that f : X → S is a projective morphism of Noetherian schemes
and L is an f -ample and f -base-point free line bundle on X . We say that a coherent
sheaf F on X is m-regular (over S) with respect to L if Ri f∗(F ⊗L m−i) = 0 for all
i ≥ 1. In this case, F is also m′-regular, for all m′ ≥ m, and furthermore, F ⊗L m
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is f -base-point free. In order to show this, we may assume that S is affine, and in
this case the proof is the same as that of Theorem 2.4.3.

By combining Theorem 2.4.3 with Kawamata–Viehweg vanishing, we obtain the
following more explicit variant of Corollary 2.4.4 when working on a variety.

Corollary 2.4.6. If X is an n-dimensional projective variety over an algebraically
closed field k of characteristic 0, then for every line bundles L and L ′ on X, with
L ample and globally generated, and L ′ big and nef, the sheaf ωGR

X ⊗L n⊗L ′ is
globally generated.

Proof. Let F := ωGR
X ⊗L n ⊗L ′. For every i with 1 ≤ i ≤ n, the line bundle

L n−i ⊗L ′ is big and nef, hence Corollary 2.3.4 implies H i(X ,F ⊗L −i) = 0.
Therefore F is 0-regular with respect to L , hence globally generated by Theo-
rem 2.4.3.

Theorem 2.4.3 shows that having explicit regularity bounds gives global genera-
tion results for the twists of F by powers of L . Effective bounds for Castelnuovo-
Mumford regularity are important in many contexts. For example, Mumford showed
that for ideal sheaves in Pn there are regularity bounds only depending on the Hilbert
polynomial of the ideal, and he used these bounds to simplify Grothendieck’s proof
of the existence of the Hilbert scheme, see [Mum66].

In commutative algebra bounds for regularity are important because of the con-
nection with the Betti numbers in a graded free resolution. Suppose that M is a
finitely generated graded module over the polynomial ring S = k[x0, . . . ,xn] and M̃
is the corresponding coherent sheaf on Pn. Assume for simplicity that depth(M)≥ 2
(equivalently, the canonical morphism M→

⊕
i∈Z H0(Pn,M̃(i)) is an isomorphism).

In this case, if the minimal free resolution of M over S is given by

0→ Fn+1→ . . .→ F1→ F0→M→ 0,

and Fi =
⊕

j S(−i− j)βi, j for every i, then

min{m | M̃ is m− regular}= max{ j | βi, j 6= 0 for some i}

(see [Eis95, Chap. 20.5] for a proof and a more general statement).
Partly motivated by the above connections, there has been a lot of work devoted

to finding upper-bounds for the regularity of ideal sheaves in projective space. An
example of Mayr and Meyer [MM82] shows that in general, the regularity can grow
doubly exponentially in the number of variables. On the other hand, much better
bounds are expected (and known, in small dimensions) for ideals of smooth va-
rieties; see [GLP83], [Laz87], and [Kwa98] for the case of curves, surfaces, and
respectively, 3-folds and 4-folds.
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2.5 Seshadri constants

The Seshadri constant of a line bundle is an invariant introduced by Demailly
[Dem92]. It measures the local positivity of the line bundle at a given point. The
definition and the general properties of the invariant work on arbitrary projective
schemes, though the more interesting properties require restricting to smooth points.
In the beginning we assume that the ground field is algebraically closed, of arbitrary
characteristic.

Definition 2.5.1. Let X be a projective scheme and x ∈ X a (closed) point. Consider
the blow-up f : X ′ = Blx(X)→ X of X at x, with exceptional divisor E, so that
OX ′(−E) = mx ·OX ′ , where mx is the ideal defining x. If D ∈ CDiv(X)R is nef, then
the Seshadri constant of D at x is

εx(D) := sup{t ≥ 0 | f ∗(D)− tE is nef}.

The Seshadri constant of D on X is

ε(X ,D) := inf{εx(D) | x ∈ X}.

Note that the set in the definition of εx(D) is non-empty, since it contains 0. We
will see in Proposition 2.5.2 below that if x ∈ X is not an isolated point, then εx(D)
is finite. Note that when x ∈ X is an isolated point, then X ′ is empty, and we make
the convention εx(D) = ∞.

Since the nef cone is closed, if the supremum in Definition 2.5.1 is finite, it is in
fact a maximum. Furthermore, if D1≡D2, then f ∗(D1)≡ f ∗(D2), and since nefness
only depends on the numerical equivalence class, we conclude that εx(D1) = εx(D2)
for every x ∈ X . In particular, we may consider εx(L ) for L ∈ Pic(X) or εx(α) for
α ∈ N1(X)R.

For a scheme X and a point x∈X , we denote by multx(X) the Samuel multiplicity
of the local ring OX ,x. With the notation in Definition 2.5.1, this can be described as
(OE(−E)n−1), where n = dim(OX ,x) (note that this intersection number is defined
for an arbitrary scheme X , since E is always a projective scheme).

Proposition 2.5.2. For every projective scheme X and every D ∈ CDiv(X)R, we
have

εx(D) = inf
V3x

(
(Ddim(V ) ·V )

multx(V )

)1/dim(V )

,

where the infimum is over all positive-dimensional subvarieties V of X containing
x. Furthermore, it is enough to let V vary over the curves containing x.

Proof. Let f : X ′ → X be as in Definition 2.5.1. By definition, we have Dt :=
f ∗(D)−tE nef if and only if (Dt ·C′)≥ 0 for every curve C′ in X . Note first that since
OE(−E) is an ample line bundle on E and f ∗(D) maps to 0 in Pic(E)R, if C′ ⊆ E,
then (Dt ·C′) > 0 for every t > 0. On the other hand, if C′ 6⊆ E and C is the image of
C′ in X , then either x 6∈C, in which case (Dt ·C′) = (D ·C)≥ 0, or x ∈C, in which
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case f |C′ : C′→C is the blow-up of C at x, hence (Dt ·C) = (D ·C)− t ·multx(C).
This implies the formula in the proposition, with V varying over the curves on X
containing x.

If V is a subvariety of X containing x, with dim(V ) = r > 0, and Dt is nef on X ′,
then Theorem 1.3.18 implies (Dr

t ·V ′) ≥ 0, where V ′ is the proper transform of V .
Using the fact that ( f ∗(D)i ·Er−i ·V ′) = 0 for 1≤ i≤ r−1, we deduce

(Dr
t ·V ′) = (Dr ·V )− tr ·multx(V ).

We thus obtain the formula in the proposition in terms of arbitrary positive-dimensional
subvarieties containing x.

Remark 2.5.3. The argument in the proof of Proposition 2.5.2 shows, using the no-
tation in that proof, that f ∗(D)− tE is nef if and only if 0≤ t ≤ εx(D).

Proposition 2.5.4. Let X be a projective scheme, x ∈ X a point, and D,D′ ∈
CDiv(X)R.

i) εx(λD) = λ · εx(D) for every positive real number λ .
ii) εx(D+D′)≥ εx(D)+ εx(D′).

iii) If D′−D is nef, then εx(D′)≥ εx(D).

Proof. All assertions follow easily from the definition of Seshadri constants. The
first one is a consequence of the fact that if λ > 0, then a divisor M is nef if and only
if λM is nef. The second and the third assertions follow from the fact that a sum of
two nef divisors is nef.

Proposition 2.5.5. If f : Y → X is a birational morphism of projective varieties and
x ∈ X lies in the domain of f−1, then for every D ∈ CDiv(X)R we have

εx(D) = ε f−1(x)( f ∗(D)).

Proof. Let πX : Blx(X)→X and πY : Bl f−1(x)(Y )→Y be the blow-ups of X and Y at
x, and respectively f−1(x), with exceptional divisors EX and EY . We have an induced
birational morphism g : Bl f−1(x)(Y )→ Blx(X), such that g∗(EX ) = EY . Therefore
π∗X (D)− tEX is nef if and only if

g∗(π∗X (D)− tEX ) = π
∗
Y ( f ∗(D))− tEY

is nef, which implies the assertion in the proposition.

Example 2.5.6. If X = Pn, then εq(OPn(1)) = 1 for every q ∈ X . Indeed, let D be
a hyperplane in Pn and f : X ′→ X the blow-up of Pn at q, with exceptional divisor
E. It follows from Example 1.3.33 that f ∗(D)− tE is nef if and only if 0 ≤ t ≤ 1,
which gives our assertion.

Example 2.5.7. If L is an ample and globally generated line bundle on the pro-
jective scheme X , then εx(L ) ≥ 1 for every x ∈ X . Indeed, by Proposition 2.5.2,
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it is enough to show that for every curve C on X containing x, we have (L ·C) ≥
multx(C). Note first that we can find D ∈ |L | such that x ∈ D, but C 6⊆ D. Indeed,
since L is globally generated and ample, it defines a finite morphism φ : X → PN ,
and it is enough to take D = φ ∗(H), where H is a general hyperplane containing
φ(x). In this case, we have

(L ·C) = deg(D|C)≥ `(OD,x)≥multx(C),

where the last inequality is a well-known (and easy) estimate for the Samuel multi-
plicity of a one-dimensional local domain.

Example 2.5.8. On the other hand, the following example due to Miranda, shows
that the Seshadri constant of an ample line bundle at a point can be arbitrarily small,
even on smooth projective surfaces. Let C be a fixed irreducible curve in P2 of
degree d ≥ 3, having a point y ∈ C of multiplicity m. Suppose that C′ ⊂ P2 is a
general curve of degree d. In particular, C and C′ intersect in d2 reduced points.
Since the codimension of the space of reducible curves in |OP2(d)| is(

d +2
2

)
− max

1≤i≤d−1

((
i+2

2

)
+
(

d− i+2
2

))
+1

≥ (d +1)(d +2)
2

−
(

d
2

+1
)(

d
2

+2
)

+1 =
d2

4
≥ 2,

and C′ is general, we may assume that every curve in the linear system |W | spanned
by C and C′ is irreducible.

Let π : X→P2 be the blow-up along C∩C′, hence there are d2 exceptional curves
E1, . . . ,Ed2 on X . Since we have blown-up the base locus of |W |, it follows that W
induces a morphism g : X → P1. If T is a curve in |W |, then π∗(T ) = T̃ + ∑

d2

i=1 Ei,
and T̃ is a fiber of g; furthermore, every fiber is of this form. We claim that if
`≥ 2, then M` = OX (E1)⊗g∗(OP1(`)) is ample on X . Indeed, note first that since
OX (C̃) ' g∗(OP1(1)) and (C̃ · Ei) = 1 for every i, we have (M 2

` ) = 2`− 1 and
(M` ·E1) = `−1. If Z is a curve on X different from E1, then

(M` ·Z) = (OX (E1) ·Z)+(g∗(OP1(`)) ·Z)≥ 0, (2.11)

and equality implies that both terms in (2.11) are zero. In particular, g(Z) is a point.
In this case, our assumption on |W | implies that Z ∼ C̃, and therefore (OX (E1) ·Z) =
1, a contradiction. We thus conclude by the Nakai-Moishezon criterion that M` is
ample for every `≥ 2.

On the other hand, (M` · C̃) = (E1 · C̃) = 1, and since C̃ has a point x = π−1(y)
of multiplicity m, it follows from Proposition 2.5.2 that εx(M`) ≤ 1

m . We also note
that lim`→∞(M 2

` ) = ∞.

The name of the Seshadri constant comes from the following ampleness criterion,
due to Seshadri. We note that while we work, as usual, on a projective scheme, the
criterion is valid on arbitrary complete schemes. For a curve C, we put
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µmax(C) := max
x∈C

multx(C).

Proposition 2.5.9. Let X be a projective scheme and D ∈ CDiv(X)Q. The following
are equivalent:

i) D is ample.
ii) D is nef and ε(X ,D) > 0.

iii) There is δ > 0 such that (D ·C)≥ δ ·µmax(C) for every curve C in X.
iv) D is nef and εx(D) > 0 for every x ∈ X.

Proof. If D is ample and r is a positive integer such that rD is an integral divisor
and OX (rD) is globally generated, then it follows from Example 2.5.7 that

εx(D) =
1
r
· εx(rD)≥ 1

r

for every x ∈ X , hence ε(X ,D) ≥ 1
r . This gives the implication i)⇒ii). Since the

equivalence of ii) and iii) follows from Proposition 2.5.2, and the implication
ii)⇒iv) is trivial, in order to complete the proof it is enough to show the implication
iv)⇒i).

Suppose that εx(D) > 0 for every x ∈ X . If V is a subvariety of X of dimension
r > 0, let us choose any x ∈V . It follows from Proposition 2.5.2 that

(Dr ·V )≥multx(V ) · εx(D)r > 0.

Since this holds for every V , we conclude that D is ample by Theorem 1.3.1.

Remark 2.5.10. One can make the criterion in Proposition 2.5.9 more precise, as
follows: if X is a smooth projective variety and D is a nef Q-Cartier Q-divisor on X ,
then

B+(D) = {x ∈ X | εx(D) > 0}.

Indeed, note first that if x 6∈ B+(D), then we can write D = A + E for A,E ∈
CDiv(X)Q, with A ample, E effective, and such that x 6∈ Supp(E). If C is a curve con-
taining x, then (D ·C)≥ (A ·C), hence εx(D)≥ εx(A) > 0. Conversely, if x∈B+(D),
it follows from Theorem 1.5.18 that there is a subvariety V of X of dimension
r > 0 such that x ∈ V and (Dr ·V ) = 0. It then follows from Proposition 2.5.2 that
εx(D) = 0.

Proposition 2.5.11. Let X be a projective scheme and f : X ′→ X the blow-up of X
at a point x, with exceptional divisor E. If D ∈ CDiv(X)R is ample, then εx(D) > 0
and f ∗(D)− tE is ample if and only if 0 < t < εx(D).

Proof. Since D is ample, we can find D′ ∈ CDiv(X)Q ample such that D−D′ is
ample. Using Proposition 2.5.9, we obtain εx(D) ≥ εx(D′) > 0. If f ∗(D)− tE is
ample, then the restriction to E is ample, which implies t > 0. We also have t < t0:
otherwise, the ampleness of Amp(X ′) would imply the existence of t ′ > εx(D) such
that f ∗(D)− t ′E is ample, hence nef.
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Conversely, suppose that 0 < t < εx(D). In this case the restriction of (the class
of) f ∗(D)− tE to E is ample, and the computation in the proof of Proposition 2.5.2
shows that for every positive-dimensional subvariety V ′ of X ′ not contained in E,
we have ((π∗(D)− tE)dim(V ′) ·V ′) > 0. We conclude that π∗(D)− tE is ample by
Theorem 1.3.1.

Proposition 2.5.12. Let X be a projective scheme and Xsm the smooth locus of X. If
D ∈ CDiv(X)R is ample, then for every α ≥ 0, the set

Uα := {x ∈ Xsm | εx(D) > α}

is open in Xsm, while the set

Vα := {x ∈ Xsm | εx(D)≥ α}

is the complement in Xsm of a countable union of closed subsets.

Proof. We put U = Xsm. Let p : U ×X →U and q : U ×X → X be the canonical
projections, and let ∆ ↪→U ×X be the graph of the inclusion U ↪→ X . We consider
the blow-up f : Y →U×X along ∆ , with exceptional divisor E, and for every x∈U ,
we denote by fx : Yx → X the fiber of f over x. If I∆ is the ideal of ∆ in U ×X ,
then for every m ≥ 1, Im

∆
/Im+1

∆
is locally free over O∆ , which is flat over U (being

isomorphic to OU ). We deduce by induction on m that Im
∆

is flat over U for every
m ≥ 1. This in turn implies that for every x ∈U , the morphism fx is the blow-up
of X at x, the exceptional divisor being given by the fiber Ex of E over x. It follows
from Proposition 2.5.11 that

Uα = {x ∈U | ( f ∗(q∗(D))−αE)x is ample},

and this is open in U by Remark 1.6.25. Similarly, we have

Vα = {x ∈U | ( f ∗(q∗(D))−αE)x is nef},

hence this is the complement of a countable union of Zariski closed subsets by
Remark 1.6.26.

We now turn to some more subtle properties of Seshadri constants, which require
only considering smooth points of X . Our first goal is to give the description of the
Seshadri constants in terms of separation of jets. Recall that if X is a projective
scheme and L is a line bundle on X , then L separates i-jets at a point x ∈ X if the
canonical restriction map

H0(X ,L )→ H0(X ,L ⊗OX/mi+1
x )

is surjective, where mx is the ideal defining x. It follows from the long exact se-
quence in cohomology corresponding to

0→mi+1
x ⊗L →L →L ⊗OX/mi+1

x → 0
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that L separates i jets at x if and only if H1(X ,mi+1
x ⊗L ) = 0 (and the converse

holds if H1(X ,L ) = 0). We denote by s(L ;x) the largest i ≥ 0 such that L sep-
arates i-jets at x (if there is no such i, we put by convention s(L ;x) = 0). The
following result, due to Demailly, relates Seshadri constants to separation of jets.

Theorem 2.5.13. If X is a projective variety and x ∈ X is a smooth point, then for
every ample Cartier divisor D on X, we have

εx(D) = sup
m≥1

s(OX (mD);x)
m

= lim
m→∞

s(OX (mD);x)
m

.

We first prove a lemma describing the higher direct images of the ideals that
define the multiples of the exceptional divisor on a smooth blow-up.

Lemma 2.5.14. Let Z be a smooth closed subvariety of a variety X, of codimension
r, defined by the ideal IZ , and such that Z is contained in the smooth locus of X. If
f : Y → X is the blow-up of X along Z, with exceptional divisor E, then for every
m ∈ Z, with m≥−r +1, we have

Ri f∗OY (−mE) =

{
0, if i≥ 1;

I m
Z , if i = 0,

with the convention that I m
Z = OX if m≤ 0.

Proof. Recall that by definition Y = Pro j
(⊕

m≥0 I m
Z
)

and OY (1) ' OY (−E) is
f -ample. Furthermore, since both X and Z are smooth in a neighborhood of Z,
E 'Pro j(S ym(IZ/I 2

Z )) is a projective bundle over Z, of relative dimension
r− 1. In particular, we have Ri f∗(OE(m)) = 0 for m ≥ −r + 1 and i ≥ 1, and
f∗(OE(m)) ' I m

Z /I m+1
Z for m ≥ 0. On the other hand, by a general property of

the Pro j construction, we know that the formula in the lemma holds for all i and
all m� 0. Therefore it is enough to show that if m≥−r +1 and the formula holds
for (m+1), then it also holds for m. Consider the exact sequence

0→ OY (−(m+1)E)→ OY (−mE)→ OE(m)→ 0. (2.12)

If i ≥ 1, then Ri f∗(OY (−(m + 1)E)) = 0 and Ri f∗(OE(m)) = 0, hence the long ex-
act sequence in cohomology of (2.12) gives Ri f∗(OY (−mE)) = 0. If m ≤ 0, then
f∗(OY (−mE))=OX by (B.2.5). Let us show now that if m > 0, then f∗(OY (−mE))=
I m

Z . Since R1 f∗OY (−(m + 1)E) = 0, we have a commutative diagram with exact
rows:

0 // I m+1
Z

α

��

// I m
Z

β

��

// I m
Z /I m+1

Z

γ

��

// 0

0 // f∗OY (−(m+1)E) // f∗OY (−mE) // f∗OE(m) // 0
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in which α and γ are isomorphisms, hence β is an isomorphism as well. This com-
pletes the proof of the lemma.

Proof of Theorem 2.5.13. We may assume that n = dim(X)≥ 1, since otherwise the
assertion is trivial. Let f : X ′→ X be the blow-up of X at x, with exceptional divisor
E.

We first show that εx(D)≥ s(OX (D);x). Suppose that s := s(OX (D);x) > 0, and
let C be a curve on X with x ∈C. Let a and b denote the ideals defining x in X and
C, respectively. By definition, the restriction map

H0(X ,OX (D))→ H0(X ,OX (D)⊗OX/ai+1) (2.13)

is surjective. By choosing a nonzero element in bi/bi+1 and lifting it to ai/ai+1,
we deduce from the surjectivity of (2.13) that there is an effective Cartier divisor
D′ ∼ D with multx(D′) = i and such that C is not contained in D′. We may write
f ∗(D′) = D̃′+ iE, for en effective Cartier divisor D̃′ whose support does not contain
E. If C̃ is the proper transform of C, then C̃ is not contained in D̃′, hence

(D′ ·C) = ( f ∗(D′) ·C̃) = (D̃′ ·C̃)+ i(E ·C̃)≥ i ·multx(C).

Proposition 2.5.2 implies εx(D) ≥ i, and applying this to mD, we obtain εx(D) =
1
m εx(mD)≥ s(OX (mD);x)

m , hence

εx(D)≥ sup
m≥1

s(OX (mD);x)
m

.

In order to complete the proof of the theorem, it is enough to show that for every
α < εx(D), we have s(OX (mD);x) > αm for all m� 0. Let us fix β ∈Q, with α <
β < εx(D). Note that by Proposition 2.5.11, the Q-Cartier Q-divisor f ∗(D)− βE
is ample. It follows from Theorem 2.3.5 (see also Remark 2.3.6) that we can find a
positive integer d such that d( f ∗(D)−βE) is an integral divisor, and for every nef
Cartier divisor A on X ′, we have H1(X ′,OX ′(d( f ∗(D)−βE)+A)) = 0.

Given a positive integer m≥ d, we put i = bm/dc. Note that

m f ∗(D)−diβE = (m−di) f ∗(D)+di( f ∗(D)−βE),

and since both f ∗(D) and d( f ∗(D)−βE) are nef, we conclude that

H1(X , Idiβ
x ⊗OX (mD))' H1(X ′,OX ′(m f ∗(D)−diβE)) = 0,

where Ix denotes the ideal defining x (the isomorphism follows from Lemma ??).
This implies that s(OX (mD);x)≥ diβ −1. Moreover, for m� 0 we have

diβ −1 = dbm/dcβ −1≥ mβ −dβ −1 > mα,

and this completes the proof of the theorem.
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An important feature of Seshadri constants is that they control the positivity
properties of the corresponding adjoint line bundles. In particular, the next theo-
rem shows that lower bounds for Seshadri constants at all points imply the global
generation or very ampleness of the adjoint bundles. In this result, we assume that
the ground field has characteristic zero.

Theorem 2.5.15 (Demailly). Let X be a smooth n-dimensional projective variety
and L a big and nef line bundle on X.

i) If εx(L) > n, then x is not in the base-locus of ωX⊗L . More generally, if εx(L) >
n+ i, then ωX ⊗L separates i-jets at x.

ii) If εx(L) > 2n, then ωX ⊗L defines a rational map that in a neighborhood of x is
a locally closed immersion.

iii) If εx(L) > 2n for every x ∈ X, then ωX ⊗L is very ample.

Proof. Let mx denote the ideal defining x and let f : Y → X be the blow-up at x,
with exceptional divisor E. We fix a Cartier divisor D with OX (D)'L . In order to
prove that the restriction map

H0(X ,ωX ⊗L )→ H0(X ,ωX ⊗L ⊗OX/mi+1
x )

is surjective, it is enough to show that H1(X ,mi+1
x ⊗ωX ⊗L ) = 0. Furthermore, it

follows from Lemma 2.5.14 that it is enough to show that

H1(Y, f ∗(ωX ⊗L)⊗OY (−(i+1)E)) = 0.

On the other hand, Example B.2.4 gives ωY ' f ∗(ωX )⊗OY ((n−1)E). Since we
can write

f ∗(ωX ⊗L )⊗OY (−(i+1)E))' ωY ⊗ f ∗(L )⊗OY (−(i+n)E),

it follows from Theorem 2.2.1 that the desired vanishing follows if the line bundle
f ∗(L )⊗OY (−(i+n)E) is big and nef. This holds since

f ∗(D)− (i+n)E =
(

1− i+n
εx(D)

)
f ∗(D)+

i+n
εx(D)

( f ∗(D)− εx(D)E)

is the sum of a big and nef divisor with a nef one, hence it is big and nef. We thus
obtain the assertion in i).

If εx(L ) > 2n, then it follows from Proposition 2.5.12 that εx′(L ) > 2n for all
x′ in a neighborhood U of x. In order to prove both ii) and iii), it is enough to show
that for every such U , the map φ : X 99K PN defined by ωX ⊗L is a locally closed
immersion on U (we get iii) by taking U = X). Note first that by i), φ defines a
morphism on U that separates tangent vectors. In order to prove that it is a locally
closed immersion on U , it is enough to check that it also separates points.

Suppose that x1 and x2 are distinct point in U . Let g : W → X be the blow-up
along Z = {x1,x2}, with exceptional divisor F , and denote by IZ the ideal defining
Z. If f1 : Y1→ X and f2 : Y2→ X are the blow-ups along x1 and x2, respectively, then
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we have morphisms g1 : W → Y1 and g2 : W → Y2 such that g = f1 ◦ g1 = f2 ◦ g2.
Furthermore, if Fi is the exceptional divisor of fi, then F = g∗1(E1) + g∗2(E2). If
α ∈Q is such that εxi(D) > α > 2n for i = 1,2, then

g∗(D)− α

2
F =

1
2

g∗1( f ∗1 (D)−αF1)+
1
2

g∗2( f ∗2 (D)−αF2)

is nef. Arguing as in the proof of i), we see that g∗(D)−nF is big and nef. Further-
more, applying twice the formula for the relative canonical divisor in Example B.2.4
(note that g1 is the blow-up of X1 at f−1

1 (x2)), we get ωW = g∗(ωX )⊗OW ((n−1)F),
hence Theorem 2.2.1 gives

H1(W,g∗(ωX ⊗L )⊗OW (−F)) = 0.

Using Lemma ??, we obtain H1(X ,ωX⊗L ⊗IZ) = 0, and therefore the restriction
map

H0(X ,ωX ⊗L )→ H0(XωX ⊗L ⊗OX/IZ)

is surjective. This implies that ωX ⊗L separates x1 and x2, and therefore φ is a
locally closed immersion on U .

In particular, we obtain the following global generation statement.

Corollary 2.5.16. If X is an n-dimensional smooth projective variety and L ∈
Pic(X) is ample and globally generated, then ωX ⊗L m is globally generated for
every m≥ n+1 and very ample for every m≥ 2n+1.

Proof. Both assertions follow from Theorem 2.5.15, since εx(L m) = m ·εx(L )≥m
for every m, where the inequality follows from Example 2.5.7.

Remark 2.5.17. While the proof of Theorem 2.5.15 made use of characteristic zero
via vanishing theorems, most of the assertions still hold in positive characteristic.
More precisely, if L is assumed to be ample, then the global generation statement
in i), as well as ii) and iii) still hold in positive characteristic, see [MS14].

In light of Theorem 2.5.15, it is very useful to have lower bounds for the Se-
shadri constants of ample (or big and nef) line bundles. Note, however, that as Ex-
ample 2.5.8 illustrates, one can not hope to have universal lower bounds at all points
on a variety. The most one can hope is the following:

Conjecture 2.5.18 (Ein-Lazarsfeld). If L is an ample line bundle on a smooth
projective variety X over a field k of characteristic 0, then for every α < 1, we have
εx(L) > α for x∈ X general. In particular, if k is uncountable, then for a very general
point x ∈ X , we have εx(L)≥ 1.

It is known that in characteristic 0, the assertion in the conjecture holds if we
replace 1 by 1

dim(X) , see [EKL95]. We end with the following result from [EL93b],
giving a proof of the conjecture for surfaces (the case of curves being, of course,
trivial).
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Theorem 2.5.19. If X is a smooth projective surface over a field k of characteristic
0, and L is an ample line bundle on X, then for every α < 1 we have εx(L ) > α for
all but a finite set of points x ∈ X. In particular, if k is uncountable, then εx(L) ≥ 1
for all but a countable set of points x ∈ X.

Proof. We may assume that we work over C. Indeed, suppose first that k ⊂ K is a
field extension, with K algebraically closed, and let XK = X ×Speck SpecK and LK
the pull-back of L to XK . If

Uα = {x ∈ X | εx(L ) > α},

it follows from Proposition 2.5.12 that Uα is open in X , and the description of Uα in
the proof of that proposition, together with Remark 1.1.3 implies that

Uα ×Speck SpecK = {x ∈ XK | εx(LK) > α}.

Therefore the theorem holds for the pair (X ,L ) if and only if it holds for (XK ,LK).
After first choosing a finitely generated extension k0 of Q such that both X and L
are defined over k0, and then embedding k0 in C, we see that it is enough to prove the
theorem when k = C. Furthermore, since each Uα is open, the finiteness of X rUα

for all α < 1 is equivalent to the fact that εx(L ) ≥ 1 for all but a countable set of
points x ∈ X .

It follows from Proposition 2.5.2 that if εx(L ) < 1, then there is a curve C con-
taining x, and such that (L ·C) < multx(C). Note that this implies multx(C) > 1,
hence there are only finitely many such points on each curve C. On the other hand,
for every m and d, the pairs (Z,x), with Z a one-dimensional subscheme and x ∈ Z
with (L · Z) = d and multx(Z) ≥ m are parametrized by countably many vari-
eties; this follows from the fact that the Hilbert schemes of subschemes of X are
parametrized by the countable set of possible Hilbert polynomials, see [Mum66].
Such a parameter space for which the corresponding curve is fixed only contributes
finitely many points x ∈ X with εx(L ) < 1. Therefore it is enough to prove the fol-
lowing: if S is variety, C ↪→X×S is a relative Cartier divisor (over S), and σ : S→C
is a section of X×S→ S such that

i) The map g : S→ HilbP(X) given by s→ Cs is not constant, where P is the cor-
responding Hilbert polynomial.

ii) multσ(s)(Cs)≥ m for every s ∈ S.
iii) The set {s ∈ S | Cs is integral} is dense in S,

then (L ·Cs)≥m for some (every) s ∈ S. In fact, we will show that under the above
conditions, we have (C 2

s ) ≥ m(m− 1). The Hodge index theorem then gives (see
[Har77, Exer. V.1.9])

(L ·Cs)2 ≥ (C 2
s ) · (L 2)≥ m(m−1).

Since (L ·Cs) is a positive integer, it follows that (L ·Cs)≥ m, as required.
After possibly replacing S by an open subset, we may assume that S is smooth,

and by generic smoothness, that g gives a smooth morphism onto a locally closed
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subset of HilbP(X). Let us choose s0 ∈ S such that C = Cs0 is integral. After replac-
ing S by a suitable locally closed subset, we may assume that S is a smooth curve
and that the tangent map dgs0 : Ts0(S)→ Tg(s0)HilbP(X) is injective. Recall that we
have an isomorphism Tg(s0)HilbP(X) ' H0(C,OC(C)), (see for example [Mum66,
Chap. 22]).

We now come to the crux of the argument: we claim that if t is a local coordinate
at s0 and a denotes the ideal defining σ(s0) in C, then

α := dgs0

(
∂

∂ t
(s0)

)
∈ am−1.

Note that this gives4 (C2) = deg(OC(C)) ≥ m(m− 1), which is precisely what we
wanted to show.

In order to prove our claim, we choose coordinates u = (u1,u2) at σ(s0). If Φ

defines C in a neighborhood of (s0,σ(s0)), then in this neighborhood we have an
isomorphism of OC(C) and OC such that α corresponds to the restriction of ∂Φ

∂ t |t=0

to C. Therefore it is enough to show that ∂Φ

∂ t |t=0 ∈ (u1,u2)m−1.
Let ui ◦σ = ai for i = 1,2. By treating Φ and a1, a2 in terms of the corresponding

power series expansions at (s0,σ(s0)) and s0, respectively, the assumption ii) on our
family C implies that

Φ(t,u1−a1(t),u2−a2(t)) ∈ (u1,u2)m ⊆ C[[t,u1,u2]].

By differentiating with respect to u1 and u2, we obtain

∂Φ

∂ui
(t,u1−a2(t),u2−a2(t)) ∈ (u1,u2)m−1 for i = 1,2,

and by differentiating with respect to t, we obtain

∂Φ

∂ t
(t,u1−a2(t),u2−a2(t))−

2

∑
i=1

∂Φ

∂ui
(t,u1−a1(t),u2−a2(t)) ·

∂ai

∂ t
∈ (x,y)m.

Therefore ∂Φ

∂ t (t,u1−a2(t),u2−a2(t))∈ (u1,u2)m−1, and by making t = 0 we obtain
∂Φ

∂ t (t,u1,u2)|t=0 ∈ (u1,u2)m−1, as claimed. This completes the proof of the theorem.

In the twenty years since they have been introduced, Seshadri constants found
connections with many different points of view in the study of linear series. We refer
to [Laz04a] and [BDRH+09] for more in-depth introductions to these interesting
invariants.

4 We are using the fact that if (R,a) is a local ring of dimension 1 and h ∈ ai is not a zero divisor,
then `(R/(h))≥ i · e(a;R); recall that for a zero-dimensional ideal b in a local ring R, one denotes
by e(b;R) the Samuel multiplicity of R with respect to b. The inequality follows from `(R/(h)) =
e((h);R)≥ e(ai;R) = i · e(a;R).
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2.6 Relative vanishing

In this section we prove the relative version of the Kawamata–Viehweg vanishing
theorem, following [KMM87]. As in the absolute case, we assume that the ground
field has characteristic zero.

Theorem 2.6.1. Let f : X→ S be a projective, surjective morphism of varieties, with
X smooth. If D is a Q-divisor on X such that

i) D is f -big,
ii) D is nef on Xs0 = f−1(s0) for some s0 ∈ S, and

iii) dDe−D is a divisor with simple normal crossings,

then Ri f∗(ωX⊗OX (dDe))s0 = 0 for every i≥ 1. In particular, if instead of condition
ii), we assume that D is f -nef, then Ri f∗(ωX ⊗OX (dDe)) = 0 for every i≥ 1.

Remark 2.6.2. Note that when S is a point, the above theorem is the Kawamata–
Viehweg vanishing theorem. Another important special case is when f is birational,
when condition i) is automatically satisfied.

Remark 2.6.3. Theorem 2.6.1 is usually stated under the assumption that D is f -
nef. Note that this version does not directly imply the first assertion in the theorem,
since the set of points s∈ S for which D is nef on Xs is not necessarily open in S (see
Remark 1.6.26).

For the proof of Theorem 2.6.1 we will need the following lemma. Note that if
g : Z→ X is a projective morphism that is an isomorphism over an open subset U of
X , in general there might be no divisor supported on g−1(X rU) which is g-ample,
even if Z is smooth (for example, it might happen that g−1(X rU) has codimension
≥ 2 in Z). The lemma gives a way to fix this problem.

Lemma 2.6.4. If g : Z → X is a projective morphism that is an isomorphism over
an open subset U of X, then there is a morphism h : W → Z that is an isomorphism
over g−1(U), with W smooth, and a Cartier divisor F on W such that

i) F is effective and supported on (g◦h)−1(X rU).
ii) −F is (g◦h)-ample.

In fact, note that if h has this property and h′ : W ′→W is any projective morphism
that is an isomorphism over (g ◦ h)−1(U), with W ′ normal, we can find a Cartier
divisor F ′ on W ′ that satisfies i) and ii) above

Proof. By Remark B.3.13, we can find a resolution of singularities f : Y → X that
is an isomorphism over U and such that there is an effective Cartier divisor E sup-
ported on f−1(X rU) such that −E is f -ample. In this case, for any resolution of
singularities h : W → Z that is an isomorphism over g−1(U), and such that g ◦ h
factors through f , we can find F as required by using Lemma 2.2.4 and Proposi-
tion 1.6.15). The last assertion in the lemma also follows by combining Lemma 2.2.4
and Proposition 1.6.15).
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Proof of Theorem 2.6.1. Let ∆ = dDe−D. We argue in several steps.
Step 1. Suppose first that X and S are projective and D is f -ample. Let H be an

ample Cartier divisor on S. It follows from Proposition 1.6.15 that there is m0 such
that D+m f ∗(H) is ample for all m≥ m0. In this case, Theorem 2.2.1 implies

H i(X ,ωX ⊗OX (dDe+m f ∗(H)) = 0 for all i≥ 1 and m≥ m0.

We deduce the fact that Ri f∗(ωX ⊗OX (dDe)) = 0 for i≥ 1 by Lemma 2.2.10.
Step 2. We now consider that case when D is f -ample, but X and S are not nec-

essarily projective, and show that Ri f∗(ωX ⊗OX (dDe)) = 0 for all i≥ 1. By taking
an affine open cover of S, we reduce to the case when S is affine. In this case, if
m is a divisible enough positive integer, there is a closed immersion j : X ↪→ PN

S
over S, such that OX (mD)' j∗(OPN

S
(1)). Let S′ be the closure of S in some projec-

tive space, X the closure of X in PN
S′ , and f : X → S′ the induced morphism. Using

Remark B.3.14 and Lemma 2.6.4, we construct a projective morphism g : X ′→ X ,
with the following properties:

1) g is an isomorphism over X .
2) X ′ is smooth.
3) X ′r X is an effective Cartier divisor F on X ′.
4) There is a divisor ∆ ′ on X ′ without common components with F such that ∆ ′|X =

∆ and ∆ ′+F has simple normal crossings.
5) There is an effective divisor G supported on X ′r X such that −G is g-ample.

We put f ′ = f ◦g. Note that by construction, we have a Cartezian diagram

X

f
��

// X ′

f ′

��
X // S′.

Furthermore, there is H ∈ CDiv(X) which is f -ample and such that H|X ∼Q D.
If H ′ = − 1

m G + g∗(H), with m � 0, then H ′ is f ′-ample by Proposition 1.6.15
and H ′|X ∼Q D. It follows that there is an f ′-ample Q-divisor D′ on X ′ such that
D′|X = D and dD′e−D′ is supported on Supp(∆ ′+F), and thus has simple normal
crossings. Since Ri f ′∗(ωX ′⊗OX ′(dD′e)) = 0 for all i≥ 1 by Step 1, we conclude that
Ri f∗(ωX ⊗OX (dDe)) = 0 for all i≥ 1.

Step 3. We consider the general case. Note that we may replace S by an open
neighborhood of s0. In particular, we may assume that S is affine. Since D is f -
big, it follows from Proposition 1.6.33 that D can be written as a sum of two Q-
divisors, the first one f -ample, and the second one effective. Arguing as in the proof
of Lemma 2.2.9, we find a projective birational morphism g : Y →X , with Y smooth,
and a decomposition g∗(D) = A + E for Q-divisors A and E, with A being ( f ◦ g)-
ample and E effective, such that g∗(∆)+Exc( f )+E has simple normal crossings.

Note that for every ε ∈ Q with 0 < ε < 1, the Q-divisor g∗(D)− εE is nef on
Ys0 = ( f ◦g)−1(s0). Indeed, since D is nef on Xs0 , it follows that g∗(D) is nef on Ys0 ,
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and we can write
g∗(D)− εE = (1− ε)g∗(D)+ εA.

We fix ε ∈ Q, with 0 < ε � 1, such that dg∗(D)− εEe = dg∗(D)e. By Re-
mark 1.6.25, after possibly replacing S by an open neighborhood of s0, we may
assume that g∗(D)− εE is ( f ◦g)-ample (hence also g-ample). Furthermore, since

Supp(dg∗(D)e− (g∗(D)− εE))⊆ Supp(g∗(∆))∪Supp(E)∪Exc(g),

which has simple normal crossings, it follows that we may apply the case in Step 2
for g∗(D)− εE and the morphisms f ◦g and g to conclude that

Ri( f ◦g)∗(ωY ⊗OY (dg∗(D)e)) = 0 and Rig∗(ωY ⊗OY (dg∗(D)e)) = 0

for all i≥ 1. The Leray spectral sequence implies

Ri f∗(g∗(ωY ⊗OY (dg∗(D)e))) = 0 for all i≥ 1.

Therefore in order to complete the proof of the theorem, it is enough to show that

g∗(ωY ⊗OY (dg∗(D)e))' ωX ⊗OX (dDe). (2.14)

Recall that by Lemma B.2.3, we have an effective g-exceptional divisor KY/X
on Y such that ωY ' g∗(ωX )⊗OY (KY/X ). Since dg∗(D)e= g∗(dDe)−bg∗(∆)c, the
isomorphism in (2.14) follows from the following equality of subsheaves of the
function field of X :

g∗OY (KY/X −bg∗(∆)c) = OX . (2.15)

Since bg∗(∆)c is effective, we obtain g∗OY (KY/X −bg∗(∆)c)⊆ g∗OY (KY/X ) = OX ,
where the equality follows from Lemma B.2.5. On the other hand, we will see in
Chapter 3 that since ∆ is a simple normal crossing divisor with b∆c = 0, the divi-
sor KY/X −bg∗(∆)c is effective. Therefore g∗OY (KY/X −bg∗(∆)c)⊇ g∗(OY ) = OX .
This completes the proof of the theorem.

Using the relative Kawamata-Viehweg theorem, we obtain relative versions of
some of the results that we discussed in the previous sections. Since the proofs
follow closely the ones in the absolute case, we omit them.

Corollary 2.6.5 (cf. Corollary 2.3.4). If f : X → S is a projective morphism and
L ∈ Pic(X) is f -big and f -nef, then

Ri f∗(ωGR
X ⊗L ) = 0 for all i≥ 1.

Theorem 2.6.6 (cf. Theorem 2.3.5). Let f : X → S be a projective morphism and
L a line bundle on X which is f -ample. For every coherent sheaf F on X, there is
m such that Ri f∗(F ⊗L m⊗L ′) = 0 for every i ≥ 1 and every f -nef line bundle
L ′ on X.
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Corollary 2.6.7 (cf. Corollary 2.4.4). If f : X → Y is a projective morphism, then
there is A ∈ Pic(X) such that for every L ∈ Pic(X) which is f -nef, the line bundle
A ⊗L is f -base-point free.

2.7 The injectivity theorem

We now turn to a theorem which applies under fairly general conditions, without
any positivity assumptions. While this does not directly give the vanishing of co-
homology groups, it provides the injectivity of suitable maps in cohomology. As
we will see, this is strong enough to imply Kodaira’s vanishing theorem (we thus
obtain a second proof of this theorem), but it also has other important applications.
We keep the assumption that the ground field has characteristic zero.

Theorem 2.7.1. Let X be a smooth projective variety and ∆ = ∑
r
i=1 ∆i a simple

normal crossing divisor on X, with the ∆i distinct prime divisors. If B is a Cartier
divisor on X such that B ∼Q ∑

r
i=1 bi∆i, with 0 < bi ≤ 1 for all i, then for every

effective divisor D, with Supp(D)⊆ Supp(∆), the map

Hq(X ,ωX ⊗OX (B))→ Hq(X ,ωX ⊗OX (B+D))

induced in cohomology by multiplication with an equation defining D is injective
for all q≥ 0.

The original injectivity theorem is due to Kollár [Kol86]. Esnault and Viehveg
generalized the result and gave a new proof in [EV92]. This was further strength-
ened to the above form by Ambro [Amb]. We follow [Amb] for the first part of the
argument (the case B = ∆ ). In order to deduce the general case of the theorem, we
imitate the argument in the proof of the Kawamata–Viehweg vanishing theorem (this
allows us to only consider cyclic coverings with respect to smooth divisors, and thus
makes the proof more elementary). We start with the following proposition, which
is where Hodge theory comes into play.

Proposition 2.7.2. If X is a smooth projective variety and ∆ = ∑
r
i=1 ∆i a simple

normal crossing divisor on X, then the map

Hq(X ,ωX ⊗OX (∆))→ Hq(U,ωU ),

induced by restriction to U = X r Supp(∆), is injective for every q≥ 0.

Proof. Let j : U ↪→ X be the inclusion. Note that we have an injective map of com-
plexes

ι : Ω
•
X (log∆) ↪→ j∗Ω •U

and it is a basic result that this is a quasi-isomorphism (see [Gro66]). We consider
the two spectral sequences corresponding to the “stupid” filtrations on these two
complexes, namely
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E p,q
1 = Hq(X ,Ω p

X (log∆))⇒
p

H p+q(X ,Ω •X (log∆)) and (2.16)

Ẽ p,q
1 = Hq(X , j∗Ω

p
U )⇒

p
H p+q(X , j∗Ω •U ). (2.17)

Since both E p,q
1 and Ẽ p,q

1 vanish for p > n, it follows that we get canonical mor-
phisms

En,q
1 → Hn+q(X ,Ω •X (log∆)) and Ẽn,q

1 → Hn+q(X , j∗Ω •U ).

We thus obtain a commutative diagram

Hq(X ,ωX ⊗OX (∆))

α

��

γ // Hn+q(X ,Ω •X (log∆))

β

��
Hq(X , j∗ωU ) δ // Hn+q(X , j∗Ω •U )

in which α and β are induced by the inclusion ι . Since ι is a quasi-isomorphism, it
follows that β is an isomorphism. On the other hand, since the spectral sequence in
(2.16) degenerates at the E1 term (see Theorem 2.1.14), it follows that γ is injective.
We conclude from the commutative diagram that α is injective. It is now enough to
note that since j is an affine morphism5, we have an isomorphism Hq(X , j∗ωU ) '
Hq(U,ωU ) such that α gets identified with the map in the proposition.

Corollary 2.7.3. If X and ∆ are as in Proposition 2.7.2, then for every effective
divisor D with Supp(D)⊆ Supp(∆), the natural map

Hq(X ,ωX ⊗OX (∆))→ Hq(X ,ωX ⊗OX (∆ +D)),

induced by multiplication with an equation of D is injective for every q≥ 0.

Proof. With the notation in the proof of Proposition 2.7.2, we have

OX ↪→ OX (D) ↪→ j∗OU ,

where the first map is given by multiplication with the section defining D. By ten-
soring this with ωX ⊗OX (∆) and taking the qth cohomology, we obtain

Hq(X ,ωX ⊗OX (∆))→ Hq(X ,ωX ⊗OX (∆ +D))→ Hq(X , j∗(ωU ))' Hq(U,ωU ),

where the isomorphism follows from the fact that j is affine. Since the composition
map is injective by Proposition 2.7.2, it follows that the first map is injective.

We can now prove the injectivity theorem.

5 In general, if R is an effective Cartier divisor on a scheme Y , the inclusion Y r Supp(R) ↪→ Y is
affine. Indeed, this property is local on Y , hence we may assume that R is defined by an equation
in O(Y ). In this case, the assertion is clear.
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Proof of Theorem 2.7.1. Our goal is to reduce the assertion to the case when bi = 1
for every i, which is a consequence of Corollary 2.7.3. Note that by Serre duality,
the injectivity of the maps in the theorem is equivalent to the surjectivity of the maps

H i(X ,OX (−B−D))→ H i(X ,OX (−B)),

induced by multiplication with an equation of D, for all i≥ 0.
For the purpose of doing induction, it is convenient to allow the ∆i to be re-

ducible, but require that they have no common components (of course, we keep the
assumption that ∆ has simple normal crossings). We argue by induction on the car-
dinality of {i | bi < 1}. If this is 0, then B∼Q ∆ . Let n be a positive integer such that
nB∼ n∆ . If n = 1, then the assertion we need follows from Corollary 2.7.3. If n≥ 2,
then we consider M = OX (B−∆) and construct the n-cyclic cover µ : W → X cor-
responding to a section of M n that does not vanish anywhere. Therefore µ is étale
and we have µ∗(B)∼ µ∗(∆) (see Lemma 2.1.6). We may thus apply Corollary 2.7.3
for BW := µ∗(B) and DW := µ∗(D) to deduce that all maps

H i(W,OW (−BW −DW ))→ H i(W,OW (−BW )) (2.18)

induced by multiplication with a section defining DW are surjective. Since µ∗(OW )'
⊕n−1

j=0M
− j, using the projection formula and the fact that µ is finite, we obtain

H i(W,OW (−BW −DW ))'
n−1⊕
j=0

H i(X ,O(−B−D)⊗M− j) and

H i(W,OW (−BW ))'
n−1⊕
j=0

H i(X ,O(−B)⊗M− j).

By taking the component of the map in (2.18) corresponding to j = 0, we conclude
that all morphisms

H i(X ,OX (−B−D))→ H i(X ,OX (−B))

are surjective. This completes the proof in this case.
Suppose now that b1 < 1 and let m be a positive integer such that mb1 = a1 ∈ Z.

By Lemma 2.2.2, we can find a finite surjective morphism f : Y → X such that
OY ( f ∗∆1) ' L m for a line bundle L on Y . Furthermore, we may assume that Y
is smooth and f ∗(∆) is reduced and has simple normal crossings. In this case, it is
enough to prove the theorem for BY := f ∗(B) ∼Q ∑

r
i=1 bi f ∗(∆i) and DY := f ∗(D).

Indeed, note that these divisors satisfy the assumptions in the theorem and we have
a commutative diagram
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H i(Y,OY (−BY −DY ))

��

// H i(Y,OY (−BY ))

��
H i(X ,OX (−B−D)) δ // H i(X ,OX (−B)

in which the vertical maps are the surjective maps induced by the trace map
Tr : K(Y )→ K(X) (see Lemma 2.2.7). The commutativity of the diagram follows
from the fact that Tr is K(X)-linear. It is clear now that the surjectivity of the top
horizontal map in the diagram implies the subjectivity of the bottom one.

After replacing X by Y , we may thus assume that there is a line bundle L on X
such that L m ' OX (∆1). Let g : Z → X be the m-cyclic cover corresponding to a
section of L m defining ∆1. Since ∆1 is smooth and ∆ has simple normal crossings,
it follows from Lemma 2.2.6 that Z is smooth and if f ∗(∆1) = m∆ ′1 and ∆ ′i = f ∗(∆i)
for i ≥ 2, then each ∆ ′i is smooth, the ∆ ′i have no common components, and ∆Z :=
∑

r
i=1 ∆ ′i has simple normal crossings. Let

DZ := g∗(D) and BZ := g∗(B)+(1−a1)∆ ′1 ∼Q ∆
′
1 +

r

∑
i=2

bi∆
′
i .

Note that we may apply the inductive hypothesis to BZ and DZ to conclude that all
maps

Hq(Z,OZ(−DZ−BZ))→ Hq(Z,OZ(−BZ)) (2.19)

induced by multiplication with an equation of DZ are surjective. Since g is finite, we
deduce using the projection formula and Lemma 2.1.6 that

Hq(Z,OZ(−BZ))' Hq(X ,OX (−B)⊗g∗OZ((a1−1)∆ ′1))

'
m−1⊕
j=0

Hq(X ,OX (−B)⊗L a1−1− j).

We similarly have an isomorphism

Hq(Z,OZ(−BZ−DZ))'
m−1⊕
j=0

Hq(X ,OX (−B)⊗L a1−1− j).

By assumption, we have 1 ≤ a1 ≤ m− 1, and by taking the component of the map
(2.19) corresponding to j = a1−1, we obtain the surjectivity of

Hq(X ,OX (−B−D))→ Hq(X ,OX (−B))

for every q. This completes the proof of the theorem.

Remark 2.7.4. Note that Theorem 2.7.1 implies Kodaira’s vanishing theorem, hence
we obtain a second proof of this result. Indeed, suppose that L is an ample line
bundle on the smooth, projective variety X . Let m� 0 be such that L m is very
ample and H i(X ,ωX ⊗L m+1) = 0 for all i > 0. By Bertini’s theorem, there is ∆ ∈
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|L m| smooth. If B is a Cartier divisor with OX (B) ' L , then B ∼Q
1
m ∆ , hence

Theorem 2.7.1 implies that multiplication by an equation defining ∆ induces an
injective map

H i(X ,ωX ⊗OX (B))→ H i(X ,ωX ⊗OX (B+∆)) = H i(X ,ωX ⊗L m+1)

for every i≥ 0. We conclude that H i(X ,ωX ⊗L ) = 0 for i > 0.

The injectivity theorem is often applied via the following corollary.

Corollary 2.7.5. Let E be a semiample divisor on a smooth projective variety X. If
F is an effective divisor on X such that H0(X ,OX (mE−F)) 6= 0 for some m ≥ 1,
then multiplication by an equation of F induces an injective map

Hq(X ,ωX ⊗OX (dE))→ Hq(X ,ωX ⊗OX (dE +F))

for every d ≥ 1 and q≥ 0.

Proof. By hypothesis, we can pick D ∈ |mE| such that D− F is effective. Let
f : Y → X be a log resolution of (X ,D) and write f ∗(D) = ∑ j a j∆ j, where the ∆ j
are distinct prime divisors. Let ` be a sufficiently divisible integer, such that OX (`E)
is globally generated, ` > m, and ` > da j for every j. Since f ∗OX (`E) is glob-
ally generated, it follows from Kleiman’s version of Bertini’s theorem (see [Har77,
Thm. III.10.8]) that there is a smooth effective divisor G ∈ | f ∗(`E)| without com-
mon components with f ∗(D) and such that f ∗(D)+G has simple normal crossings.
Note that the divisor

H :=
d
`

(
f ∗(D)+

(
1− m

`

)
G
)

is linearly equivalent to f ∗(dE), it has simple normal crossing support, and bHc= 0.
Since

Supp( f ∗(F))⊆ Supp( f ∗(D))⊆ Supp(H),

it follows that we may apply Theorem 2.7.1 to conclude that all maps

Hq(Y,ωY ⊗ f ∗OY (dE))→ Hq(Y,ωY ⊗ f ∗OY (dE +F)), (2.20)

induced by multiplication with an equation of F , are injective. On the other hand,
we have f∗(ωY )' ωX (see Corollary B.2.6) and the Grauert–Riemenschneider van-
ishing theorem implies Ri f∗(ωY ) = 0 for all i≥ 0. It follows from the Leray spectral
sequence for f and the projection formula that the map in (2.20) is identified with

Hq(X ,ωX ⊗OX (dE))→ Hq(X ,ωX ⊗OX (dE +F)).

This gives the assertion in the corollary.
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2.8 Higher direct images of canonical line bundles

We now explain how the injectivity theorem implies Kollár’s results on higher direct
images of canonical line bundles. As in the previous section, we assume that the
ground field has characteristic zero. The following is the main result of this section.

Theorem 2.8.1 (Kollár). If g : X → Z is a surjective morphism of projective vari-
eties, with X smooth, then for every j ≥ 0, the following hold:

i) R jg∗(ωX ) is a torsion-free sheaf, and
ii) H i(Z,R jg∗(ωX )⊗OZ(A)) = 0 for every i > 0 and every ample Cartier divisor A

on Z.

Proof. We fix j ≥ 0, an arbitrary ample Cartier divisor A on Z, and let A′ = g∗(A).
By asymptotic Serre vanishing, we can choose a positive integer m0 such that

Hq(Z,Rpg∗(ωX )⊗OZ(mA)) = 0 for all p≥ 0, q > 0, and m≥ m0. (2.21)

Using the Leray spectral sequence and the projection formula, we deduce

H0(Z,R jg∗(ωX )⊗OZ(mA))∼= H j(X ,ωX ⊗OX (mA′)) for all m≥ m0. (2.22)

Let F be the torsion subsheaf of R jg∗(ωX ), which consists of all local sections
of R jg∗(ωX ) that are zero at the generic point of Z. In order to prove i), we need
to show that F = 0. By assumption, the coherent ideal AnnOZ (F ) is nonzero. We
pick an integer `≥m0 large enough such that the following conditions are satisfied:

• F ⊗OZ(`A) is generated by its global sections;
• The sheaf AnnOZ (F )⊗OZ(`A) is globally generated. In particular, there is a

nonzero global section s of OZ(`A) that annihilates F .

These conditions imply that multiplication by the section s induces a map

H0(Z,R jg∗(ωX )⊗OZ(`A))→ H0(Z,R jg∗(ωX )⊗OZ(2`A)),

that cannot be injective, unless F = 0. Note that since ` ≥ m0, the above map gets
identified via the isomorphisms (2.22) to the map

H j(X ,ωX ⊗OX (`A′))→ H j(X ,ωX ⊗OX (2`A′)) (2.23)

induced by multiplication with the section g∗(s) of OX (`A′). On the other hand,
A′ is semiample, hence the map in (2.23) is injective by Corollary 2.7.5. We thus
conclude that F is trivial, hence R jg∗(ωX ) is torsion-free. This proves i).

We prove ii) by induction on n = dim(Z), the case n = 0 being trivial. Let m≥m0
be a fixed large enough integer, such that OX (mA) is very ample, and let H ′ ∈ |mA′|
be the pullback of a general divisor H ∈ |mA|. It follows from Kleiman’s version of
Bertini’s theorem that we may assume that H and H ′ are smooth (though possibly
disconnected). We have an exact sequence
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0→ ωX ⊗OX (A′)→ ωX ⊗OX ((m+1)A′)→ ωH ′ ⊗OX (A′)|H ′ → 0

induced by multiplication with a section defining H ′. Since all higher direct images
of ωX ⊗OX (A′) are torsion-free by i), and since the sheaves R jg∗(ωH ′⊗OX (A′)|H ′)
are clearly torsion on Z, we obtain short exact sequences

0→R jg∗(ωX⊗OX (A′))→R jg∗(ωX⊗OX ((m+1)A′))→R jg∗(ωH ′⊗OX (A′)|H ′)→ 0

for every j≥ 0. On the other hand, applying the projection formula and the inductive
hypothesis to each connected component of H ′, we conclude that

H i(Z,R jg∗(ωH ′ ⊗OX (A′)|H ′)) = 0 for all i≥ 1.

Furthermore, we have by (2.21)

H i(Z,R jg∗(ωX ⊗OX ((m+1)A′))) = 0 for all i≥ 1.

By taking the cohomology long exact sequence corresponding to the above short
exact sequence of sheaves on Z, we conclude that H i(Z,R jg∗(ωX ⊗OX (A′))) = 0
for every i > 1.

We still need to prove the vanishing for i = 1. Note that if we have a first-quadrant
spectral sequence E p,q

2 ⇒ H p+q such that E p,q
2 = 0 unless p ∈ {0,1}, then E1,q

∞ is a
subspace of Hq+1 for every q (and the quotient is isomorphic to E0,q+1

∞ ). In general,
we have an injective map E1,q

2 ↪→ E1,q
∞ and we thus get an injective map E1,q

2 ↪→
Hq+1.

We deduce that in our setting we have a commutative diagram

H1(Z,R jg∗(ωX ⊗OX (A′)))
φ //

��

H j+1(X ,ωX ⊗OX (A′))

ψ

��
H1(Z,R jg∗(ωX ⊗OX ((m+1)A′))) // H j+1(X ,ωX ⊗OX ((m+1)A′)),

where the horizontal maps are the canonical injective maps coming, as described
above, out of the Leray spectral sequences, and the vertical maps are induced by
multiplication with sections defining H ′ and H.

The map ψ is injective by Corollary 2.7.5, hence the composition ψ ◦ φ is in-
jective. On the other hand, we have H1(Z,R jg∗(ωX ⊗OX ((m+1)A′))) = 0, and we
thus conclude that H1(Z,R jg∗(ωX ⊗OX (A′))) = 0. This completes the proof of the
theorem.

Corollary 2.8.2. Under the same assumptions as in Theorem 2.8.1, if L and L ′

are line bundles on Z, with L ample and globally generated, and L ′ nef, then the
sheaf R jg∗(ωX )⊗L m⊗L ′ is globally generated for every m ≥ dim(Z) + 1 and
every j ≥ 0.
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Proof. It follows from Theorem 2.8.1 that H i(Z,R jg∗(ωX )⊗L m−i⊗L ′) = 0 for
every i ≥ 1. Therefore the sheaf R jg∗(ωX )⊗L m⊗L ′ is 0-regular with respect to
L , hence globally generated by Theorem 2.4.3.

Kawamata observed that the following stronger version of Theorem 2.8.1 holds.

Theorem 2.8.3 (Kawamata). With the same assumptions as in Theorem 2.8.1, sup-
pose that M is a divisor on X that is numerically equivalent to a Q-divisor D having
simple normal crossings, and such that bDc= 0. In this case, the following hold for
every j ≥ 0:

i) R jg∗(ωX ⊗OX (M)) is a torsion-free sheaf, and
ii) H i(Z,R jg∗(ωX ⊗OX (M))⊗OZ(A)) = 0 for every i > 0 and every ample divisor

A on Z.

The proof of this variant is similar to that of Theorem 2.8.1, using a more general
version of Corollary 2.7.5, which in turn can be deduced from Theorem 2.7.1. We
close this section by applying Theorem 2.8.1 to give a proof of the following result
of Fujita and Kawamata. The proof given here is due to Kollár.

Theorem 2.8.4 (Fujita-Kawamata). If g : X→ Z is a smooth, projective morphism
between smooth projective varieties, then the locally free sheaf g∗(ωX/Z) is nef.

Remark 2.8.5. Recall that if g is a smooth, projective morphism, of relative dimen-
sion d, then one defines ωX/Z := ∧dΩX/Z . It is a general fact that all sheaves
Rqg∗(ωX/Z) are locally free. Indeed, for every z ∈ Z, the restriction of ωX/Z to
Xz = g−1(z) is isomorphic to ωXz . Note that since ωX/Z is flat over Z, it follows
from the base-change theorems (see [Har77, Cor. III.12.9]) that in order to show that
Rqg∗(ωX/Z) is locally free, it is enough to show that the function Z 3 z→ hq(Xz,ωXz)
is constant.

This is an easy consequence of Hodge theory. First, we may assume that the
ground field is C. Since g is a smooth projective morphism, it follows from a theo-
rem of Ehresman that in the C ∞-category, g is a locally trivial fibration. In particular,
all fibers Xz are diffeomorphic, and therefore the map Z 3 z→ dimC H i(Xan

z ;C) is
constant. On the other hand, the Hodge decomposition gives

dimC H i(Xan
z ;C) = ∑

p+q=i
hq(Xz,Ω

p
Xz

)

(see Corollary 2.1.15). By the semicontinuity theorem (see [Har77, Thm. III.12.8]),
each function Z 3 z→ hq(Xz,Ω

p
Xz

) is upper-semicontinuous on Z and since the sum
of these functions is constant, we conclude that each of these functions is constant
on Z. In particular, by taking p = d, we obtain our assertion.

Note that if, in addition, Z is smooth, then X is smooth too and ωX/Z ' ωX ⊗
g∗(ωZ)−1. We thus see that in this case Rqg∗(ωX ) is locally free for every q.

Proof of Theorem 2.8.4. For any positive integer m, consider the m-fold fiber prod-
uct
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Xm =

m times︷ ︸︸ ︷
X×Z · · ·×Z X

of X over Z, and denote by gm : Xm→ Z the natural projection. Let E = g∗ωX/Z . We
have seen in Remark 2.8.5 that this is a locally free sheaf on Z.

Claim. (gm)∗ωXm/Z = E ⊗m.

We check the claim by induction on m, the case m = 1 being trivial. Applying
flat base-change to the Cartezian diagram with smooth maps

Xm

p

��

q //

gm

""EEEEEEEEE Xm−1

gm−1

��
X

g // Z

we see that g∗m−1g∗(ωX/Z) ' q∗p∗(ωX/Z). By combining this with the inductive
assumption, and using the fact that ωXm/Z ' q∗(ωXm−1/Z)⊗ p∗(ωX/Z), we obtain

(gm)∗ωXm/Z ' (gm−1)∗q∗(q∗ωXm−1/Z⊗ p∗ωX/Z)

' (gm−1)∗(ωXm−1/Z⊗q∗p∗ωX/Z)

' (gm−1)∗(ωXm−1/Z⊗g∗m−1g∗ωX/Z)

' (gm−1)∗ωXm−1/Z⊗g∗ωX/Z ' E ⊗(m−1)⊗E ' E ⊗m.

Fix a very ample divisor H on Z and let A be a divisor such that OZ(A) ' ωZ ⊗
OZ((n + 1)H), where n = dim(Z). By applying Corollary 2.8.2 to gm, we deduce
that the sheaf

(gm)∗(ωXm)⊗OZ((n+1)H)' (gm)∗(ωXm/Z)⊗OZ(A)' E ⊗m⊗OZ(A)

is generated by its global sections. Therefore the sheaf Symm(E )⊗OZ(A), being a
quotient of E ⊗m⊗OZ(A), is globally generated, too. Consider π : P(E )→ Z. Note
that we have a surjective morphism

π
∗
π∗OP(E )(m)' π

∗(Symm(E ))→ OP(E )(m),

and we thus deduce that OP(E )(m)⊗π∗OZ(A) is globally generated, hence nef, for
every m≥ 1. This implies that OP(E )(1) is nef, that is, E is nef.



Chapter 3
Singularities of pairs

3.1 Pairs and log discrepancies

In this section we set up the framework for measuring the singularities of higher-
dimensional algebraic varieties, and more generally, of pairs and triples. While the
definitions can be given without any assumptions on the ground field, the main tool
for understanding singularities in this context is provided by resolution of singu-
larities. Furthermore, some of the deeper results rely on vanishing theorems. As a
consequence, in this chapter we assume that we work over a field of characteristic
zero.

3.1.1 The canonical divisor

Let X be an n-dimensional normal variety. Note that if U is an open subset of X
such that codimX (X rU)≥ 2, then we have a group isomorphism

Div(X)→ Div(U), D→ D|U ,

which induces an isomorphism of class groups Cl(X) ' Cl(U). If i : U ↪→ X is the
inclusion, then for every divisor D on X we have an equality i∗OU (D|U ) = OX (D)
of subsheaves of the function field of X .

Suppose now that U is smooth (for example, U can be the smooth locus of
X). It follows that there is a divisor KX on X , called canonical divisor, such that
OU (KX |U ) ' ωU = Ω n

U . It is clear that KX is uniquely defined up to linear equiva-
lence and the definition is independent of the choice of U . Furthermore, if V is an
arbitrary open subset of X , then (KX )|V is a canonical divisor on V .

Lemma 3.1.1. If f : Y → X is a proper, birational morphism of normal varieties,
and KY is a canonical divisor on Y , then f∗(KY ) is a canonical divisor on X.

149
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Proof. If U = Xsm r f (Y rYsm), then codimX (X rU) ≥ 2, hence it is enough to
check the assertion on U . Therefore we may assume that both X and Y are smooth.
In this case the assertion follows from the fact that if KX is a canonical divisor on
X , then there is an exceptional divisor E on Y such that f ∗(KX )+ E is a canonical
divisor on Y (see Lemma B.2.3). If φ is a nonzero rational function such that KY =
divY (φ)+ f ∗(KX )+E, then f∗(KY ) = divX (φ)+KX .

In what follows, when considering a variety X , we will fix a canonical divisor
KX on X . This particular choice will not play any role. The important fact is that
whenever considering another normal variety having a proper birational morphism
f : Y → X , we choose as canonical divisor KY on Y the unique one with the property
f∗(KY ) = KX . Existence and uniqueness of such KY follows from Lemma 3.1.1 and
the fact that for every nonzero rational function φ we have f∗(divY (φ)) = divX (φ)
and divX (φ) = 0 if and only if divY (φ) = 0 (both conditions being equivalent to
φ ∈ OX (X)∗ = OY (Y )∗).

Remark 3.1.2. If f : Y → X is a proper, birational morphism between normal vari-
eties, then for every integer m we have an inclusion

f∗OY (mKY ) ↪→ OX (mKX )

of subsheaves of the function field. Indeed, if V is an open subset of X and φ is a
nonzero rational function such that divY (φ)+ mKY is effective on f−1(V ), then its
push-forward f∗(divY (φ)+mKY ) = divX (φ)+mKX is effective on V .

In particular, by taking f a resolution of singularities of X and m = 1, we obtain
an inclusion ωGR

X ↪→ OX (KX ).

Remark 3.1.3. Let f : Y →X and g : Z→Y be proper birational morphisms between
normal varieties. If KX is a canonical divisor on X and KY and KZ are canonical
divisors on Y and Z, respectively, such that f∗(KY ) = KX and ( f ◦g)∗(KZ) = KX , then
g∗(KZ) = KY . This is clear from the uniqueness of KY and KZ with these properties:
if D is the unique canonical divisor on Z such that g∗(D) = KY , then ( f ◦g)∗(D) =
f∗(KY ) = KX , hence D = KZ .

Remark 3.1.4. Suppose that X is a normal variety and H is a normal, irreducible,
effective Cartier divisor on X . If D is a Q-divisor on X that does not contain H in
its support, then we can define the restriction D|H as a Q-divisor, as follows. The
smooth locus Hsm of H can be written as U ∩H for some open subset U of X ,
and since H is a Cartier divisor, after possibly replacing U by a smaller subset, we
may assume that U ⊆ Xsm. Therefore D|U is Q-Cartier, and we define D|H to be the
unique Q-divisor on H whose restriction to Hsm is equal to the restriction of D|U to
Hsm.

If m is a positive integer such that m(KX +D) is Cartier, then

OH(mKH +mD|H)'OX (mKX +mD+mH)|H . (3.1)

In particular, m(KH +D|H) is Cartier. In order to check (3.1), note that if j : Hsm ↪→
H is the inclusion of the smooth locus, then
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OH(mKH +mD|H)' j∗ j∗OH(mKH +mD|H), and

OX (mKX +mD+mH)|H ' j∗ j∗(OX (mKX +mD+mH)|H)

(the second equality follows since by assumption, OX (m(KX +D)+mH)|H is a line
bundle on H). Therefore, in order to check (3.1), we may assume that H is smooth,
and after replacing X by an open neighborhood of H, also that X is smooth. In this
case, the assertion follows from the adjunction isomorphism ωH ' ωX ⊗OX (H)|H .

In particular, we see that if mKX is Cartier, then

OH(mKH)'OX (mKX +mH)|H ,

hence mKH is Cartier.

Remark 3.1.5. Recall that every separated scheme X of finite type over k carries a
dualizing sheaf ω◦X . We refer to [Har77, Chap. III.7] for the construction in the case
when X is projective and to [Har66] for the general case. The construction and main
properties in the case of an algebraic variety can also be found in [Kun08, Chap.
9]. If X can be embedded in a smooth variety Y and codimY (X) = c, then ω◦X '
E xtc

OY
(OX ,ωY ). In particular, when X is smooth, ω◦X is the sheaf of top differential

forms on X . If X is normal, ω◦X is a reflexive sheaf (see [Kun08, Cor. 9.8]), hence
it is isomorphic to the push-forward of its restriction to Xsm. Therefore we have an
isomorphism ω◦X ' OX (KX ).

3.1.2 Divisors over X , revisited

The notion of divisor over X , introduced in Section 1.7.2, will play an important
role in what follows. Recall that given an arbitrary variety X , a divisor E over X is
given by a prime divisor E on a normal variety Y that has a birational morphism to
X . The corresponding valuation on the function field K(X) is ordE , and we identify
two such divisors if they give the same valuation.

Whenever considering Y and E as above, it is convenient to assume that Y is
proper over X . This is no restriction, since we can always embed Y as an open subset
of a normal variety Y ′ which is proper over X (this is a theorem due to Nagata and
Deligne, see [Con07]), and we may replace E by its closure in Y ′. Furthermore,
given a proper birational morphism Y ′ → Y , we may replace Y by Y ′ and E by its
proper transform on Y ′. It follows that by Chow’s lemma, we may assume that Y is
projective over X , and using a log resolution of (Y,E), that both Y and E are smooth.
In the presence of some ideals or divisors on X , we may further assume that Y gives
a log resolution of these ideals and divisors in the sense of Section B.3.

Suppose that fi : Yi→ X are proper birational morphisms, for i = 1,2, with Y1 and
Y2 normal. Note that there is a normal variety Y with proper birational morphisms
gi : Y →Yi such that f1 ◦g1 = f2 ◦g2 (for example, we may take Y to be the normal-
ization of the unique irreducible component of Y1×X Y2 that dominates X). If E1 and
E2 are prime divisors on Y1 and Y2, respectively, then they define the same divisor
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over X if and only if their proper transforms on Y are the same. Note that if this is
the case, then the centers of E1 and E2 on X are the same.

If E is a divisor over X and g : W → X is a proper birational morphism, with W
normal, then we may also consider E as a divisor over W . Indeed, if E is given as
a prime divisor on some Y as above and we choose a normal variety W ′ over X ,
with proper birational morphisms (over X) to Y and W , then the valuation ordE of
K(X) = K(W ) corresponds to the proper transform of E on W ′. In particular, we
may consider the center of E on any such variety W .

3.1.3 Log discrepancy for pairs

In what follows we will consider two types of pairs, of which we now introduce
the first one. A log pair (or simply pair, when there is no risk of confusion) (X ,D)
consists of a normal variety X and an R-divisor D on X such that the divisor KX +D
is an R-Cartier R-divisor. Note that if D is a Q-divisor, then KX + D is R-Cartier
if and only if it is Q-Cartier. A pair (X ,D) as above is effective if D is an effective
R-divisor and it is rational if D is a Q-divisor. Here and in what follows KX is a
fixed canonical divisor on X . For every proper birational morphism f : Y → X , with
Y normal, we fix the canonical divisor KY on Y such that f∗(KY ) = KX , and define a
divisor DY on Y by

KY +DY = f ∗(KX +D) (3.2)

(note that the pull-back of KX +D is defined precisely because KX +D is R-Cartier).
By construction, (Y,DY ) is a log pair, as well. The principle is that the singularities
of the pairs (X ,D) and (Y,DY ) are (almost) equivalent.

We note that the definition of DY is independent of the choice of KX . By applying
f∗ to (3.2), we also see that f∗(DY ) = D. In other words, for every prime divisor T
on X , the coefficient of T in D is equal to the coefficient of the proper transform T̃
in DY .

It is clear from definition that if f : Y → X and (X ,D) are as above, and if
g : Z→ Y is another proper birational morphism, with Z normal, then (DY )Z = DZ .
In particular, we see that if E is a prime divisor on Y and Ẽ is its proper transform
on Z, then the coefficient of E in DY is equal to the coefficient of Ẽ in DZ . It follows
that if we define the log discrepancy of the pair (X ,D) with respect to E as

aE(X ,D) := 1− (the coefficient of E in DY ),

then this invariant only depends on (X ,D) and the divisor E over X , but not on
Y . For example, if E is a prime divisor on X , then aE(X ,D) = 1−α , where α is
the coefficient of E in D. We also note that if f : Z → X is any proper birational
morphism, with Z normal, then

aE(X ,D) = aE(Z,DZ).
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The divisor in a pair can be zero, in which case we simply write X instead
of (X ,0). If this is the case, then KX has to be Q-Cartier (one says that X is Q-
Gorenstein) and one writes KY/X for −0Y ; that is,

KY/X = KY − f ∗(KX ),

where, again, we fix the canonical divisors so that f∗(KY ) = KX . If f : Y → X is a
proper birational morphism and (X ,D) is a pair such that X is Q-Gorenstein, then
DY = f ∗(D)−KY/X , and therefore we have

KY/X − f ∗(D) = ∑
E

(aE(X ,D)−1)E,

where the sum runs over all prime divisors on Y .
If both X and Y are smooth, then we have seen in the proof of Lemma 3.1.1 that

KY/X is the effective divisor defined by the morphism of line bundles f ∗(ωX )→ ωY
(hence our current definition is compatible with the one in Lemma B.2.3).

Remark 3.1.6. Note that when X is Q-Gorenstein, the set {m ∈ Z | mKX is Cartier}
is a subgroup of Z. Its positive generator is the index of X . One says that X is r-
Gorenstein if rKX is Cartier. Note that even if X is 1-Gorenstein, X does not have to
be Cohen-Macaulay, hence it might not be Gorenstein (see Example 3.1.7 below).
On the other hand, if X is Cohen-Macaulay, then X is Gorenstein if and only if it
is 1-Gorenstein (this follows from the fact that OX (KX ) is the dualizing sheaf, see
Remark 3.1.5).

Example 3.1.7. Let Y ⊂ Pn be a smooth projective variety of dimension d ≥ 1,
in a projectively normal embedding, and let X ⊂ An+1 be the affine cone over Y .
Note that since Y is Cohen-Macaulay, we have X Cohen-Macaulay if and only if
H i(Y,OY (m)) = 0 for all m and all i with 1≤ i≤ d−1. On the other hand, we claim
that X is r-Gorenstein if and only if there is j such that ωr

Y ' OY ( j). Indeed, note
that if U = X r {0} and π : U → Y is the canonical projection, then π is smooth,
hence ωU ' π∗(ωY )⊗ΩU/Y . On the other hand, ΩU/Y 'OU (it is enough to check
this when Y = Pn and use the fact that Pic(An+1 r{0}) = {0}), hence ωU ' π∗(ωY ).
Therefore we obtain

H0(X ,OX (rKX )) = H0(U,π∗(ωr
Y ))'

⊕
m∈Z

H0(Y,ωr
Y ⊗OY (m)). (3.3)

Since H0(X ,OX (rKX )) is a graded module over the homogeneous coordinate ring
of Y , it is locally free if and only if it is free, and by (3.3), this is the case if and only
if ωr

Y ' OY ( j) for some j.
For example, if Y is an abelian variety of dimension d ≥ 2 in a projectively

normal embedding, we see that X is 1-Gorenstein, but it is not Cohen-Macaulay
since H1(X ,OX ) 6= 0.

Remark 3.1.8. If g : Z → Y and f : Y → X are proper birational morphisms of Q-
Gorenstein varieties, then KZ/X = g∗(KY/X )+KZ/Y . Indeed, note first that if KY and
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KZ are chosen on Y and Z, respectively, such that f∗(KY ) = KX and ( f ◦g)∗(KZ) =
KX , then as observed in Remark 3.1.3, we have g∗(KZ) = KY . If we pull-back by g
the defining relation KY = f ∗(KX )+KY/X , we obtain

KZ = g∗(KY )+KZ/Y = ( f ◦g)∗(KX )+ f ∗(KY/X )+KZ/Y ,

which implies the claimed equality by definition of KZ/X .

Example 3.1.9. Let f : Y → X be a proper birational morphism of normal varieties
and suppose that H ⊂ X is a normal, irreducible, effective Cartier divisor, such that
the proper transform H̃ of H is a normal effective Cartier divisor on Y . Suppose also
that D is a Q-divisor on X whose support does not contain H, and such that KX +D
is Q-Cartier. It follows from Remark 3.1.4 that in this case KH + D|H is Q-Cartier.
If we write f ∗(H) = H̃ +F , then

(D|H)H̃ = (DY +F)|H̃ . (3.4)

In particular, if X is Q-Gorenstein and we take D = 0, we obtain

KH̃/H = (KY/X −F)|H̃ . (3.5)

In order to check (3.4), note first that H̃ does not appear in either F or DY (since
F is f -exceptional and H does not appear in D). Therefore the right-hand side of
(3.4) is well-defined. Suppose now that m is a positive integer such that m(KX +D)
is Cartier. If follows from Remark 3.1.4 that

OH(mKH +mD|H)' OX (mKX +mD+mH)|H and

OH̃(mKH̃ +m(DY )|H̃)' OY (mKY +mDY +mH̃)|H̃ .

We deduce that we have

KH̃ +(DY +F)|H̃ ∼Q g∗(KH +D|F),

where g : H̃→H is the restriction of f . Therefore in order to prove (3.4), it is enough
to show that the proper transform on H̃ of every prime divisor on H has the same
coefficient in KH̃ +(DY +F)|H̃ and g∗(KH +D|F). Since this is an assertion that can
be checked in codimension 1 on H, we may assume that H and H̃ are smooth, and
after replacing X by an open neighborhood of H we may assume that also X and Y
are smooth.

In this case it is enough to show that we have the equality (3.5), and we do this
using the explicit description of KY/X and KH̃/H is terms of the Jacobians of the

maps f and g. Suppose we have local coordinates y1, . . . ,yn on Y at a point P ∈ H̃
and x1, . . . ,xn on X at f (P), such that H̃ is defined by (y1) and H is defined by (x1).
If f ∗(xi) = φi, then KY/X is defined at P by A = det(∂φi/∂y j)1≤i, j≤n. Furthermore,
if ψi = φi|y1=0, then KH̃/H is defined at P by B = det(∂ψi/∂y j)2≤i, j≤n. On the other
hand, we may write φ1 = y1u, where the ideal (u) defines F . Since ∂φ1/∂y1|y1=0 =
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u|y1=0 and ∂φ1/∂yi|y1=0 = 0 for 2≤ i≤ n, it follows that A|y1=0 = B ·u|y1=0, which
gives the equality (3.5).

Example 3.1.10. Let (X1,∆1) and (X2,∆2) be two log pairs. We consider the product
X = X1×X2, with the canonical projections pi : X → Xi, for i = 1,2. Note that for
every R-divisor Γi on Xi, we may consider the pull-back p∗i (Γi) ∈ Div(X)R, and this
is R-Cartier if Γi is. In particular, it is easy to check using the definition that we may
take

KX = p∗1(KX1)+ p∗2(KX2).

We therefore obtain a log pair (X ,∆), where ∆ = p∗1(∆1)+ p∗2(∆2). If fi : Yi→ Xi is
a log resolution of (Xi,∆i) for i = 1,2, it is straightforward to check that f = f1×
f2 : Y =Y1×Y2→ X is a log resolution of (X ,∆) and ∆Y = q∗1((∆1)Y1)+q∗2((∆2)Y2),
where qi : Y → Yi, for i = 1,2, are the canonical projections.

3.1.4 Log canonical and klt singularities

We now introduce some important classes of singularities for birational geometry.
We begin with two such classes that will play a prominent role in what follows,
and leave for later the discussion of other classes that will feature less in the next
chapters.

Definition 3.1.11. Let (X ,D) be a log pair.

i) The pair (X ,D) is log canonical if for every proper birational morphism f : Y →
X , with Y normal, all coefficients of DY are ≤ 1.

ii) The pair (X ,D) is Kawamata log canonical1 if for every proper birational mor-
phism f : Y → X , with Y normal, all coefficients of DY are < 1.

In terms of log discrepancies, we see that (X ,D) is klt (log canonical) if and
only if aE(X ,D) > 0 (respectively, aE(X ,D) ≥ 0) for every divisor E over X . It
is clear from definition that given a pair (X ,D) and a proper birational morphism
f : Y → X with Y normal, we have (X ,D) log canonical (klt) if and only if (Y,DY )
is log canonical (klt).

The conditions in Definition 3.1.11 involve all divisors over X . The key fact
that makes them checkable is that they can be tested on the coefficients of DY on
a log resolution Y . Recall that a log resolution of (X ,D), with D = ∑

r
i=1 aiDi, is a

projective birational morphism f : Y → X , with Y smooth, such that ExcDiv( f )+
∑

r
i=1 D̃i has simple normal crossings, where the D̃i are the proper transforms of the

Di on Y . For details about log resolutions, we refer to Section B.3.

Theorem 3.1.12. If (X ,D) is a log pair and f : Y → X is a log resolution of (X ,D),
then (X ,D) is log canonical (klt) if and only if all coefficients of DY are≤ 1 (respec-
tively, < 1).

1 Following the literature, we will abbreviate this as klt.
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An important special case of the theorem is the following: if X is a smooth variety
and D = ∑

r
i=1 aiDi is a simple normal crossing divisor on X , then (X ,D) is log

canonical (klt) if and only if ai ≤ 1 (respectively, ai < 1) for 1 ≤ i ≤ r. The key
for the proof of Theorem 3.1.12 is the following estimate for log discrepancies of
simple normal crossing pairs, which we will use again later.

Lemma 3.1.13. Let (X ,D) be a log pair, f : Y → X a log resolution of (X ,D), and
E = E1 + . . .+Er a simple normal crossing divisor on Y , containing all components
of DY . If F is a divisor over Y and E1, . . . ,Es are the components of E that contain
cX (F), then

aF(X ,D)≥
s

∑
i=1

ordF(Ei) ·aEi(X ,D)+(codimY (cY (F))− s), (3.6)

with equality if F is the exceptional divisor on the blow-up of Y along a connected
component of ∩s

i=1Ei.

Proof. Suppose first that codimY (cY (F)) = s. We consider a proper birational mor-
phism g : Z→ Y , with Z smooth, such that F is a smooth prime divisor on Z. If we
write DY = ∑

r
i=1 αiEi, then

aF(X ,D) = aF(Y,DY ) = 1+ordF(KZ/Y )−
r

∑
i=1

αi ·ordF(Ei).

Since aEi(X ,D) = aEi(Y,DY ) = 1−αi, the inequality (3.6) is equivalent to

ordF(KZ/Y )≥−1+
s

∑
i=1

ordF(Ei). (3.7)

If F is the exceptional divisor on the blow-up of X along a connected component of
∩s

i=1Ei, it follows from Example B.2.4 that we have equality in (3.7), hence in (3.6)
(note that in this case ordF(Ei) = 1 for 1≤ i≤ s).

We choose coordinates y1, . . . ,yn in an affine open neighborhood U of the generic
point of cY (F), such that Ei is defined in U by (yi) for 1 ≤ i ≤ s. We also choose
coordinates z1, . . . ,zn in some affine open subset V in Z that meets F , such that F is
defined in V by (z1). If bi = ordF(Ei) for 1≤ i≤ s, it follows that for every such i we
can write f ∗(yi) = zbi

1 hi for some hi ∈ OZ(V ). Therefore f ∗(dyi) = biz
bi−1
1 hidzi +

zbi
1 dhi. It is then clear that

f ∗(dy1∧ . . .∧dyn) = z
−1+∑

s
i=1 bi

1 η for some η ∈ H0(V,ωZ).

It follows from the definition of KZ/Y that ordF(KZ/Y )≥−1+∑
s
i=1 bi.

Suppose now that c := codimY (cY (F)) > s (note that c ≥ s, since E has sim-
ple normal crossings). After possibly replacing Y by an affine open subset meet-
ing cY (F), we may choose divisors Er+1, . . . ,Er+c−s containing cY (F) and such that
E ′ = ∑

r+c−s
i=1 Ei has simple normal crossings. Applying what we have already proved
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to E ′, and noting that

ordF(Ei)≥ 1 and aEi(Y,DY ) = 1 for r +1≤ i≤ c− s,

we obtain (3.6). This completes the proof of the lemma.

Proof of Theorem 3.1.12. The “only if” part follows from definition. For the con-
verse, suppose that F is a divisor over Y and let us write DY = ∑

r
i=1 aiEi. It follows

from Lemma 3.1.13 that

aF(X ,D)≥
r

∑
i=1

(1−ai) ·ordF(Ei), (3.8)

with the inequality being strict if ordF(Ei) = 0 for all i. It is then clear that if ai ≤ 1
for all i, then aF(X ,D)≥ 0, and that if ai < 1 for all i, then aF(X ,D) > 0.

For future reference, we record the following consequence of Lemma 3.1.13.

Corollary 3.1.14. If Y is a smooth variety and F is a divisor over Y , with center Z,
then aF(Y )≥ codimY (Z).

Proof. Let r = codimY (Z). After possibly replacing Y by an open subset intersecting
Z, we may assume that Z is smooth and that we have a simple normal crossing
divisor E = E1 + . . .+ Er such that Z = E1 ∩ . . .∩Er. By applying Lemma 3.1.13
with X = Y and D = 0, we obtain the formula in the corollary.

Remark 3.1.15. It is easy to see that the requirement for a log pair (X ,D) to satisfy
aE(X ,D)≥ 0 for all E is the weakest of its kind. More precisely, if dim(X)≥ 2 and
there is a divisor E over X such that aE(X ,D) < 0, then there is a sequence (Em)m≥1
of divisors over X with limm→∞ aEm(X ,D) = −∞. Indeed, let f : Y → X be a log
resolution of (X ,D), such that E appears as a smooth prime divisor on Y . Since
dim(Y ) ≥ 2, we may choose (after possibly restricting to an open subset) another
smooth divisor F on Y that has simple normal crossings with DY and such that E∩F
is nonempty, smooth, and connected. Let Y1 be the blow-up of Y along E ∩F , with
exceptional divisor F1, and let E1 be the proper transform of E on Y1. We repeat
this: given Em and Fm on Ym, we let Ym+1 be the blow-up of Ym along Em∩Fm, with
exceptional divisor Fm+1, and let Em+1 be the proper transform of Em on Ym+1. It
follows from Lemma 3.1.13 that

aFm(X ,D) = aFm−1(X ,D)+aE(X ,D),

and it follows by induction on m that aFm(X ,D) = m · aE(X ,D)+ aF(X ,D) for all
m. Therefore limm→∞ aEm(X ,D) =−∞.

We now give three examples. In each of these examples, we consider a divisor
D in a smooth variety X and want to determine for what q the pair (X ,qD) is log
canonical or klt.
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Example 3.1.16. Suppose that D = V ( f ), where f ∈ k[x1, . . . ,xn] is a homogeneous
polynomial of degree d that has an isolated singularity at 0. We consider the pair
(An,qD). If f : Y → An is the blow-up of the origin, with exceptional divisor E,
and if D̃ is the proper transform of D, then the intersection D̃∩E ⊂ E ' Pn−1 is
identified to the projective hypersurface H ⊂ Pn−1 defined by f . By assumption,
this is smooth, hence D̃ is smooth and intersects E transversely. Therefore f gives a
log resolution of (An,qD) and

(qD)Y = q f ∗(D)−KY/An = qD̃+(qd−n+1)E.

We conclude that (An,qD) is log canonical (klt) if and only if q ≤ min{1,n/d}
(respectively, q < min{1,n/d}).

Example 3.1.17. Let X be a smooth surface and C⊂ X an irreducible curve that has
a unique singular point P, which is a node, that is, the tangent cone at P consists
of two distinct lines, each with multiplicity 1. The blow-up f : Y → X of X at P,
with exceptional divisor E, gives a log resolution of (X ,qC) and (qC)Y = q f ∗(C)−
KY/X = qC̃+(2q−1)E, where C̃ is the proper transform of C. It follows that (X ,qC)
is log canonical (klt) if and only if q≤ 1 (respectively, q < 1).

Example 3.1.18. Let X = A2 = Spec(k[x,y]) and D = V ( f ), where f = x2 + y3.
With a slight abuse of notation, we use the same letter to denote both a divisor and its
proper transform on various blow-ups, making sure we always specify which variety
we consider. Let f1 : X1→ X be the blow-up at the origin, with exceptional divisor
E1. Both curves D and E1 on X1 are smooth, but they do not intersect transversely:
in the chart with coordinates x1 = x/y and y1 = y, the curves D and E1 are defined,
respectively, by (y1 + x2

1) and (y1), respectively. Let f2 : X2 → X1 be the blow-up
of X1 at the unique intersection point of D and E1, with exceptional divisor E2. On
X2 we have three smooth curves D, E1, E2, all intersecting in one point. We need
to blow-up one more time: if f3 : X3→ X2 is the blow-up of the intersection point,
with exceptional divisor E3, then on X3 the divisor D + E1 + E2 + E3 has simple
normal crossings. Therefore f = f1 ◦ f2 ◦ f3 is a log resolution of (X ,D). An easy
computation gives

f ∗(D) = D+2E1 +3E2 +6E3 and KX3/X = E1 +2E2 +4E3,

where the second formula follows by a repeated application of Remark 3.1.8. It is
straightforward to deduce that (A2,qD) is klt (log canonical) if and only if q < 5/6
(respectively, q≤ 5/6).

The following example assumes familiarity with toric varieties. We refer to
[Ful93] for the basic facts and notation concerning toric varieties.

Example 3.1.19. Suppose that X = X(∆) is a toric variety corresponding to the
fan ∆ . Recall that X is normal by definition. Let D1, . . . ,Dd be the prime toric
divisors, corresponding to the 1-dimensional cones in ∆ . If X is smooth, then
ωX ' OX (−D1− . . .−Dd). It follows that for every toric variety X , a canonical
divisor is given by KX =−D1− . . .−Dd .
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Consider a toric R-divisor D = a1D1 + . . .+ adDd . The R-divisor KX + D is R-
Cartier if and only if there is a piecewise linear function αD on the support |∆ | of
the fan such that αD(vi) = 1−ai for all i, where vi is the primitive generator of the
ray corresponding to Di. Suppose now that this is the case. It is known that there
is a toric resolution of singularities f : Y → X , corresponding to a fan ∆Y refining
∆ . Note that the sum of the prime toric divisors on Y has simple normal crossings.
Therefore f gives a log resolution of (X ,D). It then follows from Theorem 3.1.12
that in order to check whether (X ,D) is klt or log canonical it is enough to consider
log discrepancies with respect to prime toric divisors on such varieties Y . Each such
divisor corresponds to a primitive nonzero lattice element in |∆ |, and if Ev is the
divisor corresponding to v, then it follows from definition that aEv(X ,D) = αD(v).
Therefore the pair (X ,D) is klt (log canonical) if and only if αD ≥ 0 (respectively,
αD > 0) on |∆ |r {0}. Since αD is linear on each cone in ∆ , it is enough to check
this condition on the primitive ray generators. We conclude that (X ,D) is klt (log
canonical) if and only if ai < 1 for all i (respectively, ai ≤ 1 for all i). In other words,
the behavior is as if (X ,D) had simple normal crossings.

Example 3.1.20. Given two pairs (X1,∆1) and (X2,∆2), we consider the pair (X ,∆),
with X = X1×X2, as in Example 3.1.10. It follows from that example that (X ,∆) is
log canonical or klt if and only if both (X1,∆1) and (X2,∆2) are log canonical or klt,
respectively.

3.1.5 Log discrepancy for triples

One reason for considering log pairs (X ,D), as opposed to just normal varieties, is
that the divisor KX might not be Q-Cartier, hence its pull-back might not be defined.
On the other hand, even when working on a Q-Gorenstein variety, it turns out that
the classes of singularities defined in the previous subsection have intrinsic interest
for understanding singularities of divisors. With this in mind, once we allow divi-
sors, it is natural and often useful to also allow subschemes of higher codimension.
We now introduce the most general objects we will be concerned with.

Definition 3.1.21. For a variety X , we will consider the R-vector space with basis
the proper closed subschemes of X . Suppose that Z = ∑

r
i=1 qiZi is an element of

this vector space. The support Supp(Z ) of Z is the closed subset of X given by
the union of the Zi for which qi is nonzero. Furthermore, Z is effective if all qi are
nonnegative. If f : W → X is a morphism of varieties whose image is not contained
in any of the Zi, then we define f−1(Z ) := ∑

r
i=1 f−1(Zi).

Definition 3.1.22. A log triple (X ,D,Z ) consists of a normal variety X , an R-
divisor D on X such that KX + D is R-Cartier, and an element Z = ∑

r
i=1 qiZi of

the R-vector space with basis the proper closed subschemes of X . The triple is ef-
fective if both D and Z are effective and it is rational if the coefficients of both
D and Z are in Q. If ai is the ideal of Zi, we sometimes write the above triple as
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(X ,D,aq1
1 . . .aqr

r ). Note that for every such log triple (X ,∆ ,Z ), we have a log pair
(X ,D) to which we may apply our previous considerations. A triple as above with
Z = 0 is just a log pair, that we write as before as (X ,D). We write a triple for
which D = 0 as (X ,Z ), and we call it a higher-codimension pair. Note that in this
case X has to be Q-Gorenstein.

If (X ,D,Z ) is a log triple and E is a divisor over X , then the log discrepancy of
(X ,D,Z ) with respect to E is

aE(X ,D,Z ) := aE(X ,D)−ordE(Z ),

where if Z = ∑
r
i=1 qiZi, we put ordE(Z ) = ∑

r
i=1 qi ·ordE(Zi).

If (X ,D,Z ) is a log triple and f : Y → X is a proper birational morphism, with
Y normal, then we obtain a log triple (Y,DY , f−1(Z )), where if Z = ∑

r
i=1 qiZi, we

put f−1(Z ) := ∑
r
i=1 qi f−1(Zi). It is clear that for every divisor E over X we have

aE(X ,D,Z ) = aE(Y,DY , f−1(Z )).
In what follows, we put an equivalence relation on the set of triples on a fixed

variety, by identifying (X ,D,Z ) and (X ,D′,Z ′) if aE(X ,D,Z ) = aE(X ,D′,Z ′)
for all divisors E over X . We do not delve on this equivalence relation, but only
mention a few points:

1) Given a log triple (X ,D,Z ), with Z = q1Z1 + . . .+qrZr, if Z1 is defined by the
ideal IZ1 and the closed subscheme Z′1 is defined by Im

Z1
, for a positive integer m,

then we identify (X ,D,Z ) and (X ,D,Z ′), where Z ′= q1
m Z′1 +q2Z2 + · · ·+qrZr.

2) If (X ,D,Z ) is a log triple with Z = ∑
r
i=1 qiZi and q1 = q2, then we identify

(X ,D,Z ) with (X ,D,Z ′), where Z ′ = q1Z′1 + q3Z3 + . . . + qrZr, where Z′1 is
defined by the product of the ideals defining Z1 and Z2.

3) If (X ,D,Z ) is a log triple with Z = ∑
r
i=1 qiZi such that each Zi is an effective

Cartier divisor, then we identify this triple with the log pair (X ,D+Z ).
4) If (X ,D,Z ) is a log triple such that we can write D = ∑

s
i=1 aiDi, for effec-

tive Cartier divisors Di and ai ∈ R, then we identify (X ,D,Z ) with the higher-
codimension pair (X ,D+Z ).

Remark 3.1.23. By using the above identifications, we see that if X is Q-Gorenstein,
then every effective rational triple (X ,D,Z ) can be identified to a pair (X ,q · Z),
where Z is a closed subscheme of X and q is a nonnegative rational number.

Definition 3.1.24. As in the case of log pairs, we say that a log triple (X ,D,Z ) is
log canonical (klt) if aE(X ,D,Z ) ≥ 0 (respectively, aE(X ,D,Z ) > 0) for every
divisor E over X .

It follows from definition that if (X ,D,Z ) is a log triple and f : Y → X is a
proper birational morphism, with Y normal, then (X ,D,Z ) is log canonical or klt if
and only if (Y,DY , f−1(Z )) has the same property. In particular, if Z = ∑

r
i=1 qiZi

and f factors through the blow-up of X along Zi for every i, then each f−1(Zi) is an
effective Cartier divisor, hence we may consider f−1(Z ) as an R-Cartier R-divisor.
Therefore we identify the pair (Y,DY , f−1(Z )) with the log pair (Y,DY + f−1(Z )).
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This allows us to reduce many of the formal aspects concerning triples to the case
of log pairs.

A log resolution of a log triple (X ,D,Z ) is a projective, birational morphism
f : Y → X , with Y smooth, and which satisfies the following conditions:

i) If Z = ∑
r
i=1 qiZi, then each f−1(Zi) is an effective divisor.

ii) If D = ∑
s
j=1 a jD j, and D̃ j is the proper transform of D j on Y , then the divisor

ExcDiv( f )+∑
r
i=m f−1(Zi)+∑

s
j=1 D̃ j has simple normal crossings.

It follows from Remark B.3.11 that log resolutions for log triples exist. Note that
if f : Y → X is a log resolution of (X ,D,Z ), then DY + f−1(Z ) is a simple nor-
mal crossings divisor. Theorem 3.1.12 implies that one can check whether a triple
(X ,D,Z ) is log canonical or klt using a log resolution.

Corollary 3.1.25. If f : Y → X is a log resolution of the log triple (X ,D,Z ) and we
write DY + f−1(Z ) = ∑

r
i=1 αiEi, then (X ,D) is log canonical (klt) if and only if all

αi ≤ 1 (respectively, αi < 1) for all i.

Proof. The triple (X ,D,Z ) is log canonical or klt if and only if the triple (Y,DY +
f−1(Z )) has the same property. Therefore the assertion in the corollary follows
from Theorem 3.1.12.

3.1.6 Plt, canonical, and terminal pairs

We now introduce a few other classes of singularities that have traditionally played
an important role in the minimal model program. They are defined in terms of log
discrepancies for exceptional divisors over X . In order to give a uniform definition,
it is convenient to introduce the exceptional log discrepancy of a triple (X ,D,Z ),
defined by

LogDiscrep(X ,D,Z ) = inf{aE(X ,D,Z ) | E exceptional divisor over X}.

Definition 3.1.26. Let (X ,D,Z ) be a log triple.

i) (X ,D,Z ) is purely log terminal2 if LogDiscrep(X ,D,Z ) > 0.
ii) (X ,D,Z ) is canonical if LogDiscrep(X ,D,Z )≥ 1.

iii) (X ,D,Z ) is terminal if LogDiscrep(X ,D,Z ) > 1.

Note that if X is 1-Gorenstein and D and Z have integer coefficients, then (X ,D,Z )
is plt if and only if it is canonical. We also note that if dimX = 1, then there are no
exceptional divisors over X , hence the above conditions are vacuous.

Remark 3.1.27. It follows from Remark 3.1.15 that if dimX ≥ 2 and there is a divisor
E over X (exceptional or not) such that aE(X ,D,Z ) < 0, then there is a sequence of

2 This is abbreviated as plt.
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exceptional divisors (Em)m≥1 over X with limm→∞ aEm(X ,D,Z ) = −∞. Therefore
LogDiscrep(X ,D,Z ) =−∞. In particular, this implies that if (X ,D,Z ) is plt, then
(X ,D,Z ) is log canonical.

Remark 3.1.28. Note that unlike in the case of klt triples, a triple can be plt and have
a divisor E with aE(X ,D,Z ) = 0. In this case, E has to be a prime divisor on X .
Furthermore, if E1 and E2 are two such divisors, and for example E1 is normal and
Cartier, then E1 ∩E2 = /0. Indeed, otherwise E1 ∩E2 has codimension 2 in X , and
each generic point of E1∩E2 lies in the smooth locus of E1, hence also in the smooth
loci of X and E2 (since E1 is normal). After restricting to a suitable open subset, we
may assume that X is smooth and E1, E2 are smooth, and meeting transversely. If E
is the exceptional divisor on the blow-up of a connected component of E1∩E2, then
aE(X ,∆ ,Z ) = aE1(X ,∆ ,Z )+aE2(X ,∆ ,Z ) = 0, hence (X ,∆ ,Z ) cannot be plt.

Remark 3.1.29. We have the following implications between the classes of singular-
ities that we introduced so far:

terminal ⇒ canonical ⇒ plt ⇒ log canonical,

where for the last implication we need dimX ≥ 2.

We show that as in the case of log canonical and klt singularities, one can check
whether a triple (X ,D,Z ) is plt, canonical, or terminal just by checking a log res-
olution. More generally, LogDiscrep(X ,D,Z ) can be computed on a log resolution
of (X ,D,Z ).

Theorem 3.1.30. If f : Y → X is a log resolution of the log triple (X ,D,Z ), with
dimX ≥ 2, and we write DY + f−1(Z ) = ∑

r
i=1 αiEi (where we assume that all f -

exceptional divisors on Y appear amongst the Ei), then the following hold:

i) LogDiscrep(X ,D,Z ) ≥ 0 if and only if LogDiscrep(X ,D,Z ) 6= −∞, which is
the case if and only if αi ≤ 1 for all i.

ii) If αi ≤ 1 for all i, then

LogDiscrep(X ,D,Z ) = min{2,min
i∈I

(1−αi),min
i6∈I

(2−αi), min
(i, j)∈J

(2−αi−α j)},

(3.9)
where I is the set of those i such that Ei is f -exceptional and J is the set of those
pairs (i, j) with i 6= j and Ei∩E j 6= /0.

Proof. It follows from Corollary 3.1.25 that (X ,D,Z ) is log canonical if and only
if αi ≤ 1 for all i. It is clear that if (X ,D,Z ) is log canonical, then we have
LogDiscrep(X ,D,Z ) ≥ 0. On the other hand, we have seen in Remark 3.1.27 that
if (X ,D,Z ) is not log canonical, then LogDiscrep(X ,D,Z ) =−∞. This proves the
assertion in i).

Suppose now that αi ≤ 1 for all i, and let τ = LogDiscrep(X ,D,Z ) and τ ′

be the right-hand side of (3.9). If F is the exceptional divisor of the blow-up
along a codimension 2 smooth subvariety not contained in either of the Ei, then
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aE(X ,D,Z ) = 2, hence τ ≤ 2. It is clear from definition that τ ≤ 1−αi for all
i ∈ I. Furthermore, given any i, if T is the exceptional divisor of the blow-up
along a smooth, codimension 1 subvariety of Ei not contained in any other E j, then
aT (X ,D,Z ) = 2−αi. Suppose now that Ei and E j are two distinct divisors that
intersect and F is the exceptional divisor on the blow-up along a connected com-
ponent of Ei ∩E j. It follows from Lemma 3.1.13 that aF(X ,D,Z ) = 2−αi−α j,
hence τ ≤ 2−αi−α . By putting all these together we have τ ≤ τ ′.

In order to prove the reverse inequality, let G be an arbitrary exceptional di-
visor over X , and suppose that cY (G) is contained in s of the Ei. It follows from
Lemma 3.1.13 that

aG(X ,D,Z )≥
r

∑
i=1

ordF(Ei) · (1−αi)+(codimY (cY (G))− s). (3.10)

If cY (F)⊆Ei for some f -exceptional Ei, then (3.10) implies aG(X ,D,Z )≥ 1−αi≥
τ ′. Suppose now that this is not the case. After possibly reordering the Ei, we may
assume that cY (G)⊆ Ei if and only if 1≤ i≤ s. If s≥ 2, then (3.10) implies

aG(X ,D,Z )≥
s

∑
i=1

(1−αi)≥ 2−αi−α j ≥ τ
′.

If s = 1 and codimY (cY (G))≥ 2, then (3.10) gives aG(X ,D,Z )≥ 2−αi ≥ τ ′. Since
G cannot be equal to one of the non-exceptional Ei, and all f -exceptional divi-
sors on Y appear amongst the Ei, the only left case to consider is when s = 0 and
codimY (cY (G))≥ 2, when (3.10) implies aG(X ,D,Z )≥ 2. Therefore τ ≥ τ ′, which
completes the proof of the theorem.

Remark 3.1.31. Given a triple (X ,D,Z ), one can always find a log resolution
f : Y → X of this triple such that no two proper transforms of distinct prime divisors
that appear in D or in the support of the schemes in Z intersect on Y . Indeed, given
any log resolution, we consider an intersection of such proper transforms that has
smallest possible dimension and blow it up. Then either the smallest such dimension
goes up, or it stays the same, but the number of subsets of proper transforms with
a nonempty intersection of precisely this dimension goes down. After finitely many
such steps, we achieve a log resolution with the desired property.

Given such a log resolution, it is worth spelling out the conditions for (X ,D,Z )
to be plt, canonical, and terminal, as follow from Theorem 3.1.30. If DY + f−1(Z )=
∑

r
i=1 αiEi, then (X ,D,Z ) is plt if and only if αi ≤ 1 for all i, with strict inequality

if Ei is exceptional. The pair (X ,D,Z ) is canonical (terminal) if and only if αi ≤ 0
(αi < 0) if Ei is exceptional and αi ≤ 1 (αi < 1) if Ei is not exceptional.

An important case is that of a Q-Gorenstein variety X . In this case, if f : Y → X
is a log resolution, then X is canonical if and only if KY/X is effective, and it is ter-
minal if KY/X is effective and its support is ExcDiv( f ). Note that smooth varieties
are terminal. More generally, if X has a small resolution, that is, a resolution of sin-
gularities such that the exceptional locus has codimension ≥ 2, then X has terminal
singularities.
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Example 3.1.32. Let f ∈ k[x1, . . . ,xn], with n≥ 3, be a nonzero homogeneous poly-
nomial of degree d, such that H = V ( f )⊂An has an isolated singularity at 0. Since
H is Cohen-Macaulay, being a hypersurface, and its singular locus has codimension
≥ 2, it follows that H is normal. If f : Y → An is the blow-up at 0, with exceptional
divisor E, we have seen in Example 3.1.16 that f is a log resolution of (An,H) and
we have KY/An = (n−1)E and f ∗(H) = H̃ + dE, where H̃ is the proper transform
of H. Therefore the induced map g : H̃ → H is a log resolution of H. It follows
from Example 3.1.9 that if E1 = E|H , then KH̃/H = (n−1−d)E1. Therefore H has
terminal singularities if and only if d ≤ n−2, canonical singularities if and only if
d ≤ n−1, and log canonical singularities if and only if d ≤ n.

Example 3.1.33. We now consider the condition for a toric variety to have canoni-
cal or terminal singularities. For this, we rely on the discussion in Example 3.1.19.
Suppose that X = X(∆) is a Q-Gorenstein toric variety and α : |∆ |→R is the piece-
wise linear function such that α(vi) = 1 for every primitive ray generator vi. Note
that a prime toric divisor over X corresponding to the primitive lattice element v is
exceptional if and only if v does not lie on any ray (or equivalently, v 6= vi for every
i). Therefore X has canonical singularities if and only if for every cone σ ∈ ∆ , there
are no lattice points in the relative interior of the simplex σ0 = {v ∈ σ | α(v)≤ 1}.
Similarly, X has terminal singularities if and only if for every cone σ ∈ ∆ , the only
lattice points in σ0 are 0 and the vi.

Example 3.1.34. We show that in dimension 2, terminal singularities are smooth
and canonical singularities are rational double points. Suppose that X is a normal
surface with canonical singularities. Since the singular locus is zero-dimensional,
we may assume that Xsing = {P}. Let f : Y → X be a resolution of singularities
that is an isomorphism over X r {P}. After possibly contracting the (−1)-curves
in the fiber over P, we may assume that f is minimal, that is, there are no curves
C ⊆ f−1(P) with C ' P1 and (C2) = −1. Let C1, . . . ,Cm be the curves in the fiber
over P.

We claim that since KY/X is effective, we must have KY/X = 0. By Corol-
lary 1.6.36, since KY/X is effective and f -exceptional, it is enough to show that
KY/X is f -nef, that is, (KY ·Ci) ≥ 0 for all i. Note that by adjunction, we have
2pa(Ci)−2 = (KY ·Ci)+(C2

i ) and (C2
i ) < 0 by Proposition 1.6.35. Since pa(Ci)≥ 0

and we cannot have both pa(Ci) = 0 and (C2
i ) = −1, it follows that (KY ·Ci) ≥ 0,

which implies our assertion.
We conclude that X has canonical singularities if and only if KY/X = 0. In par-

ticular, X has terminal singularities if and only if dim f−1(P) = 0, which is the case
if and only if X is smooth. Furthermore, the above computation shows that if X has
canonical singularities, then 2pa(Ci)− 2 = (C2

i ) < 0. Therefore pa(Ci) = 0, hence
Ci ' P1, and (C2

i ) =−2 (one says that Ci is a (−2)-curve). It is also easy to see that
(Ci ·C j) is either 0 or 1 if i 6= j. Indeed, recall that by Proposition 1.6.35 we have
((aCi +bC j)2) < 0 for all (a,b)∈R2 r{(0,0)}. Therefore (Ci ·C j)2 < (C2

i )(C2
j ) = 4,

which implies our assertion. Therefore any two of the Ci meet transversely. A sim-
ilar argument shows that there are no three of the Ci meeting in a point: if i, j,k are
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pairwise distinct and Ci,C j,Ck meet in a common point, then ((Ci +C j +Ck)2) = 0,
a contradiction. We conclude that C1 + . . .+Cm is a simple normal crossings divi-
sor. Arguing in the same way, one sees that the intersection graph3 is a tree. One
can show that unless X is smooth, such a resolution exists if and only if (X ,P) is
a rational double point, that is, a rational singularity (in the sense of Section 3.3),
such that OX ,P is isomorphic to the local ring of a hypersurface of multiplicity 2.
Furthermore, the possible intersection graphs are given by the Dynkin diagrams
(An)n≥1, (Dn)n≥4, and (E6), (E7), and (E8). Each such diagram corresponds to the
case when the completion ÔX ,P is isomorphic to the completion of the ring of the
corresponding rational double point:

(An) X = V (x2 + y2 + zn+1)⊂ A3,
(Dn) X = V (x2 + y2z+ zn−1)⊂ A3,
(E6) X = V (x2 + y3 + z4)⊂ A3,
(E7) X = V (x2 + y3 + yz3)⊂ A3,
(E8) X = V (x2 + y3 + z5)⊂ A3.

We refer to [Băd01, Chap. 3] for a discussion of rational double points on surfaces.

In practice, the notions of canonical and terminal singularities are used almost
exclusively for varieties, rather than pairs or triples. Terminal singularities are im-
portant since these are the singularities of the minimal models that we now introduce
(it has been realized early on that one cannot just consider smooth minmal models).

Definition 3.1.35. Let S be a fixed variety. A projective variety X over S is a minimal
model if it is normal, has terminal singularities, and KX is nef over S.

The relevance of this notion comes from the following application of the negativ-
ity lemma, showing that Q-factorial minimal models are indeed minimal amongst
birational models that are normal, Q-factorial, and with terminal singularities.

Proposition 3.1.36. If f : X → Y is a birational morphism of normal projective va-
rieties over a variety S, with Y being terminal and Q-factorial and KX being nef
over S, then f is an isomorphism.

Proof. Since KX is nef over S, it is in particular f -nef. We can write KX = f ∗(KY )+
KX/Y , hence KX/Y is f -nef, too. Since it is also effective and f -exceptional, it is
0 by Corollary 1.6.36. Furthermore, since every f -exceptional divisor has positive
coefficient in KX/Y , we deduce that codimX (Exc( f ))≥ 2.

On the other hand, it follows from Lemma 2.2.4 that since Y is Q-factorial, there
is an effective f -exceptional divisor F on X such that −F is f -ample. We have seen
that there are no f -exceptional divisors, hence F = 0. This implies that f is finite,
and since it is also birational and Y is normal, it follows that it is an isomorphism.

3 This is the graph with vertices 1,2, . . . ,m, and such that i and j are joined by an edge if Ci and C j
intersect.
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A similar argument shows that any two birational minimal models are isomorphic
in codimension 1,

Proposition 3.1.37. If φ : X 99KY is a birational map between two minimal models
over a variety S, then φ is an isomorphism in codimension 1, that is, there are open
subsets U ⊆ X and V ⊆ Y , with codimX (X rU)≥ 2 and codimY (Y rV )≥ 2, such
that f induces an isomorphism U 'V .

Proof. Let X0 ⊆ X and Y0 ⊆ Y be the largest open subsets on which φ and, respec-
tively, φ−1 are defined. Since both X and Y are normal, we have codimX (X rX0)≥ 2
and codimY (Y rY0)≥ 2. If

U = {x ∈ X0 | φ(x) ∈ Y0} and V = {y ∈ Y0 | φ−1(y) ∈ X0},

it is clear that φ induces an isomorphism U 'V . Therefore it is enough to prove that
codimX (X rU)≥ 2 and codimY (Y rV )≥ 2.

For this, it is enough to show that codimY (φ(E∩X0)) = 1 for every prime divisor
E on X . Indeed, if this is the case, since codimY (Y r Y0) ≥ 2, it follows that E
intersects U . From the fact that this holds for all E, we deduce that codimX (X rU)≥
2, and by symmetry codimY (Y rV )≥ 2.

Consider a normal variety W with projective, birational morphisms f : W → X
and g : W → Y such that φ = g ◦ f−1 (for example, one can take W to be the nor-
malization of the closure in X ×Y of the graph of φ : X0→ Y ). Let Ẽ be the proper
transform of E on W . If codimY (φ(E ∩X0))≥ 2, it follows that Ẽ is g-exceptional,
and since Y has terminal singularities, Ẽ appears with a positive coefficient αE in
KW/Y . Note that

KW/Y −KW/X ∼Q f ∗(KX )−g∗(KY )

is g-nef, since KX being nef over S implies that f ∗(KX ) is nef over S, hence over Y .
On the other hand, KW/X is effective, since X has terminal singularities. Therefore
g∗(KW/X −KW/Y ) = g∗(KW/X ) is effective, and we conclude from Corollary 1.6.36
that KW/X −KW/Y is effective. This contradicts the fact that the coefficient of E in
KW/X −KW/Y is −αE < 0. Therefore codimY (φ(E ∩X0)) = 1, which completes the
proof of the theorem.

A fundamental problem in birational geometry is the following

Conjecture 3.1.38 (Minimal model conjecture). Every smooth projective variety
X such that H0(X ,ωm

X ) 6= 0 for some positive integer m, is birational to a minimal
model.

A recent breakthrough in birational geometry has been the proof due to Birkar,
Cascini, Hacon and McKernan [BCHM10] of the above conjecture for varieties of
general type (a smooth projective variety X is of general type if ωX is a big line
bundle).

Canonical singularities are relevant for several reasons. First, they are related
to rational singularities (see Section 3.3). Second, they guarantee that the Grauert–
Rimenschneider sheaf is canonically isomorphic to the dualizing sheaf. More pre-
cisely, we have the following characterization of canonical singularities.
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Proposition 3.1.39. If X is a normal, Q-Gorenstein variety, then X has canonical
singularities if and only if for every proper birational morphism f : Y → X, with Y
normal, the inclusion f∗OY (mKY ) ↪→ OX (mKX ) is an isomorphism for all positive
integers m. Furthermore, if f is a log resolution of X, then it is enough to check the
condition for this f and one value of m that is divisible by the index of X.

Proof. Recall that by Remark 3.1.2, we always have an inclusion f∗OY (mKY ) ↪→
OX (mKX ) of subsheaves of the function field. Suppose first that X has canonical
singularities, hence KY/X is an effective f -exceptional Q-divisor and we have KY =
f ∗(KX )+ KY/X . We need to show that if φ is a nonzero rational function such that
divX (φ) + mKX is effective on some open subset V of X , then divY (φ) + mKY is
effective on f−1(V ). This follows from the fact that

divY (φ)+mKY = f ∗(divX (φ)+mKX )+mKY/X

is the sum of two divisors, both of them effective on f−1(V ).
Conversely, suppose that we have a log resolution f : Y → X of X and a posi-

tive integer m such that mKX is Cartier and OX (mKX ) = f∗OY (mKY ). Since mKY =
f ∗(mKX )+mKY/X , it follows that f∗OY (mKY ) = OX (mKX ) · f∗OY (mKY/X ). There-
fore f∗OY (mKY/X ) = OX . Since 1 gives a section of OX , it follows that it also gives a
section of f∗OY (mKY/X ), hence mKY/X is effective. It follows from Theorem 3.1.30
that X has canonical singularities.

Corollary 3.1.40. If X is a variety with canonical singularities, then ωGR
X =OX (KX ).

Another reason why canonical singularities are important is that they appear on
canonical models of varieties of general type. A canonically polarized variety Y is
a projective normal variety Y , with canonical singularities, such that KY is ample.
One has the following result due to Reid [Rei87].

Theorem 3.1.41. A smooth projective variety of general type X is birationally
equivalent to a canonically polarized variety Y if and only if the canonical ring
R(X ,ωX ) :=⊕m≥0H0(X ,ωm

X ) is finitely generated. In this case Y ' Proj(R(X ,ωX )).

A fundamental result of [BCHM10] is that indeed, the canonical ring R(X ,ωX )
is finitely generated for every smooth projective variety X . When X is of general
type, the variety Proj(R(X ,ωX )) is the canonical model of X .

3.2 Shokurov-Kollár connectedness theorem

Let (X ,D,Z ) be a rational triple and f : Y → X a log resolution of this triple. We
write as usual KY +DY = f ∗(KX +DX ) with KX = f∗(KY ). We can uniquely write

bDY + f−1(Z )c= A−B,

with A and B effective divisors, without common components. Note that the triple
(X ,D,Z ) is klt if and only if A = 0. In general, we introduce the following locus.
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Definition 3.2.1. The non-klt locus of (X ,D,Z ) is the set

Nklt(X ,D,Z ) := f (Supp(A))⊆ X .

It follows from definition that Nklt(X ,D,Z ) is the smallest closed subset of X
such that if U = X rNklt(X ,D,Z ), then the triple (U,D|U ,Z |U ) is klt. This implies
that Nklt(X ,D,Z ) does not depend on the choice of log resolution. We also note
that one can equivalently describe the non-klt locus by

Nklt(X ,D,Z ) =
⋃

E;aE (X ,D,Z )<0

cX (E),

where the union is over all divisors E over X with aE(X ,D,Z ) < 0.
The following important connectedness theorem was first discovered in dimen-

sion 2 by Shokurov [Sho92], and then established in all dimensions by Kollár
[Kol92, Chapter 17].

Theorem 3.2.2. With the above notation, if the triple (X ,D,Z ) is effective, then all
fibers of the induced map Supp(A)→Nklt(X ,D,Z ) are connected. In particular, A
is connected in a neighborhood of any fiber of f .

We will deduce this from the following more general version.

Theorem 3.2.3. Let g : X →W be a projective surjective morphism, with X a nor-
mal variety, and F a Q-divisor on X such that the following hold:

i) −(KX +F) is Q-Cartier, and it is g-big and g-nef.
ii) There is an effective Cartier divisor G on X such that g∗OX (G) = OW and F +G

is effective.

In this case the induced map Nklt(X ,F)→W has connected fibers. In particular,
Nklt(X ,F) is connected in the neighborhood of any fiber of g.

Proof. Let f : Y → X be a log resolution of the pair (X ,F) and h = g◦ f . We write
as usual KY +FY = f ∗(KX +F), hence by assumption we have that−(KY +FY ) is h-
big and h-nef. Let us write bFY c= A−B, where A and B are effective divisors, with
no common component. Since FY −bFY c has simple normal crossings, it follows
from the relative vanishing theorem (see Theorem 2.6.1) that R1h∗OY (B−A) = 0.

We consider the commutative diagram

OY //

��

OA

��
0 // OY (B−A) // OY (B) // OA(B) // 0.

Applying h∗ and using the above vanishing, we see that the induced morphism
h∗OY (B)→ h∗OA(B) is surjective.
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On the other hand, since F + G is effective, it follows that there is an effective
f -exceptional divisor G′ such that B≤ f ∗(G)+G′, which gives using Lemma B.2.5
and the hypothesis on G

h∗OY (B)⊆ g∗( f∗OY ( f ∗(G)+G′)) = g∗OX (G) = OW .

Therefore the natural morphism OW → h∗OY (B) is an isomorphism, hence the mor-
phism φ : OW → h∗OA(B) is surjective. Note that OA(B) is a line bundle on A. If
the fiber of Supp(A)→W over some w ∈W is disconnected, then the theorem on
formal functions (see [Har77, Theorem 11.1]) implies that the local ring ÔW,w has
a quotient that decomposes nontrivially as the direct sum of two modules. This is a
contradiction, proving that the map Supp(A)→W has connected fibers. In particu-
lar, the induced map Nklt(X ,F) = f (Supp(A))→W has connected fibers.

Proof of Theorem 3.2.2. We use the notation introduced before the statement of
Theorem 3.2.2. We apply Theorem 3.2.3 with g = f and F = DY + f−1(Z ). Since
f is birational, every divisor on Y is f -big. Moreover, −(KY + F) = − f ∗(KX +
D)− f−1(Z ) is f -nef by Lemma 3.2.4 below. We have bFc = A−B and by def-
inition Nklt(Y,F) = Supp(A). Since the coefficients of both D and Z are nonneg-
ative, it follows that every prime divisor on Y that appears with negative coeffi-
cient in F is f -exceptional. Therefore we can find an effective f -exceptional divi-
sor G such that F + G is effective. Since f is birational, we have f∗OY (G) = OX
by Lemma B.2.5. We can thus apply Theorem 3.2.3 to conclude that the map
Supp(A)→ f (Supp(A)) = Nklt(X ,D,Z ) has connected fibers.

Lemma 3.2.4. If f : Y → X is a projective, birational morphism of varieties and Z
is a closed subscheme of X such that f−1(Z) is an effective Cartier divisor, then
− f−1(Z) is f -nef.

Proof. It follows from the universal property of the blow-up (see [Har77, Propo-
sition 7.14]) that we can factor f as g ◦ h, where g : X̃ → X is the blow-up of X
along Z. If E is the effective Cartier divisor on X̃ such that g−1(Z) = E, then −E is
g-ample, which implies that − f−1(Z) = h∗(−E) is f -nef.

The connectedness result in Theorem 3.2.2 is very useful when studying restric-
tion properties of pairs. We now introduce this setting and give the first results in
this direction. We will return to this circle of ideas several times later in the book.

Let (X ,D,Z ) be a rational triple and suppose that H is an irreducible normal
Cartier divisor on X which is not contained in Supp(D)∪Supp(Z ). We have seen
in Remark 3.1.4 that in this case we have an induced divisor D|H on H such that
KH + D|H is Q-Cartier. If Z = ∑i qiZi, we also put Z |H = ∑i qiZi|H . The adjunc-
tion formula suggests that in a neighborhood of H, the singularities of the two triples
(X ,D+H,Z ) and (H,D|H ,Z |H) are related. In this setting one talks about adjunc-
tion when deducing properties of (H,D|H ,Z |H) from those of (X ,D + H,Z ) and
about inversion of adjunction when going in the reverse direction.

Let f : Y → X be a log resolution of (X ,D+H,Z ). If H̃ is the proper transform
of H, then by assumption H̃ is smooth and it is easy to see that the induced morphism
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g : H̃ → H is a log resolution of (H,D|H ,ZH). We have seen in Remark 3.1.9 that
if we write f ∗(H) = H̃ +F , then H̃ 6⊆ Supp(F) and

(D|H)H̃ = (DY +F)|H̃ .

Moreover, it is clear that H̃ 6⊆ Supp( f−1(Z )) and f−1(Z )|H̃ = g−1(Z |H). We also
note that for every prime divisor E 6= H̃ that appears in Supp(DY )∪Supp( f−1(Z )),
the intersection E∩ H̃ is smooth, though possibly disconnected. We conclude that if
E ∩ H̃ is nonempty, then for every irreducible component E0 of E ∩ H̃, we have

aE(X ,D+H,Z ) = aE0(H,D|H ,Z |H). (3.11)

Note also that aH̃(X ,H + D,Z ) = 0. For example, the above discussion gives the
following adjunction statement.

Proposition 3.2.5. With the above notation, if the triple (X ,D+H,Z ) is log canon-
ical, then the triple (H,D|H ,Z |H) is log canonical. Similarly, if we have aE(X ,D+
H,Z ) > 0 for every divisor E over X different from H̃, then (H,D|H ,Z |H) is klt.

We can do better if we start with a rational triple (X ,D,Z ) and let H be general
in a base-point free linear system. Note that in this case H is automatically normal
by Bertini. It is not necessarily irreducible, but for the discussion that follows this
is not important: we can simply consider separately each irreducible component.
Therefore, for the ease of notation, we keep the assumption that H is irreducible.
Let f : Y → X be a log resolution of (X ,D,Z ). Since f ∗(H) is again a general
member of a base-point free linear system, it follows from Kleiman’s version of
Bertini’s theorem that f ∗(H) is again smooth and has simple normal crossings with
the divisors contained in Supp(DY )∪Supp( f−1(Z ))∪Exc( f ). In particular, we see
that in this case f ∗(H) = H̃. Moreover, f is a log resolution of (X ,D + H,Z ) and
the induced morphism g : H̃ → H is a log resolution of (H,D|H ,Z |H). Note that
if E 6= H̃ is a prime divisor that appears in Supp(DY )∪ Supp( f−1(Z )) such that
dim(cX (E)) = 0, we have E ∩ H̃ = /0 (recall that H is general in a base-point free
linear system). On the other hand, if E∩H̃ 6= /0, then for every irreducible component
E0 of E ∩ H̃, we have

aE(X ,D+H,Z ) = aE(X ,D,Z ) = aE0(H,D|H ,Z |H). (3.12)

We thus obtain the following version of the above adjunction statement.

Proposition 3.2.6. If the triple (X ,D,Z ) is klt (log canonical) outside a finite set
of points, then for a general member H of a base-point free linear system on X, the
triple (H,D|H ,Z |H) is klt (log canonical).

Inversion of adjunction is more subtle. We begin with the following application
of the Shokurov-Kollár connectedness theorem.

Corollary 3.2.7. Let (X ,D,Z ) be an effective rational pair and H an irreducible,
normal Cartier divisor on X, not contained in Supp(D)∪ Supp(Z ). If there is a
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prime divisor E over X different from the proper transform of H such that aE(X ,D+
H,Z )≤ 0 and cX (E)∩H 6= /0, then for every irreducible component W of cX (E)∩
H, there exists a divisor E0 over H such that W ⊆ cH(E0) and aE0(H,D|H ,Z |H)≤
0.

Proof. Let f : Y → X be a log resolution of (X ,D + H,Z ) such that E is a divisor
on Y and let H̃ be the proper transform of H. As in Theorem 3.2.2, we write

b(D+H)Y + f−1(Z )c= A−B.

Note that both E and H̃ are contained in the support of A.
Let ηW be the generic point of W . Since ηW ∈ f (E)∩ f (H̃) and f−1(ηW )∩

Supp(A) is connected by Theorem 3.2.2, it follows that there is a prime divisor E ′

in Supp(A), with E ′ 6= H̃ and E ′∩ H̃ ∩ f−1(ηW ) 6= /0. We deduce from (3.11) that if
E0 is a connected component of E ′∩ H̃ that intersects f−1(ηW ), then

aE0(H,D|H ,Z |H) = aE(X ,D+H,Z )≤ 0.

Since W ⊆ f (E0), this completes the proof of the corollary.

In particular, we obtain the following version of inversion of adjunction. Note
that in this case, we have to restrict to effective triples.

Corollary 3.2.8. Let (X ,D,Z ) be an effective rational pair and H an irreducible,
normal effective Cartier divisor on X, not contained in Supp(D)∪ Supp(Z ). If
(H,D|H ,Z |H) is klt, then for every divisor E over X different from the proper trans-
form of H and with cX (E)∩H 6= /0, we have aE(X ,D + H,Z ) > 0. In particular,
(X ,D+H,Z ) is plt in some neighborhood of H.

The following consequence of Corollary 3.2.7 is useful in the study of singulari-
ties of rational maps.

Corollary 3.2.9. Suppose that the rational effective triple (X ,D,Z ) is not termi-
nal, and let E be an exceptional divisor over X such that aE(X ,D,Z ) ≤ 1. If H
is a normal, irreducible, effective Cartier divisor on X such that cX (E) ⊆ H, then
(H,D|H ,Z |H) is not log terminal around any point of cX (E).

Proof. Note that since E is exceptional, E is different from the proper transform of
H. Since cX (E)⊆ H, we have

aE(X ,D+H,Z )≤ aE(X ,D,Z )−1≤ 0

and the assertion follows from Corollary 3.2.7.

3.3 Rational singularities

In this section we discuss rational singularities. This class of singularities has a
longer history than the singularities of pairs discussed in Section 3.1, going back in
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the case of surfaces to [Art66]. The definition is of a cohomological nature and as
a result, the proofs of the main results rely on Grothendieck’s duality theorem. For
the benefit of the reader, we first prove these results in the global setting, following
[KM98]. The advantage in this case is that the proofs become more elementary,
only making use of Serre duality. For the brave reader we then return and reprove
the results in the general setting.

In this section we work over an algebraically closed field k of characteristic 0.
The hypothesis on the characteristic is important, since we will make use of vanish-
ing theorems. Let X be a variety and f : Y → X a resolution of singularities.

Definition 3.3.1. The resolution f is rational if f∗(OY ) = OX (that is, X is normal)
and Ri f∗(OY ) = 0 for i > 0. We say that X has rational singularities if every reso-
lution of singularities of X is rational.

The starting point in the study of rational singularities is the following char-
acterization of rational resolutions going back to [KKMSD73, p.50]. As we have
mentioned, we first state and prove the results in the global setting.

Theorem 3.3.2. Let f : Y →X be a resolution of singularities of a normal projective
variety X. The following are equivalent:

i) The resolution f is rational.
ii) X is Cohen–Macaulay and the canonical morphism f∗(ωY )→ ωX is an isomor-

phism.

We recall that if f : Y → X is a projective, birational morphism between n-
dimensional normal varieties, then we have a “trace map”, a canonical injective
morphism tY/X : f∗O(KY ) ↪→O(KX ) (see Remark 3.1.2). By identifying the sheaves
corresponding to the canonical divisors to the dualizing sheaves (see Remark 3.1.5),
we can interpret this inclusion as a map f∗ω◦Y ↪→ ω◦X . Suppose now that both X and
Y are Cohen-Macaulay projective varieties, hence we may write ωX and ωY instead
of ω◦X and ω◦Y , respectively. In this case, the trace map f∗ωY ↪→ ωX is compatible
with Serre duality, in the sense that for every line bundle M on X and every i, the
following diagram

H i(X , f∗(ωY )⊗M )
α

//

γ
))SSSSSSSSSSSSSS

H i(Y,ωY ⊗ f ∗(M )) ∼
β

// Hn−i(Y, f ∗(M )−1)∨

φ

��
H i(X ,ωX ⊗M ) ∼

δ

// Hn−i(X ,M−1)∨

(3.13)
is commutative, where β and δ are the isomorphisms provided by Serre duality, γ

is induced by tY/X , φ is the dual of the pull-back map in cohomology, and α is an
edge map corresponding to the Leray spectral sequence

E p,q
2 = H p(X ,Rq f∗(ωY⊗ f ∗(M ))'H p(X ,Rq f∗(ωY )⊗M )⇒H p+q(Y,ωY⊗ f ∗(M )).
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Note that if Y is smooth, then the Grauert–Riemenschneider theorem implies that in
the above spectral sequence we have E p,q

2 = 0 unless q = 0, hence α is an isomor-
phism as well.

We will also make use of the following lemma (see [Har77, Theorem III.7.6] and
its proof).

Lemma 3.3.3. If Z is a projective scheme and M is an ample line bundle on Z,
then Z is equidimensional and Cohen–Macaulay if and only if H i(Z,M j) = 0 for
all j� 0 and all i < dim(Z).

Proof of Theorem 3.3.2. We pick an ample line bundle L on X . For every integer
m, we consider the Leray spectral sequence

E p,q
2 = H p(X ,Rq f∗(OY )⊗L −m)⇒ H p+q(Y, f ∗L −m). (3.14)

We first show that ii)⇒ i). Therefore suppose that X is Cohen–Macaulay and the
canonical morphism tY/X : f∗(ωY )→ ωX is an isomorphism. We argue by induction
on n = dim(X). If n = 1, then X is smooth and f is an isomorphism, hence it is
clearly rational. Suppose now that n ≥ 2 and let H ⊂ X be a general member of a
very ample linear system on X . By Bertini’s theorem, we have that H is normal and
irreducible and H̃ = f ∗(H) is smooth and equal to the proper transform of H (see, for
example, the discussion after Proposition 3.2.6). Since H is general, it intersects the
open subset over which f is an isomorphism, hence the induced morphism g : H̃→
H is a resolution of singularities. We have a commutative diagram

f∗(ωY (H̃))

tY/X⊗OX (H)

��

// g∗(ωH̃)

tH̃/H

��
ωX (H) // ωH

in which the horizontal maps are induced by the adjunction isomorphisms. Since
the bottom horizontal map is surjective and tY/X is an isomorphism, we conclude
that tH̃/H is surjective, hence an isomorphism. Since H is also Cohen–Macaulay, we
conclude by induction that g is a rational resolution of H, hence Ri f∗(OH̃) = 0 for
every i≥ 1.

Using the exact sequence

0→ OY (−H̃)→ OY → OH̃ → 0,

we obtain an exact sequence

Ri f∗(OY (−H̃))' Ri f∗(OY )⊗OX (−H)→ Ri f∗(OY )→ Ri f∗(OH̃) = 0.

It follows from Nakayama’s lemma that Supp(Ri f∗(OY )) is disjoint from H for all
i > 0. In particular, since H is ample, we conclude that

dimSupp(Ri f∗(OY ))≤ 0 for i > 0. (3.15)
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Therefore in order to show that Ri f∗(OY ) = 0 for i > 0, it is enough to show that
H0(X ,Ri f∗(OY )⊗L −m) = 0 for m� 0. Moreover, (3.15) implies that in the spec-
tral sequence (3.14) we have E p,q

2 = 0 whenever p > 0 and q > 0. It follows that for
every i≥ 0 we have an exact sequence

0→ E i,0
∞ → H i(Y, f ∗L −m)→ E0,i

∞ → 0. (3.16)

In addition, if a map dr : E p,q
r →E p+r,q−r+1

r in the spectral sequence is nonzero, with
r ≥ 2, then p = 0 and r = q+1. Therefore for every i we have an exact sequence

0→ E0,i
∞ → E0,i

2
di+1→ E i+1,0

2 → E i+1,0
∞ → 0. (3.17)

On the other hand, since L is ample, we obtain using Serre duality and asymp-
totic Serre vanishing on X (recall that X is Cohen–Macaulay)

E p,0
2 = H p(X ,L −m)' Hn−p(X ,ωX ⊗L m)∨ = 0 for p < n and m� 0.

Using Serre duality on Y and the Kawamata–Viehweg vanishing theorem (note that
f ∗(L ) is big and nef), we obtain

H i(Y, f ∗L −m)' Hn−i(Y,ωY ⊗ f ∗L m)∨ = 0 for i < n and m� 0.

Therefore the exact sequence (3.16) implies that for m� 0 we have E0,i
∞ = 0 =

E i,0
∞ for all i < n. Since we also have E i,0

2 = 0 for i < n, the exact sequence (3.17)
implies that E0,i

2 = 0 for i + 1 < n. As we have seen, this implies Ri f∗(OY ) = 0 for
0 < i < n− 1. Moreover, we clearly have Rn f∗(OY ) = 0 since all fibers of f have
dimension < n. By taking i = n in (3.16) we obtain E0,n

∞ = Hn(Y, f ∗L −m) and by
taking i = n−1 in (3.17), we obtain for m� 0

H0(X ,Rn−1 f∗(OY )⊗L −m) = E0,n−1
2 = ker

(
Hn(X ,L −m)→ Hn(Y, f ∗L −m)

)
.

By Serre duality and the Grauert-Riemenschneider theorem (see the commutative
diagram (3.13)), the dual of the right-hand side in the above formula is isomorphic
to the cokernel of the map φ : H0(X , f∗(ωY )⊗L m)→ H0(X ,ωX ⊗L m) induced
by tY/X . Since tY/X is an isomorphism, φ is an isomorphism and therefore it has
trivial cokernel. We thus deduce that Rn−1 f∗(OY ) = 0, which completes the proof
of ii)⇒ i).

Conversely, suppose that f is a rational resolution. In this case the spectral se-
quence (3.14) has E p,q

2 = 0 for q 6= 0, hence

H i(X ,L −m)' H i(Y, f ∗L −m) (3.18)

for every i and every m. By Serre duality and the Kawamata–Viehweg vanishing
theorem, we have

H i(Y, f ∗L −m)∼= Hn−i(Y,ωY ⊗ f ∗L m)∨ = 0 for i < n and m≥ 1.



3.3 Rational singularities 175

Therefore X is Cohen–Macaulay by Lemma 3.3.3.
Since L is ample, in order to prove that the injective map tY/X : f∗(ωY ) ↪→ωX is

an isomorphism, it is enough to show that H0(X ,Coker(tY/X )⊗L m) = 0 for m� 0.
Moreover, we have an exact sequence

0→ H0(X , f∗(ωY )⊗L m) ι→ H0(X ,ωX ⊗L m)→ H0(X ,Coker(tY/X )⊗L m)→ 0

and the dual of ι corresponds by Serre duality and the Grauert–Riemenschneider
theorem (see the commutative diagram (3.13)) to the map

H0(X ,L −m)→ H0(Y, f ∗L −m).

This is an isomorphism by (3.18). It follows that ι is an isomorphism, hence tY/X is
an isomorphism. This completes the proof of i)⇒ ii).

Corollary 3.3.4. Let f : Y → X be a resolution of singularities of a normal projec-
tive variety X. If L is an ample line bundle on X such that the natural map

H i(X ,L −m)→ H i(Y, f ∗L −m)

is injective for every i and all m� 0, then f is a rational resolution.

Proof. Let n = dim(X). By Serre duality and the Kawamata–Viehweg vanishing
theorem, we have

H i(Y, f ∗L −m)' Hn−i(Y,ωY ⊗ f ∗L m)∨ = 0 for i < n and m≥ 1,

hence the injectivity hypothesis implies H i(X ,L −m) = 0 for i < n and m ≥ 1.
Therefore X is Cohen–Macaulay by Lemma 3.3.3. Moreover, we see as in the last
part of the proof of Theorem 3.3.2 that the kernel of the map Hn(X ,L −m) →
Hn(Y, f ∗L −m) (which is trivial by our assumption) is dual to the cokernel of the
inclusion H0(Y, f∗(ωY )⊗L m)→ H0(X ,ωX ⊗L m). Since L is ample, we con-
clude that the natural map f∗(ωY )→ ωX is an isomorphism and we deduce using
Theorem 3.3.2 that f is a rational resolution.

Remark 3.3.5. Note that the converse of the assertion in Corollary 3.3.4 is clearly
true: if f : Y → X is a rational resolution, then for every line bundle L on X , every
i and m, the natural map

H i(X ,L −m)→ H i(Y, f ∗L −m)

is an isomorphism. Indeed, the assumption implies that in the Leray spectral se-
quence for f and f ∗(L −m) we have E p,q

2 = 0 for q 6= 0, which implies our assertion.

Corollary 3.3.6. A projective variety X has rational singularities if there exists one
rational resolution of singularities of X. In particular, a smooth projective variety
has rational singularities.
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Proof. We need to show that if f : Y → X and f ′ : Y ′ → X are two resolutions of
singularities, then one is rational if and only if the other one is. Since any two res-
olutions can be dominated by a third one, we may assume that there is a projective,
birational morphism g : Y ′ → Y such that f ′ = f ◦ g. Since X has a rational reso-
lution, it follows that X is normal. Moreover, since Y and Y ′ are both smooth, the
natural map tY ′/Y : g∗(ωY ′)→ ωY is an isomorphism (see Corollary B.2.6). Since
the composition

f∗(g∗(ωY ′))
f∗(tY ′/Y )

// f∗(ωY )
tY/X // ωX

is equal to tY ′/X , it follows that tY/X is an isomorphism if and only if tY ′/X is an
isomorphism. Therefore f is rational if and only if f ′ is rational by Theorem 3.3.2.

As an application, we prove the following theorem of Elkik [Elk81].

Theorem 3.3.7. Let (X ,D) be a rational effective pair, with X projective. If (X ,D)
is klt, then X has rational singularities.

Proof. Note that X is by assumption normal. Let f : Y → X be a log resolution
of (X ,D). We write as usual KY + DY = f ∗(KX + D) and put E = d−DY e. Since
(X ,D) is kit, it follows that E is effective. On the other hand, since D is effective,
it follows that E is f -exceptional. Therefore the natural map OX → f∗OY (E) is an
isomorphism (see Lemma B.2.5).

If we write E = −DY + ∆ ′, then ∆ ′ has simple normal crossings, since f is a
log resolution of (X ,D). Since − f ∗(KX + D) is f -nef and f -big, we may apply
Theorem 2.6.1 to conclude Ri f∗(OY (E)) = 0 for i≥ 1. We deduce that if L is any
ample line bundle on X , then the Leray spectral sequence

E p,q
2 = H p(X ,Rq f∗(OY (E))⊗L −m)⇒ H p+q(Y,OY (E)⊗ f ∗L −m)

has E p,q
2 = 0 for q 6= 0. In particular, the canonical morphism

H i(X , f∗(OY (E))⊗L −m)→ H i(Y,OY (E)⊗ f ∗L −m)

is an isomorphism for every i and m. Consider the commutative diagram

H i(X ,L −m) α // H i(Y, f ∗L −m)

��
H i(X , f∗(OY (E))⊗L −m)

β // H i(Y, f ∗ f∗(OY (E))⊗ f ∗L −m)
γ // H i(Y,OY (E)⊗ f ∗L −m).

As we have seen, the composition γ ◦ β is an isomorphism, hence β is injective
and we conclude that α is injective. Therefore f is a rational resolution by Corol-
lary 3.3.4, and thus X has rational singularities by Corollary 3.3.6.
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Corollary 3.3.8. If X is a normal projective variety such that KX is Cartier, then X
has rational singularities if and only if X has canonical singularities.

Proof. Note that since KX is Cartier, X has canonical singularities if and only
if X has klt singularities. If this is the case, then X has rational singularities by
Theorem 3.3.7. Conversely, suppose that X has rational singularities. If f : Y →
X is a log resolution, then Theorem 3.3.2 implies that the canonical morphism
tY/X : f∗OY (KY )→ OX (KX ) is an isomorphism. It follows from Proposition 3.1.39
that in this case X has canonical singularities.

Similar arguments also give the following result of Kollár [Kol97].

Theorem 3.3.9. Let g : X ′→X be a surjective morphism between normal projective
varieties. If X ′ has rational singularities and Rig∗OX ′ = 0 for i > 0, then X has
rational singularities.

Proof. Note first that the canonical injective map OX → g∗OX ′ splits. Indeed, if
g = g2◦g1 : X ′→ Z→X is the Stein factorization of g, then g∗OX ′ = (g2)∗OZ . Since
X is normal, the trace map for the function field extension K(X) ↪→ K(Z) induces a
morphism (g2)∗(OZ)→ OX and multiplying this by 1

d , where d = deg(Z/X), gives
a splitting of OX ↪→ (g2)∗(OZ) = g∗(OX ′).

We consider a commutative diagram

Y ′
f ′ //

h
��

X ′

g

��
Y

f // X

in which both f and f ′ are resolutions of singularities (for example, construct first
a resolution f and then let Y ′ →W be a resolution of singularities of the unique
irreducible component W of Y ×X X ′ which maps birationally onto X ′). Let p =
g◦ f ′ = f ◦h : Y ′→ X . We fix an ample line bundle L on X and for every i and m
we consider the commutative diagram

H i(X ,L −m)
γ //

β

��

H i(Y, f ∗L −m)

��
H i(X ′,g∗L −m) α // H i(Y ′, p∗L −m).

Since f ′ is a rational resolution, the Leray spectral sequence for f ′ and p∗L −m

satisfies E p,q
2 = 0 for all q 6= 0 and therefore α is an isomorphism. Similarly, since

R jg∗(OX ′) = 0 for all j > 0, the Leray spectral sequence for g and g∗L −m satisfies
E p,q

2 = 0 for q 6= 0, which implies that the canonical morphism

H i(X ,g∗(g∗L −m)) = H i(X ,g∗(OX ′)⊗L −m)→ H i(X ′,g∗L −m)
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is an isomorphism. On the other hand, the canonical morphism

H i(X ,L −m)→ H i(X ,g∗(g∗L −m))

is injective since the inclusion OX ↪→ g∗(OX ′) is split. Therefore the composition
of these two maps, which is equal to β , is injective. We deduce from the above
commutative diagram that γ is injective. It follows by Corollary 3.3.4 that f is a
rational resolution and thus X has rational singularities by Corollary 3.3.6.

Corollary 3.3.10. If g : X ′→ X is a finite surjective morphism between two normal
projective varieties and X ′ has rational singularities, then X has rational singular-
ities.

Proof. Since g is finite, we have Rig∗(OX ′) = 0 for all i > 0, hence we may apply
Theorem 3.3.9.

As we have promised, we now turn to the proofs of Theorems 3.3.2, 3.3.7, 3.3.9,
and Corollary 3.3.6 for not-necessarily-projective varieties. TO BE WRITTEN.

Remark 3.3.11. Suppose that X is covered by the images of a family of étale
maps φi : Ui → X . If f : Y → X is a resolution of singularities, then each fi : Vi =
Y ×X Ui → Ui is a resolution of singularities. By flat base-change R j( fi)∗(OVi) '
φ ∗i (R j f∗(OY )). Moreover, since the map tiUi → X is faithfully flat, we see that a
coherent sheaf M on X is 0 if and only if all φ ∗i (M ) are 0. This implies that X has
rational singularities if and only if each Ui has rational singularities.

For example, recall that a variety X has quotient singularities if there is such
a cover with each Ui isomorphic to Yi/Gi, where Yi is a smooth quasiprojective
variety and Gi is a finite group acting on Yi. In particular, we see that there is a finite
surjective morphism Yi→Ui, hence Ui has rational singularities by the local version
of Corollary 3.3.9. We conclude that X has rational singularities.
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Chapter 4
Multiplier ideals

4.1 Multiplier ideals

In this section we introduce the multiplier ideal of a triple and prove its basic prop-
erties. In particular, we prove the two main vanishing results that involve multiplier
ideals, the local vanishing theorem and Nadel’s vanishing theorem. Our presentation
is heavily inspired from that in [Laz04b, Chap. 9].

4.1.1 Definition and first properties

Definition 4.1.1. Let (X ,∆ ,Z ) be a log triple. Given a log resolution f : Y → X of
this triple, we consider the triple (Y,∆Y , f−1(Z )). The multiplier ideal of (X ,∆ ,Z )
is

J (X ,∆ ,Z ) := f∗OY (−b∆Y + f−1(Z )c).

Note that if KX is Cartier, then KY/X is integral, hence we can also write

J (X ,∆ ,Z ) = f∗OY (KY/X −b f ∗(∆)+ f−1(Z )c).

If instead of a log triple we have either a log pair (X ,∆) or a higher codimension
pair (X ,Z ), then we simply write J (X ,∆) or J (X ,Z ), respectively. If a triple
is written as (X ,∆ ,aq1

1 . . .aqr
r ), then the corresponding multiplier ideal is written as

J (X ,∆ ,aq1
1 . . .aqr

r ).

Remark 4.1.2. In general, the multiplier ideal is not an ideal of OX , but a fractional
ideal. On the other hand, if the triple is effective, then the only divisors in ∆Y +
f−1(Z ) that appear with negative coefficient are exceptional. Therefore there is an
effective exceptional divisor F on Y such that J (X ,∆ ,Z ) ⊆ f∗OY (F) = OX . We
conclude that in this case the multiplier ideal is indeed an ideal in OX . We also note
that in general, the multiplier ideal is nonzero.

181
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Since the definition of the multiplier ideal involves the choice of a log resolution,
we first need to show that this notion is well-defined.

Theorem 4.1.3. Given a log triple (X ,∆ ,Z ), the multiplier ideal J (X ,∆ ,Z ) is
independent of the choice of a log resolution in its definition.

Proof. Since any two log resolutions can be dominated by a third one, it is enough to

consider two morphisms W
g→Y

f→X , such that both f and f ◦g give log resolutions
for (X ,∆ ,Z ), and show that in this case

f∗OY (−b∆Y + f−1(Z )c) = f∗g∗OW (−b∆W +g−1( f−1(Z ))c).

Let A = ∆Y + f−1(Z ). Since ∆W +g−1( f−1(Z )) = g∗(A)−KW/Y , we see that it is
enough to show that

OY (−bAc) = g∗OW (−bg∗(A)−KW/Y c).

Let us write A = bAc+ F . Note that F is a divisor with simple normal crossings
and with bFc = 0, hence the pair (Y,F) is klt by Theorem 3.1.12. Therefore the
divisor G := dKW/Y − g∗(F)e is effective, and since F is effective, we deduce that
G is g-exceptional. Therefore g∗OW (G) = OY , and using the projection formula, we
conclude that

g∗(−bg∗(A)−KW/Y c) = g∗OW (−g∗(bAc)+G) = OY (−bAc).

This completes the proof of the theorem.

Remark 4.1.4. Let (X ,∆ ,Z ) be a log triple and f : Y → X be a log resolution of this
triple. If V ⊆ X is an affine open subset and φ is a nonzero rational function, then
φ ∈ H0(V,J (X ,∆ ,Z )) if and only if

ordE(φ) > ordE(∆Y )+ordE(Z )−1

for all divisors E on Y such that E ∩ f−1(V ) 6= /0. Furthermore, it follows from
Theorem 4.1.3 that one can equivalently put this condition for all log resolutions.
Therefore φ ∈ H0(V,J (X ,∆ ,Z )) if and only if

ordE(φ)+aE(X ,∆ ,Z ) > 0 for all divisors E over X , with cX (E)∩V 6= /0.

This is the case if and only if the restriction of the triple (X ,∆−divX (φ),Z ) to V is
klt. Note that even if the triple (X ,∆ ,Z ) is effective, the triple that appears in this
condition is not, in general, effective.

In particular, we see that OX ⊆J (X ,D,Z ) if and only if the triple (X ,∆ ,Z ) is
klt. The largest open subset W of X on which OX ⊆J (X ,∆ ,Z ) thus coincides with
the largest open subset on which the restriction of (X ,∆ ,Z ) is klt. If (X ,∆ ,Z ) is an
effective pair, one can therefore describe this latter open subset as the complement
of Supp(OX/J (X ,∆ ,Z )).
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One can think of the multiplier ideal J (X ,∆ ,Z ) as measuring the singulari-
ties of the triple (X ,∆ ,Z ). The above remark suggests that in this respect larger
multiplier ideals to correspond to “better singularities”.

Example 4.1.5. If (X ,∆ ,Z ) is a log triple and A is a Cartier divisor, then

J (X ,∆ +A,Z ) = OX (−A) ·J (X ,∆ ,Z ).

This follows from the definition and the projection formula.

Remark 4.1.6. Given a log pair (X ,∆), there is a nonzero ideal J on X such that

J ·a⊆J (X ,∆ ,a) for all nonzero ideals a⊆ OX .

Indeed, this follows from definition, by taking for example J = J (X ,∆)∩OX .

Example 4.1.7 (Multiplier ideal of a smooth subvariety). If X is a smooth variety
and Z ↪→ X is a smooth subvariety of codimension r, defined by the ideal IZ , then
for q ∈ R≥0, we have

J (X ,qZ) =

{
OX , if q < r;

Ibqc−r+1
Z , if q≥ r.

Indeed, the blow-up f : Y → X along Z is a log resolution of (X ,Z), and the
above formula follows from the fact that if E is the exceptional divisor of f , then
f∗OY (− jE) = I j

Z for all j ≥ 0 (see Lemma 2.5.14).

Example 4.1.8 (Multiplier ideal of a nodal curve). If X is a smooth surface and
C ⊂ X is a curve with at most nodes as singularities, then for every q ∈ R≥0, we
have

J (X ,qC) = OX (−bqcC). (4.1)

Indeed, let f : Y → X be the blow-up of X at the nodes of C. Note that f is a log
resolution of (X ,C). If E = E1 + . . .+Em is the exceptional divisor of f and C̃ is the
proper transform of C, then

(qC)Y = q f ∗(C)−KY/X = qC̃ +
m

∑
i=1

(2q−1)Ei.

The formula in (4.1) is clear for 0≤ α < 1, and the general case then follows from
Example 4.1.5.

Example 4.1.9 (Multiplier ideal of a cuspidal curve). Suppose that X = A2 =
Spec(k[x,y]) and D = V ( f ) ⊂ X , where f = x2 + y3. For q ∈ R≥0, the multiplier
ideal of (X ,qD) is given by

J (X ,qD) =


OX , if q < 5

6 ;

(x,y), if 5
6 ≤ q < 1;

f m ·J (X ,(q−m)D), if m≤ q < m+1, m ∈ Z>0.
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In order to check this, we use the log resolution f : Y → X described in Ex-
ample 3.1.18, as well as the notation in that example. Since (X ,q ·D) is klt for
0≤ q < 5

6 , we deduce that J (X ,qD) = OX for q in this range. On the other hand,
if 5

6 ≤ q < 1, then

(qD)Y = q f ∗(D)−KY/X = qD̃+(2q−1)E1 +(3q−2)E2 +(6q−4)E3,

hence
f∗OY (−b(qD)Y c) = f∗OY (−E3) = (x,y).

The fact that J (X ,qD) = OX (−mD) ·J (X ,(q−m)D) for m ≤ q < m + 1 is a
consequence of Example 4.1.5.

Example 4.1.10 (Multiplier ideal of a cone over a smooth hypersurface). Let
X = An and D = V ( f ), where f ∈ k[x1, . . . ,xn] is a homogeneous polynomial of
degree d, with an isolated singularity at 0. In order to compute J (X ,qD), we use
the log resolution in Example 3.1.16 and the computations therein. In particular, we
see that J (X ,qD) = OX if 0 ≤ q < min{1,n/d}. Suppose now that d > n and let
us show that for every i, with 0≤ i≤ d−n−1, we have

J (X ,qD) = (x1, . . . ,xn)i+1 if
n+ i

d
≤ q <

n+ i+1
d

.

With the notation in Example 3.1.16, recall that (qD)Y = qD̃+(qd−n+1)E, hence
our condition on q implies b(qD)Y c= (i+1)E, hence

J (X ,D,Z ) = f∗OY (−(i+1)E) = (x1, . . . ,xn)i+1.

Example 4.1.11. One can often write the multiplier ideal of a log triple as the mul-
tiplier ideal of a log pair arguing as follows. Suppose that we have an effective log
triple (X ,∆ ,Z ), with Z = ∑

r
i=1 qiZi. We assume that for every i there is a finite-

dimensional linear system Vi ⊆ H0(X ,Li) such that Zi is the base locus of Vi (for
example, if X is affine, we may take Li = OX and Vi to be spanned by a system of
generators of the ideal defining Zi). For every i, we choose ri > qi and let hi,1, . . . ,hi,ri

be general elements of Vi. We claim that if Di, j is the effective Cartier divisor defined
by hi, j and Γ = ∑

r
i=1

qi
ri
·∑ri

j=1 Di, j, then

J (X ,∆ ,Z ) = J (X ,∆ +Γ ). (4.2)

Indeed, suppose that f : Y → X is a log resolution of (X ,∆ ,Z ) and write f−1(Zi) =
Ei. For every i and j, we can write f ∗(Di, j) = Ei +Fi, j, and the genericity hypothesis
on the hi, j together with Kleiman’s version of Bertini’s theorem imply that all Fi, j are
smooth (possibly disconnected), having no common components with the divisors in
∆Y + f−1(Z ), and in fact, such that f is a log resolution of (X ,∆ +Γ ). Furthermore,
we have
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b(∆ +Γ )Y c= b∆Y + f ∗(Γ )c= b∆Y + f−1(Z )+
r

∑
i=1

qi

ri

ri

∑
j=1

Fi, jc= b∆Y + f−1(Z )c.

The equality in (4.2) then follows from the definition of multiplier ideals.

Example 4.1.12. Let a⊆ k[x1, . . . ,xn] be an ideal generated by monomials. For ev-
ery u = (u1, . . . ,un) ∈ Zn

≥0, we put xu = xu1
1 · · ·xun

n . We denote by 〈·, ·〉 the canonical
pairing between N = Zn and its dual M = Zn. The Newton polyhedron of a is

P(a) := conv{u ∈ Zn
≥0 | xu ∈ a}.

It is a result due to Howald [How01] that

J (An,aq) = (xu | u ∈ Zn
≥0,u+ e ∈ Int(qP(a))), (4.3)

where e = (1, . . . ,1).
In order to prove (4.3) we use some basic facts of toric geometry, as in Exam-

ple 3.1.19. We consider An with the standard structure of toric variety corresponding
to the lattice N and to the cone Rn

≥0 ⊆ NR. Let f : W →An be the normalized blow-
up of X along a. Since a is a monomial ideal, the action of the torus T = TN on An

has an induced action on W that makes W a toric variety and f a toric morphism.
If g : Y →W is a projective birational morphism induced by a fan refinement, such
that Y is a smooth toric variety, then a ·OY = OY (−E) for a toric divisor E. We see
that f ◦g is a log resolution of (X ,a). Since KY/An −bqEc is a toric divisor on Y , it
follows that the multiplier ideal J (An,aq) is preserved by the torus action, hence
it is generated by monomials.

Therefore it is enough to check that a monomial xu lies in J (An,aq) if and
only if u + e ∈ Int(qP(a)). Recall that each prime divisor D on Y corresponds to
a primitive ray generator v ∈ Zn

≥0 for the fan of Y . Furthermore, each primitive
nonzero element v ∈ Zn

≥0 corresponds to a divisor on some variety Y as above. It
follows from definition that

ordD(a) = min{〈w,v〉 | w ∈ P(a})

and we have seen in Example 3.1.19 that ordD(KY/An) = 〈e,v〉. It follows that xu ∈
J (An,aq) if and only if

〈u+ e,v〉> min{〈w,v〉 | w ∈ qP(a)}

for all primitive v ∈ Zn
≥0. This is the case if and only if u+ e ∈ Int(qP(a)).

Example 4.1.13. Suppose, for example, that a = (xa1
1 , . . . ,xan

n ) ⊂ k[x1, . . . ,xn], for
positive integers a1, . . . ,an. The Newton polyhedron of a is given by

P(a) =
{

u ∈ Rn
≥0 |

u1

a1
+ . . .+

un

an
≥ 1
}

.

It follows from Example 4.1.12 that
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J (An,aq) =
(

xu | u ∈ Zn
≥0,

u1 +1
a1

+ . . .+
un +1

an
> q
)

.

In particular, we see that

(An,aq) is klt if and only if q <
n

∑
i=1

1
ai

.

Example 4.1.14. Let f = ∑
n
i=1 xai

i ∈ k[x1, . . . ,xn], for positive integers a1, . . . ,an.
Note that if λ1, . . . ,λn ∈ k are nonzero, then there is an automorphism of k[x1, . . . ,xn]
that takes f to ∑

n
i=1 λix

ai
i . It follows from Example 4.1.11 that for every q < 1, we

have
J (X , f q) = J (An,(xa1

1 , . . . ,xan
n )q).

For example, it follows that (X , f q) is klt if and only if q < min
{

1,∑n
i=1

1
qi

}
.

Example 4.1.15. Let (X1,∆1,Z1) and (X2,∆2,Z2) be two log triples. Consider, as
in Example 3.1.10 X = X1 × X2, with canonical projections pi : X → Xi, for i =
1,2. We also consider ∆ = p∗1(∆1)+ p∗2(∆2) and Z = p−1

1 (Z )+ p−1
2 (Z ), so that

we have a log triple (X ,∆ ,Z ). If fi : Yi → Xi is a log resolution of (Xi,∆i,Zi) for
i = 1,2, then f = f1 × f2 : Y = Y1 ×Y2 → X is a log resolution of (X ,∆ ,Z ). If
qi : Y → Yi, for i = 1,2 are the canonical projections, then

b∆Y + f−1(Z )c= p∗1(b(∆1)Y1 + f−1
1 (Z1)c)+ p∗2(b(∆2)Y2 + f−1

2 (Z2)c).

Using the Künneth formula, we deduce

J (X ,∆ ,Z ) = J (X1,∆1,Z1) ·OX +J (X2,∆2,Z2) ·OX .

Proposition 4.1.16. If (X ,∆ ,Z ) is a log triple and g : W → X is any projective,
birational morphism, with W normal, then

J (X ,∆ ,Z ) = g∗J (W,∆W ,g−1(Z )).

Proof. Let f : Y →W be such that g ◦ f is a log resolution of (X ,∆ ,Z ), in which
case f is a log resolution of (W,∆W ,g−1(Z )). If we compute J (X ,∆ ,Z ) and
J (W,∆W ,g−1(Z )) using g◦ f and f , respectively, we obtain

g∗J (W,∆W ,g−1(Z )) = g∗ f∗J (Y,∆Y ,(g◦ f )−1(Z )) = J (X ,∆ ,Z ).

The following proposition gives some monotonicity properties of multiplier ide-
als.

Proposition 4.1.17. Suppose that (X ,∆ ,Z ) is a log triple, ∆ ′ is an effective R-
Cartier R-divisor, and Z ′ is an effective linear combination of proper closed sub-
schemes of X. In this case, we have
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J (X ,∆ +∆
′,Z +Z ′)⊆J (X ,∆ ,Z ). (4.4)

In particular, given a log triple (X ,∆ ,aq), then for every q′ ≥ q, we have

J (X ,∆ ,aq′)⊆J (X ,∆ ,aq). (4.5)

Similarly, if b is another ideal such that a⊆ b, then

J (X ,∆ ,aq)⊆J (X ,∆ ,bq) (4.6)

for every q ∈ R≥0.

Proof. In order to prove the first assertion, consider a log resolution f : Y → X of
both (X ,∆ ,Z ) and (X ,∆ +∆ ′,Z +Z ′). Since

(∆ +∆
′)Y + f−1(Z +Z ′)−

(
∆Z + f−1(Z )

)
= f ∗(∆ ′)+ f−1(Z ′)

is an effective divisor, it follows that we have an inclusion of sheaves on Y

OY (−b(∆ +∆
′)Z + f−1(Z +Z ′)c) ↪→ OY (−b∆Y + f−1(Z )c),

and applying f∗ gives the inclusion in (4.4). The inclusion in (4.5) is a special case.
For the last assertion, consider a log resolution g : W → X of (X ,∆ ,a · b). In this
case, if a ·OW = OW (−E) and b ·OW = OW (−F), then E−F is an effective divisor,
and the inclusion in (4.6) follows as above by applying f∗ to the corresponding
inclusion of sheaves on W .

We now show that multiplier ideals are unchanged by a small increase in the
coefficients.

Proposition 4.1.18. Given a log triple (X ,∆ ,Z ), with Z = ∑
r
i=1 qiZi, there is ε > 0

such that
J (X ,∆ ,Z ) = J (X ,∆ ,Z ′)

whenever Z ′ = ∑
r
i=1 q′iZi, with qi ≤ q′i ≤ qi + ε for all i.

Proof. Let f : Y → X be a log resolution of (X ,∆ ,Z ). The assertion in the propo-
sition follows from the fact that

b∆Y +
r

∑
i=1

qi f−1(Zi)c= b∆Y +
r

∑
i=1

q′i f−1(Zi)c

if 0≤ q′i−qi� 1 for all i.

4.1.2 Nadel vanishing theorem

The following theorem is behind many of the applications of multiplier ideals. As
we will see later, it allows us in particular to translate Kawamata–Viehweg vanishing
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on a log resolution as a vanishing theorem on the original variety, involving the twist
by a multiplier ideal.

Theorem 4.1.19 (Relative vanishing). Let (X ,∆ ,Z ) be a rational log triple, with
Z effective. If f : Y → X is a log resolution of (X ,∆ ,Z ), then

Ri f∗OY (−b∆Y + f−1(Z )c) = 0 for all i≥ 1.

Proof. We can write

−b∆Y + f−1(Z )c= d−∆Y − f−1(Z )e= KY + d− f ∗(KX +∆)− f−1(Z )e.

Note that the divisor

d− f ∗(KX +∆)− f−1(Z )e+ f ∗(KX +∆)+ f−1(Z )=−b∆Y + f−1(Z )c+∆Y + f−1(Z )

has simple normal crossings by the assumption that f is a log resolution of (X ,∆ ,Z ).
Since f is birational, every divisor on Y is f -big. Moreover, f ∗(KX +∆) is f -trivial
and − f−1(Z ) is f -nef by Lemma 3.2.4. Therefore − f ∗(KX + ∆)− f−1(Z ) is f -
big and f -nef and the assertion in the theorem follows from Theorem 2.6.1.

We can now deduce the following generalization of the Kawamata–Viehweg van-
ishing theorem. It is an algebraic version of a theorem due to Nadel in the analytic
setting, but in this algebraic framework it first appeared in the work of Esnault and
Viehweg.

Theorem 4.1.20 (Nadel). Let (X ,∆ ,Z ) be a rational log triple, with X a projective
variety. Suppose that Z = ∑

r
j=1 q jZ j, with q j ∈ Q≥0, and for every j we have a

Cartier divisor A j on X such that IZ j ⊗OX (A j) is globally generated, where IZ j is
the ideal defining Z j. If A is a Cartier divisor such that A− (KX +∆)−∑

r
j=1 q jA j is

big and nef, then

H i(X ,J (X ,∆ ,Z )⊗OX (A)) = 0 for all i≥ 1.

Proof. Let f : Y → X be a log resolution of (X ,∆ ,Z ). If E j = f−1(Z j), the hy-
pothesis on A j implies that OY ( f ∗(A j)−E j) is globally generated. In particular,
f ∗(A j)−E j is nef for every j. Let B = ∆Y + f−1(Z ). It follows from the definition
and the projection formula that

J (X ,∆ ,Z)⊗OX (A)' f∗OY ( f ∗(A)−bBc).

Furthermore, the projection formula and Theorem 4.1.19 imply

Rp f∗OY ( f ∗(A)−bBc) = 0 for all p≥ 1.

We deduce using the Leray spectral sequence that

H i(X ,J (X ,∆ ,Z)⊗OX (A))' H i(Y,OY ( f ∗(A)−bBc)). (4.7)
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On the other hand, we can write

f ∗(A)−bBc= KY + d f ∗(A)− (KY +∆Y )− f−1(Z )e

= KY + d f ∗(A− (KX +∆)−
r

∑
j=1

q jA j)+
r

∑
j=1

q j( f ∗(A j)−E j)e.

The divisor under the round-up sign is big and nef, as the sum of the pull-back via
f of a big and nef divisor with a nef divisor. Furthermore, the divisor

B−bBc= ∆Y + f−1(Z )+ d−∆Y − f−1(Z )e

has simple normal crossings, since f is a log resolution of (X ,∆ ,Z ). Therefore the
desired vanishings follow from (4.7) and the Kawamata–Viehweg vanishing theo-
rem.

Remark 4.1.21. It follows from the proof of Theorem 4.1.20 that if we can find a log
resolution f : Y → X of (X ,∆ ,Z ) such that f ∗(A j)−E j is big for some j with q j >
0, then the same vanishings hold if we only assume that A− (KX +∆)−∑

r
j=1 q jA j

is nef, instead of big and nef.

Corollary 4.1.22. Under the hypothesis of Theorem 4.1.20, if H is a Cartier di-
visor on X such that OX (H) is ample and globally generated, then the sheaf
J (X ,∆ ,Z )⊗OX (A+mH) is globally generated for every m≥ dim(X).

Proof. It follows from Theorem 4.1.20 that

H i(X ,J (X ,∆ ,Z)⊗OX (A+(m− i)H)) = 0 for all i≥ 1.

Therefore the sheaf J (X ,∆ ,Z)⊗OX (A+mH) is 0-regular with respect to OX (H),
hence globally generated by Theorem 2.4.3.

Another consequence of vanishing theorems is the following non-vanishing re-
sult.

Corollary 4.1.23. Under the hypothesis of Theorem 4.1.20, if A′ is a big and nef
Cartier divisor on X, then there is i, with 0≤ i≤ n = dim(X), such that

H0(X ,J (X ,∆ ,Z )⊗OX (A+ iA′)) 6= 0.

Proof. It follows from Theorem 4.1.20 that

Q(i) := h0(X ,J (X ,∆ ,Z)⊗OX (A+ iA′)) = χ(X ,J (X ,∆ ,Z)⊗OX (A+ iA′))

for every i ≥ 0. We deduce using Proposition 1.2.1 that Q(i) is a polynomial in i
of degree ≤ n. If it vanishes for (n + 1) values of i, then it is identically zero. On
the other hand, since J (X ,∆ ,Z ) is a nonzero fractional ideal and A′ is big, we
deduce from Lemma 1.4.17 that Q(i)≥Cin for some C > 0 and all i� 0. This gives
a contradiction, and thus proves the assertion in the corollary.
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4.2 Asymptotic multiplier ideals

Some of the most powerful applications of multiplier ideals come from an asymp-
totic version of such ideals that we now describe. We refer to [Laz04b, Chap. 10]
for a more detailed introduction to this topic.

4.2.1 Multiplier ideals for graded sequences

An asymptotic multiplier ideal is associated to a graded sequence of ideals, in the
sense of Definition 1.7.1. We show that given a graded sequence of ideals, one can
use the Noetherian property to select a multiplier ideal from those associated to the
different elements of the sequence. This is based on the following simple lemma.

Lemma 4.2.1. If (X ,∆) is a log pair and a• is a nonzero graded sequence of ideals
on X, then for every m, p ≥ 1 such that am 6= 0, and every λ ∈ R≥0, we have the
following inclusion of multiplier ideals

J (X ,∆ ,a
λ/m
m )⊆J (X ,∆ ,a

λ/mp
mp ).

Proof. It follows from definition that

J (X ,∆ ,a
λ/m
m ) = J (X ,∆ ,(ap

m)λ/pq).

On the other hand, the defining property of a graded sequence implies a
p
m ⊆ amp,

hence Proposition 4.1.17 gives

J (X ,∆ ,(ap
m)λ/pq)⊆J (X ,∆ ,(amp)λ/pq).

We thus have the inclusion in the lemma.

Corollary 4.2.2. If (X ,∆) is a log pair and a• is a nonzero graded sequence of
ideals on X, then for every λ ∈R≥0, there is a positive integer q with aq 6= 0 such that
for every m with am 6= 0 we have J (X ,∆ ,a

λ/m
m )⊆J (X ,∆ ,a

λ/q
q ), with equality if

m is divisible by q.

Proof. For every m such that am 6= 0, the multiplier ideal J (X ,∆ ,a
λ/m
m ) is con-

tained in the fractional ideal J (X ,∆). The Noetherian property of this fractional
ideal implies that the set

{J (X ,∆ ,a
λ/m
m ) | am 6= 0}

contains a maximal element J = J (X ,∆ ,a
λ/q
q ). On the other hand, Lemma 4.2.1

implies that for every m such that am 6= 0, we have

J (X ,∆ ,a
λ/m
m )⊆J (X ,∆ ,a

λ/mq
mq ) and J (X ,∆ ,a

λ/q
q )⊆J (X ,∆ ,a

λ/mq
mq ).
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The maximality of J implies that J =J (X ,∆ ,a
λ/mq
mq ) and therefore J (X ,∆ ,a

λ/m
m )⊆

J. This completes the proof of the corollary.

Definition 4.2.3. If (X ,∆) is a log pair and a• is a nonzero graded sequence of ideals
on X , then for every λ ∈ R≥0, the asymptotic multiplier ideal J (X ,∆ ,aλ

• ) is the
unique maximal element of the set of multiplier ideals J (X ,∆ ,a

λ/m
m ), for m such

that am 6= 0. Note that this is, in general, a fractional ideal, but it is an ideal in OX
whenever ∆ is effective.

Definition 4.2.4. An important special case of the previous definition is the follow-
ing. If (X ,∆) is a log pair and L is a line bundle on X such that h0(X ,L m)≥ 1 for
some positive integer m, then we put

J (X ,∆ ,λ · ‖L ‖) := J (X ,∆ ,aλ
• ),

where a• is the graded sequence of base-loci ideals corresponding to L . More gen-
erally, if V• is a graded linear series corresponding to a line bundle L , such that
Vm 6= 0 for some m, and a• is the corresponding graded sequence of ideals, then we
put

J (X ,∆ ,λ · ‖V• ‖) := J (X ,∆ ,aλ
• ).

Remark 4.2.5. If (X ,∆) is a log pair and L is a line bundle on X such that
h0(X ,L m)≥ 1 for some positive integer m, then

J (X ,∆ ,λ · ‖L q ‖) = J (X ,∆ ,λq· ‖L ‖) (4.8)

for every positive integer q. Indeed, if am is the ideal defining the base-locus of L m,
then for m divisible enough, both ideals in (4.8) are equal to J (X ,∆ ,a

λ/m
mq ).

Definition 4.2.6. If (X ,∆) is a log pair, and M is a Q-Cartier Q-divisor on X such
that h0(X ,OX (mM))≥ 1 for m sufficiently divisible, then for every λ ∈R≥0, we put

J (X ,∆ ,λ · ‖M ‖) := J (X ,∆ ,(λ/m)· ‖ OX (mM) ‖),

where m is a positive integer that is divisible enough. It follows from Remark 4.2.5
that the definition is independent of m, and furthermore, if λ ′ ∈Q≥0, then

J (X ,∆ ,λ · ‖ λ
′M ‖) = J (X ,∆ ,λλ

′· ‖M ‖).

4.2.2 Basic properties of asymptotic multiplier ideals

We now deduce the basic properties of multiplier ideals of graded sequences from
the corresponding properties of multiplier ideals associated to triples.

Proposition 4.2.7. Let (X ,∆) be a log pair and a• and b• nonzero graded sequences
of ideals on X.
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i) We have
J (X ,∆ ,aλ

• )⊆J (X ,∆ ,aµ
• )

for all λ ,µ ∈ R≥0 with λ ≥ µ .
ii) For every λ ∈ R≥0, there is ε > 0 such that

J (X ,∆ ,aλ
• ) = J (X ,∆ ,aλ ′

• )

for all λ ′ with λ ≤ λ ′ ≤ λ + ε .
iii) If c is a nonzero ideal on X and r is a non-negative integer such that c ·am ⊆ bm+r

for all m� 0, then
J (X ,∆ ,aλ

• )⊆J (X ,∆ ,bλ
• )

for all λ ∈ R≥0.

Proof. In order to prove i), we choose m divisible enough and use Proposition 4.1.17
to get

J (X ,∆ ,aλ
• ) = J (X ,∆ ,a

λ/m
m )⊆J (X ,∆ ,a

µ/m
m ) = J (X ,∆ ,aµ

• ).

For ii), let m be such that J (X ,∆ ,aλ
• ) = J (X ,∆ ,a

λ/m
m ). It follows from Propo-

sition 4.1.18 that there is ε > 0 such that

J (X ,∆ ,a
λ/m
m ) = J (X ,∆ ,a

(λ+ε)/m
m )⊆J (X ,∆ ,aλ+ε

• ).

Using also i), we conclude that J (X ,∆ ,aλ
• ) = J (X ,∆ ,a

µ
• ) if λ ≤ µ ≤ λ + ε .

In order to prove iii), we choose m such that J (X ,∆ ,a•) = J (X ,∆ ,a
λ/m
m ). It

follows from Proposition 4.1.18 that if q� 0, then

J (X ,∆ ,a
λ/m
m )=J (X ,∆ ,cλ/mqa

λ/m
m )=J (X ,∆ ,(caq

m)λ/mq)⊆J (X ,∆ ,(camq)λ/mq).

On the other hand, it follows from hypothesis that for q� 0 we have

J (X ,∆ ,(camq)λ/mq)⊆J (X ,∆ ,b
λ/mq
mq+r)⊆J (X ,∆ ,b

λ (mq+r)/mq
• ).

Furthermore, we deduce from ii) that for q� 0, we have

J (X ,∆ ,b
λ (mq+r)/mq
• ) = J (X ,∆ ,bλ

• ).

By combining these facts, we obtain the assertion in iii).

Theorem 4.2.8. Let (X ,∆) be a rational log pair, with X projective, and M a Q-
Cartier Q-divisor on X such that h0(X ,OX (mM)) ≥ 1 for positive integers m that
are divisible enough.

1) If λ ∈ R≥0 and A is a Cartier divisor on X such that A− (KX + ∆)−λM is big
and nef, then

H i(X ,J (X ,∆ ,λ · ‖M ‖)⊗OX (A)) = 0 for all i≥ 1. (4.9)
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2) If λ > 0 and M is big, then it is enough to assume that A−(KX +∆)−λM is just
nef, in order to have the vanishing in (4.9). In particular, if both KX + ∆ and M
are Cartier divisors, then

H i(X ,J (X ,∆ ,‖M ‖)⊗OX (KX +∆ +M)) = 0 for all i≥ 1. (4.10)

More generally, we have the following variant, that applies to graded linear se-
ries.

Theorem 4.2.9. Let (X ,∆) be a rational log pair, with X projective, D a Cartier
divisor on X, and V• a graded linear series corresponding to OX (D), such that
Vm 6= 0 for some positive integer m.

1) If λ ∈ Q≥0 and A is a Cartier divisor on X such that A− (KX + ∆)−λD is big
and nef, then

H i(X ,J (X ,∆ ,λ · ‖V• ‖)⊗OX (A)) = 0 for all i≥ 1. (4.11)

2) If λ ∈ Q>0 and, in addition, some Vm defines a rational map that is birational
onto its image, then the vanishing in (4.11) holds if we only assume that A−
(KX +∆)−λD is nef. In particular, if KX +∆ is a Cartier divisor, then

H i(X ,J (X ,∆ ,m· ‖V• ‖)⊗OX (KX +∆ +mD)) = 0 for all i,m≥ 1. (4.12)

Proof of Theorems 4.2.8 and 4.2.9. Suppose first that we are in the setting of The-
orem 4.2.9. Let ap denote the ideal defining the base locus of Vp. Suppose that p is
divisible enough, such that

J (X ,∆ ,λ · ‖V• ‖) = J (X ,∆ ,a
λ/p
p ). (4.13)

Since ap⊗OX (pD) is globally generated by assumption, the vanishing in (4.11)
follows from Theorem 4.1.20.

Suppose now that Vm defines a map φm : X 99K Pnm that is birational onto image.
Note first that the same holds for each Vmq, for q ≥ 1. Indeed, suppose that Wmq is
the subspace of Vmq generated by the degree q monomials in the sections in Vm. In
this case, we have a commutative diagram

X

φmq

���
�
�

φm //____ PNm� _

νq

��
PNmq

π //___ PN ,

in which νq is a Veronese embedding, φmd is the map defined by Wmq, and π is a
linear projection. Since φm is birational onto image, it follows that φmq is birational
onto image.

We choose q divisible enough, such that (4.13) holds for p = mq. Let f : Y → X
be a log resolution of (X ,∆ ,ap). If ap ·OY = OY (−E), it follows that we can identify



194 4 Multiplier ideals

Vp to a linear subspace in H0(Y,OY (p f ∗(D)−E)), and the rational map it defines
is φp ◦ f . In particular, p f ∗(D)−E is a big divisor. Since A− (KX +∆)−λD is nef,
the vanishings in (4.11) follow (see Remark 4.1.21).

Suppose now that we are in the setting of Theorem 4.2.8. If ` is a positive integer
such that D = `M is a Cartier divisor and we take Vq = H0(X ,OX (qD)), then

J (X ,∆ ,λ · ‖M ‖) = J (X ,∆ ,(λ/`)· ‖V• ‖),

and the assertions in Theorem 4.2.8 follow from those in Theorem 4.2.9.

In this case, too, we can use the vanishing results in Theorem 4.2.8 in combina-
tion with Castelnuovo-Mumford regularity to obtain global generation results.

Corollary 4.2.10. Let (X ,∆) be a rational log pair, with X projective, M a Q-
Cartier Q-divisor on X, and A, H two Cartier divisors on X, with OX (H) ample
and globally generated. If one of the following two conditions holds:

a) H0(X ,OX (mM)) 6= 0 for some m such that mM is Cartier, and A− (KX + ∆)−
λM is big and nef, for some λ ∈Q≥0, or

b) M is big and A− (KX +∆)−λM is nef, for some λ ∈Q>0,

then J (X ,∆ ,λ · ‖ M ‖)⊗OX (A + jH) is globally generated for every j ≥ n =
dim(X).

4.2.3 Asymptotic multiplier ideals of big and pseudo-effective
divisors

We begin by showing that numerically equivalent big line bundles have the same
asymptotic multiplier ideals.

Proposition 4.2.11. If (X ,∆) is a log pair, with X projective, and D, D′ are big
Q-Cartier Q-divisors such that D′−D is nef, then

J (X ,∆ ,λ · ‖ D ‖)⊆J (X ,∆ ,λ · ‖ D′ ‖) for every λ ∈ R≥0.

In particular, if D and D′ are numerically equivalent, then

J (X ,∆ ,λ · ‖ D ‖) = J (X ,∆ ,λ · ‖ D′ ‖) for every λ ∈ R≥0.

Proof. The first assertion follows from Proposition 4.2.7iii) and Lemma 1.7.16. The
second assertion is an immediate consequence of the first one.

Remark 4.2.12. If (X ,∆) is a log pair and D, D′ are Cartier divisors on X , with D′

big and D′−D nef, and a•, a′• are the corresponding graded sequences of base-loci
ideals, then there is a nonzero ideal c⊆OX such that

c ·J (X ,∆ ,am
• )⊆ a′m for m� 0. (4.14)
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Indeed, let H be a very ample Cartier divisor and n = dim(X). Since D′ is big, it
follows from Lemma 1.4.14 that there is a positive integer ` and an effective Cartier
divisor G such that

`D′− (KX +∆)−nH−G is ample.

In this case, it follows from Corollary 4.2.10 that for every m > `

J (X ,∆ ,(m− `)· ‖ D ‖)⊗OX (mD′−G) is globally generated.

We deduce that if bm is the ideal defining the base-locus of OX (mD′−G), then

OX (−G)·J (X ,∆ ,m· ‖D ‖)⊆OX (−G)·J (X ,∆ ,(m−`)· ‖D ‖)⊆OX (−G)·bm⊆ a′m

for every m > `. We thus obtain (4.14) by taking c = OX (−G).
In particular, we obtain a stronger version of Lemma 1.7.16 when X is a normal

variety. Indeed, let us choose ∆ such that (X ,∆) is a log pair (for example, we may
take ∆ = −KX ). In this case, it follows from Remark 4.1.6 that there is a nonzero
ideal J on X such that

J ·am ⊆J (X ,∆ ,am)⊆J (X ,∆ ,am
• ).

By combining this with (4.14), we conclude that J · c ·am ⊆ a′m for all m� 0.

We now describe an application of Corollary 4.2.10 due to Hacon. The goal is
to associate a version of asymptotic multiplier ideal to every pseudo-effective R-
Cartier R-divisor, by adding a small ample divisor. More precisely, suppose that
(X ,∆) is a log pair and D ∈ CDiv(X)R is pseudo-effective. We consider various
ample A ∈ CDiv(X)R such that D+A is a Q-divisor (note that this is automatically
big). For such A, we consider J (X ,∆ ,λ · ‖ D+A ‖) for λ ∈ R≥0.

Proposition 4.2.13. Let (X ,∆) be a log pair, with X projective, D a pseudo-effective
R-Cartier R-divisor, and λ ∈R≥0. Among all fractional ideals of the form J (X ,∆ ,λ · ‖
D + A ‖), where A varies over the ample R-Cartier R-divisors such that D + A ∈
CDiv(X)Q, there is one contained in all others. Furthermore, there is an open neigh-
borhood Uλ of the origin in N1(X)R such that

J+(X ,∆ ,λ · ‖ D ‖) = J (X ,∆ ,λ · ‖ D+A ‖)

for every A ∈ CDiv(X)R ample, whose numerical class lies in U , and with D+A ∈
CDiv(X)R.

Proof. Since the pair (X ,∆) is fixed, in order to simplify the notation, we write
J (λ · ‖ D + A ‖) for J (X ,∆ ,λ · ‖ D + A ‖). Note first that if A1,A2 ∈ CDiv(X)R
are such that both D + A1 and D + A2 are in CDiv(X)Q and A1−A2 is nef, then
Proposition 4.2.11 gives

J (λ · ‖ D+A2 ‖)⊆J (λ · ‖ D+A1 ‖).
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We choose a very ample Cartier divisor H on X and let n = dim(X). Suppose that
B is a fixed ample Cartier divisor such that B− (KX + ∆)− λD is ample. If A ∈
CDiv(X)R is such that D+A ∈ CDiv(X)Q and B− (KX +∆)−λ (D+A) is ample,
then Corollary 4.2.10 implies that

J (λ · ‖ D+A ‖)⊗OX (B+nH)

is globally generated (if λ 6∈Q, then we apply the corollary to some rational λ ′ > λ

such that J (λ · ‖D+A ‖)) = J (λ ′· ‖D+A ‖) and with B−(KX +∆)−λ ′(D+A)
ample). It follows that J (λ · ‖ D+A ‖) is determined by the linear subspace

WA := H0(X ,J (λ · ‖ D+A ‖)⊗OX (B+nH))

⊆W = H0(X ,OX (B+nH).

Since W is finite-dimensional, we can find A as above for which WA is minimal
among all such subspaces. We first show that for every A1 ∈ CDiv(X)R ample such
that D + A1 ∈ CDiv(X)Q, we have J (λ · ‖ D + A ‖) ⊆J (λ · ‖ D + A1 ‖). Let
us choose an ample A2 such that both A− A2 and A1 − A2 are ample and lie in
CDiv(X)Q. We have seen that this implies

J (λ · ‖ D+A2 ‖)⊆J (λ · ‖ D+A1 ‖), J (λ · ‖ D+A2 ‖)⊆J (λ · ‖ D+A ‖).
(4.15)

We note that B− (KX +∆)−λ (D+A2) is ample and the second inclusion in (4.15)
implies that WA2 ⊆WA. The minimality in the choice of A implies WA2 = WA and
therefore

J (λ · ‖ D+A2 ‖) = J (λ · ‖ D+A ‖)⊆J (λ · ‖ D+A1 ‖).

Suppose now that Uλ ⊆ N1(X)R consists of the classes of those E for which
A−E is ample. In this case Uλ is an open neighborhood of the origin and it satisfies
the last assertion in the proposition. Indeed, if A′ ∈ CDiv(X)R is ample, its class lies
in Uλ , and D+A′ ∈ CDiv(X)Q, then

J (λ · ‖ D+A′ ‖)⊆J (λ · ‖ D+A ‖)

(this follows since A−A′ is ample), while the reverse inclusion follows from the
minimality of J (λ · ‖ D+A ‖), which we have proved.

In the next proposition we collect some basic properties of this version of asymp-
totic multiplier ideals.

Proposition 4.2.14. Let (X ,∆) be a log pair, with X projective, D ∈ CDiv(X)R
pseudo-effective, and λ ∈ R≥0.

i) If E ∈ CDiv(X)R is numerically equivalent to D, then

J+(X ,∆ ,λ · ‖ D ‖) = J+(X ,∆ ,λ · ‖ E ‖).
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ii) If λ ≥ µ , then

J+(X ,∆ ,λ · ‖ D ‖)⊆J+(X ,∆ ,µ· ‖ D ‖).

iii) If B ∈ CDiv(X)R is nef, then

J+(X ,∆ ,λ · ‖ D ‖)⊆J+(X ,∆ ,λ · ‖ D+B ‖).

iv) We have J+(X ,∆ ,λ · ‖ D ‖) = J+(X ,∆ ,‖ λD ‖).

Proof. Note that if A ∈ CDiv(X)R is ample, then we can write D + A = E +(A +
D−E) and A+D−E is ample. Therefore the equality in i) follows from definition.
In order to prove ii), note that if A ∈ CDiv(X)R is ample and D + A is a Q-Cartier
Q-divisor, then we have

J (X ,∆ ,λ · ‖ D+A ‖)⊆J (X ,∆ ,µ· ‖ D+A ‖)

by Proposition 4.2.7i). We thus deduce the inclusion in ii) directly from definition.
We now prove iii). Let A ∈ CDiv(X)R be such that D + B + A is a Q-Cartier

Q-divisor and

J+(X ,∆ ,λ · ‖ D+B ‖) = J (X ,∆ ,λ · ‖ D+B+A ‖).

Since A+B is ample, we may choose A′ ∈ CDiv(X)R ample such that A+B−A′ is
ample and D+A′ ∈ CDiv(X)Q. In this case, we have

J+(X ,∆ ,λ ‖ D ‖)⊆J (X ,∆ ,λ ‖ D+A′ ‖)⊆J (X ,∆ ,λ · ‖ D+B+A ‖),

where the second inclusion follows from Proposition 4.2.11.
In order to prove iv), let A ∈ CDiv(X)R be ample, such that D+A ∈ CDiv(X)Q,

and J+(X ,∆ ,λ · ‖ D ‖) = J (X ,∆ ,λ · ‖ D + A ‖). If λ ′ > λ is rational and small
enough (depending on A), then

J (X ,∆ ,λ · ‖ D+A ‖) = J (X ,∆ ,λ ′· ‖ D+A ‖) = J (X ,∆ ,‖ λ
′(D+A) ‖).

On the other hand, the difference λ ′(D + A)−λD = (λ ′−λ )D + λ ′A is ample if
λ ′−λ is small enough, hence it follows from definition that

J+(X ,∆ ,‖ λD ‖)⊆J (X ,∆ ,‖ λ
′(D+A) ‖) = J+(X ,∆ ,λ · ‖ D ‖).

For the reverse inclusion, we choose F ∈ CDiv(X)R ample such that λD + F ∈
CDiv(X)Q and J+(X ,∆ ,‖ λD ‖) = J (X ,∆ ,‖ λD + F ‖). Since F is ample,
we can choose F ′ ∈ CDiv(X)R ample such that F − λF ′ is ample and D + F ′ ∈
CDiv(X)Q. Suppose now that µ ∈Q is such that 0 < µ−λ � 1, so that

(λD+F)−µ(D+F ′) = (λ −µ)D+(F−µF ′)

is ample. Furthermore, the hypothesis on µ gives
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J (X ,∆ ,λ ‖ D+F ′ ‖) = J (X ,∆ ,µ· ‖ D+F ′ ‖) = J (X ,∆ ,‖ µ(D+F ′) ‖)

⊆J (X ,∆ ,‖ λD+F ‖) = J+(X ,∆ ,‖ λD ‖).

It then follows from definition that J+(X ,∆ ,λ · ‖ D ‖)⊆J+(X ,∆ ,‖ λD ‖). This
completes the proof of iv).

4.3 Adjoint ideals, the restriction theorem, and subadditivity

In this section we prove one of the central results concerning multiplier ideals, which
relates the multiplier ideal on an ambient variety and the multiplier ideal for the
restriction to a divisor. As an intermediary for this, we use a variant of multiplier
ideals that we now introduce.

4.3.1 Adjoint ideals

There are several notions of adjoint ideals and we now introduce the simplest ver-
sion. Consider a log triple of the form (X ,S +∆ ,Z ), where S a prime divisor on X
that does not appear in the supports of either ∆ or Z . Note that in this case we have
aS(X ,S +∆ ,Z ) = 0.

Definition 4.3.1. With the above notation, consider a log resolution f : Y → X of
(X ,S +∆ ,Z ). The adjoint ideal AdjS(X ,S +∆ ,Z ) is defined as

AdjS(X ,S +∆ ,Z ) := f∗OY (−b(S +∆)Y + f−1(Z )c+ S̃),

where S̃ is the proper transform of S on Y .

Remark 4.3.2. In general, the adjoint ideal is a (nonzero) fractional ideal. However,
when (X ,S + ∆ ,Z ) is an effective pair, then the only divisors that appear in b(S +
∆)Y + f−1(Z )c− S̃ with negative coefficients are f -exceptional. Therefore in this
case AdjS(X ,S +∆ ,Z ) is an ideal in OX .

Proposition 4.3.3. The definition of AdjS(X ,S+∆ ,Z ) is independent of the chosen
log resolution.

Proof. Arguing as in the proof of Theorem 4.1.3, we see that it is enough to show
that if f : Y → X and g : W →Y are such that both f and f ◦g are log resolutions of
(X ,S +∆ ,Z ), then

g∗OZ(−b(S +∆)Z +g−1( f−1(Z ))c+ S̃′) = OY (−b(S +∆)Y + f−1(Z )c+ S̃),
(4.16)

where S̃′ is the proper transform of S on Z. For A = (S + ∆)Y + f−1(Z ), we can
write A = S̃+B+F , where B is a Cartier divisor, bFc= 0, and S̃ does not appear in
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the support of B + F . In this case, the right-hand side of (4.16) is OY (−B). On the
other hand, we have

b(S +∆)Z +g−1( f−1(Z ))c− S̃′ = g∗(B)+ bg∗(S +F)−KW/Y − S̃′c.

Using the projection formula, we see that in order to prove (4.16), it is enough to
show that

g∗OZ(−bg∗(S +F)−KW/Y − S̃′c) = OY . (4.17)

Since S̃+F has simple normal crossings, bFc= 0, and S does not appear in the sup-
port of F , it follows from Remark 3.1.31 that the log pair (Y, S̃+F) is plt. Therefore
g∗(S̃ + F)−KW/Y − S̃′ has all coefficients < 1. Moreover, since F is effective, all
prime divisors that appear with negative coefficients are g-exceptional. We conclude
that −bg∗(S + F)−KW/Y − S̃′c is an effective g-exceptional divisor, and we obtain
(4.17).

Remark 4.3.4. It follows from the definition of adjoint ideals and the independence
of log resolution that for a triple (X ,S+∆ ,Z ) as in Definition 4.3.1, we have OX ⊆
AdjS(X ,S+∆ ,Z ) if and only if aE(X ,S+∆ ,Z )≥ 0 for all divisors E over X , with
equality if and only if E = S. In particular, we see that in this case (X ,S + ∆ ,Z )
is plt. Furthermore, if S is normal and Cartier, and (X ,S + ∆ ,Z ) is plt, then OX ⊆
AdjS(X ,S +∆ ,Z ) in a neighborhood of S. Indeed, in this case every prime divisor
E 6= S on X with aE(X ,S +∆ ,Z ) = 0 does not intersect S (see Remark 3.1.28).

Remark 4.3.5. If (X ,S + ∆ ,Z ) is a triple as in Definition 4.3.1 and S is Q-Cartier,
then for every ε > 0, we have

AdjS(X ,S +∆ ,Z )⊆J (X ,(1− ε)S +∆ ,Z ). (4.18)

Indeed, if f : Y → X is a log resolution of (X ,S +∆ ,Z ), then

b(S +∆)Y + f−1(Z )c− S̃ = b f ∗(S)+∆Y + f−1(Z )c− S̃

≥ b(1− ε) f ∗(S)+∆Y + f−1(Z )c= b((1− ε)S +∆)Y + f−1(Z )c.

By taking the corresponding sheaves and pushing-forward via f , we obtain the in-
clusion in (4.18).

4.3.2 The restriction theorem

We now turn to one of the most important results concerning multiplier ideals. We
will discuss in this section applications of this result to the restriction theorem for
multiplier ideals, as well as to vanishing theorems for adjoint ideals. Other implica-
tions to extension theorems will be given later.

We fix a rational log triple (X ,S + ∆ ,Z ), where S is a prime divisor on X that
is not contained in the support of either ∆ or Z . In addition, we assume that Z
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is effective and S is normal and a Cartier divisor. Recall that we may consider the
restriction ∆ |S (see Remark 3.1.4) and also Z |S.

Theorem 4.3.6 (Adjunction sequence). With the above notation, we have an exact
sequence

0→J (X ,S +∆ ,Z )→ AdjS(X ,S +∆ ,Z )→J (S,∆ |S,Z |S)→ 0. (4.19)

Note that by Example 4.1.5, we can rewrite the first term in the sequence as
J (X ,S +∆ ,Z ) = J (X ,∆ ,Z )⊗OX (−S).

Proof of Theorem 4.3.6. Let f : Y → X be a log resolution of (X ,S + ∆ ,Z ) and
write f ∗(S) = S̃ + F , where S̃ is the proper transform of S on Y . Recall that by
Example 3.1.9, we have (∆ |S)S̃ = (F +∆Y )|S̃. Let

A = b(S +∆)Y + f−1(Z )c− S̃ = bF +∆Y + f−1(Z )c

and consider the following exact sequence on Y

0→ OY (−A− S̃)→ OY (−A)→ OY (−A)|S̃→ 0. (4.20)

Since we deal with simple normal crossing divisors, restricting to S commutes with
rounding-down. Therefore if g : S̃→ S is the restriction of f , we have

A|S̃ = b(F +∆Y )|S̃ + f−1(Z )|S̃c= b(∆ |S)S̃ +g−1(Z |S)c.

Since g is a log resolution of (S,∆ |S,Z |S), we conclude that f∗(OY (−A)|S̃) =
J (S,∆ |S,Z |S).

On the other hand, it follows from the definition of multiplier ideals that

f∗OY (−A− S̃) = J (X ,S +∆ ,Z ).

Furthermore, Theorem 4.1.19 implies R1 f∗OY (−A− S̃) = 0. Therefore by applying
f∗ to the exact sequence (4.20), the resulting sequence is still exact, and this is
precisely the sequence in the theorem.

We can use the above proof to show that adjoint ideals also satisfy versions of
relative vanishing and Nadel vanishing theorems.

Corollary 4.3.7. Let (X ,S+∆ ,Z ) be a rational triple, with Z effective, where S is
a prime normal Cartier divisor on X that is not contained in the support of either ∆

or Z .

i) If f : Y → X is a log resolution of (X ,S +∆ ,Z ), then

Ri f∗OY (−b(S +∆)Y + f−1(Z )c+ S̃) = 0 for all i≥ 1.
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ii) Suppose that Z = ∑
r
j=1 q jZ j, with each Z j a closed subscheme defined by the

ideal IZ j and we have Cartier divisors A j such that IZ j ⊗OX (A j) is globally
generated for all j. If X is projective and A is a Cartier divisor such that A−
(KX + S + ∆)−∑

r
j=1 q jA j is big, nef, and its augmented base locus does not

contain S, then

H i(X ,AdjS(X ,S +∆ ,Z )⊗OX (A)) = 0 for all i≥ 1.

Proof. We use the notation in the proof of Theorem 4.3.6. It follows from Theo-
rem 4.1.19 that

Ri f∗OY (−A− S̃) = 0 and Ri f∗(OY (−A)|S̃) = 0

for all i ≥ 1. The long exact sequence of higher direct images corresponding to the
short exact sequence (4.20) implies the assertion in i).

Similarly, under the assumptions in ii), Theorem 4.1.20 implies

H i(X ,J (X ,S +∆ ,Z )⊗OX (A)) = 0 and H i(S,J (S,∆ |S,Z |S)⊗OX (A)|S) = 0

for all i ≥ 1 (note that since S is not contained in the augmented base locus of
A−(KX +S+∆)−∑

r
j=1 q jA j, it follows from Remark 1.5.12 that the corresponding

restriction to S is big, and clearly also nef). The long exact sequence in cohomol-
ogy corresponding to the short exact sequence (4.19) gives the assertion in ii). This
completes the proof of the corollary.

As another consequence of Theorem 4.3.6, we obtain the following relation be-
tween the multiplier ideal of a triple on X and that of its restriction to a normal
Cartier divisor.

Corollary 4.3.8 (Restriction theorem). Let (X ,∆ ,Z ) be an effective, rational
triple, and S a prime divisor on X, which is normal and Cartier, and which is not
contained in the support of either ∆ or Z .

i) We have AdjS(X ,S +∆ ,Z ) ·OS = J (S,∆ |S,Z |S).
ii) In particular, we have J (S,∆ |S,Z |S)⊆J (X ,(1− ε)S +∆ ,Z ) ·OS for every

ε > 0.

Proof. The assertion in i) follows from Theorem 4.3.6 by noting that under our as-
sumptions, AdjS(X ,S+∆ ,Z ) and J (S,∆ |S,Z |S) are ideals in OX and OS, respec-
tively, and the corresponding map in the exact sequence in the theorem is induced
by restricting sections to S. The inclusion in ii) then follows from the equality in i)
and Remark 4.3.5.

Corollary 4.3.9 (Generic restriction theorem). With the same assumptions as in
Corollary 4.3.8, if S is a general member of a base-point free linear system, then
J (X ,∆ ,Z ) ·OS = J (S,∆ |S,Z |S).
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Proof. Fix a log resolution f : Y → X of (X ,∆ ,Z ). If S is general, then f is a
log resolution of (X ,S + ∆ ,Z ) and f ∗(S) is equal to the proper transform of S.
Therefore J (X ,∆ ,Z ) = AdjS(X ,S+∆ ,Z ) and the corollary follows from Corol-
lary 4.3.8.

Corollary 4.3.10 (Inversion of adjunction). Let (X ,∆ ,Z ) be an effective, ratio-
nal triple, and S a normal, prime divisor on X, which is Cartier, and which is not
contained in the support of either ∆ or Z . In this case (S,∆ |S,Z |S) is klt if and
only if (X ,S +∆ ,Z ) is plt in a neighborhood of S. In particular, if (S,∆ |S,Z |S) is
klt, then (X ,∆ ,Z ) is klt in a neighbourhood of S.

Proof. Note that if I is an ideal in OX , then I ·OS = OS if and only if I = OX is
a neighborhood of S. Therefore the first assertion follows from Corollary 4.3.8 and
the fact that (S,∆ |S,Z |S) is klt if and only if J (S,∆ |S,Z |S) = OS and (X ,∆ ,Z )
is plt in a neighborhood of S if and only if AdjS(X ,S+∆ ,Z ) = OX in such a neigh-
norhood (see Remarks 4.1.4 and 4.3.4).

Corollary 4.3.11. Let (X ,∆ ,Z ) be a rational effective triple, with X a smooth va-
riety. If Y ↪→ X is a smooth closed subvariety of codimension c that is not contained
in the support of either ∆ or Z , then

J (Y,∆ |Y ,Z |Y )⊆J (X ,∆ ,Z +(c− ε)Y ) ·OY

for every ε > 0.

Proof. Since both X and Y are smooth, arguing locally we may assume that X
is affine and we have Y = H1 ∩ . . . ∩Hc, for suitable effective Cartier divisors
H1, . . . ,Hc. After replacing X by an open neighborhood of Y , we may assume that
H1 + . . .+ Hc is a simple normal crossing divisor. Furthermore, by taking the Hi to
be general, we see as in Example 4.1.11 that we may assume that

J (X ,∆ ,Z +(c− ε)Y ) = J (X ,∆ +
c

∑
i=1

δHi,Z ),

where δ = c−ε

ε
. Let Yd =

⋂c−d
i=1 Hi, for 1 ≤ d ≤ c− 1. Applying Corollary 4.3.8 c

times, we obtain

J (Y,∆ |Y ,Z |Y )⊆J (Y1,∆ |Y1 +δHn|Y1 ,Z |Y1) ·OY ⊆ . . .

. . .⊆J (Yc−1,∆ |Yc−1 +
c−1

∑
i=1

δHi|Yc−1 ,Z |Yc−1) ·OY ⊆J (X ,∆ ,Z +(c− ε)Y ) ·OY .

Corollary 4.3.12. If f : W → X is a morphism of smooth varieties and we have a
log triple (X ,∆ ,Z ) such that the image of f is not contained in the support of either
∆ or Z , then

J (W, f ∗(∆), f−1(Z ))⊆J (X ,∆ ,Z ) ·OW .
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Proof. Consider the factorization of f as p ◦ g, where p : W ×X → X is the pro-
jection and g : W ↪→W ×X is the graph of f . Therefore it is enough to show that
the assertion in the theorem holds for both g and p. For g, this is a consequence of
Corollary 4.3.11, while for p, this follows from Example 4.1.15 (in fact, in this case
the inclusion is an equality).

4.3.3 Asymptotic adjoint ideals

We can define asymptotic versions of adjoint ideals in the same way we did it for
multiplier ideals. Given a log pair (X ,S + ∆) such that S is a prime divisor not
contained in the support of ∆ , suppose we have a graded sequence a• such that
am ·OS 6= 0 for some m (hence for all m divisible enough). For every positive integers
m and p such that am ·OS 6= 0, we have

AdjS(X ,S +∆ ,a
λ/m
m ) = AdjS(X ,S +∆ ,(ap

m)λ/mp)⊆ AdjS(X ,S +∆ ,aλ
mp).

Arguing as in the case of multiplier ideals, we see that among the set of ideals

AdjS(X ,S +∆ ,a
λ/m
m ), where am ·OS 6= 0

there is a unique smallest one, the asymptotic adjoint ideal AdjS(X ,S+∆ ,aλ
• ), equal

to AdjS(X ,S +∆ ,a
λ/m
m ) for m divisible enough.

In particular, if L ∈ Pic(X) and a• is the corresponding graded sequence of base-
loci ideals, we may consider the above definition as long as S 6⊆ SB(L ). In this case,
AdjS(X ,S+∆ ,λ · ‖L ‖) denotes the corresponding asymptotic adjoint ideal. More
generally, if V• is a graded linear series such that S 6⊆ Bs(Vm) for some m, then we
may define the asymptotic adjoint ideal AdjS(X ,S +∆ ,λ · ‖V• ‖).

As in the case of multiplier ideals, we see that for every positive integer q, we
have

AdjS(X ,S +∆ ,λq· ‖L ‖) = AdjS(X ,S +∆ ,λ · ‖L q ‖).

Using this, we define in the obvious way AdjS(X ,S +∆ ,λ · ‖ D ‖) for Q-divisors D
such that S 6⊆ SB(D).

The relation between adjoint ideals and multiplier ideals, as well as the vanishing
results for adjoint ideals, admit variants in the asymptotic setting.

Corollary 4.3.13. Let (X ,S + ∆) be a rational log pair, with S a prime normal
Cartier divisor on X that is not contained in the support of ∆ . If a• is a graded
sequence of ideals on X such that am ·OS 6= 0 for some m, and if bp = ap|S for all
p≥ 1, then for every λ ∈Q≥0, there is an exact sequence

0→J (X ,S +∆ ,aλ
• )→ AdjS(X ,S +∆ ,aλ

• )→J (S,∆ |S,bλ
• )→ 0.
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Proof. This follows by applying Theorem 4.3.6 with Z = λ

m ·V (am), for m divisible
enough, in which case the corresponding adjoint ideal and multiplier ideals are equal
to the asymptotic ones in the above statement.

Corollary 4.3.14. Let (X ,S + ∆) be a rational log pair, with X projective, and S a
prime normal Cartier divisor on X that is not contained in the support of ∆ . Suppose
that D is a Cartier divisor on X and V• is a graded linear series corresponding to
OX (D), such that the base-locus of some Vm does not contain S.

i) If λ ∈Q≥0 and A is a Cartier divisor such that A−(KX +S+∆)−λD is big and
nef and also its restriction to S is big, then

H i(X ,AdjS(X ,S +∆ ,λ · ‖V• ‖)⊗OX (A)) = 0 for all i≥ 1. (4.21)

ii) If λ ∈Q>0 and some Vm gives a rational map that is birational onto its image and
whose restriction to S is again birational onto its image1, then for every Cartier
divisor A such that A− (KX +S +∆)−λD is nef, the vanishing in (4.21) holds.

Proof. We use the exact sequence in Corollary 4.3.13, in which we take a• to be
the graded sequence of base-loci ideals of V• (note that the hypothesis implies that
am ·OS 6= 0 for some m). We denote by Wm ⊆ H0(S,OX (mD)|S) the image of Vm.
Note that in case i) the hypothesis says that some Wm is nonzero, while in case ii) it
says that some Wm defines a birational map onto image.

It follows from the long exact sequence in cohomology that in order to complete
the proof of the corollary, it is enough to note that in both cases i) and ii), the
hypotheses guarantee that we can apply Theorem 4.2.9 to deduce that

H i(X ,J (X ,S +∆ ,λ · ‖V• ‖)⊗OX (A)) = 0 for all i≥ 1, and (4.22)

H i(S,J (S,∆ |S,λ · ‖W• ‖)⊗OX (A)|S) = 0 for all i≥ 1. (4.23)

4.3.4 Subadditivity

A special property of multiplier ideals in the case of smooth varieties is the following
subadditivity theorem, due to Demailly, Ein, and Lazarsfeld [DEL00].

Theorem 4.3.15. If we consider two effective rational triples (X ,∆1,Z1) and (X ,∆2,Z2),
where X is a smooth variety, then

J (X ,∆1 +∆2,Z1 +Z2)⊆J (X ,∆1,Z1) ·J (X ,∆2,Z2). (4.24)

1 This condition is satisfied, for example, if Vm = H0(X ,OX (mD)) for all m ≥ 1, and S is not
contained in the augmented base locus of D.
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Proof. If pi : X ×X → X are the canonical projections and ∆ = p∗1(∆1) + p∗2(∆2)
and Z = p−1

1 (Z1)+ p−1
2 (Z2), then it follows from Example 4.1.15 that

J (X×X ,∆ ,Z ) = p−1
1 J (X ,∆1,Z1)+ p−1

2 J (X ,∆2,Z2).

On the other hand, it follows from Corollary 4.3.11 applied to the diagonal embed-
ding X ↪→ X×X that

J (X ,∆1 +∆2,Z1 +Z2) = J (X ,∆ |X ,Z |X )⊆J (X×X ,∆ ,Z ) ·OX

= J (X ,∆1,Z1) ·J (X ,∆2,Z2).

This completes the proof of the theorem.

Remark 4.3.16. Eisenstein [Eis] and Takagi [Tak13] have given versions of the sub-
additivity theorem when X is allowed to be singular. For example, if ∆1 = ∆2 = 0,
then one has to multiply the ideal on the left-hand side of (4.24) by the Jacobian
ideal of X .

We now give a version of the subadditivity theorem for asymptotic multiplier
ideals.

Corollary 4.3.17. Let X be a smooth variety.

i) If a• and b• are nonzero graded sequences of ideals on X and we put cm = am ·bm
for all m≥ 1, then for every λ ∈Q≥0 we have

J (X ,cλ
• )⊆J (X ,aλ

• ) ·J (X ,bλ
• ).

ii) If a• is a nonzero graded sequence of ideals on X, then

J (X ,aλ+µ
• )⊆J (X ,aλ

• ) ·J (X ,aµ
• )

for every λ ,µ ∈ Q≥0. In particular, J (X ,amλ
• ) ⊆J (X ,aλ

• )
m for all λ ∈ Q≥0

and all positive integers m.

Proof. The assertion in i) follows from Theorem 4.3.15 and the fact that if m is
divisible enough, then J (X ,cλ

• ) = J (X ,c
λ/m
m ), J (X ,aλ

• ) = J (X ,a
λ/m
m ), and

J (X ,bλ
• ) = J (X ,b

λ/m
m ). In order to check the first assertion in i), let m be di-

visible enough. Using Theorem 4.3.15, we obtain

J (X ,aλ+µ
• ) = J (X ,a

(λ+µ)/m
m ) = J (X ,a

λ/m
m ·aµ/m

m )

⊆J (X ,a
λ/m
m ) ·J (X ,a

µ/m
m ) = J (X ,aλ

• ) ·J (X ,aµ
• ).

The second assertion in ii) follows easily from the first one by induction on m.
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Chapter 5
Applications of multiplier ideals

In this chapter we collect several applications of multiplier ideals to geometric prob-
lems. Unless explicitly mentioned otherwise, all varieties are assumed to be defined
over an algebraically closed field of characteristic zero.

5.1 Asymptotic invariants of divisors, revisited

We now return to the study of asymptotic invariants of linear systems discussed in
Section 1.7. Our main goal is to describe, at least on smooth varieties, the non-nef
locus of a divisor using the asymptotic invariants. For this, we follow the approach
in [ELM+06].

5.1.1 Asymptotic invariants via multiplier ideals

We start by showing that under fairly general assumptions, one recovers the asymp-
totic order of vanishing along a graded sequence of ideals from the orders of van-
ishing along the corresponding asymptotic multiplier ideals.

Proposition 5.1.1. Let (X ,∆) be a log pair and a• a nonzero graded sequence of
ideals on X. If bm = J (X ,∆ ,am

• ), then for every divisor E over X, we have

ordE(a•) = lim
m→∞

ordE(bm)
m

.

Proof. Let m0 be such that am0 6= 0, hence a`m0 6= 0 for all ` ≥ 1. It follows from
Remark 4.1.6 that there is a nonzero ideal J on X such that

J ·am ⊆J (X ,∆ ,am)⊆ bm

207
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for every m≥ 1. By taking m = `m0, we obtain

ordE(b`m0)
`m0

≤
ordE(a`m0)

`m0
+

ordE(J)
`m0

. (5.1)

Moreover, for every i with 1 ≤ i ≤ m0, we have b(`+1)m0 ⊆ b`m0+i by Proposi-
tion 4.2.7i), hence

ordE(b`m0+i)
`m0 + i

≤
ordE(b(`+1)m0)

(`+1)m0
· (`+1)m0

`m0 + i
. (5.2)

By combining (5.1) and (5.2), we conclude that

limsup
m→∞

ordE(bm)
m

≤ lim
`→∞

ordE(a`m0)
`m0

= ordE(a•).

On the other hand, given any m, we can write

bm = J (X ,∆ ,am
• ) = J (X ,∆ ,a

1/q
qm ),

where q is divisible enough. It follows from the definition of multiplier ideals that

ordE(bm) = ordE(J (X ,∆ ,a
1/q
qm )) >

1
q
·ordE(aqm)−aE(X ,∆).

Therefore

ordE(bm)
m

>
ordE(aqm)

qm
− aE(X ,∆)

m
≥ ordE(a•)−

aE(X ,∆)
m

for every m≥ 1, hence

liminf
m→∞

ordE(bm)
m

≥ ordE(a•).

We thus conclude that limm→∞
ordE (bm)

m = ordE(a•).

Computing the asymptotic invariants in terms of multiplier ideals is particularly
effective in the case of a smooth ambient variety, due to the subadditivity theorem.
This implies that the limit in the statement of Proposition 5.1.1 is also a supremum,
as follows.

Corollary 5.1.2. If a• is a nonzero graded sequence of ideals on a smooth variety
X and bm = J (X ,am

• ) for every m≥ 1, then for every divisor E over X we have

ordE(a•) = sup
m≥1

ordE(bm)
m

.
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In particular, we have ordE(a•) = 0 if and only if the center cX (E) of E is not
contained in the zero-locus V (bm) of bm for any m≥ 1.

Proof. Note that in our setting each bm is a nonzero ideal in OX and Corollary 4.3.17
gives bp+q ⊆ bp · bq for all p,q ≥ 1. Therefore we have ordE(bp) + ordE(bq) ≤
ordE(bp+q) for all p,q ≥ 1, and applying Lemma 1.7.9 with αm = −ordE(bm), we
obtain

lim
m→∞

ordE(bm)
m

= sup
m≥1

ordE(bm)
m

.

Therefore the first assertion in the corollary follows from Proposition 5.1.1. The last
assertion is an immediate consequence, since each ordE(bm) is nonnegative.

5.1.2 Asymptotic invariants of big and pseudo-effective divisors

We can now prove a criterion for the vanishing of the asymptotic invariants of a big
Cartier divisor on a smooth variety.

Theorem 5.1.3. Let D be a big Cartier divisor on a smooth projective variety X.
For every divisor E over X, the following are equivalent:

i) ordE(‖ D ‖) = 0.
ii) There is M such that ordE(|mD|)≤M for all m� 0.

iii) For every ample A ∈ CDiv(X)Q, we have cX (E) 6⊆ SB(D+A)1.
iv) There is a Cartier divisor G (that we may assume ample) such that cX (E) 6⊆

Bs(|mD+G|) for every m≥ 1.
v) For every m≥ 1, the center cX (E) is not contained in the zero-locus of J (X ,m· ‖

D ‖).

Proof. Note that the implication i)⇒v) follows from Corollary 5.1.2. Since D is big,
it follows from Corollary 4.2.10 that if H is a very ample Cartier divisor on X and
G = KX +nH, where n = dim(X), then

J (X ,‖ mD ‖)⊗OX (mD+G) is globally generated for every m≥ 1.

It follows that if cX (E) in the zero-locus of J (X ,m· ‖ D ‖), then OX (mD + G) is
globally generated at the generic point of cX (E). We thus see that v) implies iv).

We now show that iv) implies iii). If G is a Cartier divisor as in iv), then for every
A ∈ CDiv(X)Q, we have A− 1

m G ample for m� 0. Therefore we have

SB(D+A)⊆ SB(D+
1
m

G)⊆ Bs(|mD+G|),

and iv) implies that cX (E) is not contained in SB(D+A).

1 If either cX (E) is a point, or the ground field is uncountable, this condition is equivalent to
cX (E) 6⊆ B–(D).
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On the other hand, if iii) holds, then for every ample Cartier divisor A, we have
cX (E) 6⊆ SB(D+ 1

m A) for every m≥ 1, hence ordE(‖D+ 1
m A ‖) = 0. It follows from

the continuity of the function ordE(‖ − ‖) on the big cone (see Proposition 1.7.18)
that ordE(‖ D ‖) = 0. We have thus shown that i), iii), iv), and v) are equivalent.

Since ii)⇒i) is trivial from the definition of asymptotic invariants, in order to
prove the equivalence of all five conditions, it is enough to show that iv)⇒ii). Let G
be as in iv). After possibly adding a suitable ample Cartier divisor, we may assume
that G is ample. Since D is big, it follows from Kodaira’s lemma that there is `≥ 1
and an effective divisor F such that `D−G ∼ F . In this case, for every m > `, we
have

ordE(|mD|)≤ ordE(|`D−G|)+ordE(|(m− `)D+G|)≤ ordE(F)

and therefore ii) holds. This completes the proof of the theorem.

Remark 5.1.4. The equivalence between i) and ii) in Theorem 5.1.3 holds if we only
assume that X is normal, instead of smooth. Indeed, it is enough to consider a reso-
lution of singularities f : Y → X and apply Theorem 5.1.3 for f ∗(D), using the fact
that ordE(|mD|) = ordE(|m f ∗(D)|) for all m≥ 1.

Remark 5.1.5. It is shown in [Mus13] that the equivalences i)-iv) in Theorem 5.1.3
also hold over a field of positive characteristic. Furthermore, they are also equivalent
to v), if the asymptotic multiplier ideal is replaced by the so-called asymptotic test
ideal.

Corollary 5.1.6. If X is a smooth variety and D ∈ CDiv(X)R is pseudo-effective,
then for every divisor E over X, the following are equivalent:

i) σE(D) = 0.
ii) For every ample A ∈ CDiv(X)R, with (D + A) a Q-Cartier Q-divisor, we have
cX (E) 6⊆ SB(D+A)2.

iii) The center cX (E) is not contained in the locus defined by J+(X ,m· ‖ D ‖) for
any m≥ 1.

Proof. We first prove i)⇒iii). It follows from the definition of σE(D) that this is 0 if
and only if for every ample B ∈ CDiv(X)R (and it is enough to only consider those
B such that (D+B) ∈ CDiv(X)Q) we have ordE(‖ D+B ‖) = 0. Given any m≥ 1,
we can find A′ ∈ CDiv(X)R ample, with (D+A′) ∈ CDiv(X)Q, such that

J+(X ,m· ‖ D ‖) = J (X ,m· ‖ D+A′ ‖).

If q is a positive integer such that q(D+A′) is a Cartier divisor and a• is the graded
sequence of ideals such that ap is the ideal defining the base-locus of |pq(D+A′)|,
then

J (X ,m· ‖ D+A′ ‖) = J (X ,a
m/q
• )⊇J (X ,am

• ). (5.3)

2 If either cX (E) is a point, or the ground field is uncountable, this condition is equivalent with
cX (E) 6⊆ B–(D).
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Since ordE(‖ D + A′ ‖) = 0, it follows from Corollary 5.1.2 that cX (E) is not con-
tained in the locus defined by J (X ,am

• ), hence by (5.3), cX (E) is not contained in
the locus defined by J+(X ,m· ‖ mD ‖).

Suppose now that iii) holds and let us deduce ii). Let A ∈ CDiv(X)R be ample
such that (D+A) ∈ CDiv(X)Q and let A′ ∈ CDiv(X)R be ample such that A−A′ is
an ample Q-Cartier Q-divisor. We choose a positive integer m such that m(D+A′) is
Cartier. Since SB(D+A) = SB(m(D+A′)+m(A−A′)), by applying Theorem 5.1.3
to the Cartier divisor m(D + A′), we see that it is enough to show that cX (E) is not
contained in the locus defined by J (X ,q· ‖m(D+A′) ‖) for any q≥ 1. This follows
from the inclusion

J+(X ,qm· ‖ D ‖)⊆J (X ,q· ‖ m(D+A′) ‖)

and the assumption in iii).
In order to complete the proof, it is enough to show that if ii) holds, then i) holds

too. Let B ∈ CDiv(X)R be ample and such that (D +B) ∈ CDiv(X)Q. We choose a
positive integer ` such that `(D+B) is Cartier and apply Theorem 5.1.3 to `(D+B).
If A is an ample Q-divisor, then cX (E) is not contained in

SB(`(D+B)+A) = SB(D+
1
`
(A+ `B))

by ii). Therefore ordE(‖ `(D + B) ‖) = 0, hence ordE(‖ D + B ‖) = 0. Since this
holds for all B as above, we conclude that σE(D) = 0.

Corollary 5.1.7. If X is a normal variety and D ∈ CDiv(X)R is pseudo-effective,
then D is nef if and only if σE(D) = 0 for all divisors E over X.

Proof. We have already seen in Proposition 1.7.31ii) that if D is nef, then σE(D) = 0
for every divisor E over X . Conversely, if this is the case and f : Y → X is a
projective birational morphism, with Y smooth, then Proposition 1.7.35 implies
σE( f ∗(D)) = 0 for every divisor E over Y . Since every point on Y is the center
of some E, it follows from Corollary 5.1.6 that f ∗(D)+ A is semiample for every
ample A∈CDiv(Y )R such that f ∗(D)+A is a Q-Cartier Q-divisor. Therefore f ∗(D)
is nef, hence also D is nef.

Corollary 5.1.8. If f : Y → X is a birational morphism of smooth projective vari-
eties, then for every D ∈ CDiv(X)R we have B–( f ∗(D)) = f−1(B–(D)).

Proof. Since the non-nef locus of a numerical class that is not pseudo-effective is
the ambient variety and since D is pseudo-effective if and only if f ∗(D) has this
property (see Remark 1.4.32), we may assume that D is pseudo-effective. Consider
y ∈ Y and let E be a divisor over Y such that cY (E) = {y}. It follows from Corol-
lary 5.1.6 that y ∈ B–( f ∗(D)) if and only if σE( f ∗(D)) > 0 and f (y) ∈ B–(D) if and
only if σE(D) > 0. Since σE(D) = σE( f ∗(D)) by Proposition 1.7.35, we obtain the
assertion in the corollary.
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Question 5.1.9. Does the equivalence between i) and iii) in Theorem 5.1.3 hold for
arbitrary normal varieties? A positive answer to this question on klt pairs has been
recently announced in [CL]. A related question is the following: does the assertion
in Corollary 5.1.8 hold if X and Y are only assumed to be normal, instead of smooth
(note that a positive answer to the former question implies a positive answer to the
latter one, and the converse holds over an uncountable ground field).

5.1.3 Zariski decompositions, revisited

We can use the connection between the asymptotic invariants and the non-nef lo-
cus to get a better understanding of Zariski decompositions. We first interpret the
movable cone in terms of asymptotic invariants.

Corollary 5.1.10. If X is a smooth projective variety of dimension n ≥ 2, then α ∈
PEff(X) lies in the closure of the movable cone Mov1(X) if and only if σE(α) = 0
for every prime divisor E on X.

Proof. This follows from the definition of Mov1(X) and Corollary 5.1.6.

Proposition 5.1.11. Let X be a smooth projective variety of dimension n ≥ 2. If
D ∈ CDiv(X)R is pseudo-effective and D = Pσ (D)+Nσ (D) is the divisorial Zariski
decomposition of D, then the numerical class of Pσ (D) lies in Mov1(X). Further-
more, if D = P + N is another decomposition with N effective and the numerical
class of P lying in Mov1(X), then N−Nσ (D) is effective.

Proof. It follows from the definition of the divisorial Zariski decomposition and
Proposition 1.7.36 that for every prime divisor E on X , we have σE(Pσ (D)) =
σE(D)− ordE(Nσ (D)) = 0. Therefore the first assertion in the proposition follows
from Corollary 5.1.10.

Suppose now that D = P + N is a decomposition as in the statement and let E
be a prime divisor on X . Using again Proposition 1.7.36 and the convexity of the
function σE , we obtain

ordE(Nσ (D)) = σE(D)≤ σE(P)+σE(N) = σE(N)≤ ordE(N),

where the last inequality follows from Remark 1.7.32. Since this holds for every E,
we conclude that N−Nσ (D) is effective.

In particular, we deduce the existence of Zariski decomposition on surfaces.

Proposition 5.1.12. If X is a smooth projective surface and D ∈ CDiv(X)R is
pseudo-effective, then D has a Zariski decomposition, that is, Pσ (D) is nef.

Proof. The assertion follows from Proposition 5.1.11 and the fact that on surfaces,
Mov1(X) coincides with the nef cone.
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Remark 5.1.13. The existence of Zariski decomposition on surfaces has been proved
by Zariski for big divisors and by Fujita for pseudo-effective divisors. In fact,
what Zariski and Fujita showed is that if X is a smooth projective surface and
D ∈ PEff(X)R, then one can write D = P+N, where

i) P is nef and N = ∑
r
i=1 aiEi, with all ai > 0.

ii) (P ·Ei) = 0 for 1≤ i≤ r.
iii) The intersection matrix (Ei ·E j)1≤i, j≤r is negative definite.

We refer to [Băd01, Chap. 14] for a proof. It is easy to see that given such P and N,
we have P = Pσ (D) and N = Nσ (D). Indeed, it follows from Proposition 5.1.11 that
N = Nσ (D)+A, for some effective divisor A. Since A is supported on E1∪ . . .∪Er
and

(A ·Ei) = (Pσ (D) ·Ei)− (P ·Ei) = (Pσ (D) ·Ei)≥ 0

for every i, it follows from iii) that A = 0.
This description of the Zaiski decomposition implies that if D is a Q-divisor, then

Pσ (D) and Nσ (D) are Q-divisors, too. Indeed, we have

Q 3 (D ·E j) =
r

∑
i=1

ai(Ei ·E j)

for 1 ≤ j ≤ r. It follows from (iii) that we can solve this system of equations to
determine the ai. In particular, these are rational numbers.

Remark 5.1.14. Let X be a smooth projective variety and D a big R-divisor on X . In
this case, a Zariski decomposition of D is a decomposition D = P + N, where P is
nef, N is effective, and for every m≥ 1, the natural inclusion

H0(X ,OX (mP)) ↪→ H0(X ,OX (mD)) (5.4)

is an isomorphism3. Indeed, if D = Pσ (D)+Nσ (D) gives a Zariski decomposition,
then (5.4) is satisfied by Proposition 1.7.36 (for this implication, it is enough to
assume that D is pseudo-effective). Conversely, if D = P+N is a decomposition as
above, we deduce from the fact that

h0(X ,OX (bmPc)) = h0(X ,OX (bmDc)) for all m≥ 1

that P is big (see Proposition 1.4.33). Furthermore, for every prime divisor E on X ,
we have

ordE(|bmDc|)−ordE(|bmPc|) = ordE(bmDc−bmPc= ordE(bmDc)−ordE(bmPc).

Dividing by m and letting m go to infinity, we obtain using Proposition 1.7.26

σE(D)−σE(P) = ordE(D)−ordE(P) = ordE(N).

3 A decomposition with these properties is also known as a CKM Zariski decomposition, where
the initials stand for Cutkosky, Kawamata, and Moriwaki.
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Since P is nef, we have σE(P) = 0, and we deduce that N = Nσ (D). Since D−Nσ (D)
is nef, it follows that D has a Zariski decomposition.

Remark 5.1.15. If f : Y → X is a birational morphism of smooth projective varieties
and D is a pseudo-effective R-divisor on X such that f ∗(D) has a Zariski decompo-
sition, then B–(D) = f (Nσ ( f ∗(D))). Indeed, note first that by Corollary 5.1.8, we
have B–(D) = f (B–( f ∗(D))). Therefore it is enough to prove the assertion when
X = Y and f is the identity. Let P = Pσ (D) and N = Nσ (D). Given a point x ∈ X ,
let F be a divisor over X with center {x}. Since P is nef, it follows from Proposi-
tion 1.7.36 that

σF(D) = σF(P)+ordF(N) = ordF(N).

Therefore σF(D) > 0 if and only if x ∈ Supp(N). On the other hand, it follows from
Corollary 5.1.6 that x ∈ B–(D) if and only if σF(D) > 0. This proves our assertion.

Remark 5.1.16. Let D be a pseudo-effective R-divisor on the smooth projective va-
riety X . It follows from Remark 5.1.15 that if there is a projective, birational mor-
phism f : Y → X , with Y smooth, such that f ∗(D) has a Zariski decomposition, then
B–(D) is Zariski closed. Lesieutre [Les] gave an example of such a divisor D in
dimension 3 (and a similar example in dimension 4, with D big) such that B–(D)
is not Zariski closed. In particular, we see that in this example, we cannot have a
Zariski decomposition after the pull-back by a birational morphism4.

5.2 Global generation of adjoint line bundles

5.3 Singularities of theta divisors

5.4 Ladders on Del Pezzo and Mukai varieties

5.5 Skoda-type theorems

4 As we have mentioned, Nakayama [Nak04] also gave an example with the latter property; how-
ever, in his example the non-nef locus is closed.



Chapter 6
Birational rigidity

Apart from Section 10.2, we work over C.

6.1 Factorization of planar Cremona maps

We begin this chapter by reviewing the following celebrated theorem on the struc-
ture of the Cremona group of P2.

Theorem 6.1.1 (Noether–Castelnuovo). The Cremona group Bir(P2) is generated
by linear transformations and the standard quadratic transformation

χ : (x : y : z) 99K (yz : xz : xy).

For clarity of exposition, we shall work without fixing coordinates, but allowing
instead to take standard quadratic transformations centered at any triple of distinct
non-collinear points of P2. The freedom in choosing the base points incorporates,
implicitly, the role of the linear transformations among the generators of the Cre-
mona group.

Let φ : P2 99K P2 be a birational map. This map is defined by a two-dimensional
linear system H ⊂ |OP2(r)| of curves of degree r with no fixed components. Note
that φ is an automorphism if and only if r = 1.

Suppose that φ is not an isomorphism. A minimal sequence of point-blowups

f : Y = Xk+1
fk−→ Xk→ ··· → X1

f1−→ X0 = P2

resolving the indeterminacies of φ determines a series of base points p0, p1, . . . , pk,
possibly some infinitely near to others: the centers pi of the blowups fi : Xi+1→ Xi.
We denote by mi the multiplicity at the point pi of the proper transform of H to Xi.
We can assume that the sequence of blowups is ordered such that

m0 ≥ m1 ≥ ·· · ≥ mk.

215



216 6 Birational rigidity

Noether’s idea to prove the theorem is that taking a standard quadratic tranfor-
mation χ centered at points of large multiplicity should lower the degree of the map
[Noe70]. The basic computation is the following. Suppose, for example, that the
three points p0, p1, p2 are distinct on P2. It can be shown that m1 +m2 +m3 > r, and
therefore these points cannot be collinear. Let χ be a standard quadratic transforma-
tion centered at these three points. By precomposing φ with χ−1 (note that this is
the same as χ), one obtains a new birational map

φ
′ = φ ◦χ

−1 : P2 99K P2

of degree
r′ = 2r−m0−m1−m2 < r,

which means that this operation lowers the degree of the map. One says that χ

untwists the map φ . A recursive application of this process would eventually reduce
φ to a linear transformation, thus providing the required factorization.

The issue with this approach is that, in general, p0, p1, p2 may fail to be distinct
in P2, and one may not be able to find three distinct points whose multiplicities
exceed, together, the degree of the map. As a matter of fact, there may not be three
distinct points at all. One is forced to work with infinitely near points. After several
attempted proofs, including those of Noether and Clifford which turned out to be
fallacious as pointed out by Segre [Seg01], a complete proof of Noether’s theorem
was finally given by Castelnuovo [Cas01].

Here we present a later proof, due to Alexander [Ale16], which is in some sense
closer to the original idea of Noether. We present it here with a small simplification
(in the logical structure more than in the computations). We first prove that Bir(P2)
is generated by linear transformations, the standard quadratic transformation χ , and
the quadratic transformation

ω : (x : y : z) 99K (x2 : xy : yz).

Theorem 10.1.1 will then follow by observing that ω itself factors as a composition
of linear and standard quadratic transformations.

Note that ω has three base points q1,q2,q3, with q2 infinitely near q1 and q3
not lying on the line passing through q1 with tangent direction q2. If n1,n2,n3 are
the multiplicities of H at these points, then the map φ ′ = φ ◦ω−1 : P2 99K P2 has
degree r′ = 2r−n0−n1−n2. As we are already doing for χ , we will work without
fixing coordinates and allow ω to be centered to any triple of points q1,q2,q3 with
the above properties.

Proof of Theorem 10.1.1. Keeping the above notation, let φ : P2 99K P2 be a bira-
tional transformation of degree r > 1, defined by a linear system H . Let p0, . . . , pk
the base points of H , and m0, . . . ,mk be their multiplicities, ordered as above. Let
Ei be the exceptional divisor of the blowup fi : Xi+1 → Xi centered at pi, and let
Fi be the pullback of Ei to Y = Xk+1. Finally, let D ∈H be a general member,
and let DY denote its proper transform on Y . Note that the rational map φ lifts, via
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f : Y → X0 = P2, to a morphism g = φ ◦ f : Y → P2, and DY is the pullback, via g,
of a general line in P2.

We set
a = a(φ) :=

r−m0

2
,

and define
b = b(φ) := max{i | mi > a}.

Lemma 6.1.2. b≥ 2.

Proof. Since f ∗D = DY +∑
k
i=0 miFi, Fi ·DY = mi for every i, and D2

Y = 1, we have

r2 = D2 = D · f∗DY = f ∗D ·DY = D2
Y +

k

∑
i=0

mi(Fi ·DY ) = 1+
k

∑
i=0

m2
i .

On the other hand, since KY = f ∗KX +∑
k
i=0 Fi and KY ·DY =−3, we have

3r =−KX ·D =−KY ·DY +
k

∑
i=0

(Fi ·DY ) = 3+
k

∑
i=0

mi.

Subtracting a times the second identity from the first gives

k

∑
i=0

mi(mi−a) = r2−3ra+3a−1.

By removing all the negative terms in the left hand side and subtracting 3a−1 from
the right hand side, we obtain

b

∑
i=0

mi(mi−a)≥
k

∑
i=0

mi(mi−a) > r(r−3a) = r(m0−a),

and hence, subtracting m0(m0−a) from both sides, we get

b

∑
i=1

mi(mi−a) > (r−m0)(m0−a) = 2a(m0−a).

Notice that 2a≥ m1, and hence 2a≥ mi for all i≥ 1, since the line through p0 and
p1 can only meet D in r−m0 = 2a away from p0. It follows that

b

∑
i=1

(mi−a) > m0−a.

This implies that b≥ 2 because m0 ≥ m1.

This lemma says that the first three points p0, p1, p2 have multiplicities

m0 ≥ m1 ≥ m2 > a.
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The proof now goes by induction on the vector (a,b) ∈ 1
2N×N with respect to the

lexicographic order. We think of this vector as a measure of the complexity of φ .
We study two cases, according to the relative position of p0, p1, p2.

Case 1. Suppose that p0, p1, p2 are distinct points in P2. Note that they cannot be
collinear, since m0 + m1 + m2 > m0 + 2a = r. Let φ ′ := φ ◦ χ−1 where χ is the
standard quadratic transformation centered at these three points, and let (a′,b′) :=
(a(φ ′),b(φ ′)).

We denote by p′0, p′1, p′2 the base points of χ−1, and let m′0,m
′
1,m

′
2 be the mul-

tiplicities at these points of the linear system H ′ defining φ ′. Note that H ′ is the
homaloidal transform of H , it has degree

r′ = 2r−m0−m1−m2,

and
m′h = r−mi−m j for {h, i, j}= {0,1,2}.

Each point pi, for 3 ≤ i ≤ k is either mapped to one of p′0, p′1, p′2, or it remains a
distinct point of multiplicity mi of H ′. No other base points of H ′ are created. The
question now is whether H ′ achieves its largest multiplicity at p′0.

If the largest multiplicity of H ′ is not achieved at p′0, then it is larger than m′0
and we have

2a′ < r′−m′0 = r−m0 = 2a.

On the contrary, if m′0 is the largest multiplicity of H ′, then a′ = a. In this case,
however, we get

m′i = r−m0−m j = 2a−m j < a for {i, j}= {1,2},

and therefore b′ < b. Either way, we have (a′,b′) < (a,b), and we can apply induc-
tion.

Case 2. Suppose now that p0, p1, p2 are not distinct points in P2. We fix a general
point q ∈ P2.

If p1 not is infinitely near p0, then we let φ ′ := φ ◦ χ−1 where χ is the stan-
dard quadratic transformation centered at p0, p1,q, and denote by p′0, p′1,q

′ the base
points of χ−1. If p1 is infinitely near p0, then we let φ ′ := φ ◦ω−1 where ω is
the quadratic transformation centered at p0, p1,q, and denote by p′0, p′1,q

′ the base
points of ω−1.

Let H ′ denote the linear system defining φ ′, let r′ be its degree, and let m′0,m
′
1,n
′

be the multiplicities of H ′ at the points p′0, p′1,q
′. Note that r′ = 2r−m0 −m1,

m′i = r−mi for {i, j}= {1,2}, and

n′ = r−m0−m1 = 2a−m1 < a.

Furthermore, as in Case 1, φ ′ does not create new base points, and those pi, for
3≤ i≤ k, that are not mapped to any of p′0, p′1,q

′ maintain the same multiplicity mi
in H ′.
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Let (a′,b′) := (a(φ ′),b(φ ′)). If the largest multiplicity of H ′ is larger than m0,
then we get a′ < a. Otherwise, we have a′ = a, but then b′ < b since n′ < a = a′.
Therefore, (a′,b′) < (a,b), and induction applied.

To conclude the proof, we are left to verify that ω , given in some fixed co-
ordinates by (x : y : z) 99K (x2 : xy : yz), is the composition of linear transforma-
tions and the standard quadratic transformation χ given in the same coordinates by
(x : y : z) 99K (yz : xz : xy).1 By precomposing ω with the automorphism α defined
by (x : y : z) 7→ (x : x+ y : z), we obtain the transformation

ω ◦α : (x : y : z) 99K (x2 : x(x+ y) : (x+ y)z).

Untwisting this with χ , we get

ω ◦α ◦χ : (x : y : z) 99K (yz : (x+ y)z : x(x+ y)).

This is equal to χ ◦ β , where β is the linear transformation given by (x : y : z) 7→
(x+ y : x : z). Therefore we have

ω = χ ◦β ◦χ
−1 ◦α

−1 = χ ◦β ◦χ ◦α
−1,

which gives the required factorization.

In spite of this important theorem, the Cemona group remains a rather mysterious
object of investigation. Mention recent results (classification of finite groups up to
conjugation, existence of normal subgroups, topology....)

6.2 Birational rigidity of cubic surfaces of Picard number one

In this section we shall look at smooth cubic surfaces defined over non algebraically
closed fields. Let κ be a perfect field, and let Xκ ⊂ P3

κ be a smooth cubic surface.
Since the canonical class of Xκ is defined over κ , the Picard group Pic(Xκ) con-
tains the hyperplane class OXκ

(1). The surface has Picard number one if and only if
Pic(Xκ) is generated by OXκ

(1).
Segre proved that if the Picard number is one then Xκ is not rational [Seg51]. His

proof was later adjusted by Manin to prove that if two such cubics are birational to
each other, then they are projectively equivalent [Man66].2 These results have been
reviewed in the recent treatment [KSC04]. An extension of Manin’s proof gives the
following more precise theorem [dF].

1 This is well explained in [KSC04, Page 200], which we followed in our computations. There
seems however to be a typo there in the expression of T ′2 , which should be given by (x2

0 : x0(x0 +
x1) : (x0 + x1)x2).
2 The hypothesis that κ be perfect is not necessary for these statements.
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Theorem 6.2.1. Let Xκ ⊂ P3
κ be a smooth cubic surface of Picard number one over

a perfect field κ . Suppose that there is a birational map

φκ : Xκ 99K X ′κ

where X ′κ is a smooth projective surface that is either a Del Pezzo surface of Picard
number one, or a conic bundle over a curve S′κ . Then X ′κ is a cubic surface of
Picard number one, and there is a birational automorphism βκ ∈ Bir(Xκ) such that
φκ ◦βκ : Xκ → X ′κ is a projective equivalence. In particular, Xκ is nonrational.

Proof. If X ′κ is a conic bundle over a curve S′κ then we fix a divisor A′κ on X ′κ given
by the pullback of a very ample divisor on S′κ . If X ′κ is a Del Pezzo surface of Picard
number one, then we set S′κ = Specκ and A′κ = 0. We fix an integer r′ ≥ 1 such that
−r′KX ′κ + A′κ is very ample. Since the Picard group of Xκ is generated by the class
of −KXκ

, there is a positive integer r such that

(φκ)−1
∗ (−r′KX ′κ +A′κ)∼−rKXκ

.

Let κ be the algebraic closure of κ , and denote X = Xκ , X ′= X ′
κ

, S′= S′
κ

, A′= A′
κ

and φ = φκ . Let D′ ∈ |− r′KX ′ +A′| be a general element, and let

D = φ
−1
∗ D′ ∈ |− rKX |.

We split the proof in two cases.

Case 1. Assume that multx(D) > r for some x ∈ X .
We use the existence of such points of high multiplicity to construct a suitable

birational involution of X (defined over κ) that, pre-composed to φ , untwists the
map. This part of the proof is similar, in spirit, to the proof of Noether’s theorem on
Bir(P2).

The Galois group of κ over κ acts on the base points of φ and preserves the
multiplicities of D at these points. Since D belongs to a linear system with zero-
dimensional base locus and degD = 3r (as a cycle in P3), there are at most two
points at which D has multiplicity larger than r, and the union of these points is pre-
served by the Galois action. If there is only one point x ∈ X (not counting infinitely
near ones), then x is defined over κ . Otherwise, we have two distinct points x,y on
X whose union {x,y} ⊂ X is defined over κ .

We shall now untwist φ by pre-composing with a suitable birational involution
α1 ∈ Bir(X), constructed as follows. Let g : X̃ → X be the blowup of X at the points
of multiplicty larger than r. If there is only one such point x, the blowup resolves the
indeterminacies of the rational map X 99K P2 given by the linear system |OX (1)⊗
mx|, which lifts to a double cover h : X̃ → P2. The Galois group of this cover is
generated by an involution α̃1 of X̃ , which descends to a birational involution α1
of X . If there are two points x,y of multiplicity greater than r, then g resolves the
indeterminacies of the rational map X 99K P3 given by the linear system |OX (2)⊗
m2

x⊗m2
y |, which lifts to a double cover h : X̃→Q⊂ P3 where Q is a smooth quadric

surface. In this case, we denote by α̃1 the Galois involution of the cover and by α1
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the birational involution induced on X . In both cases, α1 is defined over κ . Therefore
the composition

φ1 = φ ◦α
−1
1 : X 99K X ′

is defined over κ and hence is given by a linear system in |−r1KX | for some r1 (note
that α

−1
1 = α1).

In either case, we have r1 < r. To see this, let E be the exceptional divisor of
g : X̃ → X , and let L be the pullback to X̃ of the hyperplane class of P2 (resp., of
Q⊂ P3) by h. Note that L∼ g∗(−KX )−E by construction, and g∗α̃1∗E ∼−sKX for
some s, since this cycle is defined over κ . We observe that there are no lines in X
passing through a point of multiplicty larger than r, since D belongs to a movable
linear system cut out by forms of degree r. It follows that the involution α̃1 does
not stabilize the divisor E. This means that g∗α̃1∗E is supported on a nonempty
curve, and therefore s ≥ 1. If m is the multiplicity of D at x (and hence at y in the
second case) and D̃ is the proper transform of D on X̃ , then D̃ + (m− r)E ∼ rL.
Applying (α̃1)∗ to this divisor and pushing down to X , we obtain α1∗D ∼ −r1KX
where r1 = r−(m−r)s < r since m > r. Therefore, this operation lowers the degree
of the equations defining the map.

Let D1 = φ1
−1
∗ D′ ∈ |−r1KX |. If multx(D1) > r1 for some x ∈ X , then we proceed

as before to construct a new involution α2, and proceed from there. Since the degree
decreases each time, this process stops after finitely many steps. It stops precisely
when, letting

φi = φ ◦α
−1
1 ◦ . . .◦α

−1
i : X 99K X ′

and Di = φi
−1
∗ D′ ∈ |− riKX |, we have multx(Di)≤ ri for every x ∈ X . Note that φi is

defined over κ . Then, replacing φ by φi, we reduce to the next case.

Case 2. Assume that multx(D)≤ r for every x ∈ X .
Taking a sequence of blow-ups, we obtain a resolution of indeterminacy

Y
p

��������� q

��@@@@@@@

X
φ //_______ X ′

with Y smooth. Write

KY + 1
r′DY = p∗(KX + 1

r′D)+E ′

= q∗(KX ′ + 1
r′D
′)+F ′

where E ′ is p-exceptional, F ′ is q-exceptional, and DY = p−1
∗ D = q−1

∗ D′. Since X ′

is smooth and D′ is a general hyperplane section, we have F ′ ≥ 0 and Supp(F ′) =
Ex(q). Note that KX ′ + 1

r′D
′ is nef. Intersecting with the image in Y of a general

complete intersection curve C ⊂ X we see that (KX + 1
r′D) ·C ≥ 0, and this implies

that r ≥ r′.
Next, we write
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KY + 1
r DY = p∗(KX + 1

r D)+E

= q∗(KX ′ + 1
r D′)+F

where, again, E is p-exceptional and F is q-exceptional. The fact that multx(D)≤ r
for all x ∈ X implies that E ≥ 0. Intersecting this time with the image in Y of a
general complete intersection curve C′ in a general fiber of X ′→ S′, we get (KX ′ +
1
r D′) ·C′ ≥ 0, and therefore r = r′. Note also that E = E ′ and F = F ′.

The difference E−F is numerically equivalent to the pullback of A′. In particular,
E −F is nef over X and is numerically trivial over X ′. Since p∗(E −F) ≤ 0, the
Negativity Lemma, applied to p, implies that E ≤ F . Similarly, since q∗(E−F)≥ 0,
the Negativity Lemma, applied to q, implies that E ≥ F . Therefore E = F . This
means that A′ is numerically trivial, and hence S′ = Specκ . Furthermore, we have
Ex(q)⊂ Ex(p), and therefore the inverse map σ = φ−1 : X ′ 99K X is a morphism.

To conclude, just observe that if S′κ = Specκ then X ′κ must have Picard number
one. But σ , being the inverse of φ , is defined over κ . It follows that σ is an isomor-
phism, as otherwise it would increase the Picard number. Therefore X ′κ is a smooth
cubic surface of Picard number one.

Since we can assume without loss of generality to have picked r′= 1 to start with,
we conclude that, after the reduction step performed in Case 1, φ is a projective
equivalence defined over κ . The second assertion of the theorem follows by taking
βκ = α

−1
1 ◦ . . .◦α

−1
i , which is defined over κ .

6.3 The method of maximal singularities

The proof of Theorem 10.2.1 already captures, in the simplest possible setting, the
main ideas behind the method of maximal singularities, a sophisticated method to
study birational links among Fano manifolds of Picard number one and, more gen-
erally, among Mori fiber spaces. We recall here the definition of the latter.

Definition 6.3.1. A Mori fiber space is a normal projective variety X with Q-
factorial terminal singularities, equipped with an extremal Mori contraction f : X→
S of fiber type, which means that f is a proper morphism with connected fibers and
relative Picard number ρ(X/S) = 1, the anticanonical class −KX is f -ample, and
dimS < dimX .

Mori fiber spaces are the terminal objects produced by the minimal model pro-
gram within the class of uniruled varieties. In dimension two, they consists of P2 and
ruled surfaces, and any birational equivalence among them factors as a sequence of
elementary transformations. In higher dimensions, the factorization process is more
complicated, and is studied via the Sarkisov program. This consists of a series of
elementary links which are used, very much in spirit as in Case 1 of the proof of
Theorem 10.2.1, to untwist the map. We shall not discuss the Sarkisov program
here. For an introduction to the program, we recommend [?].
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A new phenomenon occurring in higher dimensions is that some Mori fiber struc-
tures are unique in their birational class. This leads to the notions of birational rigid-
ity and superrigidity. Here we focus on the latter.

Definition 6.3.2. A Mori fiber space f : X → S is birationally superrigid if every
birational map φ : X 99K X ′ from X to another Mori fiber space f ′ : X ′ → S′ is a
fiberwise isomorphism (i.e., φ is an isomorphism such that f ′ ◦φ = ψ ◦ f for some
isomorphism ψ : S→ S′).

The arguments in Case 2 of the proof of Theorem 10.2.1 extend to give sufficient
conditions to establish birational superrigidity. The following theorem, which lies at
the heat of the menthod of maximal singularities, is proven in [?] in the special case
where X = X ′ is a smooth quartic threefold in P4. The general statement is due to
[?], whose proof relies of some results from the minimal model program. Here we
give a more elementary proof.

Theorem 6.3.3 (Noether–Fano Inequality). Let φ : X 99K X ′ be a birational map
between two Mori fiber spaces f : X→ S and f ′ : X ′→ S′. Fix a sufficiently divisible
integer r′ and a sufficiently ample divisor on S′ such that if A′ is the pullback of this
divisor to X ′ then −r′KX ′ +A′ is very ample (if S′ = SpecC then take A′ = 0). Let r
be the positive rational number such that

φ
−1
∗ (−r′KX ′ +A′)∼Q −rKX +A

where A is the pull-back of a Q-divisor on S. and let B⊂ X be the base scheme of the
linear system φ−1

∗ |− r′KX ′ + A′| ⊂ |− rKX + A|. Assume that A is nef and the pair
(X , 1

r B) is canonical. Then r = r′, φ is an isomorphism, and there is an isomorphism
ψ : S→ S′ such that f ′ ◦φ = ψ ◦ f .

Proof. Let
Y

p

��������� q

��@@@@@@@

X
φ //_______ X ′

be a resolution of singularities. Note that the exceptional loci Ex(p) and Ex(q) have
pure codimension 1. Fix a general element D′ ∈ |− r′KX ′ + A| and let DY = q−1

∗ D
(which is the same as q∗D) and D = p∗DY . Note that DY = p−1

∗ D and D = φ−1
∗ D′ ∈

|− rKX |. Write

KY + 1
r′DY = p∗(KX + 1

r′D)+E ′

= q∗(KX ′ + 1
r′D
′)+F ′

where E ′ is p-exceptional and F ′ is q-exceptional. Since X ′ has terminal singulari-
ties and D′ is a general hyperplane section, we have F ′ ≥ 0 and Supp(F ′) = Ex(q).
Since KX ′ + 1

r′D
′ is numerically equivalent to the pullback of A′, which is nef, we

have (KX + 1
r′D) ·C ≥ 0 for a general complete intersection curve C in a general

fiber of f . This implies that r ≥ r′.
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Next, we write

KY + 1
r DY = p∗(KX + 1

r D)+E

= q∗(KX ′ + 1
r D′)+F

where E is p-exceptional and F is q-exceptional. Assume that the pair (X , 1
r B) is

canonical. Since D is defined by a general element of the linear system of divisors
cutting out B, and r ≥ 1, it follows that (X , 1

r D) is canonical. This means that E ≥
0. Since KX + 1

r D is numerically equivalent to the pullback of A, which is nef by
hypothesis, we have (KX ′ + 1

r D′) ·C′ ≥ 0 for a general complete intersection curve
C′ in a general fiber of f ′, and therefore r = r′. Note, in particular, that E = E ′ and
F = F ′, and hence

E−F ∼Q q∗A′− p∗A.

Since E − F is p-nef and p∗(E − F) ≤ 0, we have E ≤ F by the Negativity
Lemma. Similarly, since F−E is q-nef and q∗(F−E)≤ 0, we have F ≤ E. There-
fore E = F . This means that p∗A ∼Q q∗A′, and therefore, since A′ is the pullback
of a very ample divisor on S′, there is a (proper) morphism ψ : S→ S′ fitting in a
commutative diagram

Y
p

��������� q

��@@@@@@@

X
φ //_______

f
��

X ′

f ′

��
S

ψ // S′

Computing the Picard number of Y in two ways, we get

ρ(Y ) = ρ(Y/X)+1+ρ(S/S′)+ρ(S)
= ρ(Y/X ′)+1+ρ(S).

Note that Ex(q)⊂ Ex(p) since F contains every q-exceptional divisor in its support,
and therefore ρ(Y/X ′)≤ ρ(Y/X). It follows that ρ(Y/X ′) = ρ(Y/X) and ρ(S/S′) =
0. The second identity implies that ψ is an isomorphism, since S′ is normal. The
first identity implies that Ex(p) = Ex(q), and thus the difference p∗D− q∗D′ is q-
exceptional. Since D is ample, this implies that φ is a (proper) morphism. Keeping
in mind that X and X ′ have the same Picard number and X ′ is normal, it follows that
φ is an isomorphism too.

The method of maximal singularities, started in work of Fano [?, ?], was per-
fected in [?] to prove the following result.

Theorem 6.3.4 (Iskovskikh–Manin). Every smooth quartic threefold X = X4 ⊂ P4

is birationally superrigid. In particular, Bir(X) = Aut(X) is finite and X is not ra-
tional.
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As a matter of fact, in [?] there is only mention of the second part of the state-
ment, but the proof itself gives the stronger property that X is birationally superrigid.

This theorem extends to higher dimensions, to the statement that every smooth
hypersurface X ⊂ PN of degree N, for N ≥ 4, is birationally superrigid (see Theo-
rem 10.7.1). We will prove this at the end of the chapter. The proof in higher dimen-
sions requires further techniques, but we shall give a quick proof of the theorem of
Iskovskikh and Manin earlier, in Remark 10.4.12.

It is interesting to compare Iskovskikh–Manin’s theorem to the following equally
influecial theorem, due to [?].

Theorem 6.3.5 (Clemens–Griffiths). Every smooth cubic threefold X = X3 ⊂ P4 is
nonrational.

The two results, which were proved around the same time, gave the first counter-
examples to the Lüroth problem. The techniques, though, are very different, and
while the first uses the method of maximal singularities, the latter is based on the
computation of the intermediate Jacobian. The failure to rationality is, in some
sense, of a different nature too: cubic threefolds are not rational, but yet they carry
birational structures of del Pezzo fibrations and conic bundles, as well as birational
involutions that are not biregular (and in fact their group of birational automor-
phisms is infinite). These are respectively constructed by taking general linear pro-
jections onto one, two, and three dimensional projective spaces.

6.4 Multiplicities and log canonical thresholds

In order to implement the Fano–Noether Inequality to concrete situations (for exam-
ple, to Fano hypersurfaces in projective spaces, the case of interest in this chapter),
one needs to relate conditions on singularities of pairs to other measures of singu-
larities such as multiplicities, which can be controlled in terms of the degrees of the
equations. This section is devoted to build such relationship.

6.4.1 Basic properties of multiplicities

The multiplicity ep(X) of a variety X at a point p is defined to be the Hilbert–Samuel
multiplicity e(mp) of the maximal ideal mp of the local ring OX ,p.

More generally, for any closed subscheme Z of a pure-dimensional scheme X ,
and an irreducible component T of Z, the multiplicity of X along Z at T , denoted by
eZ(X)T is defined to be the Hilbert–Samuel multiplicity e(IS) of the primary ideal
IS determined by S in the local ring OX ,T . If Z = T , then we just write eT (X).

Remark 6.4.1. If D is an effective Cartier divisor on a variety X and p ∈ X is a
regular point, then ep(D) is simply the multiplicity of a generator of the ideal of D
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in the local ring at p [?, Example 4.3.9]. If Z = D1 ∩ ·· · ∩Dn ⊂ X is the complete
intersection of n divisors Di on a variety X , and T is an irreducible component of
Z, then eZ(X)T is equal to the intersection multiplicity i(T,D1 · . . . ·Dn;X) [Ful98,
Example 7.1.10.(a)].

Proposition 6.4.2. Let X be a pure-dimensional scheme. For every irreducible
closed set T ⊂ X there is a nonempty open set T ◦ ⊂ T such that ep(X) ≥ eT (X)
for every point p ∈ X, and equality holds if p ∈ T ◦.

Proof. (Give a proof, or quote [?, Theorem (4)])

If α = ∑ni[Vi] is a cycle on a variety X , where each Vi is a subvariety, then we
define the multiplicity of α along an irreducible subvariety T ∈ X to be eT (α) :=
∑ni eT (Vi), where we set eT (Vi) = 0 if T 6⊂Vi.

Remark 6.4.3. If Z is a pure-dimensional closed subscheme of a variety X , and [Z]
is the associated fundamental cycle, then ep(Z) = ep([Z]) for every point p ∈ Z (cf.
[Ful98, Example 4.3.4]).

Proposition 6.4.4. Let Z be a pure-dimensional closed Cohen-Macaulay subscheme
of Pm of positive dimension.

i) If H meets properly the embedded tangent cone of Z at a point p, then ep(Z ∩
H) = ep(Z).

ii) Given a hyperplane in the dual space H ⊂ (Pm)∨, if H ∈H is general enough,
then ep(Z∩H) = ep(Z) for every p ∈ Z∩H.

Proof. We can assume that Z 6= Pm. Consider any linear subspace L ⊂ Pm of di-
mension dimL = m− dimZ that meets properly the embedded tangent cone of
Z at p. Then the component of Z ∩ L at p is zero-dimensional, and we have
ep(Z) = l(OZ∩L,p) by [Ful98, Proposition 7.1 and Corollary 12.4]. This implies i).

At any point p ∈ Z, the fiber over p of the conormal variety of Z, viewed as
a linear subspace of (Pn)∨, contains the dual variety of every component of the
embedded projective tangent cone CpZ of Z at p (e.g., see [?, page 219]). It follows
then by i) that ep(Z ∩H) = ep(Z) as long as H is chosen outside the dual variety
Z∨i of each irreducible component Zi of Z. To conclude, it suffices to observe that
Z∨i cannot contain any hyperplane of (Pm)∨, since it is irreducible of dimension
≤ m−1, and Z∨∨i = Zi is not a point.

Proposition 6.4.5. Let Z be a pure-dimensional closed subscheme of Pm. Let π : Pm r
Λ → Pk be a linear projection from a center Λ disjoint from Z, and assume that
π|Zred is injective over the image of a point p ∈ Z. If π−1(π(p)) meets properly the
embedded tangent cone of Z at p, then ep(Z) = eπ(p)(π∗[Z]).

Proof. By Remark 10.4.3, we can reduce to the case in which Z is a subvariety of
Pm. Note that π∗[Z] = [T ] where T = π(Z) is a variety. Let q = π(p) ∈ T , let L⊂ Pk

be a general line passing through q, and let q ⊂ OT,q be the ideal generated by the
linear forms vanishing along L. Then let p⊂OZ,p be the ideal generated by the linear
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forms locally vanishing along π−1(L). Note that p = q ·OZ,p. Since π−1(q) intersects
properly the embedded tangent cone CpZ of Z at p and L is general through q, we
may assume that π−1(L) intersects properly CpZ. This implies that the linear forms
locally defining π−1(q) generate the ideal of the exceptional divisor of the blow up
of Z at p, and therefore we have e(p) = e(mp) where mp is the maximal ideal of
OZ,p. On the other hand, if mq is the maximal ideal of OT,q, then q⊆mq, and hence

p = q ·OZ,p ⊆mq ·OZ,p ⊆mp.

Therefore e(mp) = e(mq ·OZ,p). This implies the proposition, since e(mp) = ep(Z)
by definition and e(mq ·OZ,p) = eq(T ) by [Ful98, Example 4.3.6].

6.4.2 Multiplicity bounds

We prove here some inequalities on multiplicities with various geometric flavors.
We begin with the following property, due to [?].

Proposition 6.4.6. Let X ⊂ PN be a smooth hypersurface, and let α be an ef-
fective cycle on X of pure codimension k < 1

2 dimX. If m ∈ N is such that α ≡
m · c1(OX (1))k, then dim{x ∈ Supp(α) | ex(α) > m}< k.

Proof. We need to prove that eC(α) ≤ m for every irreducible subvariety C of di-
mension ≥ k. First, note that this inequality is trivially satisfied if either k = 0 or
C 6⊆ Supp(α) or degX = 1. Thus, we may assume that k ≥ 1, C ⊆ Supp(α) (that
forces N ≥ 4) and degX ≥ 2. Moreover, it is enough to prove the theorem for the
case when dimC = k.

For a point p = (a0, . . . ,aN) ∈ PN r X , let πp : PN r {p} → Hp ∼= PN−1 be the
linear projection from p and set fp = πp|X : X → Hp. If F(x0, . . . ,xN) = 0 is the
homogeneous equation defining X , then the relative canonical divisor KX/Hp is cut
on X by the equation ∑

N
i=0 ai

∂F
∂xi

= 0, and moves freely in a base point free linear
system, since X is smooth.

For a given subvariety Y ⊂ X , by choosing p general enough we may assume
that the general fiber of fp over fp(Y ) is a reduced set of d points. Then f−1

p fp(Y )
is generically reduced, and we can write

Supp( f−1
p fp(Y )) = Y ∪R(Y, p),

where R(Y, p) is a variety of degree (d−1)degY . We say that R(Y, p) is the residual
variety of Y under the projection fp.

We fix k general enough points p1, . . . , pk ∈PN , set R0 =C, and define recursively
Ri = R(Ri−1, pi) for i = 1, . . . ,k. We also set K0 = X and Ki := KX/Hpi

.

Lemma 6.4.7. For every i = 0, . . . ,k,

i) degRi = (d−1)i degC,
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ii) (R0∩·· ·∩Ri)⊇ Supp(K0∩·· ·∩Ki∩C),
iii) dim(Ri∩Supp(α)) = k− i.

Proof. We prove the three assertions by induction on i. For i = 0, they follow by
hypothesis. So, assume i≥ 1 and that i)–iii) are satisfied for i−1. Property i) follows
from deg(Ri−1∪Ri) = d degRi−1. In order to prove ii), it is enough to show that

Supp(Ri∩Ri−1) = Supp(Ki∩Ri−1). (6.1)

We can assume that Ki intersects properly Ri−1 and each component of the singular
locus of Ri−1. Since k < 1

2 (N−1), the secant variety of Ri−1 has dimension less than
N. Thus, for a general pi, fpi restricts to a one-to-one morphism on Ri−1. Let U ⊂
fpi(Ri−1) be the largest open set such that Ri−1 restricts to a section of the A1-bundle
π−1

pi
(U)→ U . If pi is general enough, Ri−1 ∩ π−1

pi
(U) contains Ri−1 \ Sing(Ri−1),

hence it intersects each component of Ki∩Ri−1. Since

X ∩π
−1
pi

fpi(Ri−1) = Ri−1∪Ri

is a Cartier divisor on π−1
pi

fpi(Ri−1), we conclude that both Ri−1 and Ri restrict to
Cartier divisors on π−1

pi
(U). Then for every point x ∈ Ri−1 over U , denoting L =

π−1
pi

fpi(x) (∼= A1), Ri−1|L and Ri|L are divisors of L and

ex(X ∩L) = ordx(Ri−1|L +Ri|L).

The left hand side of this equation is 1 if and only if x 6∈ Ki, whereas the right
hand side is 1 if and only if x 6∈ Ri. This shows that (10.1) holds for the points
over U . Suppose now that x ∈ Ri−1 is not a point over U . Then pi ∈ TRi−1,x. Since
TRi−1,x ⊆ TX ,x, we see that x∈Ki. We conclude that Supp(Ri∩Ri−1) is a dense subset
of Ki∩Ri−1. Since Ri∩Ri−1 is closed, equality (10.1) follows. This gives ii).

Before proving iii), we fix the following notation: for two closed subsets S,T ⊆
PN , let

J(S,T ) = {(s, t, p) ∈ S×T ×PN | s 6= t, p ∈ st}.

By counting dimensions, one sees that the map J(Supp(α),Ri−1)→ PN is either
generically finite or not dominant. Therefore, by choosing pi general, the intersec-
tion of Ri and Z0 outside Ri−1∩Z0 is zero dimensional or empty. Note that

dim(Ri∩Supp(α))= max{dim(Ri∩Ri−1∩Supp(α)),dim(Ri∩(X \Ri−1)∩Supp(α))}

By (10.1), if we pick pi so that Ki intersects properly Ri−1∩Supp(α), then we get

dim(Ri∩Ri−1∩Supp(α)) = dim(Ki∩Ri−1∩Supp(α)) = dim(Ri−1∩Supp(α))−1.

This gives iii).

The set Σ := K1∩·· ·∩Kk∩C contains (d−1)k degC distinct points by Bertini’s
theorem and Bezout’s theorem. By Lemma 10.4.7, Rk ∩Supp(α) is a zero dimen-
sional set containing Σ . Then, by Bezout’s theorem,
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m(d−1)k degC =
∫

X
α · [Rk]≥ ∑

q∈Σ

eq(α)≥ eC(α)(d−1)k degC.

This implies that eC(α)≤ m, so the proof of the Proposition is complete.

Remark 6.4.8. Because we have assumed k < 1
2 dimX , the existence of m as in

Proposition 10.4.6 follows from Lefschetz Theorem. The proposition holds also if
k = 1

2 dimX (as long as we assume α ≡ m(c1(OX (1)))k), the same proof extending
to this extremal case. The only thing to keep into account is that the equality (10.1)
holds only outside a zero dimensional set of Ri∩Ri−1. Note also that the statement
is trivially true if k > 1

2 dimX .

The following properties relate multiplicities to discrepancies and log canonical
thresholds.

Proposition 6.4.9. Let A be an effective Q-divisor on a smooth variety X, and sup-
pose that aE(X ,A) ≤ 1 for some prime divisor E over X. If T is the center of E in
X, then eT (A)≥ 1.

Proof. We can assume that E is an exceptional divisor of a log-resolution f : X ′→X
of (X ,A). Pick a general point p ∈ T , and let Y ⊂ X be a general complete intersec-
tion subvariety of codimension codim(Y,X) = dimT , passing through p. Then the
proper transform Y ′ of Y meets E transversally, and we have aE ′(Y,A|Y )≤ 1 if E ′ is
a component of E|Y ′ . Notice that dimY ≥ 2. If H ⊂ Y is a general hyperplane sec-
tion through p, then (H,A|H) is not klt at p by inversion of adjunction .... Taking a
general complete intersection curve C⊂H through p, we see that (C,A|C) is not klt
at p by the same theorem. This is equivalent to ep(A|C)≥ 1. On the other hand, by
taking the hyperplanes cutting out C generally enough, we have ep(A|C) = ep(A).
We conclude that eT (A)≥ 1.

The following theorem relates Hilbert–Samuel multiplicity to log canonical
threshold. Consider a local ring OX ,p with maximal ideal mp, where p is a regular
point of an n-dimensional variety X . If X is 1-dimensional, then an mp-primary ideal
a is locally generated by one equation h ∈ OC,p, and e(a) = mult(h) = 1/ lct(h) =
1/ lct(a). In higher dimension there are two natural ways to generalize this relation,
by either considering principal ideals or looking at mp-primary ideals. In the first
case we have

n ·mult(h)≥ n
lct(h)

≥mult(h)

for any h∈mp. The mp-primary case is treated in the next theorem and its corollary.
For an mp-primary ideal a, it establishes the lower bound

e(a)≥
(

n
lct(a)

)n

on Hilbert–Samuel multiplicity in terms of the log canonical threshold. Examples
show, on the contrary, that there cannot be upper bounds on Hilbert–Samuel multi-
plicity only in terms of the log canonical threshold if n≥ 2 (e.g., take a = (x,ym)⊂
C[x,y] with m arbitrarily large).
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Theorem 6.4.10. Let X be a smooth variety, let Z ⊂ X be a closed subscheme, and
let T be an irreducible component of Z, of codimension n in X. Let D = ∑

n
i=0 diDi be

a Q-divisor with all components passing through T , with simple normal crossings
at the generic point of T . Assume that D is either effective (i.e., di ≥ 0 for all i), or
irreducible (e.g., di = 0 for i 6= 1). Suppose that, for some c > 0, the pair (X ,cZ +D)
is not klt. Then the length of the local ring OZ,T satisfies the inequality

l(OZ,T )≥ nn

n! · cn ·
n

∏
i=1

(1−di).

Proof. Passing to the completion, we fix an isomorphism ÔX ,p ∼= k[[x1, . . . ,xn]] such
that each Di is locally defined by xi = 0, where k is the residue field of OX ,T , and
restrict to the polynomial ring R = k[x1, . . . ,xn]. Let m = (x1, . . . ,xn) denote the
maximal ideal at the origin. If a⊂ R is the ideal determined by the ideal sheaf of Z,
then we need to prove that

l(R/a)≥ nn

n! · cn ·
n

∏
i=1

(1−di), (6.2)

for any m-primary ideal a of R such that the pair (R,ac ·∏n
i=1 xdi

i ) is not klt.
We shall start by verifying that (10.2) holds in the special case of monomial

ideals. Suppose that a is monomial. Let P(a) ⊂ (R≥0)n be the Newton polytope of
a, and let (u1, . . . ,un) be the coordinates in (R≥0)n. By the description of multiplier
ideals of monomial ideals, the condition that (R,ac ·∏n

i=1 xdi
i ) is not klt is equivalent

to the fact that there is a bounded facet of P(a) such that, if ∑
n
i=1 ui/ai = 1 is the

equation of the hyperplane supporting it, then

n

∑
i=1

1−di

ai
≤ c.

Applying the inequality between the arithmetic mean and the geometric mean of the
set of numbers {(1−di)/ai}n

i=1, we get(
n

∏
i=1

1−di

ai

)1/n

≤ 1
n
·

n

∑
i=1

1−di

ai
.

Then (10.2) follows from the fact that, as the length is bounded below by the number
of lattice points contained in the area cut out by ∑

n
i=1 ui/ai ≤ 1 in (R≥0)n, we have

l(R/a)≥ 1
n!
·

n

∏
i=1

ai.

The proof of the general case consists in reducing to the monomial case, via a flat
degeneration to monomial ideals. To this end, we fix a monomial order. Let in(b)
denote the monomial initial ideal obtained from an ideal b. If di ≥ 0 for all i, then
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the pair (R,ac ·∏n
i=1 xdi

i ) is effective. Semi-continuity of the log canonical threshold
implies that, the pair (R, in(a)c ·∏n

i=1 xdi
i ) is not klt, and therefore (10.2) follows

from the monomial case.
Suppose now that D is irreducible and noneffective. We can assume that b :=

−d1 > 0 and di = 0 for i 6= 1. By assumption, (R,ac · x−b
1 ) is not klt. The reduction

to the monomial setting is more delicate in this case. We first need to reduce to a
setting where b is an integer, and then take a suitable monomial order.

Write b = r/s where r,s are positive integers, and let R̃ = k[y,x2, . . . ,xn], with
the inclusion R ⊂ R̃ given by x1 = yr. For any ideal b ⊂ R let b̃ := b · R̃. By the
ramification formula, (R,ac · x−b

1 ) not being klt implies that (R̃, ãc · y−(s+r−1)) is not
klt. This is equivalent to the condition that

ys+r−1 6∈J (ãc).

We fix a monomial order in R̃ such that ys+r−1 < x2 < · · · < xn, and consider the
induced flat deformation to monomial ideals. Then we have

ys+r−1 6∈ in(J (ãc)),

as otherwise we could find a polynomial h ∈J (ãc) with in(h) = ys+r−1. Because
of this particular monomial order we fixed, h must be a polynomial in y of degree
s+ r−1, and since J (ãc) is m-primary, it would follow that yi ∈J (ãc) for some
i≤ s+ r−1, which contradicts our hypothesis.

On the contrary, the restriction theorem for multiplier ideals implies that

J (in(ã)c)⊆ in(J (ãc)),

and therefore
ys+r−1 6∈ (J (in(ã)c)).

This means that the pair (R̃, in(ã)c · y−(s+r−1)) is not klt.
The monomial order of R̃ induces a monomial order on R, and ĩn(b) = in(b̃)

for any ideal b ⊂ R. Applying the ramification formula in the other direction, we
conclude that the pair (R, in(a)c · x−b

1 ) is not klt. Since l(R/ in(a)) = l(R/a), we
have finally reduced this case too to the monomial case. This completes the proof of
the theorem.

Corollary 6.4.11. With the same assumptions as in Theorem 10.4.10, the multiplic-
ity of X along Z at T satisfies the inequality

eZ(X)T ≥
nn

cn ·
n

∏
i=1

(1−di).

Proof. If IZ ⊂ OX ,T is the ideal of Z, then

eZ(X)T = e(IZ) = lim
m→∞

n! · l(OX ,T /I m
Z )

mn .



232 6 Birational rigidity

Therefore the corollary follows by applying Theorem 10.4.10 to the schemes locally
defined by the powers I m

Z .

Remark 6.4.12. The properties proved thus far are enough to prove Iskovskikh–
Manin’s theorem (Theorem 10.2). Suppose that φ : X 99K X ′ is a birational map
from a smooth quartic threefold X ⊂ P4 to a Mori fiber space X ′→ S′, and assume
by way of contradiction that φ is not an isomorphism. With the same notation as
in Theorem 10.3.3, it follows that (X , 1

r B) is not canonical (note that in our setting
A = 0). Let D be a general member of the linear system φ−1

∗ |−r′KX ′+A′| ⊂ |−rKX |
and Z = D1 ∩D2 ⊂ X be the complete intersection of two such divisors. Note that
(X , 1

r D) and (X , 1
r Z) are both not canonical. Proposition 10.4.6 (the easy case k = 1)

implies that eC(D) ≤ r for every curve C ∈ X , and therefore (X , 1
r D), and hence

(X , 1
r Z), are canonical in codimension one, by Proposition 10.4.9. Therefore there

is a divisor E over X , with center equal to a point p ∈ X , such that aE(X , 1
r Z) < 1.

Let S ⊂ X be the surface cut out by a general hyperplane through p. Note that
aE(X ,S + 1

r Z) < 0. By inversion of adjunction....., there is a divisor F over S, with
center p, such that aF(S, 1

r Z∩S) < 0. This means that lctp(S,Z∩S) < 1/r. Note that
Z∩S is a zero dimensional scheme. Then, by Remark 10.4.1 and Corollary 10.4.11,
we have

i(p,(D1|S) · (D2|S);S) = eZ∩S(S)p > 4r2.

On the contrary, the intersection multiplicity in the left hand side is equal to the in-
tersection multiplicity i(p, D̃1 · D̃2 ·X ·H;P4) where D̃1, D̃2 ⊂ P4 are hypersurfaces
of degree r cutting D1,D2 on X , and H is the hyperplane cutting S in X . By Be-
zout’s theorem, this number is bounded above by the product of the degrees of the
equations involved, which is equal to 4r2. This is in contradiction with the above
inequality.

6.5 Log discrepancies via generic projections

In this section we study how log discrepancies behave under generic projections.
We will work on possibly singular varieties, and use a variant of the usual notion of
log discrepancy called Mather log discrepancy. While usual log discrepancies are
defined by comparing canonical divisors, Mather log discrepancies are defined (in a
more general setting) by comparing sheaves of Kähler differentials.

Definition 6.5.1. Let X be a normal variety of dimension n. Let f : X ′ → X be a
resolution of singularities, and let jac f := Fitt0(ΩX ′/X )⊂ OX ′ be the Jacobian ideal
of the map. For every prime divisor E on X ′, we define the Mather log discrepancy
of a pair (X ,Z) along a prime divisor E on X ′ to be

âE(X ,Z) := ordE(jac f )+1−ordE(Z).

If Z = 0 then we drop it from the notation, and write âE(X).
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If X is smooth then âE(X ,Z) = aE(X ,Z). In general, however, the two log dis-
crepancies differ. For instance, if X has locally complete intersection singularities,
then it can be shown than âE(X ,Z) = aE(X ,Z) + ordE(jacX ). The next property
gives an alternative way of computing Mather discrepancies.

Proposition 6.5.2. Let E be a prime divisor over a normal affine variety X ⊂ AN

of dimension n, and let π : AN →U := An be a general linear projection. Writing
ordE |C(U) = p ·ordF , where F is a prime divisor over U and p is a positive integer,
we have âE(X) = p ·aF(U).

Proof. We can assume that there is a diagram

X ′

g

��

f // X

��

� � // AN

π

��
U ′ // U An

where X ′→ X and U ′→U are resolutions such that E is a divisor on X ′, and F is
a divisor on U ′. Note that ordE(g∗F) = p and ordE(KX ′/U ′) = p− 1. Denoting by
h : X ′→U the composition of f with the projection to U , we have ordE(KX ′/U ) =
ordE(jach). If x1, . . . ,xn are local parameters in X ′ centered at a general point of E,
then f is locally given by equations yi = fi(x1, . . . ,xn), and jac f is locally defined by
the n× n minors of the matrix (∂ fi/∂x j). On the other hand, if π : AN →U = An

is a general projection, then jach is locally defined by a general linear combination
of the n×n minors of (∂ fi/∂x j), and therefore we have âE(X) = ordE(KX ′/U )+1.
Then, writing KX ′/U = KX ′/U ′ +KU ′/U , we get

âE(X) = ordE(KX ′/U ′)+ordE(g∗KU ′/U )+1 = p ·aF(U).

Theorem 6.5.3. Let X ⊂AN be a normal affine variety of dimension n, and let E be
a prime divisor over X. Let Z ⊂ X be a closed Cohen–Macaulay subscheme of pure
codimension k, and let c ∈ R+. Then let

φ : X → An−k+1

be the morphism induced by restriction of a general linear projection σ : AN →
An−k+1. Note that φ |Z is a proper finite morphism, and φ∗[Z] is a cycle of codi-
mension one in An−k+1; we regard φ∗[Z] as a Cartier divisor on An−k+1. Write
ordE |C(An−k+1) = q ·ordG where G is a prime divisor over An−k+1 and q is a positive
integer. Then

q ·aG

(
An−k+1,

k!ck

kk ·φ∗[Z]
)
≤ âE(X ,cZ).

Proof. We assume that ordE(Z) > 0 (the case ordE(Z) = 0 is easier and left to the
reader). We factor σ as a composition of two general linear projections AN → An
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and An→An−k+1. For short, we denote U = An and V = An−k+1. Write ordE |C(U) =
p · ordF for some prime divisor F over U and some positive integer p. Note that p
divides q.

Let h : V ′→ V be a resolution where the center of ordF has codimension 1. We
can assume that F is a divisor on V ′. Let X ′ := V ′×V X and U ′ := V ′×V U , and
consider the induced commutative diagram

X ′

ψ ′

��

f //

φ ′

��

X

ψ

��
φ

��

U ′

γ ′

��

g // U

γ

��
V ′

h // V

.

Let Z′ := f−1(Z) ⊂ X ′ and Z′′ := ψ ′(Z′) ⊂U ′, both defined scheme-theoretically.
(In general Z′′ ⊂ g−1(ψ(Z)) but the inclusion may be strict.) By base change, the
restriction φ ′|Z′ is finite, and thus both ψ ′|Z′ and γ ′|Z′′ are finite. Note that

p ·ordF(Z′′) = ordE((ψ ′)−1(Z′′))≥ ordE(Z′) = ordE(Z). (6.3)

It follows from [?, Lemma 1.4] (add explanation here............) that Z′ is pure
dimensional and [Z′] = f ∗[Z]. Furthermore, since ψ ′|Z′ : Z′→V is a finite surjective
morphism of schemes, Z′′ is also pure dimensional, and ψ ′∗[Z

′]≥ [Z′′]. Then, using
[?, Example 17.4.1] and [?, Lemma 3.39] as in the proof of [?, Lemma 1.5] (add
explanation here............), we get

h∗φ∗[Z] = φ
′
∗ f ∗[Z] = φ

′
∗[Z
′]≥ γ

′
∗[Z
′′].

The center C of ordF in U ′ is contained in V and dominates G. Since G is an irre-
ducible component of h∗φ∗[Z], it follows that C is an irreducible component of Z′′

and the map γ ′|C : C→ G is finite. Therefore we have

ordG(φ∗[Z]) = eG(h∗φ∗[Z])≥ eG(γ ′∗[Z
′′])≥ eC([Z′′]) = l(OZ′′,C). (6.4)

Let b := ordG(KV ′/V ) denote the discrepancy of G over V , and let H := (γ ′)∗F .
Note that H is a smooth divisor at the generic point of C, and p · ordF(H) = q.
Moreover, since KU ′/U = (γ ′)∗KV ′/V , we have KU ′/U = bH + R where R does not
contain C in its support. Then, by Proposition ?? and equation (10.3), we see that

âE(X ,cZ)≥ p ·aF(U ′,cZ′′−KU ′/U ) = p ·aF(U ′,cZ′′−bH).

Setting a := âE(X ,cZ)/q, we have aE(U ′,cZ′′+(a−b)H)≤ 0, and this implies that

l(OZ′′,C)≥ (1−a+b)kk

k!ck . (6.5)
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by Theorem 10.4.10.
Combining (10.4) and (10.5), we get

q ·aG

(
V,

k!ck

kk ·φ∗[Z]
)
≤ q(b+1− (1−a+b)) = âE(X ,cZ),

as stated.

6.6 Special restriction properties of multiplier ideals

(Maybe move this to the section on inversion of adjunction)

6.7 Birationally rigid Fano hypersurfaces

Theorem 6.7.1. For any N ≥ 4, every smooth hypersurface X = XN ⊂ PN of degree
N, is birationally superrigid. In particular, Bir(X) = Aut(X) is finite and X is not
rational.





Chapter 7
Finite generation of the canonical ring

The goal of this chapter is to present the proof due to Cascini and Lazić [CL12] for
the finite generation of the canonical ring. We then explain, following [CL13], how
this result in suitable generality implies the known results in the Minimal Model
Program from [BCHM10].
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Chapter 10
Arc spaces

10.1 Jet schemes

In this section we introduce the jet schemes and prove some of their basic proper-
ties. We will mostly use the definition for varieties over a field, but it is sometimes
convenient to also have available a relative version of this notion and this requires
no extra effort. We thus start by working with schemes of finite type over a fixed
Noetherian ring R, all morphisms being morphisms of schemes over R. If X is such
a scheme, m ∈ Z≥0, and A is an R-algebra, an A-valued m-jet on X (or simply an m-
jet if A = R) is a morphism SpecA[t]/(tm+1)→ X . We first show that these objects
are parametrized by a scheme of finite type over R.

Proposition 10.1.1. Given a scheme X of finite type over R and a non-negative inte-
ger m, there exists a scheme Jm(X) of finite type over R such that for every R-algebra
A, we have a functorial isomorphism

Hom(SpecA,Jm(X))' Hom(SpecA[t]/(tm+1),X).

In other words, the scheme Jm(X) represents the functor that takes an R-algebra
A to the set of A-valued m-jets of X . It follows that if the scheme exists, then it is
unique; it is called the mth jet scheme of X . Whenever we need to specify the ground
ring, we write Jm(X/R) instead of Jm(X). Other common notation in the literature
for Jm(X) is Xm and Lm(X). We will use the notation Xm for the set of k-valued
points of Jm(X) when R = k is a field.

Before giving the proof of the proposition, we need some preparations. We
first note that if Jm(X) exists for some X , then we get a canonical morphism
πX

m : Jm(X)→ X . Indeed, for every R-algebra A, let us denote by jA
m the closed im-

mersion corresponding to the projection A[t]/(tm+1)→ A, that maps t to 0. The
morphism πX

m corresponds to the natural transformation of functors

Hom(SpecA[t]/(tm+1),X)→ Hom(SpecA,X), γ → γ ◦ jA
m.

If X is understood from the context, we write πm instead of πX
m .

243
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Lemma 10.1.2. If Jm(X) exists for a scheme X and U is an open subset of X, then
Jm(U) exists and Jm(U)' (πX

m )−1(U).

Proof. Note that for every R-algebra A, a morphism γ : SpecA[t]/(tm+1)→ X fac-
tors through U if and only if γ ◦ jA

m factors through U (factoring through U is a
set theoretic statement). With this observation, the fact that (πX

m )−1(U) satisfies the
definition of Jm(U) follows from the definition of Jm(X).

We can now prove the existence of jet schemes.

Proof of Proposition 9.1.1. We first prove the assertion when X is affine. Let us
choose a closed embedding X ↪→AN

R and let g1, . . . ,gr ∈ R[x1, . . . ,xN ] be generators
for the ideal of X . For every R-algebra A, giving a morphism γ : SpecA[t]/(tm+1)→
X is equivalent to giving a morphism of R-algebras

φ : R[x1, . . . ,xN ]/(g1, . . . ,gr)→ A[t]/(tm+1),

hence to giving

φ(xi) =
m

∑
j=0

a( j)
i t j for 1≤ i≤ N

such that g`(φ(x1), . . . ,φ(xN)) = 0 in A[t]/(tm+1) for all `. For every `, there are
polynomials G(0)

` , . . . ,G(m)
` in the variables x( j)

i , with 1≤ i≤ N and 0≤ j≤m, such
that

g`

(
m

∑
j=0

a( j)
1 t j, . . . ,

m

∑
j=0

a( j)
N t j

)
=

m

∑
j=0

G( j)
` (a)t j,

where a = (a( j)
i )i, j. We hence conclude that

Jm(X)' Spec(R[x( j)
i | 1≤ i≤ N,0≤ j ≤ m]/(G( j)

` | 1≤ `≤ r,0≤ j ≤ m)).

We now consider the case of an arbitrary scheme X of finite type over R. Let
X =

⋃
i Ui be a finite affine open cover of X . By the case we have already proved,

for every i we have the jet scheme Jm(Ui). Lemma 9.1.2 implies that for every i and
j, we have a canonical isomorphism (πUi

m )−1(Ui ∩U j)→ (πU j
m )−1(Ui ∩U j), both

schemes being isomorphic to Jm(Ui∩U j). Furthermore, these isomorphisms satisfy
the cocycle condition and therefore we can glue the schemes Jm(Ui) to obtain a
scheme Jm(X), together with a morphism πm : Jm(X)→ X . It is now straightforward
to check that Jm(X) satisfies the desired universal property. The key observation is
that given a morphism γ : SpecA[t]/(tm+1)→ X and f ∈ A, then the corresponding
morphism γ f : SpecA f [t]/(tm+1)→ X factors through some Ui if and only if γ f ◦ j

A f
m

factors through Ui. This completes the proof of the proposition.

If f : X → Y is a morphism of schemes as above, then we obtain a morphism
fm : Jm(X)→ Jm(Y ) that corresponds to the natural map

Hom(SpecA[t]/(tm+1),X)→ Hom(SpecA[t]/(tm+1),Y ), γ → f ◦ γ.
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It is clear that in this way we obtain a functor Jm from the category of schemes of
finite type over R to itself.

For every scheme X as above and every p > q, truncation of jets induces a mor-
phism πX

p,q : Jp(X)→ Jq(X). Indeed, for every R-algebra A, we have a map

Hom(SpecA[t]/(t p+1),X)→ Hom(SpecA[t]/(tq+1),X),

given by the composition with the closed immersion corresponding to the quotient
homomorphism A[t]/(t p+1)→ A[t]/(tq+1). Note that we obtain in this way a trans-
formation of functors Jp→ Jq. We write πp,q instead of πX

p,q whenever the scheme
is understood from the context. It is clear that if p > q > r, then πX

q,r ◦πX
p,q = πX

p,r
and πX

m,0 = πX
m . We also note that by the proof of Proposition 9.1.1, all morphisms

πX
p,q are affine.

Example 10.1.3. It follows from the proof of Proposition 9.1.1 that Jm(AN
R ) '

A(m+1)N
R . Furthermore, if p > q, then via these isomorphisms, the projection πp,q : Jp(AN

R )→
Jq(AN

R ) gets identified to the projection onto the first (q+1)N coordinates.

Example 10.1.4. It is clear from definition that J0(X) ' X . The first jet scheme
J1(X) is isomorphic to the total tangent space S pec(Sym•(ΩX/R)). Clearly, it is
enough to give a canonical isomorphism when X = Spec(S) is an affine scheme
over R. In this case, giving a morphism SpecA→ Spec(Sym•(ΩS/R)) is equivalent
to giving a homomorphism of R-algebras φ : S→ A and a morphism of S-modules
ΩS/R→ A, that is, an R-derivation D : S→ A (where A is an S-module via φ ). Giving
such a pair (φ ,D) is equivalent to giving a morphism of R-algebras S→ A[t]/(t2),
mapping s ∈ S to φ(s)+D(s)t. Therefore Spec(Sym•(ΩX/R)) satisfies the universal
property of J1(X).

Example 10.1.5. Let us see in a concrete case how to write down explicit equations
for jet schemes. Suppose that X ↪→Y = A2

R is the cuspidal curve defined by (x2 +y3)
and let us compute J2(X)⊆ J2(Y )' SpecR[x,x′,x′′,y,y′,y′′]. Since we have

(x+ x′t + x′′t2)2 +(y+ y′t + y′′t2)3

= (x2 + y3)+(2xx′+3y2y′)t +(2xx′′+(x′)2 +3yy′′+3y(y′)2)t2 mod(t3),

it follows that J2(X) is defined by the ideal

(x2− y3,2xx′+3y2y′,2xx′′+(x′)2 +3yy′′+3y(y′)2).

Remark 10.1.6. The functor Jm is the right adjoint of the functor

X  X×SpecR SpecR[t]/(tm+1).

In other words, for every schemes X and Y of finite type over R, we have a functorial
isomorphism

α
m
Y,X : Hom(Y,Jm(X))' Hom(Y ×SpecR SpecR[t]/(tm+1),X).
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Indeed, when Y is affine, this follows from the definition of Jm(X), and the extension
to arbitrary Y is standard. As in the case of an arbitrary adjoint pair of functors, we
can express the above bijection in terms of a “universal object”. More precisely, by
taking Y = Jm(X), we obtain the “universal family of jets”

τ
m
X = α

m
Jm(X),X (IdJm(X)) : Jm(X)×SpecR SpecR[t]/(tm+1)→ X

such that for every γ : Y → Jm(X), we have

α
m
Y,X (γ) = τ

m
X ◦ (γ× IdSpecR[t]/(tm+1)).

Like every right adjoint functor, the functor Jm commutes with fibered products:
given any two morphisms X → S and Y → S, we have a canonical isomorphism

Jm(X×S Y )' Jm(X)×Jm(S) Jm(Y ).

Example 10.1.7. If G is an algebraic group over R, then by applying the functor
Jm to the multiplication map G×SpecR G→ G, (x,y)→ xy and to the inverse map
G→ G, x→ x−1, we see that Jm(G) is an algebraic group over R. Furthermore, if
p > q, then the projection πG

p,q : Jp(G)→ Jq(G) is a morphism of algebraic groups
over R. If G acts algebraically on a scheme X over R, then by applying Jm to the
map G×X→ X , (g,x)→ gx we deduce that Jm(G) has an induced action on Jm(X).

In addition to the projection πX
m : Jm(X) → X , we also have a canonical sec-

tion σX
m : X → Jm(X) of πX

m . At the level of A-valued points, this maps a morphism
φ : SpecA→ X to φ ◦ p, where p is the morphism of schemes corresponding to the
inclusion A ↪→A[t]/(tm+1). It is clear that we have πX

m ◦σX
m = IdX for every m (in par-

ticular, πX
m is surjective). More generally, for every p > q, we have πX

p,q ◦σX
p = σX

q .

Remark 10.1.8. If X is a scheme of finite type over R, R→ S is a homomorphism of
Noetherian rings, and XS = X×SpecR SpecS, then there is a canonical isomorphism

Jm(XS/S)' Jm(X/R)×SpecR SpecS.

This follows immediately by considering the A-valued points for both sides.

Remark 10.1.9. If f : X → Y is a closed immersion, then fm : Jm(X)→ Jm(Y ) is a
closed immersion, too. Indeed, this assertion is local over Y , hence it is enough to
prove it when Y (hence also X) is affine. In this case, the assertion follows from the
description of jet schemes by equations given in the proof of Proposition 9.1.1.

Remark 10.1.10. If f : X→Y is a morphism and Z ↪→Y is a closed subscheme, then
Jm( f−1(Z))' f−1

m (Jm(Z)). Indeed, this is a special case of the fact that the functor
Jm commutes with fiber products.

Remark 10.1.11. If S is any Noetherian scheme and f : X → S is a scheme of finite
type over S, then we can define Jm(X/S) as in the case when S is affine. Existence
follows by gluing the schemes Jm( f−1(Ui)/O(Ui)), where S =

⋃
i Ui is a finite affine
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open cover of S. However, since we will not make use of this more general setting,
we do not pursue it any further.

We now extend the assertion in Lemma 9.1.2 from open immersions to étale
morphisms.

Lemma 10.1.12. If f : X → Y is étale , then the following diagram is Cartezian:

Jm(X)
fm //

πX
m

��

Jm(Y )

πY
m

��
X

f // Y.

In particular, fm is étale.

Proof. For every R-algebra A and every commutative diagram

SpecA //

j
��

X

��
SpecA[t]/(tm+1) // Y,

there is a unique morphism SpecA[t]/(tm+1)→ X that makes the resulting triangles
in the above diagram commutative. This is a consequence of the fact that f is for-
mally étale and j is a closed immersion, defined by a nilpotent ideal. The assertion
in the lemma now follows from the definition of jet schemes.

Given a scheme F , a morphism of schemes f : X → Y is locally trivial, with
fiber F if there is a cover Y =

⋃
i Ui of Y by open subsets such that each f−1(Ui) is

isomorphic over Ui with Ui×SpecR F .

Corollary 10.1.13. If X is a smooth scheme over R of relative dimension n, then
Jm(X) is smooth over R, of relative dimension (m+1)n. Moreover, for every p > q,
the morphism πX

p,q : Jp(X)→ Jq(X) is locally trivial, with fiber A(p−q)n
R .

Proof. Since X is smooth over R, of relative dimension n, it follows that X can
be covered by open subsets U on which we have coordinates x1, . . . ,xn (that is,
dx1, . . . ,dxn trivialize ΩX/R on U). In this case (x1, . . . ,xn) defines an étale morphism
U → An

R, and we obtain Um 'U ×SpecR Amn
R over U by Lemma 9.1.12 and Exam-

ple 9.1.3. The last assertion in the corollary follows from this. Since πX
m : Jm(X)→X

is locally trivial, with fiber Amn
R , it follows that Xm is smooth over R.

Remark 10.1.14. Arguing as in the proof of Corollary 9.1.13, we see that if f : X →
Y is a smooth morphism of relative dimension n, then fm : Jm(X) → Jm(Y ) is
smooth, of relative dimension (m + 1)n. Indeed, X is covered by open subsets
U with the property that there are x1, . . . ,xn ∈ O(U) such that the map they de-
fine U → Y ×SpecR An

R is étale. By Lemma 9.1.12, the corresponding morphism
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Jm(U)→ Jm(Y )×SpecR A(m+1)n
R is étale, which implies that fm is smooth, of relative

dimension (m+1)n.
Note that if we assume in addition that f is surjective, then fm is surjective, too.

Indeed, given a point γ ∈ Jm(Y ), consider y = πY
m(γ) and let k(y) ↪→ k(γ) be the

corresponding extension of residue fields. We can find x ∈ X such that f (x) = y and
let us choose a field L containing both k(γ) and the residue field k(x) of x. Therefore
we obtain a commutative diagram

SpecL x̃ //

j
��

X

f
��

SpecL[t]/(tm+1)
γ̃ // Y,

where x̃ and γ̃ correspond to x and γ , respectively. Since f is formally smooth
and j is a closed embedding, defined by a nilpotent ideal, there is a morphism
SpecL[t]/(tm+1) → X such that the resulting triangles in the above diagram are
commutative. This corresponds to an L-valued point of Xm whose corresponding
point δ ∈ Jm(X) has the property that fm(δ ) = γ .

In general, properties of a scheme do not carry over to properties of its jet
schemes. Smoothness is an exception, as we saw in Corollary 9.1.13, and we will
see in Remark 9.1.16 below that connectedness is also preserved. On the other hand,
the next example shows that irreducibility or reduceness are not preserved. We will
discuss later a condition on singularities that guarantees that the jet schemes of an
algebraic variety are reduced and irreducible.

Example 10.1.15. Let X be an (irreducible) singular curve defined over an alge-
braically closed field. If x0 ∈ X is a singular (closed) point, then dimπ

−1
1 (x0) ≥ 2.

Since dim(π−1
1 (Xsm)) = 2, it follows that π

−1
1 (x0) gives an irreducible component

of J1(X) different from the closure of π
−1
1 (Xsm).

Suppose now that Y ⊂ A2 = Speck[x,y] is defined by the ideal (xy). In this case
J1(Y )⊂ Speck[x,x′,y,y′] is defined by I = (xy,xy′+x′y). Since x2y′ = x(xy′+x′y)−
x′(xy), it follows that xy′ ∈ Rad(I), but it is clear that xy′ 6∈ I.

Another piece of structure that the jet schemes have is an action of the multiplica-
tive group over R, namely of Gm,R = SpecR[y,y−1]. This is given by reparametriza-
tion of t. In fact, we have a morphism

Φm = Φ
X
m : A1

R×SpecR Jm(X)→ Jm(X),

which at the level of A-valued points is taking a pair (a,γ), with a ∈ A and
γ : SpecA[t]/(tm+1)→ X to γ ◦ φa, where φa corresponds to the morphism of A-
algebras A[t]/(tm+1)→ A[t]/(tm+1) that takes t to at. Note that the morphisms Φm
are compatible with the projections πp,q in the sense that we have commutative dia-
grams
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A1
R×SpecR Jp(X)

Φp //

(Id,πp,q)
��

Jp(X)

πp,q
��

A1
R×SpecR Jq(X)

Φq // Jq(X)

for every p > q. It is clear that ΦX
m is functorial in X and it restricts to an action of

Gm,R on Jm(X). We also see that the restriction of Φm to Jm(X)
(0,Id)
↪→ A1

R×SpecR Jm(X)
is equal to σm ◦πm.

If Z is an irreducible component of Jm(X), then Φm(A1
R×SpecR Z) is irreducible

and contains Z, hence it is equal to Z. We deduce that Φm induces a morphism
A1

R×SpecR Z → Z (where we consider on Z the reduced scheme structure). In par-
ticular, this gives σm ◦ πm(Z) ⊆ Z. This, in turn, implies the set-theoretic equality
πm(Z) = σ−1

m (Z), hence πm(Z) is a closed subset of X .

Remark 10.1.16. If X is a connected scheme, then Jm(X) is connected for every
m≥ 0. Indeed, suppose that we can write Jm(X) = Z∪Z′, where Z and Z′ are disjoint
closed subsets. Since both Z and Z′ are unions of irreducible components of X , it
follows from the above discussion that πm(Z) and πm(Z′) are both closed subsets of
X . Furthermore, they are disjoint (since x ∈ πm(Z)∩πm(Z′) implies σm(x) ∈ Z∩Z′)
and X = πm(Z)∪πm(Z′) (since X = πm(Jm(X))). This contradicts the fact that X is
connected.

We end this section with two remarks, showing that in the geometric setting we
can recover the smoothness of a scheme and the order of a hypersurface from the
information given by the jet schemes. We now assume that the ground ring is an
algebraically closed field.

Remark 10.1.17. Let X be a smooth n-dimensional variety and H ⊂ X an effective
Cartier divisor. If p ∈ H is a closed point and d = ordp(H), then

(πH
m )−1(p) = (πX

m )−1(p)' Amn for m < d, (10.1)

while (πH
d )−1(p) 6= (πX

d )−1(p). In fact, (πH
d )−1(p)'CpH×A(d−1)n, where CpH is

the tangent cone of H at p, and the canonical morphism (πH
d )−1(p)→ (πH

1 )−1(p)'
TpH corresponds to the projection to the first component, followed by the canonical
inclusion CpH ↪→ TpH.

In order to check these assertions, after restricting to a suitable affine open
neighborhood U ⊆ X of p, we may assume that X is affine and that we have
u1, . . . ,un ∈O(X) giving a system of coordinates. Let mp denote the ideal defining p
in X . The equality in (9.1) is clear: for every k-algebra A, if γ : SpecA[t]/(tm+1)→X
lies in (πX

m )−1(p), then γ−1(mp) ⊆ (t). Since f ∈ md
p, it follows that γ−1( f ) = (0)

whenever m≤ d−1.
In order to check the other assertions, let us consider the homogeneous polyno-

mial g ∈ k[x1, . . . ,xn] of degree d such that f −g(u1, . . . ,un) ∈md+1
p . If D⊂ X is the

hypersurface defined by g(u1, . . . ,un), then (πH
d )−1(p) = (πD

d )−1(p). Moreover, in



250 10 Arc spaces

this case g defines CpH ⊆ TpX ' An. By Lemma 9.1.12 applied to the étale mor-
phism X→An defined by (u1, . . . ,un), it is enough to prove the remaining assertions
when X = An, p = 0, and H is defined by g. For any k-algebra A, an A-valued point
of (πH

d )−1(p) is determined by those (ai, j) ∈ Adn such that

g

(
d

∑
j=1

a1, jt j, . . . ,
d

∑
j=1

an, jt j

)
≡ 0 (mod td+1).

Since the left-hand side of the above expression is equal to tdg(a1,1, . . . ,an,1) mod
(td+1), we obtain the isomorphism (πH

d )−1(0) ' H ×A(d−1)n, as well as the last
assertion.

Remark 10.1.18. It follows from Corollary 9.1.13 that if X is smooth, then all
maps πX

p,q, with p > q, are surjective. The converse also holds: in fact, if x ∈ X
is a singular closed point, then (πX

m )−1(x) → (πX
1 )−1(x) ' TxX is not surjective

for m � 0. Indeed, it is enough to show that for every x ∈ X , the image of
(πX

m )−1(x)→ (πX
1 )−1(x), for m� 0, is contained in the tangent cone CxX of X

at x. In order to show this, we may assume that X is a closed subscheme of some
An. Since CxX is the scheme-theoretic intersection of finitely many cones of the
form CxH, for suitable hypersurfaces H ⊂ An containing X , the assertion follows
from Remark 9.1.17.

10.2 Arc schemes

We work in the same setting as in the previous section, with schemes of finite type
over a Noetherian ring R. If X is such a scheme, then we have the inverse system of
schemes (Jm(X))m≥0, with the transition morphisms given by πX

p,q : Jp(X)→ Jq(X)
for p > q. Since these morphisms are affine, the inverse limit of this system exists. It
is denoted by J∞(X) and it is called the arc scheme of X . When we need to emphasize
the ground ring, we write J∞(X/R). This scheme is denoted in the literature also by
X∞ or L (X). In the case when R = k is a field, we will denote by X∞ the set of
k-valued points of J∞(X).

We recall how the inverse limit is constructed. If U ⊆ X is an affine open subset,
then we consider Spec(lim−→

m
O(Jm(U))). Since the direct limit of rings commutes

with localization, it is straightforward to check that these schemes glue together to
a scheme J∞(X). Moreover, the natural maps Spec(lim−→

m
O(Jm(U)))→ Jm(U) glue to

give πX
∞,m : J∞(X)→ Jm(X) such that πX

p,q ◦πX
∞,p = πX

∞,q for p > q. We also write πX
∞

for πX
∞,0 and we drop the upper index if the scheme X is clear from the context. It

is easy to see that J∞(X), together with these morphisms, is the inverse limit of the
inverse system (Jm(X))m≥0, that is
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Hom(Y,J∞(X))' lim←−
m

Hom(Y,Jm(X)) (10.2)

for every scheme Y over R.

Example 10.2.1. If X = SpecR, then J∞(X) = SpecR. If X = An
R, with n ≥ 1, then

it follows from Example 9.1.3 that J∞(X) is isomorphic to an infinite-dimensional
affine space over R, that is, to AN

R := SpecR[xn;n ≥ 0]. Moreover, each morphism
π∞,m : J∞(X)→ Jm(X) is given by the projection onto the first (m+1)n components.
In particular, this shows that J∞(X) is in general not of finite type over R, and in fact,
it is not Noetherian.

Lemma 10.2.2. For every R-algebra A, there is a functorial map

Hom(SpecA[[t]],X)→ Hom(SpecA,J∞(X)). (10.3)

This is a bijection if either X is affine or A is a local ring.

Proof. Using the fact that J∞(X) = lim←−
m

Jm(X) and the definition of jet schemes, we

see that
Hom(SpecA,J∞(X))' lim←−

m
Hom(SpecA[t]/(tm+1),X).

The morphism in (9.3) is then obtained by composing with the compatible mor-
phisms SpecA[t]/(tm+1)→ SpecA[[t]] induced by the obvious projections. The fact
that (9.3) is a bijection when X is affine is clear, since A[[t]]' lim←−

m
A[t]/(tm+1).

When A is a local ring, the fact that (9.3) is a bijection can be reduced the the
case when X is affine, as follows. If B is any local ring, then Hom(SpecB,X) =⋃

U Hom(SpecB,U), where the union is over all affine open subsets U of X (this is
due to the fact that a morphism φ : SpecB→ X factors through U ⊆ X if and only
if φ maps the unique closed point of SpecB to U). Since (A,m) is a local ring, both
A[[t]] and A[t]/(tm+1) are local rings, with the maximal ideal generated by m and t.
We note that a morphism SpecA[t]/(tm+1)→ X factors through an open subset U if
and only if its restriction to SpecA factors through U . We thus conclude that

lim←−
m

Hom(SpecA[t]/(tm+1),X) =
⋃
U

lim←−
m

Hom(SpecA[t]/(tm+1),U)

and
Hom(SpecA[[t]],X) =

⋃
U

Hom(SpecA[[t]],U),

where U varies over the affine open subsets of X . Since (9.3) is a bijection when X
is affine, we conclude that it is a bijection also when A is a local ring.

We will use the above lemma especially when A = K is a field. In general, a
morphism SpecA[[t]]→ X is called an A-valued arc on X . The above lemma says
that when X is affine or A is a local ring, we have a bijection between the A-valued
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arcs on X and the A-valued points of X∞. When A = K is a field, we will denote by
0 the closed point of SpecK[[t]] and by η its generic point.

If f : X →Y is a morphism of schemes of finite type over R, then the morphisms
fm : Jm(X) → Jm(Y ) induce a morphism f∞ : J∞(X) → J∞(Y ) such that we have
commutative diagrams

J∞(X)
f∞ //

πX
∞,m

��

J∞(Y )

πY
∞,m

��
X

f // Y.

In this way we obtain a functor J∞ from schemes of finite type over R to schemes
over R and each π∞,m gives a natural transformation.

Remark 10.2.3. The general properties of the functor J∞ can be deduced by “passing
to limit” from the corresponding properties of the functors Jm, that we discussed in
the previous section. For example, we have the following:

1) If f : X → Y is an étale morphism, then we have a Cartezian diagram

J∞(X)
f∞ //

πX
∞

��

J∞(Y )

πY
∞

��
X

f // Y.

This follows from Lemma 9.1.12 and the fact that inverse limits commute with
fiber products.

2) If X is a smooth scheme over R, of relative dimension n, then each J∞(X)→
Jm(X) is locally trivial, with fiber AN

R (if n > 0) or SpecR (if n = 0).
3) If f : X→Y is smooth and surjective, then f∞ : J∞(X)→ J∞(Y ) is surjective. Fur-

thermore, if R = k is an algebraically closed field, then we also have surjectivity
for the map between the corresponding sets of k-valued arcs. Both assertions
follow using the argument in Remark 9.1.14.

4) If f : X → Y is a closed immersion, then f∞ : J∞(X)→ J∞(Y ) is a closed im-
mersion. This follows from Remark 9.1.9 and the fact that an inductive limit of
surjective ring homomorphisms is again surjective.

5) J∞ commutes with fibered products, that is, for every two morphisms f : X → S
and g : Y → S, we have a canonical isomorphism

J∞(X×S Y )' J∞(X)×J∞(S) J∞(Y ).

This follows from Remark 9.1.8 and the fact that inverse limits commute with
fiber products. In particular, we see that if f : X → Y is a morphism and Z ↪→ Y
is a closed subscheme, then

J∞( f−1(Z)) = f−1
∞ (J∞(Z)).
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6) If G is an algebraic group over R, then J∞(G) is a group scheme over R. Further-
more, if G acts algebraically on a scheme over R, then J∞(G) has an algebraic
action on J∞(X). Both assertions follow from Example 9.1.7, by taking the in-
verse limit.

Remark 10.2.4. It follows from the definition of J∞(X) that a basis of open sets for
its Zariski topology is given by the subsets of the form π−1

∞,m(U), where m varies
over the non-negative integers and U varies over the open subsets of Jm(X).

For every scheme X , the system of sections (σm)m≥1 define by (9.2) a morphism
σ∞ = σX

∞ : X → J∞(X) such that π∞,m ◦σ∞ = σm. In particular, we have π∞ ◦σ∞ =
IdX .

Recall that for a scheme X we also have the morphism Φm : A1
R×SpecR Jm(X)→

Jm(X) for every m≥ 0. Using (9.2), we obtain a morphism

Φ∞ = Φ
X
∞ : A1

R×SpecR J∞(X)→ J∞(X)

such that for every m≥ 0, we have a commutative diagram

A1
SpecR×SpecR J∞(X)

Φ∞ //

(Id,π∞,m)
��

J∞(X)

π∞,m
��

A1
SpecR×SpecR Jm(X)

Φm // Jm(X).

The morphism Φ∞ restricts to an action of Gm,R on J∞(X) and the restriction of Φ∞

to J∞(X)
(0,Id)
↪→ A1

R×SpecR J∞(X) is equal to σ∞ ◦π∞.

Remark 10.2.5. If R has equicharacteristic 0 (that is, if Q⊆ R), there is an easy way
to write down explicitly the equations of jet schemes and arc schemes for affine
schemes, by “formally differentiating” the original equations. Let us start with the
case S = R[x1, . . . ,xN ]. We consider the polynomial rings

Sm = R[x( j)
i | 1≤ i≤ N;0≤ j ≤ m] and S∞ = R[x( j)

i | 1≤ i≤ N; j ≥ 0]

(we make the convention x(0)
i = xi and sometimes write x′i = x(1)

i , x′′i = x(2)
i ). Note

that we have
S = S0 ⊆ S1 ⊆ S2 ⊆ . . .⊆ S∞ =

⋃
m≥0

Sm.

On S∞ we consider the unique R-derivation D given by D(x( j)
i ) = x( j+1)

i for all i
and j. For every f ∈ S∞, we define f ( j) recursively by putting f (0) = f and f ( j) =
D( f ( j−1)) for j ≥ 1. Note that if f ∈ S, then f ( j) ∈ Sm for all j ≤ m.

For an R-algebra A, we parametrize the morphisms S→ A[t]/(tm+1) in a slightly
different way than in the proof of Proposition 9.1.1: a morphism φ : S→A[t]/(tm+1)
is determined by
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φ(xi) =
m

∑
j=0

a( j)
i
j!

t j.

For every f ∈ S, we have

φ( f ) =
m

∑
j=0

f ( j)(a,a′, . . . ,a(m))
j!

t j in A[t]/(tm+1).

Indeed, in order to check this, it is enough to note that both sides are additive and
multiplicative in f and the equality trivially holds when f = xi. This implies that if
X ↪→ AN is the closed subscheme defined by the ideal I = ( f1, . . . , fr) ⊆ S, the jet
scheme Jm(X) is defined in SpecSm by ( f ( j)

i | 1≤ i≤ r,0≤ j≤m). We deduce from
this that J∞(X) is defined in SpecS∞ by ( f ( j)

i | 1≤ i≤ r, j ≥ 0).

Remark 10.2.6. Suppose that we are still in the equicharacteristic 0 case. It follows
from Remark 9.2.5 that if X is affine, then there is an R-derivation δ of O(J∞(X))
that satisfies the following universal property: if g : O(X)→ T is a morphism of
R-algebras such that T has an R-derivation δT , then there is a unique morphism of
R-algebras h : O(J∞(X))→ T such that the composition O(X)→ O(J∞(X)) h→ T
is equal to g and δT ◦ h = h ◦ δ . In order to see this, let us write X = SpecS/I, for
a polynomial ring S. It follows from Remark 9.2.5 that the derivation D induces an
R-derivation δ on O(J∞(X)) and it is straightforward to see that this satisfies the
universal property. In the case when R = k is a field of characteristic zero, this is the
starting point for the connection between arc schemes and differential algebra, see
[Bui94].

We now turn to some properties that hold for arc schemes, in spite of the fact that
they do not hold for jet schemes.

Lemma 10.2.7. For every scheme X, the closed immersion J∞(Xred) ↪→ J∞(X) is a
homeomorphism of topological spaces. Moreover, if X1, . . . ,Xr are the irreducible
components of X, then we have an equality of sets J∞(X) = ∪r

i=1J∞(Xi).

Proof. For the first assertion, it is enough to show that for every R-algebra K, which
is a field, the two schemes have the same K-valued points. By Lemma 9.2.2, this is
equivalent to the fact that the injective map

Hom(SpecK[[t]],Xred)→ Hom(SpecK[[t]],X)

is a bijection. This is clear, since K[[t]] is reduced.
For the second assertion, it is enough to prove that for every K as above, every

K-valued point of J∞(X) is a K-valued point of some J∞(Xi). By Lemma 9.2.2, we
need to show that every morphism SpecK[[t]]→ X factors through some Xi. This is
a consequence of the fact that K[[t]] is a domain.

The next proposition is the first indication of the connection between arc schemes
and birational geometry.
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Proposition 10.2.8. Let f : X → Y be a proper scheme morphism and assume that
Z ⊂ Y is a closed subset such that f induces an isomorphism X r f−1(Z)' Y r Z.
In this case f∞ induces a map

f̃ : J∞(X)r J∞( f−1(Z))→ J∞(Y )r J∞(Z)

which induces bijections on K-valued points for every R-algebra K that is a field.
In particular, f̃ is a bijection inducing isomorphisms of residue fields between the
corresponding points.

Proof. Note first that the conclusion is independent of the scheme structures we
consider on Z and f−1(Z), by Lemma 9.2.7. Let K be an R-algebra that is a field.
By Lemma 9.2.2, showing that the induced map

Hom(SpecK,J∞(X)r J∞( f−1(Z)))→ Hom(SpecK,J∞(Y )r J∞(Z))

is a bijection, is equivalent to showing that the following map

{γ : SpecK[[t]]→ X | γ(η) ∈ X r f−1(Z)}→ {δ : SpecK[[t]]→ Y | δ (η) ∈ Y r Z}

is bijective. If δ : SpecK[[t]] → Y is such that δ (η) ∈ Y r Z, then δ induces
δ̃ : SpecK((t))→ Y r Z ' X r f−1(Z) ⊆ X . It follows from the valuative criterion
for properness that given the commutative diagram

SpecK((t))

��

δ̃ // X

f

��
SpecK[[t]] δ // Y,

there is a unique morphism γ : SpecK[[t]]→ X such that the resulting two triangles
in the above diagram are commutative. This completes the proof of the proposition.

Remark 10.2.9. With the notation in Proposition 9.2.8, if f is birational, but not
proper, the same argument implies that the map J∞(X) r J∞( f−1(Z))→ J∞(Y ) r
J∞(Z) induces injections between the K-valued points for every R-algebra K that is
a field. Indeed, we simply use the valuative criterion for separatedness (recall that
all schemes are assumed separated).

We point out that while the morphism f̃ in Proposition 9.2.8 is bijective, it is
very far from being a homeomorphism. In fact, one of the key results of the theory,
the birational transformation rule that will be discussed in Sections 9.3 and 9.7 be-
low, shows in particular how the codimensions of certain subsets change under this
morphism. This is one of the peculiar phenomena when working with arc schemes,
which are not Noetherian.

We use Proposition 9.2.8 to prove the following result due to Kolchin [Kol73].
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Theorem 10.2.10. If X is an irreducible scheme of finite type over a field k of char-
acteristic 0, then J∞(X) is irreducible.

Proof. We first consider the case when X is smooth and irreducible. We have seen
that in this case each Jm(X) is smooth and connected, hence irreducible. Since a
basis of open subsets of J∞(X) is given by the subsets of the form π−1

∞,m(U), for
various m≥ 0 and various open subsets of Jm(X), it follows that every two nonempty
open subsets of J∞(X) have nonempty intersection. Therefore J∞(X) is irreducible
in this case.

Suppose now that X is arbitrary. We argue by induction on n = dim(X), the case
n = 0 being a consequence of the smooth case. Let us assume that we know the
theorem in dimension less than n. By Lemma 9.2.7, we may assume that X is also
reduced. Since we are over a field of characteristic 0, there is a smooth, irreducible
scheme Y and a proper birational morphism f : Y →X . Since J∞(Y ) is irreducible, in
order to prove that J∞(X) is irreducible, it is enough to show that J∞(X) is contained
in the closure of f∞(J∞(Y )). Let Z be a closed subset of X such that f induces an
isomorphism Y r f−1(Z)→ X r Z. It follows from Proposition 9.2.8 that J∞(X)r
J∞(Z) is contained in the image of f∞. Therefore it is enough to show that J∞(Z) is
contained in the closure of f∞(J∞(Y )).

Let Z1, . . . ,Zr be the irreducible components of Z. By induction, we know that
each J∞(Zi) is irreducible. Furthermore, Lemma 9.2.7 implies the equality of sets
J∞(Z) = ∪r

i=1J∞(Zi). Therefore it is enough to find in each J∞(Zi) a nonempty open
subset that is contained in the image of f∞. Let Wi be an irreducible component
of f−1(Zi) that dominates Zi. Since we are in characteristic 0, it follows from the
generic smoothness theorem that there are open subsets Ui ⊆ Zi and Vi ⊆Wi such
that f induces a smooth surjective morphism Vi→Ui. It follows from the property
3) in Remark 9.2.3 that J∞(Ui) is contained in the image of f∞. Since J∞(Ui) is a
nonempty open subset of J∞(Zi), this completes the proof of the theorem.

In fact, Kolchin’s theorem holds in a more general setting, in which the ground
field is endowed with a derivation, see [Kol73] and also [Gil02] for a scheme-
theoretic approach. For a different proof of the above version of Kolchin’s theorem,
without using resolution of singularities, see [IK03] and [NS05].

Example 10.2.11. The above result fails in positive characteristic. Consider the fol-
lowing example from [NS05]. Suppose that X ↪→ A3 = Speck[x,y,z] is the hyper-
surface defined by (x2−y2z), where k is a field of characteristic 2. We have a corre-
sponding embedding

J∞(X) ↪→ J∞(A3) = Speck[x j,y j,z j; j ≥ 0],

defined by the ideal generated by the coefficients of(
∑
j≥0

y2
jt

2 j

)
·

(
∑
j≥0

z jt j

)
−∑

j≥0
x2

jt
2 j
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(as usual, we write x0 = x, y0 = y, and z0 = z). We have two nonempty open subsets
of J∞(X) with empty intersection, namely U = J∞(Xsm) and V = (z1 6= 0). Note that
Xsm = X ∩ (y 6= 0). We can check that U and V are disjoint by showing that they
have no common K-valued points, where K is a field containing k. Therefore we
need to check that if we have the following equality in K[[t]](

∑
j≥0

b2
jt

2 j

)
·

(
∑
j≥0

c jt j

)
= ∑

j≥0
a2

jt
2 j, (10.4)

with b0 6= 0, then c1 = 0. Indeed, differentiating (9.4) with respect to t gives(
∑
j≥0

b2
jt

2 j

)
·

(
∑
j≥1

jc jt j−1

)
= 0.

Since b0 6= 0, we conclude that c j = 0 for all j odd. In particular, c1 = 0. It is
clear that J∞(Xsm) is nonempty. In order to see that V is nonempty, it is enough to
consider its intersection with the closed subscheme of J∞(A3) defined by (x j,y j; j≥
0), which is contained in J∞(X). We conclude that in this example J∞(X) is not
irreducible.

Corollary 10.2.12. If X is a scheme of finite type over a field k of characteristic zero
and X1, . . . ,Xr are the irreducible components of X, then J∞(X1), . . . ,J∞(Xr) are the
irreducible components of J∞(X). In particular, J∞(X) has finitely many irreducible
components.

Proof. It follows from Theorem 9.2.10 that each J∞(Xi) is irreducible, while Lemma 9.2.7
gives the set-theoretic decomposition J∞(X) = ∪r

i=1J∞(Xi). Since π∞(J∞(Xi)) = Xi
for every i, it follows that J∞(Xi) 6⊆ J∞(X j) whenever i 6= j. We therefore obtain the
assertion in the corollary.

Corollary 10.2.13. If X is a connected scheme of finite type over a field k of char-
acteristic zero, then J∞(X) is connected.

Proof. If X1, . . . ,Xr are the irreducible components of X , then the J∞(Xi) are the
irreducible components of J∞(X) by Corollary 9.2.12. Moreover, we have J∞(Xi)∩
J∞(X j) = J∞(Xi ∩X j), hence this intersection is empty if and only if Xi ∩X j = /0.
Since X is connected, we conclude that J∞(X) is connected.

We have seen in Corollary 9.2.12 that at least over a field of characteristic zero,
the arc schemes have finitely many irreducible components. Using an argument sim-
ilar to the one in the proof of Theorem 9.2.10, we extend this assertion to certain
subsets of arc schemes that will be our main focus in the following sections. The
general subsets of J∞(X) tend to be rather badly behaved, due to the fact that J∞(X)
is not Noetherian. However, we will be interested in subsets that come “from a finite
level” which, as we will see, tend to be much better behaved.
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Definition 10.2.14. Let X be a scheme of finite type over R. A cylinder in J∞(X)
is a subset of the form C = π−1

∞,m(S), for some m and some constructible subset
S ⊆ Jm(X). We recall that a subset of a Noetherian scheme is constructible if it can
be written as a finite union of locally closed subsets. Note that given a cylinder
C, we may write it as π−1

∞,m(S), with m as large as we want. It is then clear that
cylinders form an algebra of sets, that is, the union and the intersection of finitely
many cylinders, as well as the difference of two cylinders, are again cylinders.

Proposition 10.2.15. If X is a scheme of finite type over a field k of characteristic 0
and C = π−1

∞,m(S)⊆ J∞(X) is a cylinder, then the following hold:

i) C has finitely many irreducible components.
ii) The set of points γ ∈ C with the property that the residue field k(γ) is a finite

extension of k is dense in C.

Proof. Note that in order to prove the first assertion, it is enough to write C as the
union of finitely many subsets, all of them irreducible with respect to the induced
topology. For the assertion in ii), recall that a basis of open subsets of J∞(X) is given
by the subsets of the form U = π−1

∞,q(V ), for various q and various open subsets
V ⊆ Jq(X). Since for every such U , the intersection U ∩C is again a cylinder, we see
that it is enough to show that every nonempty cylinder C contains a point γ whose
residue field is finite over k.

We first prove i) and ii) when X is smooth and irreducible. Note that S is a finite
union of irreducible locally closed subsets of Jm(X), hence we may assume that S
is locally closed in Jm(X) and irreducible. Since each πp,m is locally trivial, with
fiber an affine space, it follows that each π−1

p,m(S) is irreducible. Arguing as in the
proof of Theorem 9.2.10 (in the smooth case), we deduce that C is irreducible. If
S is nonempty, we can find a closed point γm ∈ S, hence the reside field K of γm is
finite over k. Since π−1

∞,m(γm) is isomorphic to either SpecK (if dim(X) = 0) or to
A∞

K (if dim(X) ≥ 1), it follows that there is γ ∈ π−1
∞,m(γm) ⊆C with residue field K.

This completes the proof when X is smooth and irreducible.
We prove the general case by induction on n = dim(X), the case n = 0 being

clear. Note that if X1, . . . ,Xr are the irreducible components of X (say, with reduced
scheme structures), then Lemma 9.2.7 gives an equality of sets J∞(X) = J∞(X1)∪
. . .∪ J∞(Xr). Since each C∩ J∞(Xi) is a cylinder in J∞(Xi), we see that it is enough
to prove the proposition when X is an integral scheme.

In this case, since the ground field has characteristic 0, there is a resolution of
singularities f : Y → X . Let Z be a proper closed subset of X such that f induces an
isomorphism Y r f−1(Z)→ X r Z. In this case, it follows from Proposition 9.2.8
that J∞(X)r J∞(Z)⊆ f∞(J∞(Y )). We thus have the decomposition

C = f∞( f−1
∞ (C))∪ (C∩ J∞(Z)).

Note that C∩ J∞(Z) = (πZ
∞,m)−1(Jm(Z)∩S) is a cylinder in J∞(Z), while f−1

∞ (C) =
(πY

m)−1( f−1
m (S)) is a cylinder in J∞(Y ). The smooth case thus implies that f−1

∞ (C)
is a finite union of irreducible subsets and if nonempty, then it contains a point
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with residue field finite over k. Therefore f∞( f−1
∞ (C)) has the same properties. On

the other hand, the induction hypothesis implies that C∩ J∞(Z) is a finite union of
irreducible subsets and if nonempty, then it contains a point with residue field finite
over k. We thus conclude that C has the same properties. This completes the proof
of the proposition.

We end this section with two interesting examples of spaces of arcs.

Example 10.2.16. Suppose that X is a toric variety (for simplicity, we work over an
algebraically closed field k and only consider k-valued points). In this case, X con-
tains an open subset T , which is a torus, and whose natural action on itself extends
to an action on X . We thus obtain an action of T∞ on X∞ and the orbits of this action
have been described by Ishii in [Ish04], as follows. For the basic facts about toric
varieties that we will use, we refer to [Ful93]. Let ∆ be the fan of X and N ' Zn

the corresponding lattice. If D(1), . . . ,D(r) are the the invariant prime divisors on X ,
then each D(i) is itself a toric variety, with corresponding torus a quotient of T . Ar-
guing, for example, by induction on dim(X), we see that it is enough to describe the
T∞-orbits that are contained in

X◦∞ := X∞ r (D(1)∪ . . .∪D(r))∞ = X∞ r∪r
i=1D(i)

∞ .

We will show that these orbits are parametrized by the lattice points in the support
|∆ | of ∆ .

Given γ ∈X∞, there is a cone σ ∈∆ such that the image of γ in X lies in Uσ . In this
case γ ∈ (Uσ )∞, that is, it corresponds to a ring homomorphism γ∗ : k[σ∨ ∩M]→
k[[t]], where M is the dual lattice of N. Note that γ 6∈ D(i)

∞ for every i if and only if
γ∗(χu) 6= 0 for every u ∈ σ∨∩M. We assume that this is the case, and consider the
map

σ
∨∩M 3 u→ ordt(γ∗(χ

u)) ∈ Z≥0.

Since this is clearly additive, it follows that there is a unique v ∈ σ ∩N such that the
map is given by 〈−,v〉. Note that v = 0 if and only if γ ∈ T∞. Given any v ∈ σ ∩N,
we get an arc γv ∈ (Uσ )∞ corresponding to the ring homomorphism

k[σ∨∩M]→ k[[t]], χ
u→ t〈u,v〉.

It is easy to see that as an arc in X∞, this is independent of the choice of σ . We note
that if τ is the the unique face of σ containing v, then the image of γv in X lies in the
orbit Oτ of X corresponding to τ .

Given an arbitrary arc γ as above, if v is the corresponding element in σ ∩N, we
see that there is a unique δ ∈ T∞ such that γ = δ · γv; indeed, we have δ ∗(χu) =
γ∗(χu) · t−〈u,v〉. We thus obtain a bijection between the T∞-orbits in (Uσ )∞ that are
not contained in any D(i)

∞ and σ ∩N. By varying σ , we obtain a bijection between
the T∞ orbits in X◦∞ and |∆ | ∩N. We point out that it is not known how to give a
similar description for the Tm-orbits of Xm, when X is a toric variety.

Note that if f : Y →X is an equivariant morphism of toric varieties, the morphism
f∞ : Y∞ → X∞ induces a morphism f ◦∞ : Y ◦∞ → X◦∞. It is clear that if φ is the corre-
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sponding lattice homomorphism, then f∞(γv) = γφ(v). In particular, if f is proper and
birational, then we have a bijection between the orbits in Y ◦∞ and X◦∞ and f∞ induces
a bijection between the corresponding orbits. Note that if Y is smooth, then Y∞ is
irreducible, and therefore also Y ◦∞ is irreducible. For an arbitrary X , by taking a toric
resolution of singularities f : Y → X , we obtain that X◦∞ is irreducible in arbitrary
characteristic.

Suppose now that X is a toric variety with fan ∆ . Once we have an orbit de-
composition as above, the next question is to describe the orbit closures. Given
v,w ∈ |∆ | ∩N, we claim that T∞ · γv is contained in the closure of T∞ · γw if and
only if there is a cone σ ∈ ∆ (equivalently, for every σ 3 v) such that w ∈ σ and
v−w ∈ σ ).

Suppose first that γv ∈ T∞ · γw. If σ ∈ ∆ is such that v ∈ σ , then γv ∈ (Uσ )◦∞. By
assumption, this implies γw ∈ (Uσ )◦∞, hence w ∈ σ ∩N. Moreover, since γv lies in
the closure of γw, it follows that for every u ∈ σ∨∩M, we have

〈u,v〉= ordt(γ∗v (χ
u))≥ ordt(γ∗w(χ

u)) = 〈u,w〉.

This implies that v−w ∈ σ .
Conversely, suppose that there is a cone σ ∈ ∆ such that w,v−w∈ σ (hence also

v ∈ σ ). Recall that we have a morphism Uσ ×Uσ →Uσ induced by

k[σ∨∩M]→ k[σ∨∩M]⊗ k[σ∨∩M], χ
u→ χ

u⊗χ
u

(this extends the T -action). This induces a morphism (Uσ )∞ × (Uσ )∞ → (Uσ )∞

which restricts to α : (Uσ )◦∞× (Uσ )◦∞ → (Uσ )◦∞. It is clear that α(γv−w,γw) = γv,
hence γv ∈ α((Uσ )◦∞×{γw}) ⊆ T∞ · γw, where the inclusion follows from the irre-
ducibility of (Uσ )◦∞.

We end this example by noting that if Z is a closed subset of X◦∞ which is pre-
served by the T∞-action, then Z has finitely many irreducible components, each of
these being the closure of some orbit T∞ ·γv. In order to see this, let Λ = {v∈ |∆ |∩N |
γv ∈ Z}, hence Z = tv∈Λ T∞ · γv. On Λ we consider the order given by v ≥ w pre-
cisely when T∞ · γv ⊆ T∞ · γw. We claim that the set S of minimal elements in Λ is
finite; in this case, it is clear that that the irreducible components of Z are given by
the orbit closures T∞ · γv, for v ∈ S. In order to check the claim, note that it is enough
to show that for every σ ∈ ∆ , the set S(σ) of minimal elements in Λ ∩σ is finite. If
we choose a system of nonzero generators v1, . . . ,vr for σ ∩N, we have a surjective
semigroup homomorphism φ : Zr

≥0→Λ ∩σ , given by φ(m1, . . . ,mr) = ∑
r
i=1 mivi. If

on Zr
≥0 we consider the order given by (m1, . . . ,mr)≤ (m′1, . . . ,m

′
r) precisely when

mi ≤ m′i for all i, then we see that φ−1(S(σ)) is contained in the set of minimal ele-
ments of φ−1(Λ ∩σ). Since every subset of Zr

≥0 has finitely many minimal elements
(this follows easily by induction on r), we conclude that S(σ) is finite.

Example 10.2.17. Let M = Mm,n(k) be the affine space of m× n matrices over
an algebraically closed field k, with n ≥ m ≥ 1. For every r with 1 ≤ r ≤ m, let
Dr(M) ↪→M be the generic determinantal variety defined by the ideal generated by
all r× r minors. As a set, Dr(M) consists of all matrices of rank ≤ r−1. Note that
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the group G = GLm(k)×GLn(k) acts on M by (A,B) ·T = AT B−1. The orbits of this
action consist precisely of the matrices of the same rank. We use this action in order
to describe (set-theoretically) Dr(M)q and Dr(M)∞, following [Doc13].

Note that M∞ = Mm,n(k[[t]]). It follows from the structure theorem for modules
over a principal ideal domain that the orbits of G∞ on M∞ are parametrized by m-
tuples d = (d1,d2, . . . ,dm), with 0 ≤ d1 ≤ d2 ≤ . . . ≤ dm ≤ ∞ and di ∈ Z∪ {∞}.
An element in the orbit corresponding to d = (d1, . . . ,dm) is the matrix A(d) =
diag(td1 , . . . , tdm), with the convention t∞ = 0. It is clear that Dr(M)∞ is the union of
the orbits corresponding to those d with dr = ∞.

Moreover, we can also describe the inverse image of Dr(M)q ⊆ Mq in M∞. In-
deed, this is the union of those G∞ ·A(d) with ∑

m
i=1 di ≥ q+1.

10.3 The birational transformation rule I

From now on, unless explicitly mentioned otherwise, we work over a fixed alge-
braically closed field k. While the main result in this section also has a version in
positive characteristic (see [EM09]), for the sake of simplicity we prefer to state
and prove it when char(k) = 0, which is the case that we will need for applications.
Recall that if X is a scheme of finite type over k, we denote by Xm and X∞ the sets
of k-valued points of Jm(X) and J∞(X), respectively. We keep the same notation
for the different maps between these spaces. Note that X∞ is only considered as a
topological space, with the topology induced by the Zariski topology on J∞(X) (we
now refer to it as the space of arcs of X). It is clear that we have a homeomorphism
of topological spaces X∞ ' lim←−

m
Xm. Since Jm(X) is a scheme of finite type over k,

there is no loss of information in only considering its k-valued points. Furthermore,
since we will mostly be interested in cylinders in J∞(X), it follows from Proposi-
tion 9.2.15 that we may, indeed, restrict to the k-valued points.

As in Section 9.2, we define a cylinder in X∞ to be a subset of the form π−1
∞,m(S),

where S⊆ Xm is a constructible subset. It is clear that the set of cylinders in X∞ form
an algebra of subsets.

The main examples of cylinders arise as follows. Suppose that Z ↪→ X is a
closed subscheme of X , defined by the ideal IZ . The ring k[[t]] is a DVR, with
the discrete valuation denoted by ordt . We associate to Z a function ordZ : X∞ →
Z≥0∪{∞} that measures the order of vanishing of an arc along Z. More precisely,
for γ : Speck[[t]]→X , we consider the ideal γ−1(IZ) in k[[t]]. This ideal is generated
by tordZ(γ), with the convention that ordZ(γ) = ∞ when the ideal is zero. With this
notation, for every m ∈ Z≥0, we have the following contact loci

Cont≥m(Z) = {γ ∈ X∞ | ordZ(γ)≥ m},

Contm(Z) = {γ ∈ X∞ | ordZ(γ) = m}.
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It is clear that both sets are cylinders. Indeed, we have Cont≥m(Z) = π
−1
∞,m−1(Zm−1)

(with the convention that the right-hand side is equal to X∞ when m = 0) and
Contm(Z) = Cont≥m(Z) r Cont≥(m+1)(Z). Note that Cont≥m(Z) is closed, while
Contm(Z) is locally closed. We may define in the same way the sets

Cont≥m(Z)p, Contm(Z)p ⊆ Jp(X)

whenever p ≤ m. When a is the ideal defining Z, we also write Contm(a) and
Cont≥m(a) instead of Contm(Z) and Cont≥m(Z), respectively.

10.3.1 Cylinders in the space of arcs of a smooth variety

In this section we concentrate on cylinders in spaces of arcs of smooth varieties,
which are much easier to study, due to the fact that the morphisms π∞,m are locally
trivial. We will turn to the more delicate study of cylinders in spaces of arcs of
singular varieties in Section 9.7.

Lemma 10.3.1. If C is a cylinder in X∞, where X is a smooth variety, the subset
π∞,m(C) of Xm is constructible for every m≥ 0.

Proof. Suppose that C = π−1
∞,p(S), for some p ≥ 0 and some constructible subset S

of Xp. If p≤ m, then π∞,m(C) = π−1
m,p(S) by the subjectivity of π∞,m, hence π∞,m(C)

is clearly constructible. On the other hand, if p > m, then the subjectivity of π∞,p
implies π∞,m(C) = πp,m(S), and this is constructible by Chevalley’s theorem.

Lemma 10.3.2. If C = π−1
∞,m(S) is a cylinder in X∞, where X is a smooth variety,

then

i) The closure C of C is a cylinder. In fact, C = π−1
∞,m(S).

ii) C is closed, open, or locally closed if and only if S has the same property.
iii) If S is locally closed and S1, . . . ,Sr are the irreducible components of S, then

π−1
∞,m(S1), . . . ,π−1

∞,m(Sm) are the irreducible components of C.

Proof. We note that since X is smooth, the morphism π∞,m is surjective. Further-
more, each πp,m is locally trivial; in particular, it is flat, hence open. Since the topol-
ogy on X∞ is the inverse limit topology, it follows that π∞,m is open.

We first prove i). The inclusion C ⊆ π−1
∞,m(S) follows since the right-hand side is

closed. Therefore we only need to prove the reverse inclusion. If γ ∈ X∞ rC, there
is an open subset W of X∞ such that γ ∈W and W ∩C = /0. Therefore π∞,m(γ) lies
in π∞,m(W ), which is open and does not intersect S. Therefore γ 6∈ π−1

∞,m(S).
For ii), we only need to prove that if C is open, closed, or locally closed, then S

has the same property. If C is open, then S = π∞,m(C) is open since π∞,m is open.
By considering the complement of S, we also obtain that if C is closed, then S is
closed. Suppose now that C is locally closed. In this case, C is open in C, which is
equal to π−1

∞,m(S), by i). If we write C = π−1
∞,m(S)∩U , for some open subset U of X∞,



10.3 The birational transformation rule I 263

then S = π∞,m(C) = S∩π∞,m(U). Since π∞,m(U) is open in Xm, we deduce that S is
locally closed in Xm.

For iii), note first that each π−1
∞,m(Si) is closed in C. Furthermore, we have seen in

the proof of Proposition 9.2.15 that since X is smooth and Si is irreducible, π−1
∞,m(Si)

is irreducible as well. If i 6= j, then Si is not contained in S j, and since π∞,m is
surjective, we conclude that π−1

∞,m(Si) is not contained in π−1
∞,m(S j). We thus obtain

the assertion in iii).

If C = π−1
∞,m(S) is a cylinder in X∞, where X is a smooth variety of dimension n,

we put
codim(C) := codim(S,Xm) = (m+1)n−dim(S).

Note that for p > m, the morphism πp,m : Xp → Xm is locally trivial, with fiber
A(p−m)n. This implies that dim(π−1

p,m(S)) = dim(S)+(p−m)n, hence codim(C,X∞)
is well-defined. It is clear from definition that if C1 ⊆ C2 are cylinders, then
codim(C1)≥ codim(C2). We also have codim(C) = codim(C), since the same prop-
erty holds for constructible subsets in Xm. The following result is very useful.

Proposition 10.3.3. If Y is a proper closed subscheme of the smooth variety X, then

lim
m→∞

codim(Cont≥m(Y )) = ∞.

Proof. Let Cm = Cont≥m(Y ). Since Cm ⊇Cm+1 for every m, it follows that the se-
quence {codim(Cm)}m≥1 is non-decreasing. We conclude that if it does not go to
infinity, then there are N and m0 such that codim(Cm) = N for m≥ m0. In this case,
there is a common irreducible component of all Cm, with m≥ m0. Indeed, for every
m > m0, if C is an irreducible component of Cm with dim(C) = dim(Cm), then for
every p with m0 ≤ p < m, we see that C is also an irreducible component of Cp.
Since Cm0 has only finitely many irreducible components, one of these has to be
an irreducible component for all Cm, with m ≥ m0. We thus have a cylinder that is
contained in Y∞, which contradicts the lemma below.

Lemma 10.3.4. If X is a smooth variety and Y is a proper subscheme of X, then for
every cylinder C ⊆ X∞, we have C 6⊆ Y∞.

Proof. It is enough to show that if γ ∈ X∞, then π−1
∞,m(π∞,m(γm)) 6⊆Y∞ for every m≥

0. Let p = πm(γm) ∈ X . If x1, . . . ,xn are local coordinates on X in a neighborhood
of p, such that xi(p) = 0, we have an isomorphism ÔX ,p ' k[[y1, . . . ,yn]] that maps
each xi to yi. Let f ∈ k[[y1, . . . ,yn]] be the formal power series that corresponds to
the image in ÔX ,p of a nonzero element in the ideal defining Y . Recall that we
have a bijection π−1

∞ (p) ' (tk[[t]])n such that γ : OX ,p → k[[t]] corresponds to u =
(γ(x1), . . . ,γ(xn)). Note that every such γ induces a unique homomorphism ÔX ,p→
k[[t]].

Since π−1
∞,m(π∞,m(γm))⊆ Y∞, we deduce that for every w ∈ (tm+1k[[t]])n, we have

f (u + w) = 0. It is clear that there is g ∈ k[[t,y1, . . . ,yn]] such that f (u + tmv) =
g(t,v1, . . . ,vn) for every v = (v1, . . . ,vn) ∈ (tk[[t]])n and that g is nonzero since f is
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nonzero. Therefore in order to get a contradiction it is enough to show that if g has
the property that g(t,w1, . . . ,wn) = 0 for every w ∈ (tk[[t]])n, then g = 0.

The key case is when n = 1. Let us write g = ∑i≥0 giyi, where gi ∈ k[[t]]. Suppose
that g is nonzero and let r = min{i | gi 6= 0}. Since g(t,w) = 0 for every w ∈ tk[[t]],
it follows that ∑i≥r gi(t)wi−r = 0 for every w ∈ tk[[t]]r{0}. On the other hand, it is
clear that we can write ∑i≥r gi(t)wi−r = ∑ j≥0 Pjt j, where each Pj is a polynomial in
the coefficients of w. Since the Pj vanish when w 6= 0, and since the ground field is
infinite, it follows that the Pj vanish for every w. In particular, by taking w = 0, we
obtain gr = 0, a contradiction.

The general case now follows by induction on n. Indeed, if n ≥ 2, let us write
g = ∑i≥0 gi(t,y1, . . . ,yn−1)yi

n. The case n = 1 implies that gi(t,w1, . . . ,wn−1) = 0 for
all i ≥ 0 and all (w1, . . . ,wn−1) ∈ (tk[[t]])n−1. We conclude that gi = 0 for all i by
induction, hence g = 0.

Corollary 10.3.5. If f : Y → X is a proper birational morphism between smooth
varieties, then each fm : Ym→ Xm is surjective.

Proof. Let γm ∈Xm. If Z is a proper closed subset of X such that f is an isomorphism
over X r Z, then X∞ r Z∞ is contained in the image of f∞ by Proposition 9.2.8.
On the other hand, Lemma 9.3.4 implies (πX

∞,m)−1(γm) 6⊆ Z∞. By combining these
assertions, we deduce γm ∈ Im(πX

∞,m ◦ f∞)⊆ Im( fm).

The next result shows that for closed irreducible cylinders in the space of arcs of
a smooth variety, the notion of codimension that we defined agrees with the codi-
mension from the point of view of the Zariski topology.

Proposition 10.3.6. If X is a smooth variety and C is a closed cylinder in X∞, then

codim(C) = max{r ≥ 0 | ∃C ( W1 ( . . . ( Wr ⊆ X∞ |Wi closed, irreducible}.

Proof. The assertion follows from our definition of codimension if we show that
all irreducible closed subsets W of X containing C must be cylinders. This is the
content of the next lemma.

Lemma 10.3.7. Let X be a smooth variety and C a cylinder in X∞. If W is a closed,
irreducible subset of X∞ containing C, then W is a cylinder.

Proof. Since W is closed in X∞, it follows from the definition of the topology on the
space of arcs that there are closed subsets Zm ⊆ Xm such that W = ∩m≥0Cm, where
Cm = π−1

∞,m(Zm). Since π∞,m(W ) ⊆ Zm for every m, we may replace each Zm by
π∞,m(W ) and thus assume that each Zm is irreducible and that Cm+1 ⊆Cm for every
m. In particular, we have codim(Cm+1) ≥ codim(Cm), with equality if and only if
Cm = Cm+1. Since C ⊆ Cm, we must have codim(Cm) ≤ codim(C) for every m. iI
follows that the sequence (codim(Cm))m≥1 is eventually constant, hence (Cm)m≥1
is eventually constant. We conclude that C = Cm for m� 0 and therefore C is a
cylinder.
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While we will not make use of the following two results, they can simplify certain
arguments when working over an uncountable field.

Proposition 10.3.8. If X is a smooth variety and the ground field is uncountable,
then for every descending sequence of nonempty cylinders C1 ⊇C2 ⊇ . . ., we have
∩i≥1Ci 6= /0.

Proof. We give the proof following [Bat98]. Since we work over an uncountable
field, every descending sequence of nonempty constructible subsets of a scheme of
finite type has nonempty intersection (see Proposition E.0.1). Consider the descend-
ing sequence of subsets of X0

π∞,0(C1)⊇ π∞,0(C2)⊇ . . . ,

which are all constructible by Lemma 9.3.1, and clearly nonempty. Let γ0 be an
element in the intersection. By choice of γ0, it follows that the descending sequence

π∞,1(C1)∩π
−1
1,0 (γ0)⊇ π∞,1(C2)∩π

−1
1,0 (γ0)⊇ . . .

consists of nonempty subsets of X1, which are constructible by Lemma 9.3.1. We
may thus choose γ1 in the intersection of these sets. Repeating this, we obtain a
sequence (γi)i≥0 such that γi+1 ∈ π∞,i+1(Cm)∩π

−1
i+1,i(γi) for every i≥ 0 and m≥ 1.

Therefore the sequence (γi)i≥0 defines an element γ ∈ X∞. For every m, we have
π∞,i(γ) = γi ∈ π∞,i(Cm), and since Cm is a cylinder, we see by taking i� 0 that
γ ∈Cm. Therefore γ ∈ ∩m≥1Cm.

Corollary 10.3.9. If f : Y → X is a proper, birational morphism of smooth varieties
over an uncountable ground field, then f∞ : Y∞→ X∞ is surjective.

Proof. Given γ ∈ X∞, for every m ≥ 1 we consider γm = πX
∞,m(γ) and the cylinder

Cm = (πY
∞,m)−1( f−1

m (γm)). This is a descending sequence of cylinders, which are all
nonempty by Corollary 9.3.5. It follows from Proposition 9.3.8 that there is δ ∈
∩m≥1Cm. Therefore πX

∞,m(γ) = πX
∞,m( f∞(δ )) for every m≥ 1, hence γ = f∞(δ ).

10.3.2 The key result

In this section, unless explicitly mentioned otherwise, we assume that the ground
field has characteristic 0. In order to be able to state the birational transformation
formula, we now introduce the notion of piecewise trivial fibration. Let F be a re-
duced scheme. Given a morphism f : W ′→W of schemes of finite type over k and
constructible subsets A⊆W and A′ ⊆W ′ such that f induces a map g : A′→ A, we
say that g is piecewise trivial, with fiber F , if there is a decomposition A = ∪r

j=1A j,
with each A j locally closed in W and such that g−1(A j) is locally closed in W ′ and
it is isomorphic over A j to A j×F (where we consider on both A j and g−1(A j) the
reduced structures). Of course, if this is the case, then A = f (A′). Note that in the
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definition, we may always assume that the A j are mutually disjoint. If g is piecewise
trivial, with fiber Spec(k), then we say that g is a piecewise isomorphism.

Lemma 10.3.10. Let f : X → Y be a morphism of schemes of finite type over k, F a
reduced scheme, and B⊆ X a constructible subset.

i) Suppose that B =
⋃r

i=1 Bi, with each Bi constructible and f−i( f (Bi))∩B = Bi
(that is, Bi is a union of fibers of B→ Y ). In this case, B→ f (B) is piecewise
trivial with fiber F if and only if each Bi→ f (Bi) has the same property.

ii) If every y ∈ f (B) has an open neighborhood Uy in Y such that B∩ f−1(Uy)→
f (B)∩Uy is piecewise trivial with fiber F, then B→ f (B) is piecewise trivial
with fiber F.

iii) If every x ∈ B has an open neighborhood Vx in X such that B∩Vx is a union of
fibers of B→ Y and B∩Vx → f (B∩Vx) is piecewise trivial, with fiber F, then
B→ f (B) is piecewise trivial, with fiber F.

Proof. The equivalence in i) follows from definition. The assertions in ii) and iii)
follow arguing by Noetherian induction on Y , respectively X .

Lemma 10.3.11. If f : W ′→W is a morphism of schemes of finite type over k and
f induces a map g : A′→ A, where A′ and A are constructible subsets of W ′ and W,
respectively, then g is a piecewise isomorphism if and only if it is bijective.

Proof. It is clear that if g is a piecewise isomorphism, then it is bijective, hence we
only need to prove the converse. Suppose that g is bijective. Since A′ is constructible,
we can write it as a disjoint union A′ = tr

i=1A′i, with each A′i locally closed in W ′.
Since g is bijective, we obtain a corresponding decomposition A = tr

i=1g(A′i), with
each g(A′i) constructible by Chevalley’s theorem. Clearly, it is enough to show that
each A′i → g(A′i) is a piecewise isomorphism (note that A′i = g−1(g(A′i)) by the in-
jectivity of g). Therefore we may assume that A′ is locally closed in W ′.

We now consider a decomposition A =ts
j=1A j, with each A j locally closed in W .

Since g−1(A j) = A′∩ f−1(A j) is locally closed in W ′, and since it is clearly enough
to show that each g−1(A j)→ A j is a piecewise isomorphism, we may assume that
A′ and A are locally closed in W ′ and W , respectively. Hence after replacing W ′ by
A′ and W by A, we may assume that A′ = W ′ and A = W . Furthermore, we may
replace W and W ′ by the corresponding reduced schemes and thus assume that both
W and W ′ are reduced.

Arguing by Noetherian induction with respect to W , we see that if U is an open
subset of W , it is enough to prove that f−1(U)→U is a piecewise isomorphism. In
particular, if W is reducible and W1, . . . ,Wr are its irreducible components, we may
replace W by W1 r∪i 6=1Wi. Therefore we may assume that W is irreducible. Since f
is surjective, there is an irreducible component W ′′ of W ′ that dominates W . In this
case, we can find an open subset V of W that is contained in f (W ′′). After replacing
W ′→W by f−1(V )→ V , we may assume that both W ′ and W are irreducible and
reduced. It is clear that dim(W ′) = dim(W ). Since we are in characteristic 0, we can
find open subsets U ′ of W ′ and U of W such that f induces a morphism U ′ →U
that is finite and smooth (hence étale). After replacing U by f (U ′), we see that
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we have a finite bijective étale morphism U ′ →U . This must be an isomorphism.
Furthermore, since f is bijective, we have U ′ = f−1(U). This completes the proof
of the lemma.

Corollary 10.3.12. Let f : X → Y and g : Y → Z be morphisms of schemes of fi-
nite type and F a reduced scheme. Suppose that A ⊆ X, B ⊆ Y , and C ⊆ Z are
constructible subsets such that we get induced maps A→ B which is piecewise triv-
ial with fiber F, and B→ C which is a piecewise isomorphism. The composition
A→ B→C is then piecewise trivial, with fiber F.

Proof. By assumption, we can write C as a disjoint union of locally closed subsets
C1, . . . ,Cs in Z such that each g−1(C j) is locally closed in Y and g−1(C j)→ C j is
an isomorphism. We may similarly write B as a disjoint union of subsets B1, . . . ,Br
that are locally closed in Y , such that each f−1(Bi) is locally closed in A and it is
isomorphic to Bi×F over Bi. It is then clear that each Bi∩g−1(C j) is locally closed
in Y , hence g(Bi)∩C j is locally closed in C j, and thus in Z, and (g◦ f )−1(g(Bi)∩C j)
is isomorphic to (g(Bi)∩C j)×F .

Example 10.3.13. Note that we can have morphisms of schemes of finite type
f : X → Y and g : Y → Z such that g is (piecewise) trivial, f is a piecewise iso-
morphism, but g ◦ f is not piecewise trivial. Indeed, suppose that f : X = (A2 r
{0})t{0} → Y = A2 is the obvious morphism and g : A2 → A1 is the projection
onto the first component. It is then clear that for every locally closed subset W of Z
containing the origin, we have (g◦ f )−1(W ) 6'W ×A1.

The result that is responsible for most of the applications of the spaces of arcs
is the birational transformation formula. This describes the behavior of f∞ when
f : Y → X is a proper, birational morphism, with Y smooth. In this section we only
consider the easier case when X is smooth, too, when the result is due to Kontsevich
[Kon]. For the more general version, see Section 9.7. Recall that if f : Y → X is
a proper, birational morphism between two smooth varieties, then the morphism
of line bundles f ∗ωX → ωY corresponds to a section of ωY ⊗ f ∗(ω−1

X ) defining an
effective divisor KY/X . This has the property that dim f−1( f (y)) ≥ 1 for every y ∈
Supp(KY/X ) and if U = X r f (Supp(KY/X )), then f−1(U)→U is an isomorphism
(see Lemma B.2.3).

Theorem 10.3.14. If f : Y → X is a birational morphism between smooth varieties
over k, then for every e ∈ Z≥0 and every m ≥ 2e, the contact locus Conte(KY/X )m
has the following properties:

i) If γm,γ ′m ∈ Ym are such that fm(γm) = fm(γ ′m) and γm ∈ Conte(KY/X )m, then

π
Y
m,m−e(γm) = π

Y
m,m−e(γ

′
m).

In particular, we also have γ ′m ∈ Conte(KY/X )m.
ii) The map

Conte(KY/X )m→ fm(Conte(KY/X )m)

is piecewise trivial, with fiber Ae.
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Before proving the general case, we illustrate the theorem in an important special
case.

Example 10.3.15. Suppose that X is a smooth variety and f : Y → X is the blow-
up along a smooth subvariety Z ↪→ X of codimension r ≥ 2. In this case we allow
the ground field to have arbitrary characteristic. If E is the exceptional divisor, then
KY/X = (r− 1)E (see Lemma ??). In particular, we see that the contact locus in
the theorem is empty, unless a := e

r−1 ∈ Z, which we henceforth assume. Note that
both assertions in Theorem 9.3.14 are local over X . Since locally on X we can find
an étale morphism to some An such that Z is the pull-back of the linear subspace
defined by (x1, . . . ,xr), it is easy to see, using Lemma 9.1.12, that we may assume
that X = An and Z is defined by (x1, . . . ,xr).

In particular, we have Xm = (k[t]/(tm+1))⊕n. For 1 ≤ i ≤ r, let us consider the
chart U ⊂ Y with coordinates y1, . . . ,yn, such that y j = x j for j > r, yi = xi, and
y j = xix j for j ≤ r, j 6= i. In this case the morphism Um→ Xm gets identified to

φi : (k[t]/(tm+1))⊕n→ (k[t]/(tm+1))⊕n,

(u1, . . . ,un)→ (u1ui, . . . ,ui, . . . ,urui,ur+1, . . . ,un).

It is clear that fm(Conte(KY/X )m∩Um) is equal to

{w = (w1, . . . ,wn) ∈ An
m,ordt(wi) = a≤ ordt(w j) for 1≤ j ≤ r} (10.5)

and moreover, it is easy to check that the inverse image of (9.5) in Ym is contained
in Um. Note that given any ui,g ∈ k[t]/(tm+1) with ordt(g) ≥ a = ord(ui), there is
u j ∈ k[t]/(tm+1) such that uiu j = g; furthermore, this only depends on the class of
u j in k[t]/(tm+1−a), which is uniquely determined. Since e≥ a, we obtain assertion
i) in the theorem in this case. Moreover, it is clear that after identifying

Um ' (k[t]/(tm+1))⊕(n−r+1)× (k[t]/(tm−a+1))⊕(r−1)× k⊕(r−1)a,

the morphism φi gets identified to the projection on the product of the first two
components. Since (r−1)a = e, this shows that assertion ii) in the theorem holds in
this case.

The proof that we give for Theorem 9.3.14 follows [Loo02]. The key ingredient
is a functorial description for the fibers of certain projections πp,m : Xp→ Xm. This,
in turn, is a consequence of the following easy lemma.

Lemma 10.3.16. Let A and R be k-algebras. Given m, p∈Z≥0 with m≤ p≤ 2m+1,
consider the map induced by truncation

θp,m : Homk−alg(R,A[t]/(t p+1))→ Homk−alg(R,A[t]/(tm+1)).

For every morphism of k-algebras α : R→ A[t]/(tm+1), there is a natural action
of Derk(R, tm+1A[t]/t p+1A[t]) on θ−1

p,m(α) that makes this fiber a principal homoge-
neous space whenever it is nonempty.
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Proof. Since m≤ p≤ 2m+1, the A[t]/(t p+1)-module tm+1A[t]/t p+1A[t] is in fact an
A[t]/(tm+1)-module, hence an R-module via α . It is cleat that if α : R→ A[t]/(t p+1)
is a lifting of α , then any other k-linear lift α ′ of α can be uniquely written as
α ′ = α +D, for some k-linear map D : R→ tm+1A[t]

t p+1A[t] . Using again the hypothesis that
p≤ 2m+1, we see that for every u,v ∈ R, we have

α
′(u)α ′(v) = α(u)α(v)+α(u)D(v)+α(v)D(u).

In other words, α ′ is a k-algebra homomorphism if and only if D is a derivation.
This gives the assertion in the lemma.

Corollary 10.3.17. Let X be a scheme of finite type over k. For every m, p ∈ Z≥0
such that m ≤ p ≤ 2m + 1, if γp ∈ Xp and γm = πp,m(γp), then we have a scheme-
theoretic isomorphism

π
−1
p,m(γm)' Homk[t]/(tm+1)(γ

∗
mΩX ,(tm+1)/(t p+1)). (10.6)

Proof. Note that the right-hand side of (9.6) is a finite-dimensional k-vector space
V . As an algebraic variety, this is Spec(Sym(V ∗)), such that for a k-algebra A, its
A-valued points are in natural bijection to Homk(V ∗,A)'V ⊗k A.

In order to prove (9.6), we may replace X by an affine open neighborhood of
the image of γp in X and thus assume X = Spec(R). For every k-algebra A, the set
of A-valued points of π−1

p,m(γm) consists of the k-algebra homomorphisms δp : R→
A[t]/(t p+1) such that the following diagram is commutative:

R

γm

��

δp // A[t]/(t p+1)

q

��
k[t]/(tm+1)

j // A[t]/(tm+1),

where q and j are the natural projection, respectively, inclusion. It follows from the
lemma that the set of such δp is in natural bijection to

Derk(R, tm+1A[t]/t p+1A[t])' HomR(ΩR, tm+1A[t]/t p+1A[t])

' Homk[t]/(tm+1)(γ
∗
mΩR,(tm+1)/(t p+1)⊗k A)'V ⊗k A,

where the last isomorphism follows from the fact that γ∗mΩR is a finitely generated
k[t]/(tm+1)-module.

Remark 10.3.18. The isomorphism in Corollary 9.3.17 is natural in the pair (X ,γp)
in an obvious sense.

Remark 10.3.19. With the notation in Corollary 9.3.17, if p > m and γp−1 ∈ Xp−1 is
the image of γp, then the natural projection π−1

p,m(γm)→ π
−1
p−1,m(γm) corresponds via

the isomorphisms given using the corollary to the map
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Homk[t]/(tm+1)(γ
∗
mΩX ,(tm+1)/(t p+1))→ Homk[t]/(tm+1)(γ

∗
mΩX ,(tm+1)/(t p))

induced by the natural projection (tm+1)/(t p+1)→ (tm+1)/(t p).

Remark 10.3.20. If X is a smooth n-dimensional variety, the assertion in Corol-
lary 9.3.17 globalizes as follows. In this case, for every m and p with m ≤ p ≤
2m + 1, we have a geometric vector bundle Ep,m over Xm, whose geometric fiber
over γm ∈ Xm is

Homk[t]/(tm+1)(γ
∗
mΩX ,(tm+1)/(t p+1))'

(
(tm+1)/(t p+1)

)⊕n ' k(p−m)n.

By using Lemma 9.3.16 one can check that Ep,m has a natural action on Xp over Xm.
Furthermore, if h : Z→ Xm is a scheme morphism such that there is h̃ : Z→ Xp with
πp.m ◦ h̃ = h, then h̃ induces a morphism h∗(Ep,m)→ Z×Xm Xp over Z which is an
isomorphism.

Proof of Theorem 9.3.14. The proof of part i) is the most involved. We proceed in
several steps. Let Z = f (Supp(KY/X )), hence f is an isomorphism over Y rX . Since
Y is smooth, we may choose γ,γ ′ ∈ Y∞ that map to γm,γ ′m ∈ Ym, respectively. We
denote by γq and γ ′q the images of, respectively, γ and γ ′ in Yq, for every q.

Step 1. It is enough to show that there is δ ∈ Y∞ such that

1) πY
∞,m−e(δ ) = πY

∞,m−e(γ) and
2) f∞(δ ) = f∞(γ ′).

Indeed, since γm ∈ Conte(KY/X )m and M ≥ 2e, condition 1) implies that δ ∈
Conte(KY/X ). In particular, δ 6∈ f−1

∞ (Z∞). In this case, condition 2) together with
Remark 9.2.9 implies δ = γ ′, and using one more time condition 1) we conclude
that πY

m,m−e(γm) = πY
m,m−e(γ

′
m).

Step 2. In order to find δ ∈Y∞ that satisfies 1) and 2) above, it is enough to construct
δp ∈ Yp for every p≥ m such that the following hold:

a) δm = γm.
b) πY

p−1,p−e−1(δp−1) = πY
p,p−e−1(δp) for every p≥ m+1.

c) fp(δp) = fp(γ ′p) for every p≥ m.

Indeed, in this case, it follows from condition b) that there is a unique δ ∈ Y∞ such
that πY

∞,p−e(δ ) = πY
p,p−e(δp) for every p ≥ m. In particular, this condition for p =

m, together with a) imply πY
∞,m−e(δ ) = πY

∞,m−e(γ). On the other hand, condition c)
implies f∞(δ ) = f∞(γ ′).

Step 3. We construct the δp as in Step 2 by induction on p. For p = m, we take
δm = γm and condition c) is satisfied since by assumption fm(γm) = fm(γ ′m). Suppose
now that δp is constructed for some p≥m and let us construct δp+1. Let αp+1 ∈Yp+1
be an arbitrary lift of δp. Once we make this choice, the set of elements δp+1 ∈Yp+1
such that βp−e := πY

p,p−e(δp) = πY
p+1,p−e(δp+1) is in bijection, by Corollary 9.3.17,

with
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Homk[t]/(t p−e+1)(β
∗
p−eΩY ,(t p−e+1)/(t p+2))

(note that the corollary can be applied since p ≥ m ≥ 2e implies p + 1 ≤ 2(p−
e + 1)). We need to show that we can choose such δp+1 such that fp+1(δp+1) =
fp+1(γ ′p+1).

Step 4. Note now that the lift fp+1(αp+1) ∈ Xp+1 of fp−e(γ ′p−e) induces by Corol-
lary 9.3.17 a bijection between the set of such lifts and

Homk[t]/(t p−e+1)(β
∗
p−e( f ∗ΩX ),(t p−e+1)/(t p+2)).

Another such lift is provided by fp+1(γ ′p+1); if via the above bijection this lift cor-
responds to D, we see that in order to construct δp+1 as desired, we need to show
that D lies in the image of the canonical map

τp+1 : Homk[t]/(t p−e+1)(β
∗
p−eΩY ,(t p−e+1)/(t p+2))

→ Homk[t]/(t p−e+1)(β
∗
p−e( f ∗ΩX ),(t p−e+1)/(t p+2)).

Step 5. On the other hand, since by assumption fp+1(αp+1) and fp+1(γ ′p+1) map to
the same element in Xp, it follows that the composition D of D with the projection
(t p−e+1)/(t p+2)→ (t p−e+1)/(t p+1) lies in the image of

τp : Homk[t]/(t p−e+1)(β
∗
p−eΩY ,(t p−e+1)/(t p+1))

→ Homk[t]/(t p−e+1)(β
∗
p−e( f ∗ΩX ),(t p−e+1)/(t p+1)).

Therefore in order to complete the proof of the first part of the theorem, it is enough
to show that the natural morphism Coker(τp+1)→ Coker(τp) is an isomorphism.

Step 6. Since γm ∈ Conte(KY/X )m and m ≥ 2e, we have βp−e ∈ Conte(KY/X )p−e.
This implies using the structure theorem for modules over a principal ideal domain
that if we consider the morphism of free k[t]/(t p−e+1)-modules of rank n

β
∗
p−e( f ∗ΩX )→ β

∗
p−eΩY ,

then we can choose bases such that the morphism is represented by a diagonal ma-
trix with the entries (ta1 , . . . , tan), for some nonnegative integers a1, . . . ,an such that
∑

n
i=1 ai = e. We thus conclude that

Coker(τp+1)' Coker(τp)'⊕n
i=1(t

p−e+1)/(t p−e+1+ai)

(the key point is that p−e+1+ai ≤ p+1 for all i). This completes the proof of the
first part in the theorem.

In order to prove the second assertion in the theorem, we may cover Y by
affine open subsets U such that ΩY |U ' On

U . It is a consequence of part i) that
Um∩Conte(KY/X )m is a union of fibers of fm. By Lemma 9.3.10 it is thus enough to
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show that for every such U , the map induced by fm from Um∩Conte(KY/X )m to its
image is a piecewise trivial vibration with fiber Ae.

Following Remark 9.3.20, we have a geometric vector bundle E on Ym−e whose
geometric fiber over a jet α ∈ Ym−e is

Homk[t]/(tm−e+1)(α
∗
ΩY ,(tm+1)/(tm−e+1)).

By the assumption on U , there is a section σ : Um−e→Um of πU
m,m−e (we also see

that E is trivial on Um−e, but this will not be important). Similarly, we have a vector
bundle F on Xm−e whose geometric fiber over a jet β ∈ Xm−e is

Homk[t]/(tm−e+1)(β
∗
ΩX ,(tm+1)/(tm−e+1)).

Note that we have a morphism of algebraic varieties ψ : E → f ∗m−e(F) that
is linear on the fibers over Ym−e, induced by f ∗(ΩX ) → ΩY . We claim that if
α ∈Conte(KY/X )m−e, then the induced linear map between the corresponding fibers
E(α) → F( fm−e(α)) has a rank e kernel. Indeed, the map gets identified to the linear
map

Homk[t]/(tm−e+1)(α
∗
ΩY ,(tm+1)/(tm−e+1))

→ Homk[t]/(tm−e+1)(α
∗( f ∗ΩX ),(tm+1)/(tm−e+1)). (10.7)

By the structure theorem for modules over a principal ideal domain and the assump-
tion on α , we may choose bases such that the map α∗( f ∗(ΩX ))→ α∗(ΩY ) is given
by a diagonal matrix, with entries ta1 , . . . , tan , with ∑

n
i=1 ai = e. In this case, the

kernel of the map in (9.7) is given by

⊕n
i=1(t

m−ai+1)/(tm−e+1)'⊕kai ' ke.

Using the section σ , we define a morphism E|Um−e → Ym, which is an isomor-
phism onto Um. Moreover, using fm ◦σ , we define an isomorphism f ∗m−e(F)|Um−e →
Um−e×Xm−e Xm such that the diagram

E|Um−e

��

ψ|Um−e // f ∗m−e(F)|Um−e

��
Um

fm // Xm,

is commutative. It follows from the first assertion in the theorem that if γm,γ ′m ∈
Conte(KY/X )m lie in the same fiber of fm, then they lie in the same fiber of πY

m,m−e.
Let W = Um−e ∩Conte(KY/X )m−e. We this see that after restricting to W , the right
vertical map in the above diagram is injective, hence a piecewise isomorphism onto
its image by Lemma 9.3.11. As we have seen above, the morphism ψ|W is a mor-
phism of vector bundles, with kernel having constant rank e, hence it is piecewise
trivial onto its image, with fiber Ae. We conclude using Corollary 9.3.12 that the
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morphism E|W → Xm is piecewise trivial, onto its image, with fiber Ae. Since the
left vertical map in the above diagram is an isomorphism, it follows that the mor-
phism W → Xm is piecewise trivial onto its image, with fiber Ae. This completes the
proof of the theorem.

Corollary 10.3.21. Let F : Y→X be a proper, birational morphism between smooth
varieties and e, m two integers, with m≥ e. If S ⊆ Conte(KY/X )m is a constructible
subset and C = (πY

∞,m)−1(S), then f∞(C) is a cylinder in X∞ and codim( f∞(C)) =
codim(C)+e. Moreover, if S is a union of fibers of fm, then f∞(C)= (πX

∞,m)−1( fm(S)).

Proof. Let Z = f (Supp(KY/X )), with the reduced scheme structure. Since f−1(Z)
has the same support as KY/X , there is r ≥ 1 such that OY (−rKY/X ) is contained
in the ideal defining f−1(Z). Note that for every p > m, we may replace S by
(πY

p,m)−1(S) and therefore we may assume that m� 0. In particular, we may as-
sume that m≥ re. Furthermore, after possibly replacing m by m+e, we may assume
that m ≥ 2e and S = (πY

m,m−e)
−1(πY

m,m−e(S)). In this case S is a union of fibers of
fm. Indeed, if α ∈ S and β ∈ Ym are such that fm(α) = fm(β ), then it follows from
Theorem 9.3.14 that πY

m,m−e(α) = πY
m,m−e(β ). Therefore β ∈ S.

By Chevalley’s theorem, T := fm(S)⊆Xm is constructible. We claim that f∞(C)=
(πX

∞,m)−1(T ). The inclusion “⊆” is trivial. For the reverse one, suppose γ ∈ (πX
∞,m)−1(T ).

We claim that γ 6∈ Z∞. Indeed, otherwise γm := πX
∞,m(γ) ∈ Zm. By assumption,

we have γm = fm(δm) for some δm ∈ Conte(KY/X )m. Therefore δm ∈ f−1
m (Zm) =

( f−1(Z))m, which contradicts the fact that ord f−1(Z)(δm) ≤ ordrKY/X (δm) = re. We
conclude that γ 6∈ Z∞, hence by Proposition 9.2.8 there is δ ∈Y∞ such that f∞(δ ) = γ .
Since S is a union of fibers of fm and πX

∞,m(γ) ∈ fm(S), it follows that δ ∈C, hence
γ ∈ f∞(C). This concludes the proof of the equality f∞(C) = (πY

∞,m)−1(T ), which
implies, in particular, that f∞(C) is a cylinder. Furthermore, the assertion about codi-
mensions follows from the fact that by Theorem 9.3.14, S→ fm(S) is piecewise
trivial, with fiber Ae.

Remark 10.3.22. With the notation in the above proof, if the ground field is uncount-
able, then the equality f∞(C) = (ψX

∞,m)−1(T ) follows easily since f∞ is surjective by
Corollary 9.3.9.

Example 10.3.23. Let X = X(∆) be a smooth toric variety, where ∆ is a fan in NR,
for a lattice N ' Zn. We will use the description of the orbits in the arc space of X
from Example 9.2.16. Suppose that v ∈ |∆ | ∩N. We claim that the orbit T∞ · γv is a
cylinder in X∞. Indeed, let σ ∈ ∆ be a cone containing v. Since σ is a nonsingular
cone, if dim(σ) = r, then there is a basis e1, . . . ,en of N, such that e1, . . . ,er are the
primitive generators of the rays of σ . If e∗1, . . . ,e

∗
n is the dual basis of the dual lattice

and xi = χe∗i , then Uσ ' k[x1, . . . ,xr,x±1
r+1, . . . ,x

±1
n ]. If v = ∑

r
i=1 aivi, we see that

T∞ · γv = {γ ∈ (Uσ )∞ | ordt(γ∗(xi)) = ai for1≤ i≤ r}.

Therefore T∞ ·γv is a cylinder in X∞ of codimension ∑
r
i=1 ai. Recall that on X we have

the canonical divisor KX = −∑i Di, where the Di are the invariant prime divisors
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on X (for this and the other facts about toric varieties, we refer to [Ful93]). This
corresponds to a piecewise linear function φKX on |∆ | that takes value 1 on each
primitive ray generator. We thus see that

codim(T∞ · γv) = φKX (v).

Suppose now that f : X ′→ X is a birational toric morphism corresponding to the
identity on the lattice N. Given a lattice point v in the support of the fan ∆ ′ of X ′, the
morphism f∞ : X ′∞ → X∞ induces a bijection between the orbits O′ = T∞ · γv ⊆ X ′∞
and O = T∞ · γv ⊆ X∞. It follows from the previous discussion that

codim(O)− codim(O′) = φKX (v)−φKX ′ (v) =−φKX ′/X
(v),

where φKX ′/X
is the piecewise linear function on |∆ ′| corresponding to the divisor

KX ′/X = KX ′ − f ∗(KX ). Note that this is compatible with Corollary 9.3.21, since for
every γ ∈ O′, we have ordKX ′/X

(γ) = ordKX ′/X
(γv) =−φKX ′/X

(v).

Corollary 10.3.24. If f : Y → X is a proper, birational morphism between smooth
varieties, then for every cylinder C ⊆ Y∞, the closure C′ := f∞(C) is a cylinder.
Moreover, if C is irreducible, then

codim(C′) = codim(C)+min{m |C∩Contm(KY/X ) 6= /0}

and f∞(C) contains a nonempty open subcylinder of f∞(C).

Proof. By Proposition 9.3.2, C has finitely many irreducible components, say
C1, . . . ,Cr, and each of these is a cylinder. Since f∞(C) = ∪r

i=1 f∞(Ci), we see that it
is enough to prove the corollary when C is irreducible.

By Lemma 9.3.4, we have e := min{m |C∩Contm(KY/X ) 6= /0} < ∞. Note that
C0 := C∩Conte(KY/X ) is an open dense subcylinder of C, hence f∞(C) = f∞(C0).
On the other hand, f∞(C0) is a cylinder by Corollary 9.3.21 and its codimension is
codim(C)+ e. It follows from Proposition 9.3.21 that f∞(C0) is a cylinder, as well,
of the same codimension with f∞(C0). For the last assertion, note that if we write
C0 = (πY

∞,m)−1(S), with m� 0, then it follows from Corollary 9.3.21 that f∞(C0) =
(πX

∞,m)−1( fm(S)). Since fm(S) contains an open subset of fm(S), we deduce that
f∞(C) contains an open subcylinder of f∞(C).

Proposition 10.3.25. If f : Y → X is a proper, birational morphism between smooth
varieties, then for every irreducible closed cylinder C ⊆ X∞, there is a unique irre-
ducible closed cylinder CY ⊆ Y∞ such that C = f (CY ).

Proof. Note that T := f−1
∞ (C) is a closed cylinder in Y∞. Furthermore, if Z is a

proper closed subset of X such that f is an isomorphism over X rZ, then by Propo-
sition 9.2.8, f∞ is bijective over X∞ rZ∞. If T1, . . . ,Tr are the irreducible components
of T , then

C = C r Z∞ = f (T1)∪ . . .∪ f (Tr).
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Since C is irreducible, it follows that there is i such that f (Ti) = C. We may and do
take CY = Ti.

Suppose now that C′Y 6= CY is another irreducible closed cylinder in Y ∞ such that
f∞(C′Y ) = C. We assume, for example, that CY 6⊆ C′Y . Applying the last assertion
in Corollary 9.3.24 for CY rC′Y and C′Y , we deduce that there are nonempty open
subcylinders V1 and V2 in C that are contained in f∞(CY rC′Y ) and f∞(C′Y ), respec-
tively. Furthermore, we may assume that V1,V2 ⊆ X∞ r Z∞, hence V1∩V2 = /0. This
contradicts the fact that V1 and V2 are open in C and C is irreducible.

10.4 First applications: classical and stringy E-functions

Our first goal is to explain Kontsevich’s result saying that any two birational Calabi-
Yau varieties have the same Hodge numbers. More generally, any two K-equivalent
smooth projective varieties have the same Hodge numbers. The proof is an easy
consequence of the formalism of Hodge-Deligne polynomials and of the birational
transformation formula proved in the previous section. Later in this section we de-
fine following [Bat98] the stringy Hodge-Deligne polynomial of a klt pair (X ,D) in
terms of a log resolution. Another application of the birational transformation for-
mula gives the independence of the chosen log resolution. In this section we work
over the field C of complex numbers.

10.4.1 The Hodge-Deligne polynomial

We start with a review of the Hodge-Deligne polynomial. If X is a smooth, projec-
tive, complex algebraic variety, its Hodge polynomial is given by

E(X) = E(X ;u,v) :=
dim(X)

∑
p,q=0

(−1)p+qhp,q(X)upvq ∈ Z[u,v],

with hp,q(X)= hq(X ,Ω p
X ). It is a consequence of Hodge theory (see Corollary 2.1.15)

that dimC H i(Xan,C) = ∑p+q=i hp,q(X). This implies that E(X ; t, t) is the Poincaré
polynomial:

E(X ; t, t) =
2dim(X)

∑
i=0

(−1)i dimC H i(Xan,C)t i.

In particular, we have

E(X ;1,1) = χ
top(Xan) := ∑

i≥0
(−1)i dimC H i(Xan,C).
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The Hodge polynomial can be extended to arbitrary schemes of finite type over
C. More precisely, to every such scheme X one can associate a polynomial E(X) =
E(X ;u,v) ∈ Z[u,v] such that

1) E(X) = E(Y ) if X and Y are isomorphic.
2) E(X) = E(Xred).
3) If Y is a closed subscheme of X , then

E(X) = E(Y )+E(X rY ).

4) If X is a smooth, projective variety, then E(X) is the Hodge polynomial of X .

This invariant is called the Hodge-Deligne polynomial.

Remark 10.4.1. There is at most one invariant that satisfies conditions 1)-4) above.
Indeed, we argue by induction on n = dim(X). By 2), it is enough to only consider
reduced schemes. If n = 0, then X is a disjoint union of points, and 3) and 4) above
imply E(X) is the number of points of X . Suppose now that E(Y ;u,v) is determined
when dim(Y ) ≤ n− 1. If X1, . . . ,Xr are the irreducible components of X and Z =
X2 ∪ . . .∪Xr, then E(X) = E(Z)+ E(X r Z). Arguing by induction on the number
of irreducible components, we see that it is enough to consider the case when X is
irreducible. Furthermore, we may assume that X is affine: indeed, if U is an affine
open subset of X , then E(X) = E(U)+E(X rU) and dim(X rU) < n.

Suppose now that X is an irreducible affine variety. We can embed X as a
dense open subset of a projective variety W . Since E(X) = E(W )−E(W r X) and
dim(W r X) < n, it follows that it is enough to determine E(W ). Let us consider
now a projective morphism f : W ′ →W that gives a resolution of singularities of
W . Therefore W ′ is smooth and irreducible, hence E(W ′) is the Hodge polynomial
of W ′. On the other hand, if Y is a proper closed subset of W such that f is an
isomorphism over W rY , then

E(W ′)−E( f−1(Y )) = E( f−1(W rY )) = E(W rY ) = E(W )−E(Y ). (10.8)

Since dim(Y ) < n and dim( f−1(Y )) < n, it follows that E(W ) is determined by
(9.8).

Remark 10.4.2. It is clear that if X is a smooth n-dimensional projective variety, then
hp,q(X) = 0, unless p,q≤ n. In particular, E(X ;u,v) has degree ≤ n with respect to
each of u and v. Since hn,n(X) = hn(X ,ωX ) = h0(X ,OX ) = 1, it follows that the total
degree of the Hodge polynomial of X is 2n and the only term of total degree 2n is
(uv)n. By running the argument in Remark 9.4.1, we see that for every scheme X of
finite type over C, the polynomial E(X ;u,v) has degree d with respect to each of u
and v, where d = dim(X). Moreover, its total degree is 2d and the only term of total
degree 2d is a(X)(uv)d , where a(X) is the number of irreducible components of X
of maximal dimension.

Remark 10.4.3. It is a consequence of Hodge theory that if X is a smooth, projective
variety, then hp,q(X) = hq,p(X) for all p and q. The argument in Remark 9.4.1 then
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implies that for every reduced scheme X of finite type over C, the Hodge-Deligne
polynomial satisfies E(X ;u,v) = E(X ;v,u).

Remark 10.4.4. For every scheme X of finite type over C, we have E(X ;1,1) =
χ top(X). We have seen that this is a consequence of the Hodge decomposition when
X is smooth and projective. For the general case, a key point is that for algebraic va-
rieties, the Euler-Poincaré characteristic is equal to the Euler-Poincaré characteristic
with compact support:

χ
top(X) = χ

top
c (X) :=

2dim(X)

∑
i=0

(−1)i dimC H i
c(X

an,C)

(see [Ful93, p. 141-142]). If Y is a closed subset of X , then we have the long exact
sequence for cohomology with compact support

. . .→ H i
c(X rY,C)→ H i

c(X ,C)→ H i
c(Y,C)→ H i+1

c (X rY,C)→ . . . ,

hence we obtain χ
top
c (X) = χ

top
c (Y )+ χ

top
c (X rY ). Since we also have E(X ;1,1) =

E(Y ;1,1)+E(X rY ;1,1) and χ
top
c (−) agrees with E(−;1,1) on smooth projective

varieties, the argument in Remark 9.4.1 implies that the two invariants agree for all
X .

Remark 10.4.5. The existence of the Hodge-Deligne polynomial follows from the
existence of a mixed Hodge structure on the cohomology with compact support of a
scheme of finite type1 over C (see [Del74]). More precisely, for such X , the Q-vector
space H i

c(X ,Q) carries a finite increasing filtration W• and H i
c(X ,C) carries a finite

decreasing filtration F• such that for every i, the induced F-filtration on Wi/Wi−1
makes it a pure Hodge structure of weight i. In this case, if d = dim(X), one puts

E(X ;u,v) :=
d

∑
p,q=0

(
2d

∑
i=0

(−1)i dimC Grp
F GrW

p+qH i
c(X

an,C)

)
upvq.

Note that when X is a smooth projective variety, then GrW
m H i(Xan,C) = 0 unless m =

i and dimC Grp
F H i(Xan,C) = hp,i−p(X). Therefore in this case the above definition

recovers the Hodge polynomial of X . In order to check the additivity property, one
uses the fact that if Y is a closed subscheme of X and U = X rY , then we have a
long exact sequence

. . .→ H i
c(U

an,Q)→ H i
c(X

an,Q)→ H i
c(Y

an,Q)→ H i+1
c (Uan,Q)→ . . . .

Furthermore, this satisfies a suitable strictness property with respect to the two fil-
trations, which implies that for every p and q one gets a long exact sequence

. . .→Grp
F GrW

p+qH i
c(U

an;C)→Grp
F GrW

p+qH i
c(X

an;C)→Grp
F GrW

p+qH i
c(Y

an;C)→ . . . .

1 Note that the cohomology groups only depend on the reduced scheme structure on X .
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This immediately implies E(X) = E(Y )+E(U).
There is another approach to proving the existence of the Hodge-Deligne poly-

nomial. This makes use of a result of Bittner, whose proof relies on the weak factor-
ization theorem (see Remark 9.5.13 below). The advantage of that approach is that
it applies directly to any algebraically closed field of characteristic 0.

Proposition 10.4.6. The Hodge-Deligne polynomial is multiplicative in the follow-
ing sense: if X and Y are two schemes of finite type over C, then E(X ×Y ) =
E(X) ·E(Y ).

Proof. Indeed, arguing as in the proof of Remark 9.4.1, we see that it is enough to
check the assertion when X and Y are smooth projective varieties2. In this case, if
π1 : X ×Y → X and π2 : X ×Y → Y are the projections, then ΩX×Y ' π∗1 (ΩX )⊕
π∗2 (ΩY ). Therefore Ω

p
X×Y ' ⊕i+ j=p(π∗1 (Ω i

X )⊗π∗2 (Ω j
Y )) and the Künneth formula

implies
hp,q(X×Y ) = ∑

i+ j=p
hq(X×Y,π∗1 (Ω i

X )⊗π
∗
2 (Ω j

Y ))

= ∑
i+ j=p

∑
a+b=q

dimC Ha(X ,Ω i
X )⊗Hb(Y,Ω j

Y ) = ∑
i+ j=p

∑
a+b=q

hi,a(X) ·h j,b(Y ).

This gives E(X×Y ) = E(X) ·E(Y ).

Example 10.4.7. For every smooth projective curve C of genus g, the Hodge poly-
nomial of C is given by E(C)= 1+g(u+v)+uv. In particular, E(P1)= 1+uv. Since
the Hodge polynomial of a point is E(SpecC) = 1, we conclude that E(A1) = uv.
It follows from Remark 9.4.6 that E(An) = (uv)n, and using the decomposition
Pn = Pn−1tAn, we see by induction on n that

E(Pn) = 1+uv+ . . .+(uv)n.

Let X be a scheme of finite type over C and A a constructible subset of X . We
can write A = A1 t . . .tAr as a disjoint union of locally closed subsets. We define
E(A;u,v) := ∑

r
i=1 E(Ai;u,v). One can check that this is independent of the choice

of decomposition. Furthermore, if W1, . . . ,Wm are constructible subsets of X that are
mutually disjoint, then E(W1 ∪ . . .∪Wm) = ∑

m
i=1 E(Wi). We leave these assertions

as an exercise for the reader. We will prove a more general statement in Proposi-
tion 9.5.5 below.

Example 10.4.8. Suppose that f : X → Y is a morphism of schemes of finite type
over C inducing a map g : A→ B, where A ⊆ X and B ⊆ Y are constructible. If g
is piecewise trivial, with fiber F , then E(A) = E(B) ·E(F). Indeed, it follows from
definition that we can write B = B1t . . .tBr, with Bi locally closed in Y and g−1(Bi)
locally closed in X , such that g−1(Bi) ' Bi×F . In this case, using Remark 9.4.6,
we obtain

2 For a more formal argument, see Remark 9.5.10 below
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E(A) =
r

∑
i=1

E(g−1(Bi)) =
r

∑
i=1

E(Bi) ·E(F) = E(B) ·E(F).

Example 10.4.9. If f : V → X is a geometric vector bundle of rank r, then E(V ) =
E(X) · (uv)r. If P(V )→ X is the corresponding projective bundle, then E(P(V )) =
E(X) · (1+uv+ . . .+(uv)r−1).

10.4.2 Hodge numbers of K-equivalent varieties

Our goal in this section is to prove the following result of Kontsevich [Kon]. Recall
that a Calabi-Yau variety is a smooth projective variety X such that ωX ' OX (one
sometimes adds other conditions, such as simply-connectedness or the vanishing of
certain Hodge numbers, but we we will not need these conditions).

Theorem 10.4.10. If X and Y are birational complex Calabi-Yau varieties, then
hp,q(X) = hp,q(Y ) for every p and q.

In fact, the theorem has a more precise form, involving K-equivalent varieties.
Suppose that X and Y are two complete, birational Q-Gorenstein varieties over an
algebraically closed field k of characteristic 0. Since X and Y are birational, we
can find a smooth variety W , having proper, birational morphisms f : W → X and
g : W → Y . Indeed, by assumption, we have a rational map φ : X 99K Y and we
can find a birational morphism W ′ → X such that the composition W ′ → X 99K Y
is a morphism. It is then enough to take W to be a resolution of singularities of
W ′. Given such W , one says that X and Y are K-equivalent if KW/X = KW/Y . Note
that the definition is independent of the choice of W . Indeed, given another smooth
variety W1 with proper birational morphisms f1 : W1→ X and g1 : W1→ Y , we can
find a smooth variety Z, with proper, birational morphisms p : Z→W and p1 : Z→
W1 such that f ◦ p = f1 ◦ p1 and g ◦ p = g1 ◦ p1 (one can simply run the previous
argument for the birational map W 99KW1). By symmetry, it is enough to compare
the condition in terms of Z with the condition in terms of W . By Remark 3.1.8, we
have

KZ/X = KZ/W + p∗(KW/X ) and KZ/Y = KZ/W + p∗(KW/Y ).

We see that KZ/X = KZ/Y if and only if KW/X = KW/Y (note that if D1 and D2 are
divisors on W such that p∗(D1) = p∗(D2), then D1 = p∗(p∗(D1)) = p∗(p∗(D2)) =
D2).

Lemma 10.4.11. Suppose that X and Y are complete normal varieties, with canon-
ical singularities. If f : W → X and g : W → Y are proper, birational morphisms,
with W smooth, then in order for X and Y to be K-equivalent, it is enough to have
KW/X and KW/Y linearly equivalent.

Proof. Let L be the common field of rational functions of X , Y , and W . By as-
sumption, there is a nonzero φ ∈ L and a positive integer m such that divW (φ) =
m(KW/X −KW/Y ). Since KW/Y is g-exceptional, it follows that
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divY (φ) = g∗(divW (φ)) = g∗(mKW/X −mKW/Y ) = g∗(mKW/X ),

hence this is effective. Therefore φ ∈OY (Y ) = OW (W ), which implies that KW/X −
KW/Y is effective. Applying f∗, we obtain that KW/Y −KW/X is effective, and by
putting these together, we obtain KW/X = KW/Y .

Remark 10.4.12. In fact, with the notation in the lemma, one can easily check using
Corollary 1.6.36 that in order to obtain the K-equivalence of X and Y , it is enough
to assume that KW/X and KW/Y are numerically equivalent.

Corollary 10.4.13. Any two birational Calabi-Yau varieties are K-equivalent.

Proof. Let W be a smooth variety, having proper, birational morphisms f : W → X
and g : W → Y . In this case we have f ∗(ωX ) ' OW ' g∗(ωY ). Since OW (KW/X ) '
ωW ⊗ f ∗(ω−1

X ) and OW (KW/Y )' ωW ⊗g∗(ω−1
Y ), we conclude that KW/X and KW/Y

are linearly equivalent. Lemma 9.4.11 implies that X and Y are K-equivalent.

It follows from Corollary 9.4.13 that Theorem 9.4.10 is a special case of the
following more general version, also due to Kontsevich.

Theorem 10.4.14. If X and Y are smooth, complete, K-equivalent complex vari-
eties, then hp,q(X) = hp,q(Y ) for every p and q.

Before giving the proof of this theorem, we need some preparations, extending
the definition of the Hodge-Deligne polynomial to cylinders in the arc space of a
smooth variety. Let X be a smooth, n-dimensional, complex algebraic variety and
let C ⊆ X∞ be a cylinder. If C = π−1

∞,m(S), for a constructible subset S⊆ Xm, we put

E(C;u,v) = E(S;u,v) · (uv)−mn ∈ Z[u,v,u−1,v−1].

Note that this is independent of the representation of C: if p > m and we write
C = π−1

∞,p(T ), then T = π−1
p,m(S)→ S is piecewise trivial with fiber An, hence E(T ) =

E(S) · (uv)(p−m)n by Example 9.4.8. It is clear from definition that if S ⊆ X , then
E(π−1

∞ (S)) = E(S). In particular, E(X∞) = E(X).

Lemma 10.4.15. With the above notation, the following hold:

i) If C1, . . . ,Cr are mutually disjoint cylinders in X∞, then

E(C1∪ . . .∪Cr) =
r

∑
i=1

E(Ci).

ii) For every cylinder C, every monomial uiv j that appears in E(C) with nonzero
coefficient satisfies i, j ≤ n− codim(C).

Proof. For i), note that we can find m such that Ci = π−1
∞,m(Si) for 1 ≤ i ≤ r, hence

the assertion follows from the additivity of the Hodge-Deligne polynomial on the
constructible subsets of Xm. The upper bounds in ii) follow from the definition of
E(C) and Remark 9.4.2.
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The new phenomenon in the setting of cylinders is that we might have a cylinder
C and a countable family of pairwise disjoint subcylinders Cm ⊆ C such that C r⋃

m Cm is “small”, in a suitable sense. We want to assert that in this case E(C) =
∑m E(Cm). In order to make sense of this, we need to work in a completion of
Z[u±1,v±1]. The easiest approach is to consider

T̃ := Z[[u−1,v−1]][u,v].

We consider on T̃ the linear topology in which a basis of open neighbor-
hoods of 0 is given by the subgroups {(uv)NZ[u−1,v−1] | N ∈ Z}. Therefore a
sequence (am)m≥1 in T̃ has the property that limm→∞ am = a, for some a ∈ T̃ ,
if and only if for every M > 0, there is m0 such that for all m ≥ m0, we have
am−a = ∑p,q≤−M αp,qupvq. It is clear that T̃ is complete. Another fact that we will
use, which holds in every abelian group endowed with a linear topology, is that the
convergence of a series ∑m≥1 am and its sum, assuming convergence, are indepen-
dent of the order. We may thus consider series in T̃ indexed by arbitrary countable
sets.

Example 10.4.16. Suppose that (Cm)m≥1 is a sequence of cylinders in X∞. We have
seen in Lemma 9.4.15 that all monomials uiv j that appear in E(Cm) with nonzero
coefficient satisfy i, j ≤ n− codim(Cm) and (uv)n−codim(Cm) is one such mono-
mial. It this follows from definition that limm→∞ E(Cm) = 0 in T̃ if and only if
limm→∞ codim(Cm) = ∞.

Lemma 10.4.17. Let X be a smooth variety and C a cylinder in X∞. If (Cm)m≥1 is a
sequence of pairwise disjoint subcylinders of C, such that

lim
m→∞

codim(C r (C1∪ . . .∪Cm)) = ∞,

then E(C) = ∑m≥1 E(Cm).

Proof. Since the Ci are pairwise disjoint cylinders contained in C, it is clear that

E(C)−
m

∑
`=1

E(C`) = E(C r (C1∪ . . .∪Cm)).

It follows from our assumption and Example 9.4.16 that

lim
m→∞

(
E(C)−

m

∑
`=1

E(C`)

)
= 0,

which implies the assertion in the lemma.

Corollary 10.4.18. Let X be a smooth variety and C a cylinder in X∞. If (Cm)m≥1 is
a sequence of pairwise disjoint subcylinders of C, such that there is a proper closed
subscheme Y of X and a function ν : Z>0→ Z≥0 with limm→∞ ν(m) = ∞ such that
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C r (C1∪ . . .∪Cm)⊆ Cont≥ν(m)(Y ),

then E(C) = ∑m≥1 E(Cm).

Proof. The assertion follows by combining Lemma 9.4.17 and Proposition 9.3.3.

Corollary 10.4.19. Let f : W→X be a proper, birational morphism between smooth
varieties. If R⊆ X∞ is a cylinder and C = f−1

∞ (R), then

E(R) = ∑
e≥0

E(C∩Conte(KW/X )) · (uv)−e.

Proof. It follows from Corollary 9.3.21 that each f∞(Conte(KW/X )) is a cylinder
in X∞. Note also that these cylinders are pairwise disjoint, since f∞ is injective on
W∞ r (KW/X )∞ by Proposition 9.2.8. In order to apply Corollary 9.4.18, let Z =
f (Supp(KW/X )), with the reduced scheme structure. Since f−1(Z) and KW/X have
the same support, there is ` > 0 such that the `th power of the ideal defining f−1(Z)
is contained in OW (−KW/X ). We have

X∞ r
j⋃

e=0

f∞(Conte(KW/X ))⊆ Z∞∪ f∞(Cont≥( j+1)(KW/X ))⊆ Cont≥d( j+1)/`e(Z).

We can thus apply Corollary 9.4.18 to conclude that

E(R) = ∑
e≥0

E( f∞(Conte(KW/X ))∩R). (10.9)

On the other hand, we have by Corollary 9.3.21

E( f∞(Conte(KW/X ))∩R)= E( f∞(C∩Conte(KW/X ))= E(C∩Conte(KW/X ))·(uv)−e.
(10.10)

The assertion in the corollary follows by combining (9.9) and (9.10).

Kontsevich’s theorem is an easy consequence of Corollary 9.4.19.

Proof of Theorem 9.4.14. Let W be a smooth variety, with proper, birational mor-
phisms f : W → X and g : W → Y . By applying Corollary 9.4.19 with R = X∞, we
obtain

E(X) = ∑
e≥0

E(Conte(KW/X )) · (uv)−e. (10.11)

Applying the same argument for g : W → Y , we obtain

E(Y ) = ∑
e≥0

E(Conte(KW/Y )) · (uv)−e.

Since KW/X = KW/Y , by assumption, we conclude that X and Y have the same Hodge
polynomials.
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10.4.3 Stringy E-functions

In this section we introduce following [Bat98] a variant of the Hodge-Deligne poly-
nomial for certain singular varieties, that behaves well with respect to birational
morphisms. However, in general this is not a polynomial. We define it as a formal
power series, and then show that it is a rational function. In the process of doing this,
we define the (Hodge realizations of) motivic integerals of certain functions defined
on the space of arcs.

Let us first consider this in a simple case. For the various notions of singularities
of pairs that we use in this section, see Section 3.1. Suppose that Y is a variety that
has canonical singularities and is 1-Gorenstein, that is, KY is a Cartier divisor. If
f : X → Y is a resolution of singularities, then by assumption KX/Y is an effective
divisor. Motivated by formula (9.11) in the proof of Theorem 9.4.14, we put

Est(Y ;u,v) := ∑
e≥0

E(Conte(KX/Y );u,v) · (uv)−e ∈ T̃ . (10.12)

Since E(Conte(KX/Y );u,v) · (uv)−e has degree in each of u and v bounded above
by n− codim(Conte(KX/Y ))− e, it follows from Proposition 9.3.3 that Est(Y ;u,v)
is well-defined. Of course, one needs to show that the definition is independent of
resolution, but we will do this in a more general setting later.

We generalize this in two ways. First, it is convenient to drop the assumption that
X is 1-Gorenstein and only assume that KY is Q-Cartier. Furthermore, it is natural to
work with pairs (Y,D), where D is a Q-divisor on Y such that KY +D is Q-Cartier.
Instead of requiring canonical singularities, it will turn out to be enough to require
that the pair (Y,D) is klt. However, in this case we need to treat contact loci of
possibly non-effective, which are not cylinders. In order to treat these sets, we may
the following rather ad-hoc definition.

Definition 10.4.20. A subset C ⊆ X∞ is a limit of cylinders if there is a sequence
of pairwise disjoint cylinders (Cm)m≥1, a proper closed subscheme Y of X , and a
function ν : Z>0→ Z≥0 such that

i) C =
⊔

m≥1 Cm,
ii)
⋃

i≥m Ci ⊆ Cont≥ν(m)(Y ) for all m, and
iii) limm→∞ ν(m) = ∞.

Given C and a sequence of cylinders (Cm)m≥1 as above, we see that if ν(m) ≥ N
for all m ≥ m0, then Cm+1 ∪ . . .∪Cm+p ⊆ Cont≥N(Y ) for all m ≥ m0 and p ≥ 1.
Since limm→∞ ν(m) = ∞, it follows from Lemma 9.3.3 that the series ∑m≥1 E(Cm)
is Cauchy, hence convergent in T̃ . We denote its sum by E(C).

Remark 10.4.21. Note that if C⊆ X∞ and (Cm)m≥1 is a sequence of pairwise disjoint
cylinders whose union is equal to C, then for a proper closed subscheme Y of X
there is a function ν that satisfies ii) and iii) above if and only if for every N, the
contact locus Cont≥N(Y ) contains all but finitely many Cm.
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Lemma 10.4.22. If C ⊆ X∞ is a limit of cylinders, then E(C) is independent on the
choice of the sequence (Cm)m≥1.

Proof. Suppose that (C′m)m≥1 is another sequence of pairwise disjoint cylinders
such that C =

⊔
m≥1 C′m and that Z and µ : Z>0 → Z≥0 satisfy conditions ii) and

iii) in Definition 9.4.20. In this case, for every m we can apply Corollary 9.4.18
to the cylinder Cm and the sequence of subcylinders (Cm ∩C′i)i≥1. We thus obtain
E(Cm) = ∑i≥1 E(Cm∩C′i) and summing over m, we deduce

∑
m≥1

E(Cm) = ∑
i,m≥1

E(Cm∩C′i).

Reversing the roles of the two sequences, we also obtain

∑
i≥1

E(C′i) = ∑
i,m≥1

E(Cm∩C′i).

Therefore ∑m≥1 E(Cm) = ∑i≥1 E(C′i).

Remark 10.4.23. Of course, if C is a cylinder, then it is a limit of cylinders, and the
new definition of E(C) agrees with the old one.

In the setting that we are interested in, the divisors have rational coefficients,
hence we will need to work in a suitable extension of T̃ . Given a positive integer `,
let us consider the extension

T̃ (`) := Z[[u−1/`,v−1/`]][u1/`,v1/`]' T̃ [y]/(y`−uv)

of T̃ . Note that T̃ (`) and T̃ are abstractly isomorphic, and we put the topology on
T̃ (`) that makes them homeomorphic. With respect to this topology, T̃ is a closed
subspace of T̃ (`).

Suppose now that φ : X∞ → 1
` Z∪{∞} is a function such that φ−1(α) is a limit

of cylinders for every α ∈ 1
` Z. We attach to φ the following integral-like invariant3∫

X∞

(uv)φ := ∑
α∈ 1

` Z
E(φ−1(α)) · (uv)α ∈ T̃ (`),

if the series in convergent.

Example 10.4.24. Suppose that Y (1), . . . ,Y (r) are proper closed subschemes of X
and a1, . . . ,ar are rational numbers. Let ` be a positive integer such that `ai ∈ Z for
every i. We consider the function φ : X∞→ 1

` Z∪{∞} given by

φ(γ) =
r

∑
i=1

ai ·ordY (i)(γ)

3 This is the “Hodge realization” of the motivic integral that will be introduced in the next section.
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(with the convention that φ(γ) = ∞ if some ordY (i)(γ) = ∞). We claim that φ−1(q)
is a limit of cylinders for every q ∈ 1

` Z.
For every ν = (ν1, . . . ,νr) ∈ Zr

≥0, consider the cylinder Cν =
⋂r

i=1 Contνi(Y (i)).
With this notation, we have φ−1(q) =

⊔
a1ν1+...+arνr=q Cν . If Y is the closed sub-

scheme defined by the product of the ideals defining the Yi, then for every N, all but
finitely many of the Cν are contained in Cont≥N(Y ). This implies that φ−1(q) is a
limit of cylinders and

E(φ−1(q)) = ∑
a1ν1+...+arνr=q

E(Cν).

We conclude that ∫
X∞

(uv)φ = ∑
ν∈Zr

≥0

E(Cν) · (uv)∑i aiνi , (10.13)

in the sense that one side is convergent if and only if the other one is, and if this is
the case, then we have equality.

If we consider one more proper closed subscheme Y (r+1) and consider the func-
tion φ ′ = φ +0 ·ordY (r+1) , then following our convention φ = φ ′ on X∞ rY (r+1)

∞ , but

the two functions might differ on Y (r+1)
∞ . However, we have

∫
X∞

(uv)φ =
∫

X∞
(uv)φ ′ .

Indeed, this is a consequence of formula (9.13) and of the fact that for every ν , we
have

E(Cν) = ∑
m≥0

E(Cν ∩Contm(Y (r+1)))

by Corollary 9.4.18. Similarly, if Y ′ = ∑
r
i=1 bi · ordY (i) and φ ′ is the corresponding

function, then we may consider φ + φ ′, with the convention that φ(γ)+ φ ′(γ) = ∞

if either φ(γ) = ∞ or φ ′(γ) = ∞. It is not necessarily true that φ1 + φ2 is equal to
ψ := ∑i(ai +bi) ·ordYi everywhere (the two functions might disagree on Y (i)

∞ in case
ai =−bi). However, we have∫

X∞

(uv)φ+φ ′ =
∫

X∞

(uv)ψ .

Example 10.4.25. Let us specialize to the case of divisors. If X is a smooth variety
and F is a Q-divisor on X , we write F = ∑

r
i=1 aiFi, with the ai nonzero and the Fi

distinct prime divisors. We put ordF := ∑
r
i=1 ai · ordFi , as in Example 9.4.24. Note

that if we allow some coefficients to be zero, then we get a different function. How-
ever, as we have seen, the corresponding integrals are the same. Similarly, if F ′ is
another Q-divisor, then the functions ordF +ordF ′ and ordF+F ′ might not agree ev-
erywhere (in case some prime divisor appears with opposite coefficients in F and
F ′). However, the two functions have the same integral.

We now turn to the definition of the stringy E-function. Let (Y,D) be a pair with
Y normal and KY +D being Q-Cartier. For a resolution of singularities f : X→Y of
Y , we write KX +DX = f ∗(KY +D), as in Section 3.1.3. We fix a positive integer `
such that `(KY + D) is Cartier, hence `DX has integer coefficients. We consider the



286 10 Arc spaces

function ordDX : X∞→ 1
` Z∪{∞}. The stringy E-function of the pair (Y,D) is

Est(Y,D) = Est(Y,D;u1/`,v1/`) :=
∫

X∞

(uv)ordDX ∈ T̃ (`),

assuming that this is defined. If D = 0, then we simply write Est(Y ). Note that if Y
is 1-Gorenstein and has canonical singularities, we recover our previous definition
(note that when D = 0, we have DX =−KX/Y ).

By Example 9.4.24, ord−1
DX

(q) is a limit of cylinders for every q ∈ 1
` Z. More-

over, if we write DX = ∑
r
i=1 aiFi, with the Fi distinct prime divisors, and put

Cν =
⋂r

i=1 Contνi(Fi) for every ν ∈ Zr
≥0, then

Est(Y,D) = ∑
ν∈Zr

≥0

E(Cν) · (uv)∑i aiνi .

We first show that the definition is independent of the chosen resolution and that
it satisfies a “change of variable” formula under proper, birational morphisms.

Proposition 10.4.26. If (Y,D) is a pair as above, then the definition of Est(Y,D) (in
particular, the convergence of the corresponding series) is independent of the choice
of resolution of singularities.

Before proving this, we give the following “change of variable” formula.

Proposition 10.4.27. Let g : W → X be a proper birational morphism between two
smooth varieties. If Y (1), . . . ,Y (r) are proper closed subschemes of X and a1, . . . ,ar
are rational numbers, then for the functions φ = ∑

r
i=1 ai · ordY (i) and ψ = φ ◦ g∞−

ordKW/X (with the convention that ψ(γ) = ∞ if either φ(g∞(γ)) = ∞ or ordKW/X (γ) =
∞), the following holds: ∫

X∞

(uv)φ =
∫

W∞

(uv)ψ ,

in the sense that one integral exists if and only if the other one does, and if this is
the case, then they are equal.

Proof. For every ν = (ν1, . . . ,νr) ∈ Zr
≥0, we put Cν =

⋂r
i=1 Contνi(Yi). It follows

from Example 9.4.24 that φ−1(q) is a limit of cylinders and

E(φ−1(q)) = ∑
a1ν1+...+arνr=q

E(Cν).

By definition, we have ψ = −ordKW/X +∑
r
i=1 ai · ordg−1(Yi). Therefore ψ−1(q′) is a

limit of cylinders for every q′ and we have

E(ψ−1(q′)) = ∑
a1ν1+...+arνr−e=q′

E(g−1
∞ (Cν ∩Conte(KW/X )).

Furthermore, applying Corollary 9.4.19 to each Cν gives
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E(Cν) = ∑
e≥0

E(g−1
∞ (Cν))∩Conte(KW/X )) · (uv)−e.

By putting all these together, we obtain∫
X∞

(uv)φ = ∑
q

E(φ−1(q)) · (uv)q = ∑
ν∈Zr

≥0

E(Cν) · (uv)∑i aiνi

= ∑
ν∈Zr

≥0,e≥0
E(g−1

∞ (Cν)∩Conte(KW/X )) · (uv)−e+∑i aiνi =
∫

Y∞

(uv)ψ .

This completes the proof of the proposition.

Proof of Proposition 9.4.26. By dominating any two resolutions by a third one, we
see that it is enough to consider two proper birational morphisms f : X → Y and
g : W → X and show that ∫

X∞

(uv)ordDX =
∫

W∞

(uv)ordDW .

Note that DW = (DX )W = g∗(DX )−KW/X , hence using Proposition 9.4.27, we ob-
tain ∫

X∞

(uv)ordDX =
∫

W∞

(uv)
ordDX ◦g∞−ordKW/X =

∫
W∞

(uv)ordDW .

Once we know that the stringy E-function does not depend on the choice of
resolution, it follows from definition that it satisfies the following “birational trans-
formation formula”.

Proposition 10.4.28. Let (Y,D) a pair as above and g : Z→ Y a proper birational
morphism, with Z normal. If we write, as usual KZ +DZ = g∗(KY +D), then

Est(Z,DZ) = Est(Y,D),

in the sense that one side exists if and only if the other one does, and if this is the
case, then they are equal.

Proof. Let f : X→Z be a resolution of singularities. We use f to compute Est(Z,DZ ;u,v)
and g◦ f to compute E(Y,D;u,v). Since DX = (DZ)X , the equality in the proposition
is clear.

The following case is particularly important. We first recall that if Y is a Q-
Gorenstein variety, then a resolution of singularities f : X →Y is crepant if KX/Y =
0.

Corollary 10.4.29. If Y is a complete variety that has a crepant resolution f : X →
Y , with X projective, then Est(X) is equal to the Hodge polynomial of X.
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Proof. The assertion follows from the fact that if φ is the zero function on X∞, then∫
X∞

(uv)φ = E(X∞) = E(X).

Finally, we turn to the criterion for the existence of Est(Y,D) and to its explicit
computation in terms of a log resolution of (Y,D).

Proposition 10.4.30. If Y is an n-dimensional normal variety and D is a Q-divisor
on Y such that KY + D is Q-Cartier, then Est(Y,D) is defined if and only if (Y,D)
is klt. If this is the case and f : X → Y is a resolution of singularities, with DX =
∑

r
i=1 aiFi having simple normal crossings, then

Est(Y,D) = ∑
J⊆{1,...,r}

E(F◦J ) ·∏
j∈J

uv−1
(uv)1−ai −1

,

where for every J ⊆ {1, . . . ,r}, we put F◦J = (∩ j∈JFj)r
(
∪ j 6∈JFj

)
, with the conven-

tion that F◦/0 = X r (F1 ∪ . . .∪Fr) and the corresponding product is equal to 1. In
particular, we see that Est(Y,D) is a rational function.

Proof. Let f : X → Y be a resolution as in the proposition (for example, a log res-
olution of (Y,D)). For every ν = (ν1, . . . ,νr) ∈ Zr

≥0, we put Cν =
⋂r

i=1 Contνi(Fi).
The key computation is that of E(Cν).

Let us fix ν and put J = {i | νi ≥ 1}. It is clear that if γ ∈Cν , then π∞(γ) ∈ F◦J . In
particular, if F◦J = /0, then Cν = /0. Suppose now that F◦J 6= /0. Let m be an integer such
that m≥ νi for every i. In this case we have Cν = π−1

∞,m(S), where S =∩iContνi(Fi)m.
Claim. The projection S→ F◦J is locally trivial, with fiber

Amn−∑i νi × (A1 r{0})|J|.

Indeed, this assertion is local on X , hence we may assume that we have a system of
coordinates x1, . . . ,xn on X such that each Fi is defined by one of these coordinates.
We may assume that J = {1, . . . ,s}. In this case, by Corollary 9.1.13 and its proof,
we have an isomorphism over X

Jm(X)' X× (tk[t]/(tm+1))⊕n

that maps an m-jet γ with πm(γ) = p to

(p,γ∗(x1− x1(p)), . . . ,γ∗(xn− xn(p))).

Via this isomorphism S corresponds to

F◦J ×{(u1, . . . ,un) ∈ (tk[t]/(tm+1))⊕n | ord(ui) = νi for1≤ i≤ s}

' F◦J ×

(
|J|

∏
i=1

Am−νi

)
× (A1 r{0})|J|×Am(n−|J|).

This immediately implies the assertion in the claim.
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Using the claim, we obtain

E(Cν) = E(S) · (uv)−mn = E(F◦J )(uv−1)|J| · (uv)−∑i νi .

By definition, we have

E(Y,D) = ∑
ν∈Zr

≥0

E(Cν)(uv)∑i aiνi .

The sum is considered in T̃ (`), where ` is a positive integer such that `ai ∈ Z for all
i. The sum of the terms corresponding to those ν with {i | νi ≥ 1}= J is

SJ = E(F◦J )(uv−1)|J| · ∑
(νi)∈Z|J|≥1

(uv)∑i∈J(ai−1)νi .

It follows from the topology on T̃ (`) that all SJ are convergent if and only if ai < 1
for all i ∈ J. By definition, this means precisely that (Y,D) is klt.

Suppose now that ai < 1 for all i. We can compute SJ using the formula for the
geometric series, and we obtain

SJ = E(F◦J ) · (uv−1)|J| ·∏
i∈J

(uv)ai−1

1− (uv)ai−1 = E(F◦J ) ·∏
j∈J

uv−1
(uv)1−ai −1

.

Summing over all subsets J of {1, . . . ,r} gives the formula in the proposition.

Remark 10.4.31. With the notation in Proposition 9.4.30, suppose that ` is a positive
integer such that `(KY +D) is Cartier. If (Y,D) is kit, it follows from the formula for
Est(Y,D) that this rational function can be evaluated at (u1/`,v1/`) = (1,1). We then
obtain the stringy Euler-Poincaré characteristic

χst(Y,D) := Est(Y,D;1,1) = ∑
J⊆{1,...,r}

χ
top(F◦J ) ·∏

j∈J

1
1−ai

.

Example 10.4.32. Let us compute, following [Bat98], the stringy E-function of
toric pairs. For the basic facts on toric varieties, we refer to [Ful93]. Suppose that
Y = Y (∆) is a toric variety with fan ∆ in NR ' Rn. Let D1, . . . ,Dd be the prime
invariant divisors on Y and let D = ∑

d
i=1 aiDi be a toric divisor such that KY + D is

Q-Cartier. Recall that on a toric variety we may take KY = −∑
d
i=1 Di (see [Ful93,

Chapter 4.3]). Furthermore, KY + D is Q-Cartier if and only if there is a function
ψ = ψKY +∆ on |∆ | that is linear on each cone in ∆ and such that ψ(vi) = 1−ai for
1≤ i≤ r, where vi is the primitive generator of the ray corresponding to the divisor
Di (see[Ful93, Chapter 3.3]). Let f : X → Y be a toric resolution of singularities
corresponding to a fan ∆X refining ∆ (see [Ful93, Chapter 2.6]). If we write as usual
KX + DX = f ∗(KY + D), then ψKX +DX = ψ . Let F1, . . . ,Fr be the prime invariant
divisors on X , corresponding to the primitive ray generators w1, . . . ,wr. With this
notation, we have DX = ∑

r
j=1(1−ψ(w j))Fj. Note that since X is smooth, ∑

r
j=1 Fj
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has simple normal crossings. Therefore (Y,D) is klt if and only if ψ(w j) > 0 for all
j (this is equivalent to ψ > 0 on |∆X |r{0}= |∆ |r{0} and it is further equivalent
to ai < 1 for all i). Let us assume that this is indeed the case

Note that if J ⊆ {1, . . . ,r}, then F◦J is nonempty if and only if the rays in Σ

corresponding to the elements of J span a cone of ∆X . Furthermore, if this is the case
and σ is this cone, then F◦J ' (A1 r{0})dim(σ), hence E(F◦J ) = (uv−1)n−dim(σ). It
thus follows from Proposition 9.4.30 that

Est(Y,D) = (uv−1)n · ∑
σ∈∆X

∏
w j∈σ

1
(uv)ψ(w j)−1 .

We can interpret this expression directly on ∆ , as follows. The formula for the geo-
metric series implies

1
(uv)ψ(w j)−1 =

(uv)−ψ(w j)

1− (uv)−ψ(w) = ∑
i≥1

(uv)−ψ(iw j).

We thus obtain

Est(Y,D) = (uv−1)n · ∑
σ∈∆X

∑
w∈Int(σ)∩N

(uv)−ψ(w) = (uv−1)n · ∑
w∈|∆ |∩N

(uv)−ψ(w).

Remark 10.4.33. One can develop the framework of (Hodge realizations of) motivic
integrals in a more formal way, making it more similar to usual integration theories.
In particular, one can define measurable sets and measurable functions and treat
more general integrals, not just those of functions of the form ∑

r
i=1 ai · ordYi , as we

did in this section. This is done in detail in [Bat98]. A somewhat different approach,
using semialgebraic subsets in the space of arcs is pursued in [DL99]. On the other
hand, since for the applications that we have in mind we only need to deal with the
rather special subsets and functions that we considered, we preferred to take this
more hands-on approach.

10.4.4 Historical comments

This story started when Batyrev proved in [Bat99a] that K-equivalent smooth pro-
jective varieties have the same Betti numbers (while the paper only appeared in
1999, it had been available for a few years before that). Batyrev’s argument used p-
adic integration to show that general reductions to positive characteristic of the two
varieties have the same zeta function, hence the two varieties have the same Betti
numbers via the Weil conjectures. Motivated by this, Kontsevich introduced in his
talk [Kon] at Orsay in 1995 motivic integration in order to prove that K-equivalent
smooth projective varieties have in fact the same Hodge numbers. This appeared
in [Bat98], together with the definition of the stringy E-function, in the context
of Hodge realizations of motivic integrals that we discussed in this section. Mo-
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tivic integration was then extended to singular varieties [DL99], to formal schemes
[Seb04], and to an arithmetic setting [DL01]. For nice introductions to the circle of
ideas around geometric motivic integrations, see [BL04], [Cra04], and [Vey06]. On
the other hand, a version of Hodge invariants had been introduced in the context
of quotients of smooth varieties by finite groups by Batyrev and Dais [BD96]. This
was the orbifold Hodge polynomial Eorb(X ;u,v) ∈ Z[u1/`,v1/`], inspired by string
theory and whose definition involved in an essential way the group action. The fact
that the orbifold Hodge polynomial agrees with the stringy E-function in the case of
orbifolds is one aspect of the McKay correspondence, proved for global quotients in
[Bat99b] and [DL02] in the case of quotients An/G, of an affine space by a linear ac-
tion of a finite group, and in the general case of varieties with quotient singularities
in [Yas04]. An interesting aspect is that while motivic integration became an impor-
tant construction, with many applications, in the end it was not really necessary for
the proof of Kontsevich’s theorem. It was independently observed by Ito [Ito03] and
[Wan98] that once we know that two K-equivalent varieties have general reductions
to positive characteristic having the same zeta functions, then standard arguments in
p-adic Hodge theory imply that the two varieties have the same Hodge numbers.

10.5 Introduction to motivic integration

As the reader has probably noticed, the constructions in the previous section have
only made use of the additivity and multiplicativity of the Hodge-Deligne polyno-
mial. One can thus redo those arguments and constructions by working with the uni-
versal invariant that has these two properties, namely the class in the Grothendieck
ring of varieties. In this section we introduce this formalism and explain the changes
that have to be made in this setting. As an application of this formalism, we intro-
duce an important invariant of singularities of hypersurfaces, Denef and Loeser’s
motivic zeta function.

10.5.1 The Grothendieck group of varieties

We now introduce the ring in which the universal Euler-Poincaré characteristic lives,
the Grothendieck group of varieties. The definition can be given in a very general
setting. Suppose that S is a Noetherian scheme. The Grothendieck group K0(Var/S)
is the quotient of the free abelian group on the set of symbols [X/S], where X is a
scheme of finite type over S, by the subgroup generated by the following relations:

i) [X/S] = [Y/S] if X and Y are isomorphic as schemes over S.
ii) [X/S] = [Xred/S] for every X .

iii) If Z is a closed subscheme of X and U = X r Z, then

[X/S] = [Z/S]+ [U/S].
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Due to property ii) above, if Z is a locally closed subset of X , the element [Z] ∈
K0(Var/S) is well-defined, independent on the scheme structure we consider on Z.
We also note that relation iii) above for Z = X implies [ /0] = 0. When S is understood
from the context, then we simply write [X ] instead of [X/S] and when S = Spec(R),
for a ring R, we write K0(Var/R) and [X/R] for the corresponding objects.

In fact, K0(Var/S) becomes a commutative ring, with multiplication given by

[X ] · [Y ] = [X×S Y ].

Note that the unit element is [S].
If f : T → S is a morphism of Noetherian schemes, then we have an induced

morphism of Grothendieck rings

f ∗ : K0(Var/S)→ K0(Var/T ), [X/S]→ [X×S T/T ].

If f is of finite type, then we also have a group homomorphism

f∗ : K0(Var/T )→ K0(Var/S), [Y/T ]→ [Y/S].

Note that these maps satisfy the projection formula

f∗( f ∗(α) ·β ) = α · f∗(β ) for every α ∈ K0(Var/S),β ∈ K0(Var/T ).

Indeed, it is enough to check this when α = [X/S] and β = [Y/T ], when the assertion
follows from the following isomorphism of schemes over S

Y ×T (T ×S X)' Y ×S X .

The class of the affine line A1
S in K0(Var/S) is denoted by L (or LS if S is not

understood from the context). Therefore we have [An
S] = Ln. Moreover, the decom-

position Pn
S = Pn−1

S tAn
S implies by induction on n that

[Pn
S/S] =

n

∑
i=0

Li.

Let S be a Noetherian scheme and A an abelian group. An Euler-Poincaré char-
acteristic with values in A on schemes over S is a map α that associates to a scheme
X of finite type over S an element α(X) ∈ A such that

i) α(X) = α(Y ) if X and Y are isomorphic as schemes over S.
ii) α(X) = α(Xred).

iii) If Y is a closed subscheme of X , then α(X) = α(Y )+α(X rY ).

In other words, α induces a group homomorphism K0(Var/S)→ A. In what follows
we will identify α with this homomorphism. Note that the map X/S→ [X/S] ∈
K0(Var/S) is the universal Euler-Poincaré characteristic. If A is a ring and α is an
Euler-Poincaré characteristic with values in A, then we say that α is multiplicative
if the induced map K0(Var/S)→ A is a ring homomorphism.
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Example 10.5.1. If S = Spec(k) is a finite field, then for every finite field exten-
sion K/k, we obtain a multiplicative Euler-Poincaré characteristic K0(Var/S)→ Z
mapping [X ] to the number of elements of X(K).

Example 10.5.2. If S = Spec(C), then the topological Euler-Poincaré characteristic
χ top(X) gives a multiplicative Euler-Poincaré characteristic on K0(Var/C). Indeed,
we have seen in Remark 9.4.4 that this gives an Euler-Poincaré characteristic and
the fact that it is multiplicative is an immediate consequence of Künneth’s formula.

Example 10.5.3. As we have discussed in the previous section, the above example
can be refined by the Hodge-Deligne polynomial. More precisely, still assuming that
S = Spec(C), the Hodge-Deligne polynomial gives a multiplicative Euler-Poincaré
characteristic K0(Var/C)→ Z[u,v].

Our next goal is to show that given a constructible subset in a scheme of finite
type over S, we can define its class in K0(Var/S). In order to do this, we will need the
following lemma, which extends condition iii) in the definition of the Grothendieck
group of varieties.

Proposition 10.5.4. Suppose that S is a Noetherian scheme and X is a scheme of
finite type over S. If we have a decomposition X = Y1 t . . .tYr, where all Yi are
locally closed subsets of X, then [X ] = [Y1]+ . . .+[Yr] in K0(Var/S).

Proof. We argue by Noetherian induction, hence we may assume that this property
holds for all proper closed subschemes of X . Let Z be an irreducible component
of X and ηZ its generic point. If i is such that ηZ ∈ Yi, then Z ⊆ Yi, and since Yi is
open in Yi, it follows that there is a nonempty open subset U of X contained in Yi
(for example, we may take U to consist of the points in Yi∩Z that do not lie on any
irreducible component of X different from Z). By definition, we have

[Yi] = [U ]+ [Yi rU ] and [X ] = [U ]+ [X rU ]. (10.14)

Applying the induction hypothesis for X rU and the decomposition X rU = (Yi r
U)t

⊔
j 6=i Yj, we have

[X rU ] = [Yi rU ]+ ∑
j 6=i

[Yj]. (10.15)

By combining (9.14) and (9.15), we get the formula in the proposition.

Suppose now that X is a scheme of finite type over a Noetherian scheme S and W
is a constructible subset of X . Consider a disjoint decomposition W = W1t . . .tWr,
with each Wi locally closed in X . We put [W ] := ∑

r
i=1[Wi] ∈ K0(Var/S).

Proposition 10.5.5. With the above notation, the following hold:

i) The definition of [W ], for W constructible in X, is independent of the disjoint
decomposition.

ii) If W1, . . . ,Ws are pairwise disjoint constructible subsets of X, and W =
⋃r

i=1 Wi,
then [W ] = ∑

s
i=1[Wi].
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Proof. Suppose that we have two decompositions into locally closed subsets

W = W1t . . .tWr and W = W ′t . . .tW ′s .

Let us also consider the decomposition W =
⊔

i, j(Wi ∩W ′j). It follows from Propo-
sition 9.5.4 that [Wi] = ∑

s
j=1[Wi∩W ′j ] for every i and [W ′j ] = ∑

r
i=1[Wi∩W ′j ] for every

j. Therefore

r

∑
i=1

[Wi] =
r

∑
i=1

s

∑
j=1

[Wi∩W ′j ] =
s

∑
j=1

r

∑
i=1

[Wi∩W ′j ] =
s

∑
j=1

[W ′j ].

This proves i). The assertion in ii) follows from i): if we consider disjoint unions
Wi = Wi,1 t . . .tWi,mi for every i, with each Wi, j locally closed in X , then W =⊔

i, j Wi, j, and
[W ] = ∑

i, j
[Wi, j] = ∑

i
[Wi].

Remark 10.5.6. It follows from Proposition 9.5.5 that if α : K0(Var/S)→ A is an
Euler-Poincaré characteristic and W ⊆ X is a constructible subset of a scheme X of
finite type over S, then we can define α(W ) by writing W = tr

i=1Wi, with Wi locally
closed subsets of X and putting α(W ) = ∑

r
i=1 α(Wi). It is clear that the resulting

map is additive on disjoint constructible subsets of X .

Let F be a scheme of finite type over S. We define piecewise trivial fibrations
in this more general setting in the same way as before. More precisely, given a
morphism f : X → Y of schemes of finite type over S and constructible subsets A⊆
X and B⊆ Y such that f induces a map g : A→ B, we say that g is piecewise trivial
with fiber F if we can write B =

⋃
i Bi, with Bi locally closed in Y and g−1(Bi) locally

closed in X for every i, such that g−1(Bi)red is isomorphic over Bi to (Bi×F)red.

Corollary 10.5.7. If f : X → Y is a morphism of schemes of finite type over S in-
ducing a piecewise trivial map g : A→ B with fiber F, where A⊆ X and B⊆ Y are
constructible, then [A/S] = [B/S] · [F/S] in K0(Var/S).

Proof. It is enough to consider a cover as in the definition of piecewise trivial fibra-
tions consisting of pairwise disjoint subsets.

Example 10.5.8. If E → X is a rank r vector bundle, it follows that [E] = [X ] ·Lr.
Similarly, if P(E)→ X is the corresponding projectivized vector bundle, we have
[P(E)] = [X ] · (1+L+ . . .+Lr−1).

We end this subsection with a discussion of the Grothendieck group K0(Var/S),
when S is a scheme of finite type over an algebraically closed field k of characteristic
0. We keep this assumption for the rest of this subsection.

Proposition 10.5.9. For every S, the group K0(Var/S) is generated by the classes
[X ], with X a smooth variety, with a projective morphism X → S.
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Proof. The argument follows the one in Remark 9.4.1, hence we omit it.

Remark 10.5.10. Let α : K0(Var/S)→ A be an Euler-Poincaré characteristic, where
A is a ring. It follows from Proposition 9.5.9 that in order to check that α is mul-
tiplicative, it is enough to check that α(X ×S Y ) = α(X) ·α(Y ), whenever X and Y
are smooth varieties, with projective morphisms to S.

While Proposition 9.5.9 gives generators for K0(Var/S), it is natural to ask about
the relations between these generators. This is answered by the following result of
Bittner [Bit04] which says that the relations are generated by those corresponding
to smooth blow-ups.

Theorem 10.5.11. For every S, the kernel of the natural morphism from the free
abelian group on isomorphism classes of smooth varieties, projective over S, to
K0(Var/S) is generated by the following elements:

i) [ /0]
ii) ([BlY X ]− [D])− ([X ]− [Y ]),

where X and Y are varieties as above, with Y a subvariety of X, and where BlY X is
the blow-up of X along Y , with exceptional divisor D.

We do not give a proof of this theorem, since we will not use it. We only mention
that the main ingredient in its proof is the following weak factorization theorem of
Abramovich, Karu, Matsuki, and Włodarczyk.

Theorem 10.5.12. ([AKMW02]) If S is a scheme of finite type over an algebraically
closed field field of characteristic zero, then every birational map between two
smooth varieties, projective over S, can be realized as a composition of blow-ups
and blow-downs of smooth irreducible centers on smooth projective varieties.

Remark 10.5.13. The presentation of the Grothendieck group in Theorem 9.5.11
gives an easy way to construct Euler-Poincaré characteristics. Note that the Hodge
polynomial of a smooth projective variety makes sense over any field k. If k is al-
gebraically closed, of characteristic zero, this can be extended to an Euler-Poincaré
characteristic, the Hodge-Deligne polynomial E : K0(Var/k)→ Z[u,v]. By Theo-
rem 9.5.11, in order to prove this it is enough to show that if X is a smooth projective
variety and Y is a smooth subvariety, then E(X)−E(Y ) = E(BlY X)−E(D). This
is elementary to check. Since the Hodge-Deligne polynomial is available over any
algebraically closed field of characteristic 0, we see that all results in Section 9.4
extend to this setting.

We now explain how Bittner’s result implies a theorem of Larsen and Lunts,
relating the Grothendieck group of varieties with stable birational geometry. We
keep the assumption that k is an algebraically closed field of characteristic zero.
Recall that two varieties X and Y are stably birational if X ×Pm and Y ×Pn are
birational for some m,n≥ 0.
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Let SB/k denote the set of stably birational equivalence classes of varieties over
k. We denote the class of X in SB/k by 〈X〉. Note that SB/k is a commutative semi-
group, with multiplication induced by 〈X〉 · 〈Y 〉 = 〈X ×Y 〉. Of course, the identity
element is Speck. Let us consider the semigroup algebra Z[SB/k] associated to the
semigroup SB/k.

Proposition 10.5.14. There is a unique ring homomorphism Φ : K0(Var/k)→Z[SB/k]
such that Φ([X ]) = 〈X〉 for every smooth projective variety X over k.

Proof. Uniqueness is a consequence of Proposition 9.5.9. In order to prove the exis-
tence of a group homomorphism Φ as in the proposition, we apply Theorem 9.5.11.
This shows that it is enough to check that whenever X and Y are smooth projective
varieties, with Y a closed subvariety of X , we have

〈BlY (X)〉−〈E〉= 〈X〉−〈Y 〉,

where BlY X is the blow-up of X along Y , and E is the exceptional divisor. In fact,
we have 〈X〉= 〈BlY (X)〉 since X and BlY (X) are birational, and 〈Y 〉= 〈E〉, since E
is birational to Y ×Pr−1, where r = codimX (Y ).

In order to check that Φ is a ring homomorphism, it is enough to show that
Φ(uv) = Φ(u)Φ(v) when u and v vary over a system of group generators of
K0(Var/k). By Proposition 9.5.9, we may take this system to consist of classes of
smooth projective varieties, in which case the assertion is clear.

Since 〈P1〉 = 〈Speck〉, it follows that Φ(L) = 0, hence Φ induces a ring homo-
morphism

Φ : K0(Var/k)/(L)→ Z[SB/k].

Theorem 10.5.15. ([LL03]) The above ring homomorphism Φ is an isomorphism.

Proof. The key point is to show that we can define a map

SB/k→ K0(Var/k)/(L)

such that whenever X is a smooth projective variety, 〈X〉 is mapped to [X ]mod(L).
Note first that by Hironaka’s theorem on resolution of singularities, for every variety
Y over k, there is a smooth projective variety X that is birational to Y . In particu-
lar, 〈X〉 = 〈Y 〉. We claim that if X1 and X2 are stably birational smooth projective
varieties, then [X ]− [Y ] ∈ (L).

Suppose that X1×Pm and X2×Pn are birational. It follows from Theorem 9.5.12
that X1×Pm and X2×Pn are connected by a chain of blow-ups and blow-downs
with smooth centers. Note that

[X1]− [X1×Pm] =−[X1] ·L(1+L+ . . .+Lm−1) ∈ (L).

Similarly, we have [X2]− [X2×Pn] ∈ (L). Therefore in order to prove our claim, it
is enough to show the following: if Z and W are smooth projective varieties, with Z
a closed subvariety of W , then [BlZW ]− [W ]∈ (L), where BlZ(W ) is the blow-up of
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W along Z. Let r = codimW (Z), and let E be the exceptional divisor, so E ' PZ(N),
where N is the normal bundle of Z in W . Our claim follows from

[BlZ(W )]− [W ] = [E]− [Z] = [Z] · [Pr−1]− [Z] = [Z] ·L(1+L+ . . .+Lr−2).

We thus get a group homomorphism Ψ : Z[SB/k]→ K0(Var/k)/(L) such that
Ψ(〈X〉) = [X ]mod(L) for every smooth projective variety X . It is clear that Φ and
Ψ are inverse maps, which proves the theorem.

Remark 10.5.16. It was shown in [Poo02] that for every field k of characteristic
0, the Grothendieck group K0(Var/k) is not a domain. The idea of the proof is
the following. One shows that there are abelian varieties A and B over k such that
A×A' B×B, but such that A×Spec(k) Spec(k) 6' B×Spec(k) Spec(k). Since

([A/k]+ [B/k]) · ([A/k]− [B/k]) = [A/k]2− [B/k]2 = 0 in K0(Var/k),

it is enough to show that both [A/k]− [B/k] and [A/k] + [B/k] are nonzero in
K0(Var/k).

One now observes that if AB/k is the semigroup of isomorphism classes of
abelian varieties over k, then there is a semigroup homomorphism τ : SB/k→AB/k
that for an abelian variety V , maps 〈V 〉 to the isomorphism class of V . Recall that
for a smooth projective variety X over k, there is a morphism f : X → Alb(X) to
an abelian variety (the Albanese variety of X) that has the following universal prop-
erty: for every morphism g : X → V to an abelian variety, there is a unique mor-
phism h : Alb(X)→ V such that h◦ f = g. We simply define the value of τ on 〈X〉
to be the isomorphism class of Alb(X). In order to show that this is well-defined,
one proceeds as in the proof of Theorem 9.5.15, and one reduces to showing that
Alb(X ×Pn) ' Alb(X) and Alb(BlY (X)) ' Alb(X) whenever X is a smooth pro-
jective variety and Y is a smooth closed subvariety. Both assertions follow from the
universal property of the Albanese variety and the fact that any rational map from
a projective space to an abelian variety is constant. Furthermore, one sees from the
universal property that Alb(X×Y )'Alb(X)×Alb(Y ), hence τ is a semigroup ho-
momorphism.

We thus have a sequence of ring homomorphisms

K0(Var/k)→ K0(Var/k) Φ→ Z[SB/k]→ Z[AV/k],

where the first one is the pull-back via Spec(k) → Spec(k) and the third one is
induced by τ . Since the images of both [A/k]− [B/k] and [A/k] + [B/k] by the
composition of the above homomorphisms are clearly nonzero, we conclude that
K0(Var/k) is not a domain.

We note that it is an open question whether the localization K0(Var/k)[L−1] is a
domain.

Remark 10.5.17. Recall that two varieties X and Y over k are piecewise isomorphic
if there are decompositions X =tr

i=1Xi and Y =tr
i=1Yi, with Xi and Yi locally closed
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in X and Y , respectively, such that Xi ' Yi for every i. It follows from Lemma 9.5.4
that if X and Y are piecewise isomorphic, then [X ] = [Y ] in K0(Var/k). It is an open
question (raised by Larsen and Lunts) whether the converse holds. For some results
in small dimension, see [LS10].

10.5.2 Motivic integration

We now explain how the results in Sections 9.4.2 and 9.4.3 can be lifted to the
level of the Grothendieck ring of varieties. The idea is simply to replace the Hodge-
Deligne polynomial by the universal Euler-Poincaré characteristic. In order to do
this, there is one more step needed: as in the case of the Hodge-Deligne polynomial,
we need to suitably complete the ring where our Euler-Poincaré characteristic takes
values.

Let k be an algebraically closed field of characteristic 0. We consider the local-
ization of K0(Var/k) obtained by inverting L:

Mk := K0(Var/k)[L−1].

For every m ∈ Z, let FmMk be the subgroup of Mk generated by

{[Y ] ·L−N | Y scheme of finite type overk, dim(Y )−N ≤−m}.

Note that Fm+1Mk ⊆ FmMk for every m and we consider on Mk the linear
topology induced by this family of subgroups. It is clear from definition that
Fm1Mk ·Fm2Mk ⊆ Fm1+m2Mk. It is well-known and easy to check that in this case
Mk is a topological ring. Therefore its completion

M̂k := lim←−
m

Mk/FmMk

is a ring, called the completed Grothendieck ring of varieties over k, and the canon-
ical morphism ψ : Mk→ M̂k is a ring homomorphism.

Remark 10.5.18. It is not known whether ψ is injective. This leads to several delicate
issues, coming from the fact that by going to the completed Grothendieck ring, we
might lose some information.

Remark 10.5.19. The Euler-Poincaré characteristic E : K0(Var/k)→ Z[u,v] given
by the Hodge-Deligne polynomial induces a ring homomorphism Mk→Z[u±1,v±1]
(recall that E(L) = uv). It follows from the universal property of the completion that
this induces a continuous ring homomorphism

Ê : M̂k→ Z[[u−1,v−1]][u,v].

We now define the motivic measure of cylinders in the space of arcs of a smooth
variety, and more generally, the measure of a limit of cylinders. Let X be a smooth
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n-dimensional variety over k. If C ⊆ X∞ is a cylinder, we write C = π−1
∞,m(S) and put

[C] := [S] ·L−mn ∈Mk.

Since each projection map Xp → Xm, with p > m, is locally trivial, with fiber
A(p−m)n, we see that [C] is well-defined. It follows from Proposition 9.5.5 that if
C1, . . . ,Cr are pairwise disjoint cylinders in X∞, then

[C1∪ . . .∪Cr] =
r

∑
i=1

[Ci].

With a slight abuse of notation, we denote by [C] also the image of this element in
M̂k. This should not cause any confusion, since we will always specify the ring we
consider. We omit the proofs of the following results, which follow verbatim the
proofs of Corollaries 9.4.18 and 9.4.19.

Proposition 10.5.20. Let X be a smooth variety and C a cylinder in X∞. If (Cm)m≥1
is a sequence of pairwise disjoint subcylinders of C, such that there is a proper
closed subscheme Y of X and a function ν : Z>0 → Z≥0 with limm→∞ ν(m) = ∞

such that
C r (C1∪ . . .∪Cm)⊆ Cont≥ν(m)(Y ),

then [C] = ∑m≥1[Cm] in M̂k.

Proposition 10.5.21. Let f : W → X be a proper, birational morphism between
smooth varieties. If R⊆ X∞ is a cylinder and C = f−1

∞ (R), then

[R] = ∑
e≥0

[C∩Conte(KW/X )] ·L−e in M̂k.

As a corollary, one obtains the following version of Kontsevich’s theorem.

Corollary 10.5.22. If X and Y are smooth, projective varieties that are K-equivalent,
then [X ] and [Y ] have the same image in M̂k.

Remark 10.5.23. Since the kernel of the composition K0(Var/k)→Mk→ M̂k is not
understood, we can not conclude from Corollary 9.5.22 that [X ] = [Y ] in K0(Var/k).
In fact, it is an open question whether this holds.

We can proceed as in Section 9.4.3 in order to define a motivic version of the
stringy E-function of a pair. We omit the proofs, which follow verbatim the ones for
the Hodge realizations. If X is a smooth variety and C ⊆ X∞ is a limit of cylinders
and (Cm)m≥1 is a sequence of cylinders as in Definition 9.4.20, then we put

[C] := ∑
m≥1

[Cm] ∈ M̂k.

We see as in the case of E(C) that [C] is well-defined and is independent of the
sequence (Cm)m≥1.
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For every positive integer `, we consider the ring

M̂k[L1/`]' M̂k[y]/(y`−L).

Note that M̂k[L1/`] is isomorphic as a group with ` copies on M̂k. This isomorphism
induces a topology on M̂k[L1/`] which makes it a topological ring. Note that the
inclusion M̂k ↪→ M̂k[L1/`] is a homeomorphism onto image.

Suppose now that φ : X∞ → 1
` Z∪{∞} is a function such that φ−1(α) is a limit

of cylinders for every α ∈ 1
` Z. The motivic integral

∫
X∞

Lφ is defined by∫
X∞

Lφ = ∑
α∈ 1

` Z
[φ−1(α)] ·Lα ∈ M̂k[L1/`],

if the series in convergent.
The following analogue of Proposition 9.4.27 gives a change of variable formula

for motivic integrals.

Proposition 10.5.24. Let g : W → X be a proper birational morphism between two
smooth varieties. If Y (1), . . . ,Y (r) are proper closed subschemes of X and a1, . . . ,ar
are rational numbers, then for the functions φ = ∑

r
i=1 ai · ordY (i) and ψ = φ ◦ g∞−

ordKW/X (with the convention that ψ(γ) = ∞ if either φ(g∞(γ)) = ∞ or ordKW/X (γ) =
∞), the following holds: ∫

X∞

Lφ =
∫

W∞

Lψ ,

in the sense that one integral exists if and only if the other one does, and if this is
the case, then they are equal.

We can now define the motivic version of the stringy E-function. Let (Y,D) be
a pair with Y normal and KY + D being Q-Cartier. Let ` be a positive integer such
that `(KY +D) is a Cartier divisor. For a resolution of singularities f : X → Y of Y ,
we write as usual KX + DX = f ∗(KY + D). We consider the function ordDX : X∞→
1
` Z∪{∞} and the motivic stringy E-function of the pair (Y,D) is

Emot
st (Y,D) :=

∫
X∞

LordDX ∈ M̂k[L1/`],

assuming that this is defined.

Remark 10.5.25. Recall that by Remark 9.5.19, we have a continuous ring homo-
morphism M̂k→ Z[[u−1,v−1]][u,v]. For every positive integer `, this induces a con-
tinuous ring homomorphism M̂k[L1/`]→ Z[[u−1/`,v−1/`]][u1/`,v1/`] that maps L1/`

to (uv)1/`. It follows from definition that if Emot
st (Y,D) is defined, then it is mapped

by this morphism to Est(Y,D).

Proposition 10.5.26. If (Y,D) is a pair as above, then the definition of Emot
st (Y,D)

(in particular, the convergence of the corresponding series) is independent of the
choice of resolution of singularities.
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Proposition 10.5.27. Let (Y,D) be a pair as above and g : Z → Y a proper bira-
tional morphism, with Z normal. If we write, as usual KZ +DZ = g∗(KY +D), then

Emot
st (Z,DZ) = Emot

st (Y,D),

in the sense that one side exists if and only if the other one does, and if this is the
case, then they are equal.

Proposition 10.5.28. For a pair (Y,D), the motivic stringy E-function is defined if
and only if (Y,D) is klt. If this is the case and f : X → Y is a resolution of singular-
ities of Y , with DX = ∑

r
i=1 aiFi a simple normal crossing divisor, then

Emot
st (Y,D) = ∑

J⊆{1,...,r}
[F◦J ] ·∏

j∈J

L−1
L1−ai −1

,

where for every J ⊆ {1, . . . ,r}, we put F◦J = (∩ j∈JFj)r
(
∪ j 6∈JFj

)
, with the conven-

tion that F◦/0 = X r (F1∪ . . .∪Fr) and the corresponding product is equal to 1.

Proof. If Emot
st (Y,D) is well-defined, then it follows from Remark 9.5.25 that

Est(Y,D) is well-defined, hence (Y,D) is klt by Proposition 9.4.30. The converse
follows if we prove the explicit formula in the proposition, and its proof follows
verbatim the proof of Proposition 9.4.30, using the universal Euler-Poincaré char-
acteristic instead of the Hodge-Deligne polynomial.

Example 10.5.29. Suppose that Y ⊂ An is the cone over a smooth, projective hy-
persurface Z ⊂ Pn−1 of degree d, where n ≥ 3. We have seen in Example 3.1.16
that Y has klt singularities if and only if d < n. Moreover, the blow-up π : X → Y
of 0 gives a log resolution of Y and if F is the exceptional divisor, then F ' Z
and KX/Y = (n− 1− d)F . On the other hand, we have X r F ' Y r {0}, and we
have a morphism Y r{0}→ Z that is locally trivial, with fiber A1 r{0}. Therefore
[X r F ] = [Z] · (L−1). It follows from Proposition 9.4.30 that if d < n, then

Emot
st (Y ) = [F ] · L−1

Ln−d−1
+[X r F ]

= [Z] · L−1
Ln−d−1

+[Z](L−1) =
[Z](L−1)Ln−d

Ln−d−1
.

Example 10.5.30. We also have a formula for the motivic stringy E-function of toric
pairs. With the notation in Example 9.4.32, we have

Emot
st (Y,D) = (L−1)n · ∑

σ∈∆X

∏
w j∈σ

1
Lψ(w j)−1 .

In terms of the fan of Y , this can be written as

Emot
st (Y,D) = (L−1)n · ∑

w∈|∆ |∩N
L−ψ(w).
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Remark 10.5.31. Using deep model-theoretic tools, Cluckers and Loeser gave in
[CL08] a much more general and refined construction of motivic integrals. In partic-
ular, their work implies that the stringy invariants Emot

st (X ,D) can be defined in the
localization of K0(Var/k) at the set {L}∪{[PN ;N ≥ 1}, and not just in the image
of this ring in Mk, as follows from the discussion in this section. In particular, this
implies that if X and Y are K-equivalent smooth projective varieties, then [X ] = [Y ]
in this localization of K0(Var/k).

10.5.3 The motivic zeta function

Suppose now that X is a smooth variety and D is an effective divisor on X . Instead
of computing Emot

st (X ,D), one can extract more information about the pair (X ,D) by
recording the measures of the contact loci Contm(D) in a generating function. This
is the motivic zeta function of Denef and Loeser [DL98] that we now introduce. In
fact, we will work with general closed subschemes of X .

Let n = dim(X). In order to keep more information, we work in the localization
of the Grothendieck group of varieties over X , namely MX := K0(Var/X)[L−1

X ]. As
before, if C = π−1

∞,m(S) is a cylinder in X∞, we put

[C/X ] := [S/X ] ·L−mn
X ∈MX ,

and this is well-defined. Recall that if aX : X → Spec(k) is the structural morphism,
then we have an induced group homomorphism (aX )∗ : K0(Var/X)→ K0(Var/k),
further inducing (aX )∗ : MX →Mk. The projection formula gives

(aX )∗([V/X ] ·Lm
X ) = (aX )∗([V ]) ·Lm.

This implies that if C ⊆ X∞ is a cylinder, then (aX )∗([C/S]) is equal to our old
[C] ∈Mk.

For a proper closed subscheme Y of X , the motivic zeta function of Y is the
following generating series

Zmot
Y (T ) :=

∞

∑
m=0

[Contm(Y )/X ] ·T m ∈MX [[T ]].

Remark 10.5.32. The original definition of the motivic zeta function [DL99] had
coefficients in Mk. In other words, one considered

Zmot
Y,X (T ) :=

∞

∑
m=0

[Contm(Y )] ·T m ∈Mk[[T ]].

Note that (aX )∗ induces a group homomorphism (that we denote in the same way)
MX [[T ]] →Mk[[T ]] and we have Zmot

Y,X = (aX )∗(Zmot
Y ). The definition of the mo-

tivic integrals using the Grothendieck group of varieties over X is due to Looijenga
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[Loo02]. We also mention that the definition is usually given for hypersurfaces in the
affine space, but working in our more general setting does not cause any additional
difficulties.

Remark 10.5.33. One can also consider the following generating function:

Z̃mot
Y,X (T ) :=

∞

∑
m=0

[Cont≥m(Y )] ·T m ∈Mk[[T ]]

(and, of course, one can also define a corresponding lifting in MX [[T ]]). Since
Cont≥(m+1)(Y ) = (πX

∞,m)−1(Ym), we have

Z̃mot
Y,X (T ) = [X ]+ ∑

m≥0
[Jm(Y )] ·L−mnT m+1.

On the other hand, since

[Contm(Y )] = [Cont≥m(Y )]r [Cont≥(m+1)(Y )],

an easy computation implies that Z̃mot
Y,X (T ) and Zmot

Y,X (T ) are related by

Z̃mot
Y,X (T ) · (T −1)+ [X ] = T ·Zmot

Y,X (T ).

One advantage of working in the Grothendieck ring of varieties over X is that we
easily obtain local versions by specialization: given a closed point x ∈ X , the local
motivic zeta function of Y at x is

Zmot
Y,x (T ) :=

∞

∑
m=0

[Contm(Y )∩π
−1
∞ (x)] ·T m ∈Mk[[T ]].

It is clear that this is equal to i∗x(Z
mot
Y (T )), where ix : Spec(k)→ X corresponds to x

and i∗x : MX [[T ]]→Mk[[T ]] is induced by the ring homomorphism i∗x : K0(Var/X)→
K0(Var/k).

Remark 10.5.34. In fact, Denef and Loeser define the motivic zeta function to have
coefficients in a certain Grothendieck group of varieties over k with group action.
More precisely, suppose that D is a divisor in X defined by f ∈ O(X). In this case,
there is a morphism Contm(D) → A1 r {0} that takes γ to the coefficient of tm

in γ∗( f ) ∈ k[[t]]. Note that the fiber Contm(D)◦ of this map over 1 is a cylinder
and [Contm(D)] = [Contm(D)◦] · (L−1). Indeed, let us consider the corresponding
map Contm(D)p → A1 r {0} at a finite level p ≥ m and the fiber Contm(D)◦p over
1. Recall that we have an action of Gm on Contm(D)p induced by t → λ t, and
the morphism to A1 r {0} is compatible with this action. This easily implies that
Contm(D)p ' Contm(D)◦p× (A1 r{0}), hence [Contm(D)] = [Contm(D)◦] · (L−1).
We can thus rewrite

Zmot
D,X (T ) = L−1 · ∑

m≥0
[Contm(D)◦] ·T m. (10.16)
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On the other hand, each Contm(D)◦p still carries an action of the group µm of mth

roots of 1 in k. If µ̂ = lim←−
m

µm (where for d|m, the morphism µm → µd is given by

λ → λ m/d), then one considers the category of schemes of finite type over k with an
algebraic action of µ̂ , which factors through some µm. One defines a Grothendieck
group of such schemes Kµ

0 (Var/k) and one defines a lift of the series in (9.16) to a
formal power series with coefficients in Kµ

0 (Var/k)[L−1]. There are some subtleties
in the definition of this more refined Grothendieck ring and in its connection to Mk,
for which we refer to [DL98] and [Loo02].

Denef and Loeser define in [DL98], using the motivic zeta function, a “motivic
incarnation” for the nearby cycles of D. It is then useful to work in the Grothendieck
ring of varieties with µ̂-action, in order to also recover the monodromy action on
the nearby cycles. However, we will not pursue this further in what follows.

Theorem 10.5.35. Let X be an n-dimensional smooth variety and Y a proper closed
subscheme on X. If f : W → X is a log resolution of (X ,Y ) which is an isomorphism
over X rY and if f−1(Y ) = ∑

r
i=1 aiFi and KW/X = ∑

r
i=1 kiFi, where the Fi are distinct

prime divisors, then

Zmot
Y (T ) = ∑

J⊆{1,...,r}
[F◦J /X ] ·∏

j∈J

(L−1)T a j

Lk j+1−T a j
,

where F◦J =
⋂

j∈J Fj r
⋃

i6∈J Fi. In particular, Zmot
Y (T ) is a rational function.

Proof. We may assume that ai ≥ 1 for all i (note that by assumption f is an iso-
morphism over X rY , hence KW/X is supported on f−1(Y )). For every ν ∈ Zr

≥0, we
put

Cν =
r⋂

i=1

Contνi(Fi)⊆W∞.

It is clear that

f−1
∞ (Contm(Y )) = Contm( f−1(Y )) =

⊔
∑i aiνi=m

Cν .

Note that this is a finite union, since all ai are positive. Furthermore, it follows from
Proposition 9.2.8 that f∞ is bijective over Contm(Y ), hence

Contm(Y ) =
⊔

∑i aiνi=m

f∞(Cν).

On the other hand, it follows from Corollary 9.3.21 and its proof that each f∞(Cν)
is a cylinder in X∞ and

[ f∞(Cν)/X ] = [Cν/X ] ·L−∑i kiνi .

Moreover, it follows from the proof of Proposition 9.4.30 that if J ⊆ {1, . . . ,r} is
such that νi ≥ 1 precisely when i ∈ J, then
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[Cν/X ] = [F◦J /X ] · (L−1)|J|L−∑i νi .

By putting these together, we conclude that

Zmot
Y (T ) = ∑

ν∈Zr
≥0

[Cν/X ] ·L−∑i kiνiT ∑i aiνi

= ∑
J⊆{1,...,r}

∑
ν∈Z|J|>0

[F◦J /X ] · (L−1)|J|L−∑i(ki+1)νiT ∑i aiνi

= ∑
J⊆{1,...,r}

[F◦J /X ] ·∏
j∈J

(L−1)T a j

Lk j+1−T a j
.

Remark 10.5.36. The formula in Theorem 9.5.35 induces an obvious formula for
Zmot

Y,X . Moreover, by restricting over a closed point x ∈ X , we obtain

Zmot
Y,x = ∑

J⊆{1,...,r}
[F◦J ∩ f−1(x)] ·∏

j∈J

(L−1)T a j

Lk j+1−T a j
,

Example 10.5.37. Suppose that Y is a smooth subvariety of the smooth variety X , of
codimension r ≥ 1. In this case one can compute the motivic zeta function directly
or one can use the formula in Theorem 9.5.35 for the blow-up of X along Y to
conclude

Zmot
Y (T ) = [(X rY )/X ]+ [Y/X ] · (L−1)T

Lr−T
.

Example 10.5.38. Suppose that X is a smooth surface and C ⊂ X is a curve having
a unique singular point x, which is a node. As we have seen in Example 3.1.17, the
blow-up f : W → X of x, with exceptional divisor E, gives a log resolution of (X ,C).
Moreover, we have KW/X = E and f ∗(C) = C̃+2E, where C̃ is the proper transform
of C. Note that E ' P1 and E intersects C̃ in two points. Since C̃ r E 'C r{x}, it
follows from Theorem 9.5.35 that

Zmot
C,X (T )= [X rC]+[Cr{x}]· (L−1)T

L−T
+(L−1)· (L−1)T 2

L2−T 2 +2
(L−1)2T 3

(L2−T 2)(L−T )

= [X rC]+ [C r{x}] · (L−1)T
L−T

+
(L−1)2T 2

(L−T )2 .

Example 10.5.39. It is sometimes easier to compute directly Zmot
D,X , rather than use

resolution of singularities. Suppose, for example, that X = Speck[x,y] and D is the
prime divisor defined by (xa− yb), where a and b are relatively prime positive inte-
gers. Let us compute Z̃mot

D,X (T ). Note that for every m, we have a decomposition

Cont≥m(D) = Cm,1∪Cm,2,
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where
Cm,1 = {(u,v) ∈ (k[[t]])2 | ord(u)≥ m/a,ord(v)≥ m/b} and

Cm,2 = {(u,v) ∈ (k[[t]])2 | ord(ua) = ord(vb) < m}.

We thus obtain Z̃mot
D,X (T ) = S1 +S2, where

S1 = ∑
m≥0

[Cm,1]T m and S2 = ∑
m≥0

[Cm,2]T m.

Note that if (u,v) ∈Cm,2, then there is p with m > pab such that u = t pbu′, v =
t pav′, and (u′,v′) ∈ Cont≥(m−pab+1)(D)∩π−1

∞ (X r{0}). For every p < m/ab, these
conditions define a subcylinder C(p)

m,2 of Cm,2. Since D r{0} is smooth, it is easy to
deduce that

[C(p)
m,2] = [D r{0}] ·L−(pa+pb+m−pab).

Therefore

S2 = [D r{0}] · ∑
p;m≥pab

Lpab−pa−pb(L−1T )m = [D r{0}] · ∑
p≥0

L−(pa+pb)T pab

1−L−1T

=
[D r{0}]

(1−L−1T )(1−L−(a+b)T ab)
.

On the other hand, it is clear that

[Cm,1] = L−dm/ae−dm/be.

We deduce that

S1 =

(
ab−1

∑
m=0

L−dm/ae−dm/beT m

)
·

(
∑
`≥0

L−`(a+b)T `ab

)
=

∑
ab−1
m=0 L−dm/ae−dm/beT m

1−L−(a+b)T ab
,

hence

Z̃mot
D,X (T ) =

∑
ab−1
m=0 L−dm/ae−dm/beT m

1−L−(a+b)T ab
+

[D r{0}]
(1−L−1T )(1−L−(a+b)T ab)

.

Example 10.5.40. Suppose that X = An, with n ≥ 2, and H ⊂ X is the cone over
a smooth, projective, degree d hypersurface Z in Pn−1. If f : W → X is the blow-
up of 0, with exceptional divisor E, then f gives a log resolution of (X ,H), see
Example 3.1.16. If H̃ is the proper transform of H, then f ∗(H) = H̃ + dE and
KW/X = (n− 1)E. Moreover, we have E ' Pn−1 and H̃ ∩ E ' Z. Note also that
H̃ r E ' H r{0} and H r{0} is locally trivial over Z, with fiber A1 r{0}. There-
fore [H̃ rE] = [Z] ·(L−1). Similarly, we have [W r(E∪ H̃)] = [Pn−1 rZ] ·(L−1).
We deduce from Theorem 9.5.35 that



10.5 Introduction to motivic integration 307

Zmot
H,X (T ) = [Pn−1 r Z] · (L−1)+ [Z] · (L−1)2T

L−T
+[Pn−1 r Z] · (L−1)T d

Ln−T d

+[Z] · (L−1)2T d+1

(L−T )(Ln−T d)
= [Pn−1 r Z] · (L−1)Ln

Ln−T d +[Z] · (L−1)2LnT
(L−T )(Ln−T d)

.

We now introduce an important specialization of the motivic zeta function. Let
us assume that we work over k = C. Motivated by the analogy with the p-adic
zeta function (see Section 9.5.4 below), it is natural to try to evaluate the motivic
zeta function at T = L−s. In order to make sense of this, let us assume that s is a
nonnegative integer. In this case

Zmot
Y,X (L−s) = ∑

m≥0
[Contm(Y )] ·L−sm =

∫
X∞

L−s·ordY .

Note that this is well-defined in M̂k: this is an immediate consequence of Proposi-
tion 9.3.3. We compute it using Theorem 9.5.35. With the notation in the theorem,
we obtain

Zmot
Y,X (L−s) = ∑

J⊆{1,...,r}
[F◦J ] ·∏

j∈J

(L−1)
Lsa j+k j+1−1

.

Recall now that we have a ring homomorphism Ê : M̂k→ Z[[u−1,v−1]][u,v] (see
Remark 9.5.19). By applying this to Zmot

Y,X (L−s), we obtain

Ê(Zmot
Y,X (L−s)) = ∑

J⊆{1,...,r}
E(F◦J ) ·∏

j∈J

1

∑
sa j+k j
`=0 (uv)`

.

We can further evaluate this rational function at u = v = 1 to obtain the rational
number

∑
J⊆{1,...,r}

χ
top(F◦J ) ·∏

j∈J

1
sa j + k j +1

. (10.17)

Definition 10.5.41. Given a smooth complex variety X and a proper closed sub-
scheme Y of X , the topological zeta function of Y is the rational function that in
terms of a log resolution as above, is given by

Ztop
Y = ∑

J⊆{1,...,r}
χ

top(F◦J ) ·∏
j∈J

1
sa j + k j +1

. (10.18)

Of course, one does not need the motivic zeta function in order to make this
definition. The issue, however, is independence of the log resolution. The above
computation shows that for every nonnegative integer s, the value Ztop

Y (s) is equal
to the expression in (9.17), obtained by the above specialization procedure from the
motivic zeta function of Y . Since a rational function is uniquely determined by its
values on an infinite set, we obtain the independence on the choice of log resolution.
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The topological zeta function was introduced by Denef and Loeser in [DL92] and
its independence of log resolution was proved using p-adic integration. The above
argument using the motivic zeta function was given in [DL98].

The main open question concerning this circle of ideas is the so-called mon-
odromy conjecture. This was first made by Igusa in the setting of p-adic zeta func-
tions. It admits analogues in the setting of motivic zeta functions or topological zeta
functions, due to Denef and Loeser. Since both the topological zeta function and the
p-adic zeta functions can be obtained by specialization from the motivic one4, the
strongest statement is the one involving the motivic zeta function. In fact, in each
case there are two statements, a weaker one in terms of the monodromy action on
the cohomology of the Milnor fiber and a stronger one in terms of the roots of the
Bernstein polynomial (the fact that the second formulation implies the first one is a
consequence of Malgrange’s Theorem ??).

Conjecture 10.5.42 (Monodromy conjecture for the motivic zeta function). If
X is a smooth complex variety and D is a divisor on X , then Zmot

D,X (T ) lies in the

subring of Mk[[T ]] generated by Mk and (L−1)T N

Lν−T N , where ν and N vary over the
positive integers such that

i) exp
(
−2πi ν

N

)
is an eigenvalue for the monodromy action on the Milnor fiber of

D at some point x ∈ D (weak version), or
ii) − ν

N is a root of the Bernstein-Sato polynomial attached to D (strong version).

A positive answer to this conjecture would imply a positive answer to the next
one.

Conjecture 10.5.43 (Monodromy conjecture for the topological zeta function).
If X is a smooth complex variety and D a divisor on X , then for every pole s of
Ztop

D (T ), the following holds:

i) exp(2πiRe(s)) is an eigenvalue for the monodromy action on the Milnor fiber of
D at some point x ∈ D (weak version), or

ii) Re(s) is a root of the Bernstein-Sato polynomial attached to D (strong version).

The above conjectures, as well as the corresponding one in the p-adic setting have
generated a lot of interest and many special cases are known. The strong version has
been checked when X = A2 (in the p-adic context) in [?]. More is known about the
weak version: this holds, for example, for the motivic zeta function of a hypersurface
in A3 that is non-degenerate with respect to the Newton polyhedron [BV], for non-
degenerate hypersurfaces in arbitrary dimension, under some restrictive conditions
(this was shown in the p-adic setting in [Loe90]), for quasi-ordinary hypersurfaces
[ABCNLMH05], and for hyperplane arrangements [BMT11]. In general, the weak
version seems more amenable, since A’Campo formula (see Theorem ??) describes
the zeta function of the monodromy action in terms of a log resolution. In order to
prove, for example, the weak version of Conjecture 9.5.43 it is enough to find a log

4 For the precise statement in the latter case, see Section 9.5.4 below.
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resolution and show that certain candidate poles for the topological zeta function as
described in (9.18) are not really poles and that the remaining ones appear in the
monodromy zeta function.

Remark 10.5.44. One can formulate the monodromy conjecture also for general
closed subschemes. The weak version is in terms of Verdier monodromy (see for
example [VPV10] where this is checked for the topological zeta function of a sub-
scheme of A2). The strong version is in terms of the Bernstein-Sato polynomial of
a subscheme, in the sense of [BMS06]. It is checked, for example, in the case of
motivic zeta functions of monomial subschemes of An in [HMY07].

10.5.4 A brief summary of Archimedean and p-adic zeta functions

We first discuss the Archimedean side of the story. Suppose that f ∈C[x1, . . . ,xn] is
a non-constant polynomial. If φ ∈ C ∞

0 (Cn) is a C ∞ function on Cn, with compact
support, then it is easy to see that for every s ∈ C, with Re(s) > 0, the following
integral is well-defined:

Z f ,φ (s) :=
∫

Cn
| f (z)|2s

φ(z)dzdz.

Moreover, this is a holomorphic function5 on {s ∈C | Re(s) > 0}. The story started
in 1954, with the following problem of I. Gel’fand: show that Z f ,φ admits a mero-
morphic continuation to C. There is also a real version of the problem, in which f
has real coefficients. In this case, it is more natural to put

Z f ,φ (s) :=
∫

Rn
| f (x)|sφ(x)dx.

One case of the problem that is easy to handle is that when f = xa1
1 · · ·xan

n is a
monomial. In this case one can use, for example, integration by parts to show that
Z f ,φ admits a meromorphic continuation, with all poles of the form − j

ai
for some

i and some positive integer j. The general case of the problem has been solved in
two ways, and both solutions turned out to be very influential. The first argument
was given independently by Atiyah [Ati70] and Bernstein and S. Gel’fand [BG69],
using Hironaka’s theorem on resolution of singularities. The idea is that given a
log resolution of singularities π : Y → An of (An,V ( f )), one can use the change of
variable formula to compute Z f ,φ (s) as an integral on Y (C) (or Y (R), depending
on the context). In this case, one is reduced essentially to the monomial case. Note
that this argument is very close to the one that we gave for the analytic interpreta-
tion of multiplier ideals and log canonical threshold in Chapter 4.6. An upshot of

5 In fact, it is natural to also let φ vary. In this way one obtains a holomorphic function on {s ∈C |
Re(s) > 0} with values in distributions. The value at s is denoted by | f |2s, the complex power of f
at s.
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this method is that given such a resolution, if we write π∗(V ( f )) = ∑
N
i=1 aiEi and

KY/An = ∑
N
i=1 kiEi, then the poles of Z f ,φ are among the rational numbers − ki+ j

ai
,

with 1 ≤ i ≤ N and j ∈ Z>0. In particular, we see that Z f ,φ is holomorphic in the
half-plane {s | Re(s) >− lct( f )}.

The second proof of Gel’fand’s problem was obtained only a couple of years
later by Bernstein [Ber72]. In order to achieve this, Bernstein developed the theory
of D-modules on the affine space, and in particular, he proved the existence of what
is nowadays called the Bernstein-Sato polynomial (see Chapter 4.7 for a discussion
of this invariant). The main point is that the functional equation

b f (s) f s = P(s,x,∂x)• f s

allows applying integration by parts directly for f , without making use of resolution
of singularities. As a consequence of this method, one obtains that the poles of Z f ,φ
are of the form λ −m, where λ is a root of b f and m is a nonnegative integer. It is
instructive to compare the two estimates for the poles obtained via the two meth-
ods, keeping in mind that in the presence of a log resolution as above, by Lichtin’s
Theorem ??, every root λ of b f is of the form λ = − ki+ j

ai
, for some i and some

j ∈ Z>0.
Let us discuss now the p-adic side of the story. Suppose that p is a positive prime

integer and K is a finite extension of the field Qp of p-adic rational numbers (for
example, one can simply take K = Qp). The integral closure of the ring Zp of p-adic
integers in K is a complete DVR denoted by OK . Let π be a generator of the maximal
ideal of OK and q = pr the number of elements in the residue field of OK . Igusa
introduced in [Igu74], [Igu75] the following p-adic analogue of the complex powers.
If f ∈ K[x1, . . . ,xn] is a non-constant polynomial, then the local zeta function (or p-
adic zeta function) of f is given by

Z f ,K(s) =
∫

On
K

| f (x)|spdµ

where s ∈ C (note that since On
K is compact, in this case one does not have to use

the auxiliary function φ ). In the above integral, the absolute value is the p-adic

one, given by |u|p =
(

1
q

)ord(u)
, where ord(−) is the discrete valuation on OK . The

measure is the product measure on Kn of the Haar measure on K. Explicitly, the
measure on K is characterized by the fact that it is invariant under translations and
µ(OK) = 1. These conditions imply that

µ

(
a+

n

∏
i=1

(πmiOK)

)
=
(

1
q

)
∑i mi

for every a ∈ Kn and every m1, . . . ,mn ∈ Z. It is again easy to check that Z f ,K(s) is
well-defined when Re(s) > 0 and it gives a holomorphic function in this half-plane.

In fact, Z f ,K has a very down-to-earth interpretation. After possibly multiplying
f by a power of π , we may assume that f ∈ OK [x1, . . . ,xn]. It then follows from the
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definition of the integral that

Z f ,K(s) = ∑
m∈Z≥0

µ({u ∈ On
K | ord( f (u)) = m}) ·

(
1
q

)ms

. (10.19)

Moreover, note that the set {u ∈ On
K | ord( f (u)) ≥ m} is the disjoint union of am

translates of ∏
n
i=1(π

mOK), where

am = #{u ∈ (OK/π
mOK)n | f (u) = 0},

with the convention a0 = 1. Therefore

µ({u ∈ On
K | ord( f (u)) = m}) =

am

qmn −
am+1

q(m+1)n . (10.20)

If one considers the Poincaré power series of f

Pf ,K(T ) := ∑
m≥0

am

qmn T m ∈Q[[T ]],

then an easy computation using (9.19) and (9.20) shows that Pf ,K is related to Z f (s)
by

1− tZ f ,K(s) = (1− t)Pf ,K(s),

for Re(s) > 0, where t = q−s.
Using the above explicit description of Igusa’s zeta function, it is easy to com-

pute Z f (s) when f = xa1
1 · · ·xan

n is a monomial. In this case one deduces that Z f ,K(s)
is a rational function of q−s, with the denominator ∏

n
i=1(1− q−(ais+1)). A funda-

mental result of Igusa is that for every f , the local zeta function Z f ,K(s) is a rational
function of q−s. In particular, it admits a meromorphic continuation to C. More-
over, in light of the above relation with the Poincaré power series, this implies that
Pf ,K is a rational function, a statement that had been conjectured by Borevich and
Shafarevich.

The idea is to use a log resolution (over K) and the change of variable formula
for p-adic integrals. In this case, one can again reduce to a monomial computation,
though in this case the argument is considerably more involved. Given a resolution
π : Y → An

K , if we write π∗(V ( f )) = ∑
N
i=1 aiEi and KY/X = ∑

N
i=1 kiEi, then Igusa

showed that

Z f ,K(s) = ∑
J

hJ(q−s)
∏i∈J(1−q−(ais+ki+1))

,

where the sum is over those J ⊆ {1, . . . ,N} such that ∩i∈JEi 6= /0, and where each hJ
is a polynomial. In particular, we see that if s is a pole of Z f ,K , then there is i such
that Re(s) = − ki+1

ai
. It is interesting to compare this result with the corresponding

estimate for the poles in the Archimedean setting.
Motivated by many examples, Igusa made his monodromy conjecture concerning

the poles of the local zeta functions. If f ∈ L[x1, . . . ,xn], where L is a number field,
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then the conjecture says that for almost all p-adic completions K of L, if s is a
pole of Z f ,K , then exp(2πiRe(s)) is an eigenvalue for the monodromy action on the
cohomology of the Milnor fiber of f . The stronger version of the conjecture predicts
that in fact, in this case Re(s) is a root of the Bernstein-Sato polynomial b f of f . We
stress that in the setting of p-adic integrals there is no integration by parts, which
makes this conjectural relation to the Bernstein-Sato polynomial very striking. For
an introduction to both Archimedean and p-adic zeta functions, we refer the reader
to Igusa’s book [Igu00]. For a detailed discussion of the monodromy conjecture for
the p-adic zeta functions, see Denef’s Bourbaki talk [Den91].

The analogy between Igusa’s zeta function and the motivic zeta function is pretty
transparent: one replaces OK by another type of complete DVR, the formal power
series ring C[[t]], and the role of q = #A1(Fq) is played by L. In fact, one can prove a
precise connection between the motivic zeta function and the p-adic one, under the
assumption that one has a log resolution of f that has good reduction (that is, the
resolution is defined over OK and it induces a log resolution also when taking the
fiber over the closed point of Spec(OK)). Note that when we start with a polynomial
over a number field L, this will be the case for almost all of the p-adic completions
of L. For the precise formula relating the motivic and the p-adic zeta functions in
the good reduction case, see [DL98].

10.6 Applications to singularities

In this section we give some applications of the birational transformation formula
to singularities of pairs for which the ambient variety is smooth. The key point is
that one can set a dictionary between divisorial valuations and valuations associated
to cylinders such that the log discrepancy corresponds to the codimension of the
cylinder. This allows the description of invariants like the log canonical threshold
and minimal log discrepancy in terms of codimensions of contact loci and allows
proving some properties of these invariants by elementary geometric arguments.

10.6.1 Divisorial valuations and cylinders

We give a description of divisorial valuations in terms of cylinders in the space
of arcs. Let X be a fixed smooth variety over an algebraically closed field k of
characteristic 0.

We first show that if C is an irreducible, closed cylinder, then we can associate
to C a valuation ordC of the function field of X . Let ξ be the generic point of π∞(C)
and suppose that f ∈ OX ,ξ is nonzero. If U is an open neighborhood of ξ such that
f ∈ OX (U), then we put

ordC( f ) := min{ordV ( f )(γ) | γ ∈CU := C∩π
−1
∞ (U)}.
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Note that since CU 6⊆ V ( f )∞ by Lemma 9.3.7, we have ordC( f ) ∈ Z≥0. Moreover,
we have ordC( f ) = ordV ( f )(γ) for all γ is a suitable open subcylinder of CU . Since
C is irreducible, every open subcylinder of C is dense; in particular, the definition of
ordC( f ) is independent of the choice of U . As usual, we put ordC(0) = ∞. Given two
nonzero functions f1, f2 ∈OX ,ξ , we can choose U as above such that f1, f2 ∈OX (U).
Since C is irreducible and since ordC( fi) is achieved on an open subcylinder of Ci,
it is clear that we have

i) ordC( f1 + f2)≥min{ordC( f1),ordC( f2)} and
ii) ordC( f1 f2) = ordC( f1)+ordC( f2).

This implies that ordC can be extended to a valuation of the fraction field of X with
values in Z. It follows from definition that given a nonzero f defined on an open
neighborhood of ξ , we have ordC( f ) = 0 if and only if π∞(C) 6⊆V ( f ). Indeed, if f
is defined on U and γ ∈U∞, then ordt(γ∗( f )) = 0 if and only if π∞(γ) ∈ V ( f ). We
say that C is non-dominating if π∞(C) 6= X . We see that this is the case if and only if
ordC is not the trivial valuation (recall that the trivial valuation is the one identically
equal to 0 on all nonzero elements).

We can also define ordC(a) when a is an ideal sheaf in X , as follows. If U is an
affine open subset of X intersecting π∞(C), then

ordC(a) := min{ordC( f ) | f ∈ a(U)}.

It is clear that the definition is independent of U and that ordC(a)≥m if and only if
C ⊆ Cont≥m(a).

Remark 10.6.1. Suppose that φ : Y → X is a proper, birational morphism of smooth
varieties. If C is an irreducible closed cylinder in Y∞, then CX := φ∞(C) is an irre-
ducible, closed cylinder in X∞. Indeed, Corollary 9.3.21 implies that this is a cylinder
and the other properties are obvious. For every δ ∈ Y∞, if γ = φ∞(δ ), then for every
f ∈ OX (U), where U is an open neighborhood of πX

∞ (γ), we have ordt(δ ∗( f ◦φ) =
ordt(γ∗( f )). Therefore it follows from definition that ordC = ordCX . Note that C is
non-dominating if and only if CX has the same property.

A valuation v of the function field of X with values in Z is divisorial if it is of the
form q ·ordE , for a divisor E over X and a positive integer q. Of course, in this case
both q and E are uniquely determined (note that the image of v is equal to qZ). The
following is the main result of this section, setting up a dictionary between divisorial
valuations and cylinders in the space of arcs.

Theorem 10.6.2. If X is a smooth variety, then the following hold:

i) If C is a non-dominating irreducible, closed cylinder in X∞, then ordC is a divi-
sorial valuation.

ii) For every divisor E over X and every positive integer q, there is a unique maxi-
mal cylinder Cq(E) which is non-dominating, irreducible, and closed, such that
ordC = q ·ordE . Moreover, we have

codim(Cq(E)) = q(ordE(K−/X )+1).
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The theorem was first proved in [ELM04], but we follow here the approach in
[Zhu].

Proof of Theorem 9.6.2. We first construct the cylinders Cq(E) (which we also de-
note by CX

q (E), when the variety X is not understood from the context). Let E be a
divisor over X and q a positive integer. Suppose that f : Y → X is a proper, birational
morphism, with Y a smooth variety, and such that E is a smooth prime divisor on Y .
Consider the closed cylinder CY

q (E) = Cont≥q(E). Since

CY
q (E) = (πY

q−1)
−1(Eq−1)

and E is smooth, it follows that CY
q (E) is an irreducible cylinder of codimension q.

Moreover, it is non-dominating since πY
∞(CY

q (E)) = E. We claim that if v = ordCY
q (E),

then v = q · ordE . In order to check this, we may restrict to any affine open subset
that intersects E, hence we may assume that Y is affine and E is defined by (y).
Since there is an arc on Y with order q along E, it follows that v(y) = q. If g ∈O(Y )
is written g = ymh, where h 6∈ (y), then v(g) = m ·v(y)+v(h) = mq = ordE(g) (since
h does not vanish on E = π∞(CY

q (E)), it follows that v(h) = 0).
If k = ordE(KY/X ) and we write KY/X = kE + D, for some effective divisor D,

it is clear that for every γ ∈ Contq(E)∩ (πY
∞)−1(Y r D), we have ordKY/X (γ) = kq.

We thus conclude from Corollary 9.3.24 that Cq(E) := f∞(CY
q (E)) is an irreducible

closed cylinder in X∞, with codim(Cq(E)) = kq + q = q(ordE(K−/X )+ 1). By Re-
mark 9.6.1, it follows that Cq(E) is non-dominating and the corresponding valuation
is equal to q ·ordE .

Suppose now that T is an arbitrary non-dominating, irreducible closed cylinder
in X∞. Since ordT is a nontrivial valuation with values in Z, there is a unique positive
integer q such that the image of ordT is qZ. In order to finish the proof of the theo-
rem, it is enough to show that there is a divisor E over X such that T ⊆Cq(E) and
the two cylinders induce the same valuation. Let Z := π∞(T ), which by assumption
is an irreducible proper closed subset of X . In order to prove our assertion, we may
replace X by any open subset intersecting Z and T by T ∩π−1

∞ (U).
Let us consider first the case when Z is a prime divisor. We show that in this case

T ⊆ Cq(Z) and the two cylinders define the same valuation. After replacing X by
an open subset, we may assume that X is affine, Z is smooth and defined by (z).
Since ordT (h) = 0 whenever h 6∈ (z), it follows that ordT = ordT (z) · ordZ , and by
definition of q we must have q = ordT (z). The inclusion T ⊆Cq(Z) = Cont≥q(Z) is
clear, and this completes the proof in this case.

We now consider the case when codim(Z)≥ 2. After replacing X by an open sub-
set, we may assume that Z is smooth. Let φ : W → X be the blow-up along Z, with
exceptional divisor F . It follows from Proposition 9.3.25 that there is an irreducible
closed cylinder TW in W∞ such that T = φ∞(TW ). Since T is non-dominating it fol-
lows that TW is non-dominating and it follows from Remark 9.6.1 that ordT = ordTW .
If we know the assertion for TW , then there is a divisor E over W such that
TW ⊆CW

q (E) and ordTW = q ·ordE . In this case T = φ∞(TW )⊆ φ∞(CW
q (E)) = Cq(E)

and ordT = q ·ordE , hence we obtain the assertion for T .
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On the other hand, since πX
∞ (T )⊆Z, we have TW ⊆Cont≥1(Z). Since ordF(KW/X )≥

1, this implies e′ := min{m | TW ∩Contm(KW/X ) 6= /0}≥ 1, and the formula in Corol-
lary 9.3.24 gives codim(TW ) = codim(T )− e′ < codim(T ). Since the codimension
is always a nonnegative integer, we may argue by induction on codim(T ) and thus
assume that we know the assertion for TW . As we have seen, this implies the asser-
tion for T , and thus completes the proof of the theorem.

Corollary 10.6.3. If C is a non-dominating irreducible closed cylinder in X∞ such
that ordC = q ·ordE for some divisor E over X and some positive integer q, then

codim(C)≥ q(ordE(K−/X )+1).

Proof. It follows from the theorem that C ⊆Cq(E), hence

codim(C)≥ codim(Cq(E)) = q(ordE(K−/X )+1).

Remark 10.6.4. Let C is a non-dominating, irreducible closed cylinder in X∞ and
Z = π∞(C)⊆ X . If E is a divisor over X and q is a positive integer such that ordC =
q · ordE , then Z = cX (E). Indeed, this follows from the fact that given a function
f ∈ OX (U), where U is an open subset that intersects Z, we have ordC( f ) > 0 if
and only if f vanishes on Z. We also note that if C = Cq(E), then in fact π∞(C) is
closed in X . Indeed, it follows from the definition of Cq(E) that this is preserved by
the morphism Φ∞ : A1×X∞→ X∞, hence π∞(C) = σ−1

∞ (C), where σ∞ : X → X∞ is
the canonical section of π∞.

Our next result identifies the cylinders of the form Cq(E) as the irreducible com-
ponents of contact loci.

Proposition 10.6.5. Let X be a smooth variety and C an irreducible closed cylinder
in X. The following are equivalent:

i) There is a divisor E over X and a positive integer q such that C = Cq(E).
ii) There is a proper closed subscheme Y of X and a positive integer m such that C

is an irreducible component of Cont≥m(Y ).

Proof. Suppose first that C is a non-dominating, irreducible closed cylinder in X∞

and let ξ be the generic point of π∞(C). We define a graded sequence of ideals a•,
by putting

am = { f | ordC( f )≥ m}.

Since X is not necessarily affine, let us give a few details. If U is an affine open
subset with ξ ∈ U , then we put am(U) := { f ∈ OX (U) | ordC( f ) ≥ m}, while if
ξ 6∈U , then we put am(U) = OX (U). It is an easy exercise to see that these glue and
give a coherent ideal sheaf. Furthermore, it is clear from definition that all am are
nonzero and a• = (am)m≥1 is a graded sequence of ideals.
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Consider now Cm = Cont≥m(am). It is clear that C ⊆ Cm for all m. Moreover,
if m = pq, then a

q
p ⊆ am, hence Cm ⊆ Cont≥m(aq

p) = Cp. It follows that if we put
C′m = Cm!, then we have

C ⊆ . . .⊆C′m+1 ⊆C′m ⊆ . . .⊆C′1.

We claim that we can find irreducible components C′′m of C′m such that

C ⊆ . . .⊆C′′m+1 ⊆C′′m ⊆ . . .⊆C′′1 .

Indeed, if Am is the set of irreducible components of C′m that contain C, since C is
irreducible, it follows that each Am is nonempty. Furthermore, we can define maps
αm : Am+1→Am such that for every Z ∈Am+1, we have Z⊆αm(Z). Since the Am are
nonempty finite sets, it follows that lim←−

m
Am is nonempty. An element of lim←−

m
Am cor-

responds precisely to a sequence of irreducible components (C′′m)m≥1, as required.
Since codim(C′′m) ≤ codim(C′′m+1) ≤ codim(C) for every m, it follows that there

is m0 such that codim(C′′m) = codim(C′′m0
) for every m ≥ m0. Since the C′′m are irre-

ducible, we deduce that C′′m =C′′m0
=: B for all m≥m0. For every m, we have B⊆Cm;

indeed, if N ≥ max{m,m0}, then B = C′′N ⊆CN! ⊆Cm. We claim that ordC = ordB.
After replacing X by an affine open neighborhood of ξ , we may assume that X is
affine. Since C ⊆ B, it is clear that ordC ≥ ordB on O(X). On the other hand, let
f ∈ O(X) and suppose that ordC( f ) = r. In this case f ∈ ar and since B ⊆ Cr, it
follows that ordB( f )≥ ordCr( f )≥ r. This shows that indeed ordC = ordB.

Suppose now that C = Cq(E). It follows from Theorem 9.6.2 that C is the unique
maximal irreducible closed cylinder inducing a given valuation, hence C = B. In
particular, C is an irreducible component of a contact locus. This completes the
proof of i)⇒ii).

Conversely, suppose that C is an irreducible component of Cont≥m(Y ), where Y
is a proper closed subscheme of X and m ≥ 1. We argue as in the proof of Theo-
rem 9.6.2. Let Z = π∞(C). After replacing X by an affine open subset intersecting
Z, we may assume that X is affine and Z is smooth. Suppose first that Z is a prime
divisor. We may assume that Z is defined by a principal ideal (y). Let us write the
ideal of Y as IY = (yr) ·b, where b is an ideal not contained in (y). We may replace X
by X rV (b) and thus assume that IY = (yr). In this case, it is clear that C = Cq(Z),
where q = dm/re.

Let us consider now the case when codimX (Z) ≥ 2. Let φ : W → X be the
blow-up along Z, with exceptional divisor F . We apply Proposition 9.3.25 and
consider the unique irreducible closed cylinder CW in W∞ such that φ∞(CW ) = C.
Note that CW ⊆ φ−1

∞ (C)⊆ Cont≥m(φ−1(Y )). Since CW is irreducible, it follows that
there is an irreducible component C′ of Cont≥m(φ−1(Y )) containing CW . We then
have C = φ∞(CW ) ⊆ φ∞(C′) ⊆ Cont≥m(Y ). Since C is an irreducible component of
Cont≥m(Y ), we deduce that C = φ∞(C′), and the uniqueness in Proposition 9.3.25
implies CW = C′. Therefore CW is an irreducible component of Cont≥m(φ−1(Y )).
We now argue as in the proof of Theorem 9.6.2, by induction on codim(C). Since
codim(CW ) < codim(C), it follows by induction that CW = CW

q (E) for some divi-
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sor E over W and some positive integer q. In this case C = φ∞(CW ) = CX
q (E). This

completes the proof of the proposition.

As we will see in the next section, Theorem 9.6.2 allows translating the descrip-
tion of classes of singularities of pairs and of invariants of such pairs in terms of
codimensions of certain contact loci. However, it is sometimes useful to also have
an explicit description of the codimensions of the contact loci along a subscheme
and of the irreducible components of minimal codimension of these loci in terms of
a log resolution. We give this in the next proposition. Note that this is very close to
the computations that we did in Chapters 9.4 and 9.5 (cf., for example, the proof of
Theorem 9.5.35).

Proposition 10.6.6. Let X be a smooth variety and Z a proper closed subscheme of
X. Let f : Y → X be a log resolution of (X ,Z) that is an isomorphism over X rY
and let us write

f−1(Z) =
N

∑
i=1

aiEi and KY/X =
N

∑
i=1

kiEi.

For every nonnegative integer m, we have

codim(Contm(Z)) = min

{
N

∑
i=1

(ki +1)νi |
N

∑
i=1

aiνi = m,
⋂

νi≥1

Ei 6= /0

}

and the number of irreducible components of codim(Cont≥m(Z)) of minimal codi-
mension is equal to

∑
J⊆{1,...,N}

|{ν ∈ ZJ
>0 |∑

i∈J
aiνi = m,∑

i∈J
(ki +1)νi = codim(Cont≥m(Z))} ·βJ ,

where βJ is the number of connected components of ∩i∈JEi.

Proof. Since f is an isomorphism over X rY , we may assume that ai ≥ 1 for all i.
For every ν ∈ ZN

≥0, let Cν = ∩N
i=1Contνi(Ei) ⊆ Y∞. It is clear that Cν is nonempty

if and only if ∩i∈J(ν)Ei 6= /0, where J(ν) = {i | νi ≥ 1}. Furthermore, if this is the
case, then Cν has βJ(ν) disjoint irreducible components, all of them of codimen-
sion ∑

N
i=1 νi. Since Cν ⊆ Conte(KY/X ), where e = ∑

N
i=1 kiνi, it follows from Propo-

sition 9.2.8 that the f∞(Cν) are mutually disjoint. Furthermore, using also Corol-
lary 9.3.21, we see that each f∞(Cν) is a disjoint union of βJ(ν) irreducible sub-
cylinders, all of them of codimension ∑

N
i=1(ki +1)νi. Since Contm(Y ) = tν f∞(Cν),

where the union is over those ν such that ∑i aiνi = m (note that this is a finite set
since all ai are positive), both assertions in the proposition are clear.

Corollary 10.6.7. With the notation in Proposition 9.6.6, we have for every m∈Z≥0

codim(Cont≥m(Z)) = min

{
N

∑
i=1

(ki +1)νi |
N

∑
i=1

aiνi ≥ m,
⋂

νi≥1

Ei 6= /0

}
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and the number of irreducible components of Cont≥m(Z) of minimal codimension is
equal to

∑
J⊆{1,...,N}

|{ν ∈ ZJ
>0 |∑

i∈J
aiνi ≥ m,∑

i∈J
(ki +1)νi = codim(Cont≥m(Z))} ·βJ .

Proof. Let us demote by α(C) the number of irreducible components of minimal
codimension of a cylinder C. For every j ≥ 0, we have a disjoint decomposition

Cont≥m(Z) =
m+ j⊔
i=m

Conti(Z)
⊔

Cont≥(m+ j+1)(Z).

By Proposition 9.3.3, for j� 0, we have codim(Cont≥(m+ j+1)(Z))> codim(Cont≥m(Z)),
hence

codim(Cont≥m(Z)) = min{codim(Conti(Z)) | m≤ i≤ m+ j}

and α(Cont≥m(Z)) = ∑i α(Conti(Z)), where the sum is over those i with m ≤ i ≤
m+ j such that codim(Conti(Z)) = codim(Cont≥m(Z)). The assertions in the state-
ment now follow from the ones in Proposition 9.6.6.

Remark 10.6.8. One can use the description of the contact loci in terms of a log
resolution in Proposition 9.6.6 and Corollary 9.6.7 in order to show that if C is an
irreducible component of some Cont≥m(Z), with m ≥ 1, then ordC is a divisorial
valuation. Arguing as in the proof of Proposition 9.6.5 one then sees that given
any non-dominating irreducible closed cylinder in X∞, there is some C′ ⊇ C, with
C′ an irreducible component of some contact locus, such that ordC = ordC′ . This
implies that ordC is a divisorial valuation, giving another proof for this assertion
from Theorem 9.6.2; see [ELM04] for details. However, the proof that we presented
has the advantage that does not make use of resolution of singularities. In fact, it
only uses the birational transformation formula for smooth blow-ups, which as we
have seen, is an easy exercise. While we have implicitly used the general case of
this formula to show that Cq(E) is a cylinder, and to compute its codimension, this
can also be done by only considering smooth blow-ups: it is known that in arbitrary
characteristic, one can realize a divisor over X as lying on a composition of blow-
ups with smooth centers, after possibly restricting to suitable open subsets after each
step (see [KM98, Lemma 2.45]). For the details on how to carry this out in arbitrary
characteristic, see [Zhu].

Remark 10.6.9. It follows from the formula in Corollary 9.6.7 that if Z is a proper
closed subscheme in a smooth variety, then for every positive integers m and p, we
have

codim(Cont≥mp(Z))≤ p · codim(Cont≥m(Z)).

It would be interesting to find a direct geometric argument for this, which does not
rely on log resolutions (and would thus also hold in positive characteristic).



10.6 Applications to singularities 319

10.6.2 Applications to log canonical thresholds

The results in the previous section allow the description of log canonical and klt
pairs in terms of cylinders in the space of arcs. We first give a statement for higher-
codimension pairs in the sense of Chapter 3.1. Suppose that (X ,Z ) is such a pair,
that is, Z = ∑

r
i=1 qiZi, where the Zi are proper closed subschemes of X and qi ∈ R.

We assume that X is smooth. If C is a non-dominating, irreducible closed cylinder
in X∞, we put ordC(Z ) := ∑

r
i=1 qi ·ordC(ai), where ai is the ideal defining Zi.

Proposition 10.6.10. Let (X ,Z ) be a pair as above, with X smooth. The pair
(X ,Z ) is log canonical (klt) if and only if for every non-dominating, irreducible
closed cylinder C ⊆ X∞, we have codim(C) ≥ ordC(Z ) (respectively, codim(C) >
ordC(Z )).

Proof. Let us prove the description of log canonical pairs: the argument for klt pairs
is entirely analogous. Suppose first that (X ,Z ) satisfies the condition on cylinders.
If E is a divisor over X , applying this condition for C1(E), we obtain using Theo-
rem 9.6.2

codim(C1(E)) = 1+ordE(KY/X )≥ ordC1(E)(Z ) = ordE(Z ).

Since this holds for every E, it follows that (X ,Z ) is log canonical. Conversely, sup-
pose that that the pair (X ,Z ) is log canonical. Given any irreducible, closed, non-
dominating cylinder C⊆ X∞, it follows from Theorem 9.6.2 that there is a divisor E
over X and a positive integer q such that C ⊆Cq(E) and ordC = ordCq(E) = q ·ordE .
Using the fact that (X ,Z ) is log canonical, we conclude that

codim(C)≥ codim(Cq(E)) = q(ordE(K−/X )+1)≥ q ·ordE(Z ) = ordC(Z ).

This completes the proof of the proposition.

This proposition implies the following formula for the log canonical threshold of
a closed subscheme.

Corollary 10.6.11. If X is an n-dimensional smooth variety and Z is a closed sub-
scheme of X defined by the nonzero ideal a, then

lct(a) = min
C

codim(C)
ordC(a)

= min
m≥1

codim(Cont≥m(Z))
m

= n−max
m≥0

dim(Zm)
m+1

, (10.21)

where the first minimum is over all irreducible, closed cylinders C ⊆ X∞ such that
ordC(a) > 0. Moreover, this minimum is achieved if and only if C = Cq(E) for some
positive integer q and some divisor E over X that computes lct(a).

Proof. It follows from Proposition 9.6.10 and the definition of the log canonical
threshold that lct(a) is the largest t ∈Q>0 such that codim(C)≥ t ·ordC(a) for every
non-dominating irreducible closed cylinder C ⊆ X∞. Therefore
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lct(a) = inf
C

codim(C)
ordC(a)

, (10.22)

where C varies over the irreducible closed cylinders such that ordC(a) > 0.
Suppose now that C is an irreducible, closed cylinder with ordC(a) > 0. It follows

from Theorem 9.6.2 that there is a divisor E over X and a positive integer q such
that C ⊆Cq(E) and ordC = q ·ordE . Therefore we have

codim(C)≥ codim(Cq(E))= q(1+ordE(K−/X ))≥ q ·lct(a)·ordE(a)= lct(a)·ordC(a).

We thus see that C achieves the infimum in (9.22) if and only if C = Cq(E) and E
computes lct(a). In particular, this shows that the infimum in (9.22) is a minimum.

Suppose now that C is an irreducible closed cylinder with ordC(a) = m > 0.
Note that C ⊆ Cont≥m(Z) and if C′ is an irreducible component of Cont≥m(Z) that
contains C, then codim(C) ≥ codim(C′) and ordC′(a) = m. We thus deduce from
(9.22) that

lct(a) = min
m≥1

codim(Cont≥m(Z))
m

.

Since Cont≥m(Z)) = (πX
∞,m−1)

−1(Zm−1), it follows that codim(Cont≥m(Z)) = mn−
dim(Zm−1), and we obtain the last equality in (9.21).

Remark 10.6.12. If instead of the log canonical threshold lct(a) one is interested in
lctW (a), where W is a closed subset of X , then in the proofs of Proposition 9.6.10 and
Corollary 9.6.11 we only consider the divisors E over X with cX (E)∩W 6= /0. In light
of Remark 9.6.4, when we consider cylinders C over X∞, the condition translates to
π∞(C)∩W 6= /0. Moreover, note that when C is a component of Cont≥m(a), then
π∞(C) is closed. We thus obtain

lctW (a) = min
m≥1

codimW (Cont≥m(a))
m

,

where codimW (Cont≥m(a)) is the smallest codimension of an irreducible compo-
nent of Cont≥m(a) whose image in X intersects W .

Remark 10.6.13. It follows from Remark 9.6.4 and the proof of Corollary 9.6.11
that if c = lct(a), then the non-klt centers of (X ,ac) are the sets of the form πm(T ),
where m is a nonnegative integer and T is an irreducible component of V (a)m, with
dim(T ) = (n− lct(a)) · (m+1).

Remark 10.6.14. Let X be a smooth variety and a a nonzero ideal on X defining a
subscheme Z. Let α(m) denote the number of irreducible components of Contm(a)
of codimension lct(a) ·m. We can estimate α(m) as follows. Consider a log resolu-
tion f : Y → X of (X ,Z) that is an isomorphism over X r Z and let us write

f−1(Z) =
N

∑
i=1

aiEi and KY/X =
N

∑
i=1

kiEi.
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Let J0 = {i ∈ {1, . . . ,N} | ki + 1 = lct(a) · ai} and Λ = {J ⊆ J0 | ∩i∈JEi 6= /0}. It
follows easily from Proposition 9.6.6 that

α(m) = #{ν ∈ ZN
≥0 |∑

i
aiνi = m,{i | νi ≥ 1} ∈Λ}.

We deduce that if d ≥ 1 is the largest number of elements of a set in Λ , then
limsupm→∞

αm
md−1 ∈ (0,∞).

As an application of Corollary 9.6.11, we give another proof for the inversion
of adjunction formula for log canonical thresholds in the case of smooth ambient
varieties.

Corollary 10.6.15. Let X be a smooth variety and H ⊂ X a smooth subvariety of
codimension 1. If a is an ideal on X such that a ·OH is nonzero, then lctH(a) ≥
lct(a ·OH).

Proof. Let Z be the subscheme defined by a. It is enough to show that if lctH(a) < τ ,
then lct(a ·OH) < τ . It follows from Corollary 9.6.11 (see also Remark 9.6.12) that
since lctH(a) < τ , there is m ≥ 0 and an irreducible component W of Zm such that
πm(W )∩H 6= 0 and

dim(W ) > (m+1)(n− τ).

Let us consider W ∩Hm ⊆ (Z∩H)m. Note that W ∩Hm is nonempty: if x ∈ πm(W )∩
H, then the constant m-jet σm(x) lies in W , hence in W ∩Hm. On the other hand,
since H is locally defined in X by one equation, Hm is locally defined in Xm by
(m + 1) equations. We deduce that if WH is an irreducible component of W ∩Hm,
then

dim(WH)≥ dim(W )− (m+1) > (m+1)(n−1− τ).

Another application of Corollary 9.6.11 gives lct(a ·OH) < τ and this completes the
proof.
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10.6.3 Applications to minimal log discrepancies: semicontinuity

10.6.4 Characterization of locally complete intersection rational
singularities

10.7 The birational transformation rule II: the general case

10.7.1 Spaces of arcs of singular varieties

10.7.2 The general birational transformation formula

10.8 Inversion of adjunction for locally complete intersection
varieties

10.9 The formal arc theorem and the curve selection lemma

10.9.1 Complete rings and the Weierstratrass preparation theorem

In this section we review some facts about rings with linear topologies and their
completions. Since we deal with more general rings than usual (for example, we
need to handle completions of certain non-Noetherian rings) we develop carefully
what we need. In particular, we give the proof of the Weierstrass preparation the-
orem in the form that we will need for treating rings of formal power series in
infinitely many variables.

Recall that if R is a ring, a linear topology on R is defined by a weakly decreasing
sequence6 of ideals (I j) j≥1. In this case, a basis of open sets of some a ∈ R is given
by {a+I j | j≥ 1} and with this topology R becomes a topological ring. For example,
if a is an ideal in R, then the sequence of ideals (a j) j≥1 defines the a-adic topology
on R. Note that a topology on R defined by a sequence (I j) j≥1 is coarser than the
a-adic topology if and only if for every j, we have aN ⊆ I j for N � 0. We always
make the assumption that there are open sets in R different from R and the empty
set; equivalently, I j is a proper ideal of R for j� 0. All topologies we will consider
will be linear topologies.

Suppose that R is a ring with a linear topology given by a sequence of ideals
(I j) j≥1. If M is an R-module, a linear topology on M is given by a non-increasing se-
quence of submodules (M j) j≥1 such that for every j, we have ImM ⊆M j for m� 0.
In this case M becomes a topological R-module, with a basis of open neighborhoods
of u ∈M given by {u+M j | j ≥ 1}. If on R we have the a-adic topology, where a is

6 One can allow, more generally, the set of ideals to be indexed by an arbitrary ordered set. How-
ever, we will not need this level of generality.
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an ideal in R, then the a-adic topology on M is given by (a jM) j≥1. In general, M is
separated with respect to the topology defined by (M j) j≥1 if and only if∩ j≥1M j = 0.
The completion of M is M̂ = lim←−

j
M/M j. Note that R̂ is a ring and M̂ is naturally an

R̂-module. Since we assume I j 6= R for j� 0, we have R̂ 6= 0. On M̂ we consider
the projective limit topology, where each M/M j carries the discrete topology. In
fact, we have canonical surjections M̂→M/M j and if N j denotes the kernel of this
surjection, then (N j) j≥1 defines the projective limit topology on M̂.

Note that the canonical continuous morphism φ : R→ R̂ is the completion of R,
that is, R̂ is complete and separated and if ψ : R→ S is another continuous morphism
to a complete and separated topological ring S, then there is a unique continuous
ring homomorphism ψ̂ : R̂→ S such that ψ̂ ◦φ = ψ . In particular, the morphism φ

only depends on the topological ring R and not on the particular sequence of ideals
(I j) j≥1. We have a similar characterization for the completion of an R-module M
with a linear topology. In particular, we have the completion functor that takes M to
M̂ from the category of R-modules with linear topology to itself.

Let m be a maximal ideal in a ring R. Suppose that R carries a linear topology
defined by the sequence of ideals (I j) j≥1, which is coarser than the m-adic topology.
By assumption, there is j such that I j 6= R and for every such j there is N j such that
mN j ⊆ I j. This implies that I j ⊆ m. Let n be the inverse image of m/I j via the
canonical surjection R̂→ R/I j (note that this is independent of j). It is clear that n

is a maximal ideal of R̂, with residue field R/m. In fact, this is the unique maximal
ideal of R̂: if a ∈ R̂ rn, then the image of a in all R/I j as above is invertible, hence
a is invertible (note that R/I j is a local ring). Since we assumed that the topology
on R is coarser then the m-adic topology, it follows that the topology on R̂ is coarser
than the n-adic topology (it is enough to note that whenever mN j ⊆ I j, we have
nN j ⊆ Ker(R̂→ R/I j)). Note also that the localization Rm has a linear topology
induced by the ideals I jRm. Since Rm/I jRm'R/I j, we see that R̂ is also canonically
isomorphic to the completion of Rm with respect to this topology.

We now turn to the class of rings that we will we concerned with. Let k be a fixed
field. We denote by Comp(k) the category whose objects are local k-algebras (R,m)
with residue field k, that carry a linear topology which is coarser than the m-adic
topology and with respect to which R is separated and complete. The morphisms in
Comp(k) are local continuous morphisms of k-algebras.

We also consider the full subcategory Nil(k) of Comp(k) consisting of test rings,
that is, local k-algebras (A,m) with residue field k, such that mN = 0 for some N,
considered with the discrete topology.

Remark 10.9.1. Note that if R is an object in Comp(k), with the topology defined
by the sequence of ideals (I j) j≥1, then R ' lim←−

j
R/I j and each R/I j is an object in

Nil(k) whenever it is nonzero. It follows that if R′ is any other object in Comp(k),
then we have a canonical isomorphism
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HomComp(k)(R
′,R)' lim←−

j
HomComp(k)(R

′,R/I j).

Therefore it is a consequence of Yoneda’s lemma that the natural contravariant func-
tor

h : Comp(k)→ Fun(Nil(k),Sets),h(R) = HomComp(k)(R,−)

is fully faithful.

Remark 10.9.2. If R is a topological k-algebra, with the topology defined by a se-
quence of ideals (I j) j≥1, and (A,mA) is a test ring, then a ring homomorphism
φ : R→ A is continuous if and only if it factors through some R/I j. Moreover, sup-
pose that S is a k-algebra and m is a maximal ideal in S, with residue field k. If S
has the m-adic topology and R = Ŝ, then the morphisms R→ A in Comp(k) are in
natural bijection with the k-algebra homomorphisms ψ : S→ A with ψ(m)⊆mA.

Example 10.9.3. The following example is of particular importance for us. Let B
be any ring. Consider the polynomial ring over B with variables indexed by a fixed
set Λ , namely S = B[xi | i ∈ Λ ]. We consider the ideal mS = (xi | i ∈ Λ) in S and
give S the mS-adic topology. It is clear that S/mS ' B. We put B[[xi | i ∈ Λ ]] := Ŝ.
Note that every element f ∈ Ŝ can be uniquely written as f = ∑α cα xα , where α

runs over the maps I→ Z≥0 such that α(i) 6= 0 for finitely many i, cα ∈ B, and we
put xα = ∏i xα(i)

i . The condition for f to be a well-defined element of B[[xi | i ∈Λ ]]
is that for every N, there are only finitely many α such that cα 6= 0 and ∑i α(i)≤ N.
Of course, when Λ is finite set with n elements, we recover the usual formal power
series ring over B in n variables.

In particular, if B = k is a field, then k[[xi | i ∈ Λ ]] is an object in Comp(k). In
this case, its maximal ideal consists of those f = ∑α cα xα with c0 = 0. Note that if
(A,mA) is an object in Comp(k), then giving a morphism φ : k[[xi | i ∈ Λ ]]→ A in
Comp(k) is equivalent to giving elements ai ∈ mA for every i ∈ Λ (in which case
φ(xi) = ai).

We note that when Λ is an infinite set, the behavior of this power series ring is
somewhat peculiar, even when B = k. For example, in this case the maximal ideal
mŜ in Ŝ is different from mS · Ŝ (it is easy to check that if Λ = Z>0, then f = ∑i≥1(xi)i

lies in mŜ, but not in mS · Ŝ). Moreover, if Λ is infinite, then Ŝ is not complete in the
mŜ-adic topology.

Remark 10.9.4. Suppose that (R,m) and (S,n) are objects in Comp(k), with the
topologies defined by the sequences of ideals (I j) j≥1 and (J j) j≥1, respectively. On
the tensor product R⊗k S we have the topology induced by the sequence of ide-
als a` = I`⊗k S + R⊗k J`. The completion of R⊗k S with respect to this topology
is denoted by R⊗̂S. Note that this is an element of Comp(k). Indeed, we have in
R⊗k S the maximal ideal b = m⊗k S+R⊗k n, with residue field k, and the topology
on R⊗k S is coarser than the b-adic topology. It is easy to check that R⊗̂S is the
coproduct of R and S in the category Comp(k).

Note that for every two sets Λ and Γ , we have a canonical isomorphism in
Comp(k)
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k[[xi,y j | i ∈Λ , j ∈ Γ ]]' k[[xi | i ∈Λ ]]⊗̂k[[y j | j ∈ Γ ]].

This follows by considering morphisms to objects in Comp(k). It is also easy to see
that for every set Γ , we have a morphism of k-algebras

φ : T [[y j, j ∈ Γ ]]→ k[[xi,y j | i ∈Λ , j ∈ Γ ]],

where T = k[[xi | i ∈Λ ]], given by

φ(∑
β

(∑
α

cα,β xα)yβ ) = ∑
α,β

cα,β xα yβ .

This is not surjective if Γ is infinite and Λ is nonempty: for example, if i0 ∈Λ and
Γ = Z>0, then ∑m≥1(xi0)

mym lies in k[[xi,y j | i ∈Λ , j ∈ Γ ]] but it is not in the image
of φ . On the other hand, if Γ is finite, then φ is an isomorphism.

Example 10.9.5. We may also consider the following variant of the construction in
Example 9.9.3. Suppose that (R,mR,k) is a local ring and on R we have a linear
topology defined by the sequence of ideals (I j) j≥1, which is coarser than the m-adic
topology. Given a set Λ , we consider S = R[xi | i ∈ Λ ] and the ideal in S given by
mS = mR ·S +(xi | i ∈Λ). It is clear that S/mS ' k. We give S the topology defined
by the sequence of ideals (J j) j≥1, with

J j = I j ·S +(xi | i ∈Λ) j.

By considering morphisms to test rings, it is easy to see that we have an isomorphism
in Comp(k)

Ŝ' R̂⊗̂k[[xi | i ∈Λ ]]. (10.23)

We now turn to the Weierstrass division and preparation theorems. We will prove
these in a slightly more general setting than is usually done, in order to be able to
use them also in the setting of formal power series in infinitely many variables. The
following easy lemma is the main ingredient in the proof.

Lemma 10.9.6. Let R be a ring and a an ideal in R. Suppose that R is complete and
separated with respect to the linear topology given by a sequence of ideals (I j) j≥1,
which is coarser than the a-adic topology. If M is an R-module which is separated
with respect to the linear topology given by (I jM) j≥1 and if u1, . . . ,ur ∈M are such
that M/aM is generated over R/a by u1, . . . ,ur, then M is generated over R by
u1, . . . ,ur.

Proof. For every u ∈M, we can write by hypothesis

u =
r

∑
i=1

ai,1ui +w1, (10.24)

with ai,1 ∈ a for all i and w1 ∈ aM. We now show by induction on m≥ 1 that we can
write
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u =
r

∑
i=1

ai,mui +wm, (10.25)

with ai,m− ai,m−1 ∈ am for all i and wm ∈ amM (where we put ai,0 = 0 for all i).
The case m = 1 follows from (9.24), hence we only need to prove the induction
step. Suppose that ai,m and wm are as above. Since wm ∈ amM, we can write wm =
∑

d
j=1 b j,mv j,m, with b j,m ∈ am and v j,m ∈M for all j. Applying the hypothesis to each

v j,m, we write

v j,m =
r

∑
i=1

ci, j,mui + v′j,m,

with ci, j,m ∈ a and v′j,m ∈ aM. We thus have

u =
r

∑
i=1

(
ai,m +

d

∑
j=1

b j,mci, j,m

)
+

d

∑
j=1

b j,mv′j,m.

Since ∑
d
j=1 b j,mci, j,m ∈ am+1 and ∑

d
j=1 b j,mv′j,m ∈ am+1M, this completes the proof

of the induction step.
Note that for every i with 1≤ i≤ r, the sequence (ai,m)m≥1 is Cauchy in the a-adic

topology. This implies that it is also Cauchy in the topology given by (I j) j≥1, and
therefore it converges in this topology to some ai ∈ R. We claim that u = ∑

r
i=1 aiui.

By the separatedness assumption on M, it is enough to show that u−∑
r
i=1 aiui ∈ I jM

for all j. By (9.25), for every m we have

u−
r

∑
i=1

aiui =
r

∑
i=1

(ai,m−ai)ui +wm.

Since wm ∈ amM ⊆ I jM for m� 0 and ai,m− ai ∈ I j for m� 0, we deduce that
u−∑

r
i=1 aiui ∈ I jM. This completes the proof of the lemma.

Theorem 10.9.7. Let (R,m,k) be a local ring such that R is complete and separated
with respect to the linear topology given by a sequence of ideals (I j) j≥1, which
is coarser than the m-adic topology. If f = ∑i≥0 aixi ∈ R[[x]] is such that for some
nonnegative integer h, we have ah /∈m and ai ∈m for 0≤ i≤ h−1, then R[[x]]/( f )
is free over R, with basis 1,x, . . . ,xh−1.

Proof. We give the argument in several steps.
Step 1. We show that if I is an ideal in R and g = ∑i≥0 bixi ∈ R[[x]] is such that there is
a polynomial Q∈ R[x] of degree < h such that all coefficients of f g−Q lie in I, then
bi ∈ ∩`≥1(I +m`) for every i ≥ 0. We prove this by induction on `, the case ` = 0
being trivial. Suppose that we know the assertion for `. We show that bi ∈ I +m`+1

by induction on i ≥ 0. Let us assume that b j ∈ I +m`+1 for j < i. By considering
the coefficient of xh+i in f g−Q, we see that ∑

h+i
j=0 a jbh+i− j ∈ I. For j < h, we have

a j ∈ m by hypothesis and bh+i− j ∈ I +m` by the induction hypothesis on `, hence
a jbh+i− j ∈ I + m`+1. On the other hand, for j > h we have bh+i− j ∈ I + m`+1 by
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the induction hypothesis on i. Therefore ahbi ∈ I +m`+1 and since ah is invertible,
it follows that bi ∈ I +m`+1. This completes the proofs of both induction steps.
Step 2. The R-module M = R[[x]]/( f ) is separated with respect to the topology de-
fined by (I jM) j≥1. Indeed, suppose that P ∈ R[[x]] is such that P ∈ ( f ) + I jR[[x]]
for every j ≥ 1. In this case we can write P = f g j + B j for every j ≥ 1, where
B j ∈ I jR[[x]]. In particular, for all j, all coefficients of f (g j − g j+1) lie in I j. Note
that m` ⊆ I j for `� 0 by assumption, hence it follows from Step 1 that all coeffi-
cients of g j−g j+1 lie in I j. Since R is complete with respect to the topology given by
(I j) j≥1, it follows that there is g ∈ R[[x]] such that for every N and every j, if `� 0,
then the coefficients of the monomials of degree < N in g−g` are in I j. In this case
we have P = f g. Indeed, for every N and every j, we have P− f g = f (g`−g)+B`,
hence for `� 0, all coefficients of the monomials of degree < N in P− f g are in
I j. Since R is separated in the topology given by (I j) j≥1, we conclude that P = f g.
This completes the proof of the fact that M is separated.
Step 3. Note that M/mM is generated over k by 1,x . . . ,xh−1. Indeed, f ≡ ∑i≥h aixi

(mod mR[[x]]). Since ∑i≥h aixi = xh · T (x), for some invertible T ∈ R[[x]], we have
M/mM ' R[[x]]/((xh) + mR[[x]]) and this is clearly generated by 1, . . . ,xh−1. By
Step 2, we may thus apply Lemma 9.9.6 to conclude that M is generated over R
by 1,x, . . . ,xh−1.
Step 4. We now show that these elements are linearly independent over R. Suppose
there are c0, . . . ,ch−1 ∈ R such that ∑

h−1
i=0 cixi = f g for some g ∈ R[[x]]. It follows

from Step 2 that all coefficients of g lie in ∩`≥1m
`. However, this intersection is 0

since R is the separated in the topology given by (I j) j≥1, which is coarser than the
m-adic one. Therefore g = 0, hence ci = 0 for 0 ≤ i ≤ h− 1. This completes the
proof of the theorem.

Remark 10.9.8. For future reference, we note that by applying Step 1 of the above
proof with I = 0, we deduce that if f is as in Theorem 9.9.7, then f is a non-zero
divisor in R[[x]]. Similarly, by taking I = ms, with s≥ 1, we see that the image f of
f in (R/ms)[[t]] is a non-zero divisor.

Corollary 10.9.9 (Weierstrass division theorem). Under the assumptions of The-
orem 9.9.7, for every p ∈ R[[x]], there are unique g,q ∈ R[[x]], with q a polynomial of
degree < h, such that p = f g+q.

Proof. The existence of g and q, as well as the uniqueness of q, follow from Theo-
rem 9.9.7. The uniqueness of g then follows from the fact that f is a non-zero divisor
(see Remark 9.9.8).

Corollary 10.9.10 (Weierstrass preparation theorem). Under the assumptions of
Theorem 9.9.7, we can uniquely write f = uP, with u ∈ R[[x]] invertible and P =
xh +∑

h−1
i=0 cixi, with ci ∈m for all i (such P is called a Weierstrass polynomial).

Proof. We apply Corollary 9.9.9 with p = xh to write xh = f g + q, where q ∈ R[x]
is a polynomial of degree < h. By mapping to k[[x]], we see that

xh = xhg(x) ·
∞

∑
i=h

aixi−h +q.
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Since q has degree < h, we conclude that q = 0 and g is invertible. This implies that
g is invertible and we may take u = g−1 and P = xh−q.

Conversely, if f = uP is as in the statement and P = xh +∑
h−1
i=0 cixi, then

xh = u−1 f −
h−1

∑
i=0

cixi,

and the uniqueness of u and P follows from the uniqueness statement in Corol-
lary 9.9.9.

Example 10.9.11. If k is an infinite field and f ∈ k[[xi | i ∈Λ ]] is nonzero, then there
is i1 ∈Λ and an automorphism

φ : k[[xi | i ∈Λ ]]→ k[[xi | i ∈Λ ]]' R[[xi1 ]],

where R = k[[xi | i ∈ Λ r {i1}]], such that φ( f ) = uP, with u invertible and P
a Weierstrass polynomial in xi1 . In fact, we can find such φ given by a linear
change of coordinates in finitely many variables. We write f = ∑`≥0 f`, where each
f` ∈ k[xi | i ∈ Γ ] is a homogeneous polynomial of degree `. Let d be the small-
est nonnegative integer such that fd 6= 0 and suppose that i1, . . . , ir ∈Λ are such that
fd ∈ k[xi1 , . . . ,xir ]. After possibly applying a linear change of variables in xi1 , . . . ,xir ,
we may assume that fd(1,xi2 , . . . ,xir) 6= 0. In this case, if a2, . . . ,ar ∈ k are general,
then fd(1,a2, . . . ,ar) is nonzero, hence the monomial xd

i1 appears with nonzero co-
efficient in fd(xi1 ,xi2 + a2xi1 , . . . ,xir + arxi1). Therefore we may assume that some
power of xi1 appears with nonzero coefficient in f , in which case Corollary 9.9.10
implies that we can write f as a product of an invertible element and a Weierstrass
polynomial in xi1 .

10.9.2 The formal arc theorem

In this section we prove a theorem concerning the completion of the arc space at
a point that does not lie in the space of arcs of the non-smooth locus. This result
provides a way to reduce the local ring of a point on X∞, where X is a singular
scheme, to the case of the local ring of a scheme of finite type and the local ring of
an arc on a smooth variety. The twist comes from the fact that this is only true after
passing to completions. We work over an arbitrary field k. If X is a scheme of finite
type over k, we denote by Xsm the open subset consisting of the points where X is
smooth over k and put Xsing = X r Xsm.

Theorem 10.9.12 (Formal arc theorem). Let X be a scheme of finite type over k.
If γ is a k-valued arc on X that does not lie in J∞(Xsing), then there is a scheme of
finite type Y over k and y ∈ Y (k) such that we have an isomorphism in Comp(k):

ÔJ∞(X),γ ' ÔY,y ⊗̂k[[xi | i≥ 1]].



10.9 The formal arc theorem and the curve selection lemma 329

Of course, the scheme Y in the theorem is not unique. If (Y,y) satisfies the con-
dition in the theorem, then so does (Y ×A1,(y,0)). The theorem was first proved
by Grinberg and Kazhdan in [GK00], over a field of characteristic 0. We present the
proof following Drinfeld’s note [Dri].

Proof of Theorem 9.9.12. The theorem is local, hence we may assume that X is
affine. By Remark 9.9.1, it is enough to find (Y,y) as in the statement with the
property that for every test ring (A,mA), we have a natural bijection

HomComp(k)(ÔJ∞(X),γ ,A)' Hom(OY,y,A)×m
Z>0
A , (10.26)

where the Hom set on the right-hand side is in the category of local k-algebras. On
the other hand, since A is a local ring, it follows from Lemma 9.2.2 that the Hom set
on the left-hand side is in natural bijection with the set of A-valued arcs on X that
induce γ

Consider a closed embedding X ↪→ AN . Let xη ∈ X be the image via γ of the
generic point of Speck[[t]]. By assumption, we have xη ∈ Xsm. If the dimension of
Xsm at xη is n and r = N− n, then there are f1, . . . , fr in the ideal of X such that if
W = V ( f1, . . . , fr), then X = W at xη and some r-minor of the Jacobian matrix of
f1, . . . , fr does not vanish at xη . We claim that the inclusion J∞(X) ↪→ J∞(W ) induces
an isomorphism ÔJ∞(X),γ ' ÔJ∞(W ),γ . Let IX and IW be the ideals defining X and W ,
respectively, in AN . We need to show that for every test ring (A,mA) and every local
k-algebra homomorphism δ ∗ : O(AN)→ A[[t]] which induces γ∗ : O(AN)→ k[[t]], if
δ ∗(IW ) = 0, then δ ∗(IX ) = 0. Let us consider the ideal a = {g∈O(AN) | g ·IX ⊆ IW}.
Since IW = OX at xη , it follows that a = OAN at xη , hence γ∗(a) 6= 0. Therefore there
is h ∈ a such that δ ∗(h) is a non-zero divisor (see Remark 9.9.8). On the other hand,
we have h · δ ∗(IX ) ⊆ δ ∗(a · IX ) ⊆ δ ∗(IW ) = 0. We conclude that δ ∗(IX ) = 0, as
claimed.

Therefore we may assume that X = W . In other words, we may assume that X is
defined in Speck[x1, . . . ,xn,y1, . . . ,yr] by f1(x,y), . . . , fr(x,y) and det( ∂ f

∂y ) does not

vanish at xη . In what follows, we denote the matrix
(

∂ f
∂y

)
by B(x,y), its classical

adjoint matrix by B̂(x,y), and its determinant by D(x,y). Therefore we have B · B̂ =
B̂ ·B = D · Ir. We also denote by f (x,y) the column vector ( f1(x,y), . . . , f (x,y))T .

The arc γ is given by some (u0,v0) ∈ k[[t]]⊕n× k[[t]]⊕r. By hypothesis, D(u0,v0)
is a nonzero element of k[[t]]. Let d be its order. Note that if d = 0, then γ ∈ J∞(Xsm),
in which case the assertion in the theorem follows from the fact that after possibly
replacing X with a suitable affine open subset, we may assume that ΩX/k is trivial,
hence J∞(X) ' X ×Speck[xi | i ∈ Z>0]. In this case it is enough to use the isomor-
phism (9.23) in Remark 9.9.5. Therefore from now on we may and will assume
d > 0.

Suppose now that (A,mA) is a test ring and we want to describe the left-hand side
of (9.26). This is in natural bijection with the set of A-valued arcs on X that induce
γ , that is, with the set of those (u,v) ∈ A[[t]]⊕n×A[[t]]⊕r such that f (u,v) = 0 and
(u,v) is a lift of (u0,v0). Given such (u,v), note that D(u,v) is a lift of D(u0,v0),
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which has order d. We may thus apply the Weierstrass preparation theorem to write
D(u,v) ∈ A[[t]] as αq, with α invertible and q a monic polynomial of degree d that
is a lift of td ∈ k[[t]].

The key idea is to keep track also of q. In other words, we are interested in the set
of those (u,v,q) such that (u,v) ∈ A[[t]]⊕n×A[[t]]⊕r is a lift of (u0,v0) that satisfies
f (u,v) = 0 and q ∈ A[t] is a monic polynomial of degree d which is a lift of td ∈ k[t]
such that

D(u,v) ∈ qA[[t]]. (10.27)

Note that the conditions on q imply that it is a non-zero divisor in A[[t]] and moreover,
its image in any (A/mi

A)[[t]] is a non-zero divisor (see Remark 9.9.8). If (9.27) holds,
then we can write D(u,v) = αq for a unique α , which is invertible since it is a
lift of an invertible element in k[[t]]. The uniqueness assertion in the Weierstrass
preparation theorem therefore implies that such q is uniquely determined by (u,v).

The following lemma will allow us to isolate a finite set of equations. Let s be a
fixed positive integer.

Lemma 10.9.13. Suppose that (A,mA) is a test ring, (u,v)∈A[[t]]⊕n×A[[t]]⊕r is a lift
of (u0,v0), and q ∈ A[t] is a monic polynomial of degree d which is a lift of td ∈ k[t]
such that (9.27) holds, and furthermore, the following conditions are satisfied:

f (u,v) ∈ (qsA[[t]])⊕r and (10.28)

B̂(u,v) · f (u,v) ∈ (qs+1A[[t]])⊕r. (10.29)

In this case there is a unique v′ ∈ A[[t]]⊕r that is a lift of v0, with v′−v ∈ (qsA[[t]])⊕r,
and such that f (u,v′) = 0.

Proof. By assumption, there is e ≥ 1 such that me
A = 0. We prove the assertion

by induction on e. If e = 1, then A = k and there is nothing to prove. Suppose
now that e ≥ 2. We may apply the induction hypothesis to A/me−1

A to conclude
that there is w ∈ A[[t]]⊕r which is a lift of v0, such that w− v ∈ (qsA[[t]])⊕r and
f (u,w) ∈ (me−1

A )⊕r.
We show that there is a unique R ∈ A[[t]]⊕r whose image in (A/me−1

A )[[t]]⊕r is 0
such that if v′ = w+qsR, then f (u,v′) = 0. The Taylor expansion of f with respect
to y1, . . . ,yr gives

f (u,v′) = f (u,w)+qsB(u,w) ·R (10.30)

(since the coefficients of all power series in R lie in me−1
A and 2(e− 1) ≥ e, the

other terms in the Taylor expansion vanish). We now remark that it is enough to
have B̂(u,w) · f (u,v′) = 0. Indeed, if this is the case, then multiplying on the left
by B(u,w) gives D(u,w) f (u,v′) = 0. Since the image of D(u,w) in k[[t]] is equal to
D(u0,v0), which is nonzero, it follows from Remark 9.9.8 that D(u,w) is a non-zero
divisor. Therefore in this case f (u,v′) = 0.

We deduce from (9.30) that

B̂(u,w) · f (u,v′) = B̂(u,w) · f (u,w)+qsD(u,w) ·R. (10.31)
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Since w−v ∈ (qsA[[t]])⊕r, it follows from (9.27) that q divides D(u,w). Using again
the fact that the image of D(u,w) in k[[t]] is equal to D(u0,v0), which has order
d, we conclude that D(u,w) = qβ , for some invertible β ∈ A[[t]]. Since w− v ∈
(qsA[[t]])⊕r, it follows from (9.28) that f (u,w) ∈ (qsA[[t]])⊕r. Since 2s ≥ s + 1, this
together with (9.28) implies B̂(u,w) · f (u,w) ∈ (qs+1A[[t]])⊕r. Let us write B̂(u,w) ·
f (u,w) = qs+1S for some S ∈ A[[t]]⊕r. Since fi(u,w) ∈ me−1

A for every i and since
the class of q in (A/me−1

A )[[t]] is a non-zero divisor, we conclude that the image of
S in (A/me−1

A )[[t]] is 0. We thus conclude that if R =−β−1S, then the image of R in
(A/me−1

A )[[t]] is 0 and then f (u,w+qsR) = 0. Note also that there is a unique R that
satisfies these two conditions. This is a consequence of (9.31) and of the fact that q
is a non-zero divisor.

In order to prove the uniqueness of v′, suppose that we also have v′′ ∈ A[[t]]⊕r

which is a lift of v0 such that v′′− v ∈ (qsA[[t]])⊕r and f (u,v′′) = 0. Therefore we
may write v′′−w = qsR′ for some R′ ∈ A[[t]]⊕r. By the induction hypothesis, we
see that v′ and v′′ have the same image in (A/me−1

A )[[t]]⊕r, hence the image of qsR′

in (A/me−1
A )[[t]]⊕r is 0. Using again the fact that the class of q in (A/me−1

A )[[t]] is a
non-zero divisor, we conclude that the image of R′ in (A/me−1

A )[[t]]⊕r is 0. In this
case we have R′ = R by the uniqueness of R, hence v′ = v′′.

We now return to the proof of the theorem. It is clear that conditions (9.27),
(9.28), and (9.29) only depend on the values of u and v mod qs+1. Note that each
u ∈ A[[t]]⊕n and v ∈ A[[t]]⊕r can be uniquely written as u = u′qs+1 + u′′ and v =
v′qs+1 + v′′, with

u′ ∈ A[[t]]⊕n, v′ ∈ A[[t]]⊕r, u′′ ∈ A[t]⊕n, v′′ ∈ A[t]⊕r,

such that both u′′ and v′′ have all entries of degree < (s+1)d. Moreover, if we write
similarly u0 = u′0t(s+1)d +u′0 and v0 = v′0t(s+1)d + v′′0 , with

u′0 ∈ k[[t]]⊕n, v′0 ∈ k[[t]]⊕r, u′′0 ∈ k[t]⊕n, v′′0 ∈ k[t]⊕r,

with u′′0 and v′′0 having all entries of degree < (s+1)d, then (u,v) is a lift of (u0,v0)
if and only if (u′,v′) is a lift of (u′0,v

′
0) and (u′′,v′′) is a lift of (u′′0 ,v

′′
0). In particular,

we see that the condition for (u′,v′) is that u′−u′0 = ∑ı≥0 αit i and v′−v′0 = ∑i≥0 βit i,
where αi,βi ∈mA for all i ∈ Z≥0.

Suppose that Y is the scheme of finite type over k such that for every k-algebra
A, we have a natural bijection between Y (A) and the set of triples (q,u,v), where
q ∈ A[t] is a monic degree d polynomial, u ∈ A[t]⊕n and v ∈ A[t]⊕r have all entries
of degree < (s + 1)d, such that conditions (9.27), (9.28), and (9.29) are satisfied.
Note that since q is monic, each of these three divisibility conditions are algebraic
conditions on the coefficients of q, u, and v. If y ∈ Y (k) is the point corresponding
to (td ,u′′0 ,v

′′
0), we see that we have

ÔJ∞(X),γ ' ÔY,y ⊗̂k[[xi | i≥ 1]].
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Example 10.9.14. Suppose that X ⊆An
k is defined by ∑

n
i=1 x2

i = 0 (where we assume
char(k) 6= 2). Let γ be the k-arc on X given by (c1t, . . . ,cnt), where ∑

n
i=1 c2

i = 0 and
(c1, . . . ,cn) 6= (0, . . . ,0). Suppose, for example, that cn 6= 0. With the notation in the
proof of the theorem, we have d = 1 and we take s = 1. In this case q(t) = t−α

and it is more convenient to write each polynomial of degree < 2 as u(t−α)+ v.
Therefore we may take Y to be the set of those (α,u1, . . . ,un,v1, . . . ,vn) ∈ A2n+1

such that (t−α) divides un(t−α)+vn and (t−α)2 divides ∑
n
i=1(un(t−α)+vn)2.

Therefore

Y = {(α,u1, . . . ,un,v1, . . . ,vn) ∈ A2n+1 | vn = 0,
n−1

∑
i=1

uivi = 0,
n−1

∑
i=1

v2
i = 0}.

Moreover, in this case y = (0,c1, . . . ,cn,0, . . . ,0).
An easy computation then shows that in fact if n = 2, then we may take Y =

Spec(k) and if n = 3, then we may take Y = Speck[z]/(z2).

10.9.3 The curve selection lemma

10.10 The Nash problem

This topic was started off by the influential paper [Nas95] of John Nash. While the
paper was only published in 1995, it circulated in preprint form since the middle of
the 1960s and it generated a lot of activity. After formulating the problem, we dis-
cuss some easy examples, including the case of toric varieties, then give an overview
of the recent solution of the two-dimensional case, and end with a counterexample
in dimension 3.

For simplicity, in this section we work over an algebraically closed field k, of
characteristic 0. We will explicitly mention where the latter assumption is critical.
Most of the time, however, it will only be used since we need to use resolutions of
singularities. In particular, whenever we are in a setting where such resolutions are
known to also exist in positive characteristic (for example, for surfaces or for toric
varieties), most of what follows will carry through. In this section, by a resolution
of singularities for a variety X we mean a projective, brational morphism f : Y → X ,
with Y smooth.

10.10.1 The Nash map

Let X be a variety over k and Z a proper closed subset of X . In the usual setting for
the Nash problem one often takes Z = Xsing, but we prefer not to restrict to this case.
We put

JZ
∞(X) = (πX

∞ )−1(Z)⊆ J∞(X).
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A good component of JZ
∞(X) is an irreducible component which is not contained

in J∞(Xsing). Recall that by Proposition 9.2.15, JZ
∞(X) has finitely many irreducible

components.

Remark 10.10.1. Given X and Z as above, we also consider the set of k-valued points
of JZ

∞(X), that is,
XZ

∞ := (πX
∞ )−1(Z)⊆ X∞.

It follows from Proposition 9.2.15 that XZ
∞ is dense in JZ

∞(X), hence we have a bi-
jection between the irreducible components of JZ

∞(X) and those of XZ
∞ , such that the

good components of JZ
∞(X) correspond to the good components of XZ

∞ , that is, to
the irreducible components of this set that are not contained in (Xsing)∞. Therefore
whenever describing the good components, we may restrict to the k-valued points.

Proposition 10.10.2. Let X be a variety and Z a proper closed subset of X. If W is
a good component of JZ

∞(X), then the following hold:

i) For every proper closed subset T of X, we have W 6⊆ J∞(T ).
ii) If f : Y → X is a resolution of singularities, then there is a unique irreducible

closed subset WY of J∞(Y ) such that f∞(WY ) = W. Moreover, there is a unique
irreducible component Z′ of f−1(Z) such that WY = JZ′

∞ (Y ).

Proof. Given a resolution of singularities f : Y → X , let B be a proper closed subset
of X such that f is an isomorphism over X r B. Suppose that W is not contained in
J∞(B). Recall that by Proposition 9.2.8, f∞ is surjective over J∞(X)r J∞(B). Since

f−1
∞ (JZ

∞(X)) = J f−1(Z)
∞ (Y ), it follows that we can write

JZ
∞(X) = JZ∩B

∞ (B)∪ f∞(J f−1(Z)
∞ (Y )).

If Z′1, . . . ,Z
′
r are the irreducible components of f−1(Z), we obtain

JZ
∞(X) = JZ∩B

∞ (B)∪ f∞(JZ′1
∞ (Y ))∪ . . .∪ f∞(JZ′r

∞ (Y )).

Note that each f∞(JZ′i
∞ (Y )) is irreducible. Since W is an irreducible component

of JZ
∞(X) that is not contained in J∞(B), it follows that there is i such that W =

f∞(JZ′i
∞ (Y )). This implies, in particular, that for every proper closed subset B′ of X ,

we have W 6⊆ J∞(B′). Indeed, otherwise JZ′i
∞ (Y ) ⊆ J∞( f−1(B′)), contradicting the

fact that a nonempty cylinder in the space of arcs of a smooth variety is not con-
tained in the space of arcs of a proper closed subset (see Lemma 9.3.4). We also
note that it is automatic that there is at most one irreducible closed subset WY of
J∞(Y ) such that f∞(WY ) = W . Indeed, in this case f∞ maps the generic point of WY
to the generic point of W , which lies in the open subset J∞(X)r J∞(B), over which
f∞ is injective.

Suppose now that we choose a resolution f as above that is an isomorphism
over the smooth locus of X (hence we may take B = Xsing). Since W is a good
component, it follows that we may apply the above discussion. In particular, we



334 10 Arc spaces

obtain the assertion in i). This in turn implies that for every resolution f , we may
apply the above argument and thus also deduce ii).

The following property shows that in the usual setting of the Nash problem, all
components of JZ

∞(X) are good. For this, the characteristic 0 assumption is crucial.
This property, however, will not play an important role in what follows.

Proposition 10.10.3. If X is a variety and Z = Xsing, then all irreducible components
of JZ

∞(X) are good.

Proof. Let f : Y → X be a resolution of singularities that is an isomorphism over
X r Z. As in the proof of Proposition 9.10.2, we write

JZ
∞(X) = J∞(Z)∪ f∞(J f−1(Z)

∞ (Y ))

and f∞(J f−1(Z)
∞ (Y )) is a union of irreducible closed subsets not contained in J∞(Z).

Therefore in order to prove the proposition, it is enough to show that J∞(Z) is con-

tained in the closure of f∞(J f−1(Z)
∞ (Y )). For this, we argue as in the proof of Theo-

rem 9.2.10.
Let Z1, . . . ,Zs be the irreducible components of Z, hence J∞(Z) = ∪s

i=1J∞(Zi)
by Lemma 9.2.7. For every i, let us choose Wi to be an irreducible component of
f−1(Zi) that dominates Zi. By the generic smoothness theorem, we can find open
subsets Ui ⊆ Zi and Vi ⊆ Wi such that f induces a smooth surjective morphism
Vi → Ui. It follows from property 3) in Remark 9.2.3 that J∞(Ui) is contained in

the image of J∞(Vi), hence in f∞(J f−1(Z)
∞ (Y )). Since each J∞(Zi) is irreducible by

Theorem 9.2.10 and J∞(Ui) is open in J∞(Zi), we conclude that each J∞(Zi) is con-

tained in the closure of f∞(J f−1(Z)
∞ (Y )). Therefore the same holds for J∞(Z).

Example 10.10.4. When Z 6= Xsing, it is not necessarily true that all components of
JZ

∞(X) are good. Suppose for example that X is the hypersurface in A3 defined by
x2− y2z = 0, where char(k) 6= 2. We have seen in Example ?? that if Z consists of
the origin, then JZ

∞(Y ) has two irreducible components, only one of which is good.

Example 10.10.5. The property in Proposition 9.10.3 can fail in positive character-
istic. Suppose, for example, that X is the hypersurface in A3 given by x2− y2z = 0,
with char(k) = 2. Let Z = Xsing. We have seen in Example 9.2.11 that J∞(Z) con-
tains an open subset of J∞(X). Since Z ' A1, we deduce that J∞(Z) is irreducible
and therefore it is an irreducible component of JZ

∞(X) which is not good.

It follows from Proposition 9.10.2 that given any resolution of singularities
f : Y → X , we can define a map N Z

Y/X on the set of good components of JZ
∞(X)

and taking values in the set of irreducible components of f−1(Z) such that if

N Z
Y/X (W ) = Z̃, then W = f∞(JZ̃

∞(Y )). It is clear from this formula that N Z
Y/X is

an injective map.
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Remark 10.10.6. Suppose that X and Z are as above and f : Y → X and g : Y ′→ Y
are such that both f and f ◦g are resolutions of singularities. In this case, for every
good component W of JZ

∞(X), we have

N Z
Y/X (W ) = g(N Z

Y ′/X (W )).

Indeed, if Z̃ = (N Z
Y/X (W )) and Z̃′ = (N Z

Y ′/X (W )), it follows from the uniqueness
statement in Proposition 9.10.2 that

g∞(JZ̃′
∞ (Y ′)) = JZ̃

∞(Y ).

Since πY ′
∞ (JZ̃′

∞ (Y ′)) = Z̃′ and πY
∞(JZ̃

∞(Y )) = Z̃, we conclude that Z̃′ dominates Z̃, that
is, g(Z̃′) = Z̃.

Our next goal is to obtain a version of the map N Z
Y/X that is independent of

the resolution, mapping the good components of JZ
∞(X) to certain divisors over X .

Suppose that X is a variety and Z is a proper closed subset of X . An essential divisor
over X with respect to Z is a divisor E over X such that for every resolution of
singularities f : Y → X , the center cY (E) of E on Y is an irreducible component
of f−1(Z). In particular, this implies that cX (E) ⊆ Z. We simply say that E is an
essential divisor over X if it is an essential divisor over X with respect to Xsing.

Example 10.10.7. Suppose, for example, that E is a divisor over X such that
cX (E) ⊆ Z and for every resolution of singularities f : Y → X the center cY (E)
is a divisor on Y . It is clear that in this case cY (E) is an irreducible component of
f−1(Z), hence E is an essential divisor over X with respect to Z.

Example 10.10.8. It was shown by Abhyankar (see [Abh56, Proposition 4]) that if
h : Y ′ → Y is a proper, birational morphism of varieties, with Y smooth, and E is
a prime divisor on Y ′ such that dim(h(E)) < dim(E), then E is ruled, that is, it is
birational to Y1×P1 for some variety Y1. This implies that if X is a variety, Z is a
proper closed subset of X , and E is a divisor over X such that cX (E) ⊆ Z and E is
not ruled (note that this assumption is independent on the model on which we view
E), then for every resolution of singularities f : Y → X , the center of E on Y is a
divisor. Therefore E is an essential divisor over X with respect to Z.

Remark 10.10.9. If E is an essential divisor over X with respect to Z, then for every
projective, birational morphism g : X ′ → X , we have that E is an essential divisor
over X ′, with respect to g−1(Z). Indeed, this simply follows from the fact that if
f : Y → X ′ is a resolution of X ′, then g◦ f is a resolution of X .

Remark 10.10.10. By putting conditions on the resolutions we consider, we can en-
large the class of essential divisors. For example, if in the definition of essential divi-
sors we only consider resolutions f : Y → X such that f−1(Z) has pure codimension
1, then E is a divisorially essential divisor over X with respect to Z. Similarly, one
can only consider, as in [IK03], resolutions of X that give an isomorphism over the
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smooth locus of X . Moreover, when Z is contained in the singular locus of X , one
can only consider resolutions f : Y → X that give an isomorphism over the smooth
locus of X and such that f−1(Z) has pure codimension 1. However, in what follows
we will not make use of these variations.

Lemma 10.10.11. Let E be a divisor over X and U an open subset of X such that
cX (E)∩U 6= /0. For every proper closed subset Z of X, E is an essential divisor over
X with respect to Z if and only if E is an essential divisor over U, with respect to
Z∩U.

Proof. Since cX (E)∩U 6= /0, it follows that E can be considered as a divisor over U .
If f : Y → X is a resolution of X , then the induced morphism f−1(U)→U is a reso-
lution of U . It is clear that cX (E) is an irreducible component of f−1(Z) if and only
if c f−1(U)(E) = cY (E)∩ f−1(U) is an irreducible component of f−1(Z)∩ f−1(U).
In order to complete the proof, it is enough to show that given any resolution of
singularities g : V →U , there is a resolution of singularities f : Y → X and an iso-
morphism V ' f−1(U) over U . It follows from a theorem of Nagata and Deligne

(see [Con07]) that we can factor the composition V →U → X as V
j

↪→V h→ X , with
h proper, V a variety, and j an open immersion. Since V is smooth, we can find a
resolution of singularities h′ : Y → V that is an isomorphism over V . It is clear that
the composition f = h◦h′ has the desired properties.

Lemma 10.10.12. Suppose that E is an essential divisor over X with respect to
Z. For every resolution of singularities f : Y → X, if cY (E) = W, then E is equal
as a divisor over X with the unique irreducible component dominating W of the
exceptional divisor on the blow-up of Y along W.

Proof. It follows from Remark 9.10.9 that after replacing X by Y and Z by f−1(Z),
we may assume that Y = X , in which case W is an irreducible component of Z.
Furthermore, Lemma 9.10.11 implies that we may replace X by an open subset
intersecting W , hence we may assume that W is smooth. Let g : B→Y be the blow-
up of Y along W , and let F be the exceptional divisor. Since cB(E) ⊆ g−1(W ) = F
is, by assumption, an irreducible component of g−1(Z), it follows that cB(E) = F ,
hence E = F as divisors over X .

Corollary 10.10.13. If f : Y →X is a resolution of X and Z is a proper closed subset
of X, then any two distinct divisors over X that are essential with respect to Z have
distinct centers on Y . In particular, there are at most finitely many essential divisors
over X with respect to Z.

Proof. It follows from Lemma 9.10.12 that if E is an essential divisor over X with
respect to Z, then E is determined by its center on Y . This gives the first assertion
in the corollary. The second assertion follows from the fact that the center of every
essential divisor over X with respect to Z is an irreducible component of f−1(Z) and
there are only finitely many such irreducible components.
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If f : Y → X is a resolution of X and Z is a proper closed subset of X , then the
irreducible components of f−1(Z) that are centers on Y of essential divisors over
X with respect to Z will be called essential components of f−1(Z). It follows from
Lemma 9.10.12 that each essential component determines the corresponding divisor
over X .

Proposition 10.10.14. Let X be a variety and Z a proper closed subset of X. There
is a unique injective map

N Z : {Good components ofJZ
∞(X)}→{Essential divisors overX with respect toZ}

such that for every resolution of singularities f : Y → X, the center of N Z(W ) on
Y is equal to N Z

Y/X (W ).

Proof. Let h : X̃ → X be a resolution of singularities such that h−1(Z) has all ir-
reducible components of dimension 1. If W is a good component of JZ

∞(X), we let
N Z(W ) be the divisor over X corresponding to the prime divisor N Z

X̃/X
(W ) on

X̃ . Since N Z
X̃/X

is injective, it follows that N Z is injective. If f : Y → X is any
resolution of singularities, by considering a third resolution that dominates both Y
and X̃ , we deduce using Remark 9.10.6 that the center of N Z(W ) on Y is equal
to N Z

Y/X (W ). Therefore N Z satisfies the property in the proposition. Moreover, by
definition N Z

Y/X (W ) is an irreducible component of f−1(Z). We thus conclude that
N Z(W ) is an essential divisor over X with respect to Z.

The map N Z in Proposition 9.10.14 is the Nash map (of X , with respect to Z).
The “classical” Nash map is obtained for Z = Xsing.

10.10.2 The Nash problem. Examples

Let X be a variety and Z a proper closed subset of X . The Nash problem for X with
respect to Z asks whether the Nash map N Z is surjective, that is, whether every
essential divisor over X with respect to Z is in the image of N Z . In the literature,
one usually considers the special case of this question when Z = Xsing.

Remark 10.10.15. The surjectivity of N Z has the following interpretation. Suppose
that f : Y → X is a resolution of singularities and Z1, . . . ,Zr are the essential com-
ponents of f−1(Z) (an important special case is when all irreducible components of
f−1(Z) have codimension 1, hence each Zi is a prime divisor). The Nash problem
for N Z has a positive answer (that is, N Z is surjective) if and only if the closure of
each f∞(JZi

∞ (Y )) gives an irreducible component of JZ
∞(X). Equivalently, this is the

case if and only if

f∞(JZi
∞ (Y )) 6⊆ f∞(JZ j

∞ (Y )) (10.32)

for every i, j ≤ r, with i 6= j.
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Remark 10.10.16. With the notation in the previous remark, suppose that NZ is not
surjective, and let i 6= j be such that we have the inclusion (9.32). Let us assume, for
simplicity, that X is affine. In this case, we see that for every nonzero φ ∈O(X), we
have

ordDi(φ)≥ ordD j(φ),

where Di and D j are the divisors over X corresponding to Zi and Z j, respectively.
Indeed, after possibly replacing f with another resolution, we may assume that both
Zi and Z j are prime divisors. In this case the assertion follows from the fact that

ordDi(φ) = min{ordt γ
∗(φ ◦ f ) | γ ∈ JZi

∞ (Y )}= min{ordt γ
∗(φ) | γ ∈ f∞(JZi

∞ (Y ))}

and the corresponding formula for D j (see, for example, the proof of Theorem 9.6.2).

Remark 10.10.17. The Nash problem is of a local nature. More precisely, suppose
that the variety X has a cover X = ∪s

i=1Ui by open subsets. If Z is a proper closed
subset of X , then the map N Z corresponding to X is surjective if and only if each
map N Z∩Ui corresponding to Ui is surjective. This is an immediate consequence of
the interpretation in Remark 9.10.15.

Example 10.10.18. Let us consider the easy case when X is a smooth variety. By
taking in f = 1X in Remark 9.10.15, we see that for every Z, the Nash map N Z

is surjective. Moreover, in this case the essential divisors over X with respect to Z
are in bijection with the irreducible components of Z: for each such component B,
the corresponding divisor is the unique component dominating B of the exceptional
divisor on the blow-up of X along B.

Proposition 10.10.19. If X is a curve, then for every proper closed subset Z of X,
the Nash map N Z is surjective.

Proof. By taking a suitable affine open cover of X , we see using Remark 9.10.17
that we may assume X is affine, Z consists of a single point x0 ∈ X , and X r{x0} is
smooth. Let f : Y → X be the normalization of X . Since this is the only resolution
of X , it follows from definition that the essential divisors over X with respect to Z
correspond to the points in the fiber f−1(x0). Let y1, . . . ,yr be these points. It follows
from Remark 9.10.16 that if NZ is not surjective, then we can find i, j≤ r, with i 6= j,
such that for every nonzero φ ∈ O(X) we have

ordyi(φ ◦ f )≥ ordy j(φ ◦ f ).

Note that there is N such that for every nonzero φ ∈O(Y ), if divY (φ)≥∑
r
i=1 Nyi,

then φ ∈ O(X). In order to obtain a contradiction, it is enough to find a nonzero
φ ∈ O(Y ) such that

divY (φ)≥
r

∑
i=1

Nyi and ordyi(φ) < ordy j(φ). (10.33)

Moreover, we may replace Y by any open subset containing y1, . . . ,yr. Let Y denote
the smooth projective curve containing Y as an open subset. Let D = ∑

r
`=1 a`y` be a



10.10 The Nash problem 339

divisor on D such that ai < a j, a` ≥ N for every `, and ∑
r
`=1 a` ≥ 2g, where g is the

genus of Y . In this case OY (D) is globally generated, hence we can find an effective
divisor E on Y such that D∼ E and y` 6∈ Supp(E) for every `. After replacing Y by
Y r Supp(E), we see that D|Y = divY (φ) for some nonzero φ ∈ O(Y ) and by the
choice of D, (9.33) is satisfied. This gives a contradiction and thus completes the
proof of the proposition.

We now prove, following [IK03], that the Nash map is surjective in the toric
setting.

Theorem 10.10.20. If X is a toric variety and Z is an invariant proper closed subset
of X, then the Nash map N Z is surjective.

Proof. We may cover X by open subsets which are affine toric varieties, hence by
Remark 9.10.17, it is enough to prove the theorem when X = Uσ , for some cone
σ in NR. By Remark 9.10.1, in order to describe the good components of JZ

∞(X),
it is enough to consider the k-valued points of this set, that is, we may restrict to
XZ

∞ . Recall that X◦∞ denotes the arcs in X∞ that do not lie in the space of arcs of any
proper closed invariant subset of X . It follows from Proposition 9.10.2 that every
good component of XZ

∞ has nonempty intersection with X◦∞. Therefore we have a
bijection between the good components of XZ

∞ and the irreducible components of
XZ

∞ ∩X◦∞.
We make use of the description of X◦∞ from Example 9.2.16. It is clear that XZ

∞ ∩
X◦∞ is preserved by the T∞-action on X∞. Let Λ = ∪τ(Relint(τ)∩N), where the
union is over the faces τ of σ such that V (τ) ⊆ Z. Note that if v ∈ σ ∩N, then
v ∈Λ if and only if T∞ · γv ⊆ XZ

∞ ∩X◦∞. Consider on σ ∩N the order given by v≥ w
when v−w ∈ σ , and let S be the set of minimal elements in Λ with respect to this
order relation. It follows from the discussion in Example 9.2.16 that the irreducible
components of XZ

∞ ∩X◦∞ are precisely the orbit closures T∞ · γv, for v ∈ S. Note that
each v ∈ S is primitive by the minimality assumption and it is easy to see that N Z

maps the corresponding irreducible component of JZ
∞(X) to the toric divisor Dv over

X associated to v.
We turn to the essential divisors over X with respect to Z. Since there is a toric

resolution of singularities g : X ′ → X such that g−1(Z) has all irreducible compo-
nents of codimension 1, it follows that every essential divisor over X with respect to
Z is toric. Let us choose such an essential divisor Dw corresponding to the primitive
element w ∈ σ ∩N. Since cX (Dw) ⊆ Z, it follows that w ∈ Λ . We assume, by way
of contradiction, that w 6∈ S, that is, we can write w = w1 + w2, with w1 ∈ Λ and
w2 ∈ σ ∩N nonzero. In order to get a contradiction, it is enough to construct a toric
resolution of singularities f : Y → X corresponding to a fan ∆Y refining σ , such that
all irreducible components of f−1(Z) have codimension 1, but w does not lie on a
ray in ∆Y . For the facts about toric resolutions of singularities that we will use, we
refer to [Ful93, Section 2.6].

Let us consider the 2-dimensional subcone σ1 of σ generated by w1 and w2 and
let Σ be its fan refinement giving the minimal resolution of the corresponding affine
toric surface (see loc.cit.). It is known that the set of primitive generators for the rays
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in Σ gives the unique minimal system of generators for the semigroup σ1∩N. Since
w = w1 +w2 and w is primitive, it follows that w does not lie on any ray of Σ . Let v1
and v2 denote the primitive ray generators of the cone σ2 in Σ that contains w. For
every w′ ∈ N∩ (σ1 rR≥0w2), some multiple of w′ can be written as m1w1 +m2w2,
with m1,m2 ∈ Z≥0 and m1 nonzero. This implies that if w′ lies in a face τ of σ , then
w1 ∈ τ , hence V (τ)⊆ Z and we deduce that w′ ∈Λ . In particular, we conclude that
at least one of v1 and v2, say v1, lies in Λ .

We begin constructing a sequence of fans refining σ . Let ∆1 be the star-division
of ∆ with respect to v1 and ∆2 the star-division of ∆1 with respect to v2. Note that σ2
is a cone in ∆2. We now construct a toric resolution of X(∆2), as follows. We first
consider a succession of star-divisions resulting in a simplicial refinement ∆3 of
∆2. More precisely, at each step we pick a non-simplicial cone of smallest possible
dimension and do a star-division with respect to a lattice point in the relative interior
of this cone. After finitely many steps, we obtain the simplicial refinement ∆3. We
now do another succession of star-divisions, resulting in a regular fan ∆4 refining
∆3. At each step, we pick a singular cone of smallest possible dimension. If this
cone τ has primitive ray generators a1, . . . ,as, then there is a = t1a1 + . . .+ tsas ∈ N,
with 0 ≤ ti < 1 for all i; we apply the star-division with respect to a. After finitely
many steps, the resulting fan ∆4 is regular. Note that since the cone σ2 is regular, it
was not touched during this process. Therefore σ2 ∈ ∆4. The final step is to apply a
sequence of toric blow-ups in order to guarantee that the inverse image of Z has all
irreducible components of codimension 1. Let τ1, . . . ,τd be the minimal cones in ∆4
with the property that the corresponding irreducible invariant subvarieties of X(∆4)
lie in the inverse image of Z. We first blow-up along V (τ1), then blow-up along the
proper transform of V (τ2), and so on; after d steps, we obtain the fan ∆5 refining
∆4, which is still regular, and such that the inverse image of Z has codimension 1
irreducible components. Note that σ2 is not a face of any of the τi: this is due to the
fact that the divisor corresponding to R≥0v1 lies in the inverse image of Z. Therefore
σ2 belongs to ∆5, hence v does not lie on a ray of ∆5. We thus achieved the desired
contradiction.

10.10.3 The Nash problem for surfaces

10.10.4 Counterexamples for the Nash problem

The first counterexample to the higher-dimensional Nash problem was given in
[IK03], in dimension 4. An example in dimension 3 was obtained in [dF13] and
building on this, the paper [?] gave a series of such 3-dimensional examples. The
moral is that such counterexamples are quite common. On the other hand, [?] pro-
poses another formulation of the Nash’s problem that might still hold in arbitrary
dimensions.
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In what follows we discuss the simplest counterexample to the Nash problem
from [?], namely the hypersurface

X = V (x2 + y2 + z2 +w5)⊂ A4. (10.34)

Note that X has an isolated singular point at 0 and we take Z = {0}. Since X is a
hypersurface, it is Gorenstein. Furthermore, it is normal, since it is Cohen-Macaulay
and smooth in codimension 1. We begin with the following general result from
[?], describing the irreducible components of J0

∞(H) for certain hypersurfaces H ⊆
An+2.

Lemma 10.10.21. Let f ∈ k[x1, . . . ,xn] be a polynomial with ord0( f ) = m≥ 2. If

H = V (uv+ f (x1, . . . ,x2))⊂ An+2,

then H0
∞ has m irreducible components W1, . . . ,Wm−1 such that for a general γ ∈Wi,

we have ordt(γ∗(u)) = i and ordt(γ∗(v)) = m− i.

Note that an obvious change of variable allows us to write the equation of X as
xy+ z2 +w5 = 0. Therefore the lemma implies that X0

∞ is irreducible.

Proof of Lemma 9.10.21. We have

H0
∞ = {(a,b,y1, . . . ,yn) ∈ (tk[[t]])n+2 | ab = f (y1, . . . ,yn)}.

It is clear that for every (a,b,y1, . . . ,yn) ∈ H0
∞, we have ordt( f (y1, . . . ,yn)) ≥ m,

hence ordt(a)+ordt(b)≥ m. Moreover, the following open subset of H0
∞

U := {(a,b,y1, . . . ,yn) ∈ H0
∞ | ordt( f (y1, . . . ,yn)) = m}

can be written as the union U = U1∪ . . .∪Um−1, where

Ui = {(a,b,y1, . . . ,yn) ∈ H0
∞ | ordt(a) = i,ordt(b) = m− i}.

Since Ui consists of those (a,b,y1, . . . ,yn) ∈U with ordt(a)≥ i and ordt(b)≥m− i,
it follows that Ui is closed in U . It is also clear that no Ui contains U j for i 6= j.
If we write f = ∑i≥m fi, with each fi homogeneous of degree i, then an element
γ = (a,b,y1, . . . ,yn) ∈Ui is uniquely determined by a = t ia′ ∈ t ik[[t]] and the yi =
ty′i ∈ tk[[t]], for 1≤ i≤ n, with the condition fm(y′1, . . . ,y

′
n) 6= 0. Therefore

Ui ' {(a′,y′1, . . . ,y′n) ∈ (k[[t]])n+1 | fm(y′1, . . . ,y
′
n) 6= 0}, (10.35)

hence Ui is irreducible, since the right-hand side of (9.35) is an open subset of
(An+1)∞. This implies that U1, . . . ,Um−1 are the irreducible components of U and
we obtain the assertion in the lemma with Wi = Ui if we show that U is dense in H0

∞.
Let us consider some γ = (a,b,y1, . . . ,yn) ∈ (tk[[t]])n+2 with ab = f (y1, . . . ,yn).

We may and will choose i with 1 ≤ i ≤ m− 1 such that ordt(a) ≥ i and ordt(b) ≥
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m− i. We also choose some c = (c1, . . . ,cn) ∈ kn such that fm(c) 6= 0. Consider the
set

B = {(λ ,w) ∈ A1× tm−ik[[t]] | f (y1 +λc1t, . . . ,yn +λcnt) = (a+λ t i)(b+w)}.

It is easy to see that the projection onto the first component gives an isomorphism
B' A1, hence B is irreducible. On the other hand, we have the map

B→ H0
∞, (λ ,w)→ (a+λ t i,b+w,y1 +λc1t, . . . ,yn +λcnt)

whose image intersects Ui and contains γ . Therefore γ ∈U .

Our goal is to show that there are two essential divisors over X . The key part of
the argument will make use of log discrepancies (for the basic facts about relative
canonical divisors that we will use, we refer to Section 3.1). We begin by describing
a resolution of X . Let π : X ′→ X be the blow-up of X at 0. An easy computation in
local charts shows that X ′ has a unique singular point p, which in a chart isomorphic
to A4 is given by the equation x2 + y2 + z2 + w3 = 0. As for X , we see that X ′ is
normal and Gorenstein. If m0 is the ideal of 0∈ X , then m0 ·OX ′ = OX ′(−E1), where
E1 is a prime divisor on X ′, which in this chart is defined by (w). A computation
based on the adjunction formula implies KX ′/X = E1 (see Example 3.1.9).

Let π ′ : X ′′→ X ′ be the blow-up at p. Again, a computation in local charts shows
that X ′′ is smooth and the π ′-exceptional divisor has a unique irreducible component
E2. Moreover, the proper transform of E1 is smooth (we still denote it by E1) and we
have (π ′)∗(E1) = E1 + E2. Using the adjunction formula, we obtain KX ′′/X ′ = E2.
The divisor E2 has a unique singular point q, which does not lie on E1. In fact,
a computation in local charts shows that E2 is the cone over a smooth plane conic,
hence the blow-up π ′′ : X̃→ X ′′ of q gives a log resolution of X . Since X ′′ is smooth,
we have KX̃/X ′′ = 2E3, where E3 is the exceptional divisor of π ′′, (π ′′)∗(E2) = E2 +
2E3, and (π ′′)∗(E1) = E1. We thus conclude that

KX̃/X = E1 +2E2 +6E3,

hence X has terminal singularities.
In particular, since X ′′ is smooth, it follows that f = π ◦π ′ is a resolution of X ,

hence the essential divisors over X are among E1 and E2. We next show that E1 is
the divisor that lies in the image of the Nash map.

Lemma 10.10.22. With the above notation, the Nash map of X (with respect to {0})
maps J0

∞(X) to E1.

Proof. Since J0
∞(X) is irreducible and we have the resolution f such that f−1(0) has

only two irreducible components E1 and E2, we deduce that if the conclusion of the
lemma fails, then

f∞(JE1
∞ (X ′′))⊆ f∞(JE2

∞ (X ′′).

As pointed out in Remark 9.10.16, in this case we have ordE1(φ) ≥ ordE2(φ) for
every nonzero φ ∈O(X). On the other hand, since (π ′)∗(E1) = E1 +E2, we see that
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ordE2(φ)≥ ordE1(φ) for every such φ . This implies that E1 and E2 define the same
valuation, a contradiction.

Therefore in order to show that X gives a counterexample to the Nash problem,
it is enough to prove that E2 is an essential divisor. Before achieving this, we need
the following general lemma.

Lemma 10.10.23. If f ∈ k[x1, . . . ,xn] is an irreducible polynomial and

Y = V (uv+ f (x1, . . . ,xn))⊂ An+2,

then O(Y ) is factorial. In particular, Y is Q-factorial.

Proof. Note that u is a non-zero divisor in O(Y ) and let D be the effective Cartier
divisor in Y defined by (u). By the assumption on f , this is a prime divisor in Y .
Moreover, if Y0 is the complement of D, then

Y0 ' Speck[u,u−1,v,x1, . . . ,xn]/(v+u−1 f (x))' (A1 r{0})×An.

Therefore Cl(Y0) = 0 and the exact sequence

Z φ→ Cl(Y )→ Cl(Y0)→ 0, φ(1) = [D]

implies that Cl(Y ) is generated by the class of D. Since D is Cartier, it follows that
every Weil divisor on Y is Cartier.

We can now prove that X gives a counterexample to the Nash problem.

Proposition 10.10.24. With the above notation, E2 is an essential divisor over X.

Proof. Let g : Y → X be a resolution of singularities. We need to show that W :=
cY (E2) is an irreducible component of g−1(0). This is clear if codimY (W ) = 1, hence
we may assume that codimY (W ) ≥ 2. By Lemma 9.10.23, X is Q-factorial, hence
all irreducible components of the exceptional locus Exc(g) have codimension 1 (see
Remark 2.2.5). In particular, W is contained in at least one g-exceptional divisor.

If g̃ : Ỹ →Y is such that Ỹ is a resolution of X that dominates X2, then as we have
seen, the coefficient of E2 in KỸ/X is 2. On the other hand, we have

KỸ/X = KỸ/Y + g̃∗(KY/X )

and since X has terminal singularities, KY/X is effective, and all g-exceptional divi-
sors on Y have coefficient ≥ 1 in KY/X (recall that KY/X is an integral divisor since
X is Gorenstein). On the other hand, it follows from Corollary 3.1.14 that the coeffi-
cient of E2 in KỸ/Y is≥ codimY (W )−1≥ 1. By putting these together, we conclude
that W is a curve, there is a unique g-exceptional divisor F on Y that contains W ,
and the coefficient of F in KY/X (hence also in KỸ/X ) is 1.
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If g(F) is a curve, then W is an irreducible component of g−1(0) and we are done.
Therefore it is enough to consider the case when g(F) = {0}. In this case F = E1 as
divisors over X . Indeed, if codimX ′(cX ′(F))≥ 2, then the coefficient of F in

KỸ/X = KỸ/X ′ +(g′)∗(KX ′/X ) = KỸ/X ′ +(g′)∗(E1)

is ≥ 1 + 1 = 2. Here g′ : Ỹ → X ′ is the induced morphism and we used the bound
given by Corollary 3.1.14 and the fact that cX ′(F)⊆ E1. This gives a contradiction,
hence F = E1 as divisors over X .

Since F ⊆ g−1(0), we can write m0 ·OY = OY (−F) · a for some ideal a on Y .
Recall that m0 ·OX ′′ = OX ′′(−(π ′)∗(E1)) = OX ′′(−E1−E2). This implies that a =
OY at the generic point of W . Let h : Ỹ → Y be the normalized blow-up of Y along
a. By the universal property of the blowing-up, the rational map h′ : Ỹ 99K X ′ is
a morphism. The proper transform W̃ of W on Ỹ is mapped to cX ′(E2), which is
a point. Since X ′ is Q-factorial by Lemma 9.10.23, all irreducible components of
Exc(h′) have codimension 1 (see Remark 2.2.5). Therefore W̃ is contained in an h′-
exceptional divisor G. Since h(G) is a g-exceptional divisor containing W , it follows
that h(G) = F , hence G = E1 as divisors over X . This contradicts the fact that G is
h′-exceptional and completes the proof of the proposition.

Remark 10.10.25. In fact, it is shown in [?] that for m≥ 5, the hypersurface V (x2 +
y2 + z2 +wm)⊂ A4 gives a counterexample to the Nash problem if and only if m is
odd (when m is even, z2 +wm is a reducible polynomial; in this case, it is shown in
loc. cit. that there is a unique essential divisor).

Remark 10.10.26. Instead of only considering resolutions in the algebraic category,
when working over C one can define essential divisors over X by also allowing
resolutions in the analytic category. With this new definition, there is a better chance
for the Nash problem to have a positive answer. In fact, there is an example such that
the Nash problem has a positive answer in the analytic category, but a negative one
in the algebraic category (see [dF13]). On the other hand, it is shown in [?] that the
hypersurface X discussed above gives a counterexample for the Nash problem also
in the analytic category.



Appendix A
Elements of convex geometry

In this appendix we review some of the basic properties of closed convex cones in
finite-dimensional vector spaces. Let V be a finite-dimensional real vector space.
We denote by V ∗ the dual vector space HomR(V,R) and by 〈−,−〉 : V ∗×V → R
the canonical pairing. Note that we have a canonical isomorphism V ' (V ∗)∗. For a
subset S of V ∗, we put

S⊥ = {v ∈V | 〈u,v〉= 0 for all u ∈ S},

and dually, for a subset S of V , we obtain S⊥ ⊆V ∗.

A.1 Basic facts about convex sets and convex cones

Recall that a subset σ of V is a cone if tv ∈ σ whenever v ∈ σ and t > 0. A subset
T of V is convex if for every v1,v2 ∈ T , and every real number t ∈ [0,1], we have
tv1 +(1− t)v2 ∈ T . We see that σ ⊆ V is a convex cone if for every v1,v2 ∈ σ and
every t1, t2 ∈ R>0, we have t1v1 + t2v2 ∈ σ .

It follows from definition that an intersection of convex sets or of convex cones
is again a convex set, respectively, a convex cone. Suppose now that S ⊆ V is an
arbitrary subset. The convex hull conv(S) of S is the intersection of all convex sets
containing S, hence it is the smallest convex set which contains S. Similarly, the
convex cone generated by S is the intersection of all convex cones containing S,
hence it is the smallest convex cone which contains S. We denote it by pos(S). If
σ = pos(S), we say that S is a set of generators of σ .

Lemma A.1.1. For every subset S of V , we have

pos(S) =

{
r

∑
i=1

λivi | λi > 0,vi ∈ S

}
.
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Proof. The right-hand side is a convex cone and contains S. Moreover, it is con-
tained in every convex cone containing S, so it is equal to pos(S).

We similarly have the following description of the convex hull of a set.

Lemma A.1.2. For every subset S of V , we have

conv(S) =

{
r

∑
i=1

λivi | λi ≥ 0,
r

∑
i=1

λi = 1,vi ∈ S

}
.

If σ is a convex cone, then its closure σ is again a convex cone. It follows that if
S is a non-empty subset of V , then the closed convex cone generated by S (that is,
the smallest closed convex cone containing S) is equal to the closure of pos(S). We
make the convention that all closed convex cones are non-empty, in which case they
have to contain 0.

A polytope in V is the convex hull of finitely many vectors in V . A convex cone
σ in V is polyhedral if it is the convex cone generated by a finite set.

A convex cone σ is strongly convex if whenever both v and −v are in σ , we have
v = 0 (equivalently, σ contains no nonzero linear subspaces). An arbitrary convex
cone σ is (noncanonically) the product of a vector space and a strongly convex cone,
as follows. Let

W = σ ∩ (−σ) := {v ∈ σ | −v ∈ σ}

be the largest vector subspace of V which is contained in σ . If p : V →V/W is the
canonical projection, then p(σ) is a convex cone of V/W . Moreover, if we choose
a splitting i of p, then we get an isomorphism V 'W ×V/W that identifies σ with
W × p(σ). Note that, by construction, p(σ) is strongly convex. In addition, σ is
closed or polyhedral if and only if p(σ) has the same property.

Lemma A.1.3. All polytopes and polyhedral convex cones are closed in V .

Proof. For every polytope P there are v1, . . . ,vN in V such that P is the image of the
map {

λ = (λi) ∈ [0,1]N |∑
i

λi = 1

}
→V,

which takes λ to ∑i λivi. Therefore P is compact, hence closed.
Suppose now that σ is a polyhedral convex cone. In order to show that σ is

closed in V , we may assume that it is a strongly convex cone and that σ 6= {0}.
Choose nonzero v1, . . . ,vr in V such that σ is the convex cone generated by these
vectors. Let P be the convex hull of v1, . . . ,vr. It follows from Lemmas A.1.2 and
A.1.1 that σ = {λv | v ∈ P,λ ≥ 0}.

Suppose now that {λmvm}m converges to w, where λm ≥ 0 and vm ∈ P. By the
compactness of P, we may assume after passing to a subsequence that {vm}m con-
verges to some v ∈ P. Since σ is a strongly convex cone, 0 is not in P, hence v 6= 0.
Therefore {λm}m is bounded and after passing again to a subsequence, we may
assume that it converges to some λ ≥ 0. Therefore w = λv is in σ , hence σ is
closed.
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As the following examples show, in the non-polyhedral case some pathologies
can occur.

Example A.1.4. It can happen that σ is a closed convex cone in V , p : V →W is
a surjective linear map, and p(σ) is not closed. For example, suppose that V = R3

with coordinates x1,x2,x3, and K is the circle in the plane x3 = 1 with center at
(0,1,1) and radius 1. If

σ = {λv | λ ≥ 0,v ∈ K},

then σ is a closed convex cone. On the other hand, if p : R3→ R2 is the projection
onto the first two coordinates, then

p(σ) = {(u1,u2) | u2 > 0}∪{(0,0)}

is not closed.

Example A.1.5. It can happen that σ and τ are closed convex cones in V , but

σ + τ := {v+w | v ∈ σ ,w ∈ τ}

is not closed. Indeed, with the notation in Example A.1.4, let τ = R≥0 ·(0,0,−1). In
this case σ + τ is a convex cone containing ker(p), hence the fact that p(σ + τ) =
p(σ) is not closed in R2 implies that σ + τ is not closed in R3.

If σ is a closed convex cone in V , then its dimension, denoted by dim(σ), is the
dimension of the linear span of σ . It is clear that this can also be described as the
maximum number of linearly independent elements of σ .

A.2 The dual of a closed convex cone

Let σ be a closed convex cone in V . The dual cone σ∨ is the subset of V ∗ given by

σ
∨ = {u ∈V ∗ | 〈u,v〉 ≥ 0}.

It is clear that σ∨ is again a closed convex cone. The following is the fundamental
result concerning duality of cones.

Proposition A.2.1. If σ is a closed convex cone in V , then under the identification
V ' (V ∗)∗, we have (σ∨)∨ = σ .

Proof. The inclusion σ ⊆ (σ∨)∨ follows from definition, hence we only need to
show that if v ∈ V r σ , then there is u ∈ σ∨ such that 〈u,v〉 < 0. We fix a scalar
product (·, ·) on V , which induces a metric d.

Since σ is closed, we can find v′ ∈ σ such that

d(v,v′) = min
w∈σ

d(v,w). (A.1)
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Note that v′ is different from v, as v is not in σ . It is enough to show that (v′−v,y)≥ 0
for every y∈ σ , but (v′−v,v) < 0. For every y∈ σ , we have v′+ ty∈ σ for all t > 0,
hence (A.1) gives

(v′− v,v′− v)≤ (v′− v+ ty,v′− v+ ty) = (v′− v,v′− v)+2t(v′− v,y)+ t2(y,y).

We thus have t2(y,y)+2t(v′− v,y)≥ 0 for all t > 0. Dividing by t, and then letting
t go to 0, we obtain (v′− v,y)≥ 0.

On the other hand, λv′ ∈ σ for every λ > 0. Using one more time (A.1), we
obtain

(v′− v,v′− v)≤ ((λ −1)v′+(v′− v),(λ −1)v′+(v′− v))

= (v′− v,v′− v)+2(λ −1)(v′− v,v′)+(λ −1)2(v′,v′),

hence (λ −1)2(v′,v′)+2(λ −1)(v′−v,v′)≥ 0 for every λ > 0. We consider λ < 1,
divide by (λ −1), and then let λ go to 1, to deduce (v′− v,v′)≤ 0. Since v′ ∈ σ , it
follows that (v′− v,v′) = 0, and therefore

0 < (v′− v,v′− v) =−(v′− v,v),

as required. This completes the proof of the proposition.

A.3 Faces of closed convex cones

Let σ be a closed convex cone in V . A face of σ is a subset of σ of the form

σ ∩u⊥ = {v ∈ σ | 〈u,v〉= 0}

for some u ∈ σ∨. Note, in particular, that σ is considered as a face of σ (for u = 0).
A proper face of σ is a face of σ different from σ . It is clear that every face τ

of σ is again a closed convex cone. In particular, its dimension is well-defined.
Furthermore, a face τ of σ has the property that if v1,v2 ∈ σ , then v1 +v2 ∈ τ if and
only if v1,v2 ∈ τ .

It follows from definition that if τ is a face of σ , then τ is the intersection of σ

and of the linear span of τ . Therefore each face of σ is determined by its linear span.
In particular, if τ1 and τ2 are two faces of σ , with τ1 strictly contained in τ2, then
dim(τ1) < dim(τ2).

Suppose that we have τ1 ⊆ τ2 ⊆ σ , with τ1 and τ2 closed convex cones, such that
τ1 is a face of σ . It follows from definition that τ1 is a face of τ2. On the other hand,
it is not true in general that if τ2 is a face of σ , and τ1 is a face of τ2, then τ1 is a
face of σ (see Example A.4.5 below).

Remark A.3.1. If W is the linear span of a closed convex cone σ in V , then the faces
of σ do not depend on whether we consider σ as a cone in V or W . This follows
from definition after choosing a splitting for the inclusion W ↪→V , which induces a
splitting of V ∗→W ∗.
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Lemma A.3.2. If σ is a closed convex cone, then the intersection of a family of faces
of σ is again a face of σ , and it is equal to the intersection of a finite subfamily.

Proof. We first show that the intersection of a finite family of faces of σ is a face
of σ . Let τ =

⋂r
i=1 τi, where each τi is a face of σ . If we write τi = σ ∩ u⊥i , with

ui ∈ σ∨ for each i, then u = ∑
r
i=1 ui ∈ σ∨ and σ ∩u⊥ = τ . Therefore τ is a face of

σ .
Consider now an arbitrary family (τi)i∈I of faces of σ , and let J ⊆ I be a finite

subset such that ∩i∈Jτi has minimal dimension. This minimality assumption implies
that for every j ∈ I we have dim(∩i∈Jτi) = dim(∩i∈J∪{ j}τi), and since both these
intersections are faces of σ , it follows that ∩i∈Jτi = ∩i∈J∪{ j}τi. Therefore ∩i∈Jτi =
∩i∈Iτi, which completes the proof of the lemma.

It follows from the above lemma that if σ is a closed convex cone and S is a subset
of σ , then there is a unique smallest face of σ containing S, the face generated by S.

Let σ be a closed convex cone in V . The relative interior Relint(σ) of σ is the
topological interior of σ as a subset of its linear span. It is clear that Relint(σ) is a
convex cone.

Lemma A.3.3. If σ is a closed convex cone, then the relative interior of σ is non-
empty.

Proof. Let W be the linear span of σ and let d = dim(W ). We can find linearly
independent v1, . . . ,vd in σ . It is clear that the set

{t1v1 + . . .+ tdvd | t1, . . . , td > 0}

is open in W and contained in σ , hence it is contained in Relint(σ).

Proposition A.3.4. If σ is a closed convex cone, then

Relint(σ) = σ r
⋃

τ(σ

τ,

where the union is over all proper faces of σ .

Proof. Suppose first that v ∈ Relint(σ) and that τ is a face of σ containing v. If W
is the linear span of σ , then by assumption there is a ball in W centered in v that
is contained in σ . This implies that the whole ball is contained in τ (recall that if
v1,v2 ∈ σ are such that v1 +v2 ∈ τ , then v1,v2 ∈ τ). Therefore W is contained in the
linear span of τ , hence τ = σ . This proves the inclusion “⊆” in the proposition.

In order to prove the reverse inclusion, let us assume that v ∈ σ r Relint(σ).
After replacing V by the linear span of σ , we may assume that this linear span is
V . Since v is not in the interior of σ , there are vn ∈ V with limn→∞ vn = v such
that vn 6∈ σ . It follows from Proposition A.2.1 that we can find un ∈ σ∨ such that
〈un,vn〉< 0. Furthermore, after possibly passing to a subsequence, we may assume
that limn→∞ un = u for some nonzero u ∈V ∗ (for example, after rescaling the un we
may assume that they lie on a sphere centered at the origin, with respect to a suitable
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norm on V ∗). Since σ∨ is closed, we have u ∈ σ∨, while by passing to limit we get
〈u,v〉 ≤ 0. Therefore v ∈ σ ∩u⊥, which is a proper face of σ , since the linear span
of σ is V . This completes the proof of the proposition.

Corollary A.3.5. If σ is a closed convex cone, v ∈ σ , and w ∈ Relint(σ), then v +
w ∈ Relint(σ).

Proof. We use the description of the relative interior of σ given in Corollary A.3.4.
Suppose that v+w 6∈ Relint(σ), so that there is a proper face τ of σ , with v+w ∈ τ .
In this case both v and w lie in σ . In particular, w 6∈ Relint(σ), a contradiction.

Corollary A.3.6. If σ is a closed convex cone, then σ is the closure of Relint(σ).

Proof. Recall first that Relint(σ) is non-empty by Lemma A.3.3. Suppose now
that we have v ∈ σ and let us choose some v′ ∈ Relint(σ). It follows from Corol-
lary A.3.5 that v + 1

m v′ ∈ Relint(σ) for every positive integer m, hence v lies in the
closure of Relint(σ).

Remark A.3.7. Suppose that σ and σ ′ are closed convex cones, with σ ′ ⊆ σ . If
v ∈ Relint(σ ′), then a face τ of σ contains v if and only if it contains σ ′. Indeed,
τ ∩σ ′ is a face of σ ′, and by Proposition A.3.4 this contains v if and only if it is
equal to σ ′.

Proposition A.3.8. If σ is a closed convex cone, then there is an order-reversing
bijection between the faces of σ and those of σ∨, that takes a face τ of σ to the face
σ∨∩ τ⊥ of σ∨. The inverse map takes a face τ ′ of σ∨ to the face σ ∩ (τ ′)⊥ of σ .

Proof. If S is any subset of σ , then

σ
∨∩S⊥ =

⋂
v∈S

(σ∨∩ v⊥)

is an intersection of faces of σ∨, hence it is a face of σ∨ by Lemma A.3.2. Since
the two maps are given by the same formula, in order to show that they are mutual
inverses it is enough to show that for every face τ of σ , we have

τ = σ ∩ (σ∨∩ τ
⊥)⊥. (A.2)

The inclusion “⊆” is trivial. For the reverse inclusion, let us write τ = σ ∩ u⊥, for
some u ∈ σ∨. In particular, u ∈ σ∨∩τ⊥, hence every element in the right-hand side
of (A.2) lies in σ ∩u⊥ = τ . We thus have the equality in (A.2). The fact that the two
inverse maps reverse inclusions is clear.

Remark A.3.9. If τ is a face of the closed convex cone σ and v ∈ Relint(τ), then
σ∨ ∩ τ⊥ = σ∨ ∩ v⊥. Indeed, the inclusion “⊆” is trivial. For the reverse inclusion,
note that if u ∈ σ∨∩ v⊥, then v is contained in the face τ ∩u⊥ of τ .
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Remark A.3.10. Via the bijection in Proposition A.3.8, the largest face of σ (namely
σ itself) corresponds to the smallest face of σ∨, namely σ⊥. Note that σ⊥ = σ∨∩
(−σ∨) is the largest linear subspace contained in σ∨. This shows that σ∨ is strongly
convex if and only if {0} is a face of σ∨. Furthermore, this is the case if and only
if σ⊥ = {0}, that is, the linear span of σ is V . Of course, the same applies with the
roles of σ and σ∨ reversed.

A.4 Extremal subcones

Definition A.4.1. If σ is a closed, convex cone, then an extremal subcone of σ is a
closed convex cone τ ⊆ σ with the property that whenever v1,v2 ∈ σ , if v1 +v2 ∈ τ ,
then v1,v2 ∈ τ . An extremal ray is an extremal subcone of the form R≥0 ·v, for some
nonzero v ∈V .

Remark A.4.2. It is clear that if τ is an extremal subcone of σ , then τ contains the
largest linear subspace of σ , namely σ ∩ (−σ). In particular, in order for σ to have
extremal rays, σ has to be strongly convex. It will follow from Proposition A.4.6
that this condition is also sufficient.

Lemma A.4.3. If σ is a closed convex cone, τ is an extremal subcone of σ , and τ ′

is an extremal subcone of τ , then τ ′ is an extremal subcone of σ .

Proof. Suppose that v1,v2 ∈ σ are such that v1 + v2 ∈ τ ′. Since τ is an extremal
subcone of σ and v1 + v2 ∈ τ , it follows that v1,v2 ∈ τ . Using now the fact that
v1 + v2 ∈ τ ′, which is an extremal subcone of τ , it follows that v1,v2 ∈ τ ′.

Remark A.4.4. It follows from definition that every face of a closed convex cone σ

is an extremal subcone. The converse does not hold in general (see Example A.4.5
below).

Example A.4.5. Let V = R3 with coordinates x1,x2,x3, and K1 the convex set in the
plane x3 = 1 which is the union of

conv{(0,0,1),(2,0,1),(0,2,1),(2,2,1)}

and of the right semicircle of radius 1 with center at (2,1,1). Let K2 be the line
segment with vertices (0,0,1) and (2,0,1), and K3 = {(2,0,1)}. If

σi = {λv | λ ≥ 0,v ∈ Ki},

for i = 1,2,3, then it is clear that σ1 is a closed convex cone, σ2 is a face of σ1, and
σ3 is a face of σ2, but not of σ1. In particular, we see that σ3 is an extremal subcone
of σ1, but not a face.

Proposition A.4.6. If σ is a closed, strongly convex cone, then σ is generated as a
convex cone (not just as a closed convex cone) by its extremal rays.
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Proof. We prove the assertion by induction on dim(σ), the case dim(σ)≤ 1 being
trivial. We assume that dim(σ) ≥ 2 and let C denote the convex cone generated
by the extremal rays of σ . Suppose first that there is a proper face τ of σ that is
not contained in C. By the inductive assumption, τ is the convex cone generated
by its extremal rays, hence there is an extremal ray R of τ that is not contained in
C. However, R is also an extremal ray of σ by Lemma A.4.3, hence it should be
contained in C, a contradiction. Therefore all proper faces of σ are contained in C
and by Proposition A.3.4, it is enough to show that also the relative interior of σ is
contained in C.

Suppose that this is not the case and let v1 ∈ Relint(σ) r C. We also choose
v2 ∈ σ linearly independent from v1 such that, if C 6= {0}, then v2 ∈C. Since v1 lies
in the relative interior of σ , it follows that v1− tv2 ∈ σ for 0≤ t� 1. On the other
hand, v1− tv2 6∈ σ for t � 0; indeed, otherwise 1

t v1− v2 ∈ σ for all t � 0, and by
letting t go to infinity, we obtain −v2 ∈ σ , a contradiction with the fact that v2 ∈ σ

is nonzero and σ is strongly convex. Therefore

t0 := sup{t ≥ 0 | v1− tv2 ∈ σ} ∈ R>0,

and since σ is a closed convex cone, we see that for t ≥ 0, we have v1 − tv2 ∈
σ if and only if t ≤ t0. Therefore v1− t0v2 lies in σ r Relint(σ). It follows from
Corollary A.3.4 that there is a proper face σ ′ of σ such that v1−t0v2 ∈ σ ′. However,
we have seen that σ ′ ⊆C. If C 6= {0}, then v2 ∈C and we conclude that v1 ∈C, a
contradiction. On the other hand, if C = {0}, we conclude that v2 and v1 are linearly
dependent, giving again a contradiction. Therefore Relint(σ)⊆C and we conclude
that C = σ .

A.5 Polyhedral cones

In this section we discuss the special features of polyhedral cones. If V = MR, where
M is a finitely generated, free abelian group, then a convex cone is rational polyhe-
dral if it is generated by finitely many element in MQ (or equivalently, in M).

Suppose that σ is a polyhedral cone, and let v1, . . . ,vr be such that we have σ =
pos({v1, . . . ,vr}). If τ is a face of σ and a1, . . . ,ar ∈R≥0, then a1v1 + . . .+arvr ∈ τ

if and only if vi ∈ τ for all i with ai 6= 0. Therefore τ is the convex cone generated
by those vi ∈ τ . In particular, we see that σ has only finitely many faces and each of
them is a polyhedral cone. If σ is rational polyhedral, then all faces have the same
property.

Proposition A.5.1. If σ is a polyhedral cone, then the extremal subcones of σ are
precisely the faces of σ . In particular, a face of a face of σ is a face of σ .

Proof. We only need to show that if τ is an extremal subcone of σ , then τ is a face
of σ . Consider the convex cone

γ = σ − τ := {u1−u2 | u1 ∈ σ ,u2 ∈ τ}.
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This is clearly polyhedral, hence closed, and γ∨ = σ∨∩ τ⊥. Let u ∈ Relint(γ∨), so
that u ∈ σ∨ and τ ⊆ σ ∩u⊥. Furthermore, we have

γ ∩u⊥ = γ ∩ (−γ) = (σ − τ)∩ (τ−σ).

It follows that if v ∈ σ ∩u⊥ ⊆ γ ∩u⊥, then we can write v = v1−v2, with v1 ∈ τ and
v2 ∈ σ . Since τ is an extremal subcone and v + v2 ∈ τ , we conclude that v ∈ τ . We
have shown that τ = σ ∩u⊥, with u ∈ σ∨, hence τ is a face of σ .

A facet of σ is a maximal proper face of σ . If σ is a strongly convex polyhedral
cone, a ray of σ is a 1-dimensional face of σ .

Proposition A.5.2. If σ is a polyhedral cone, then for every facet τ of σ , we have
dim(τ) = dim(σ)−1. More generally, if τ1 ( τ2 are faces of σ such that there is no
other face in between, then dim(τ1) = dim(τ2)−1.

Proof. We may assume that the linear span of σ is the vector space V . Let u ∈ σ∨

be such that τ = σ ∩ u⊥. Suppose that dim(τ) ≤ dim(σ)− 2. In this case there is
w linearly independent from u such that τ ⊆ w⊥. Let v1, . . . ,vr generate σ . After
possibly replacing w by −w, we may assume that 〈w,vi〉< 0 for some i. If

t0 := max{t ∈ R≥0 | 〈u+ tw,v j〉 ≥ 0 for all j},

then u+ t0w is nonzero, lies in σ∨, and σ ∩ (u+ t0w)⊥ is a proper face of σ strictly
containing τ . This contradiction implies that dim(τ) = dim(σ)− 1. The last asser-
tion in the proposition is a consequence of the first one and of the fact that τ1 is a
facet of τ2 (this is a consequence of the hypothesis, since every face of τ2 is also a
face of σ by Proposition A.5.1).

Suppose now that σ is a polyhedral cone whose linear span is V . It follows from
Proposition A.5.2 that each facet of σ can be written as σ ∩u⊥τ , where uτ is unique
up to multiplication by an element of R>0. Note that if V = MR and σ is rational
polyhedral, then we may choose uτ ∈M.

Lemma A.5.3. With the above notation, we have

σ = {v ∈V | 〈uτ ,v〉 ≥ 0 for all facets τ of σ}.

Proof. The inclusion “⊆” is clear. On the other hand, if v 6∈ σ and we consider
w ∈ Relint(σ), then it follows from Proposition A.3.4 that

t0 := max{t ∈ [0,1] | tv+(1− t)w ∈ σ}

has the property that v′ := t0v+(1− t0)w ∈ u⊥τ for some facet τ . Since 〈uτ ,w〉> 0,
we conclude that 〈uτ ,v〉< 0. This proves the equality in the lemma.

The following proposition says that a cone is (rational) polyhedral if and only if
it is the intersection of finitely many (rational) half-spaces.
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Proposition A.5.4 (Farkas). If σ is a (rational) polyhedral cone, then σ∨ has the
same property.

Proof. We may assume that the linear span of σ is the ambient vector space V .
In this case, Lemma A.5.3 implies that σ is the dual of the (rational) polyhedral
cone γ generated by the uτ . Since σ∨ = γ by Proposition A.2.1, this completes the
proof.

If we interpret a polyhedral cone as the intersection of finitely many half-spaces,
we obtain the following two corollaries.

Corollary A.5.5. The intersection of finitely many (rational) polyhedral cones is
(rational) polyhedral.

Corollary A.5.6. Let φ : A → B be a group homomorphism, where A and B are
finitely generated, free abelian groups, and let φR : AR→ BR be the corresponding
linear map. If σ is a rational polyhedral cone in BR, then φ−1(σ) is a rational
polyhedral cone in AR.

Proposition A.5.7 (Carathéodory). If σ is the convex cone generated by a set T ,
then σ is the union of the convex cones generated by subsets of T that are linearly
independent.

Proof. It is enough to show that if v = λ1v1 + . . .+λrvr, with λi > 0 for all i, and if
v1, . . . ,vr are not linearly independent, then v can be written as a linear combination
with nonnegative coefficients of r−1 of the vi. For this, consider a relation a1v1 +
. . . + arvr = 0, where some of the ai are nonzero. After possibly multiplying the
relation by (−1), we may assume that there is j such that a j > 0.

Let i be such that ai > 0 and λi/ai = min{λ j/a j | a j > 0}. Note that we have
λ j−λi

a j
ai
≥ 0 for all j. Therefore we can write

v = ∑
j 6=i

(
λ j−λi

a j

ai

)
v j

and all coefficients are nonnegative.

Corollary A.5.8. If V = WR, where W is a finite-dimensional vector space over Q,
and if σ is the convex cone generated in V by the vectors w1, . . . ,wd ∈W, then for
every u ∈ σ ∩W, there are λ1, . . . ,λd ∈Q≥0 such that u = ∑

d
i=1 λiwi.

Proof. It follows from Proposition A.5.7 that after possibly ignoring some of the
wi, we may assume that w1, . . . ,wd are linearly independent. By assumption, we can
write u = ∑

d
i=1 λiwi, with λi ∈ R≥0. Since the wi can be completed to a basis of W

and by assumption u ∈W , we conclude that λi ∈Q for all i.
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A.6 Monoids and cones

Recall that a monoid is a set S endowed with a binary operation + (we only use
the additive notation), which is commutative, associative, and has a unit element 0.
If S is a monoid, a subset T ⊆ S is a submonoid if 0 ∈ T and u + v ∈ T whenever
u,v ∈ T . A monoid S is finitely generated if there are u1, . . . ,um ∈ S such that every
u ∈ S can be written as u = a1u1 + . . .+ amum, for some a1, . . . ,am ∈ Z≥0 (in this
case one says that u1, . . . ,um generate S).

In this section we only consider subsemigroups of finitely generated, free abelian
groups. If M is such a group and S is a submonoid of M, one says that S is saturated
(in M) if for every u ∈M such that mu ∈ S for a positive integer m, we have u ∈ S.
Given an arbitrary submonoid S of M, there is a smallest saturated submonoid that
contains S, the saturation of S, namely

Ssat := {u ∈M | mu ∈ S for some m≥ 1}.

From now on, we fix a finitely generated, free abelian group M and let V = MR.

Lemma A.6.1 (Gordan). If σ is a rational polyhedral cone in V , then σ ∩M is a
finitely generated, saturated submonoid of M.

Proof. The fact that S = σ ∩M is saturated is clear. In order to see that S is finitely
generated, consider generators v1, . . . ,vr ∈M of σ . The set

K :=

{
r

∑
i=1

λivi | λi ∈ [0,1] for all i

}

is compact and we have vi ∈ K for all i. Since M is discrete in V , its intersection
with K is finite. Let w1, . . . ,ws be the elements of K ∩M. If v ∈ S and if we write
v = ∑

r
i=1 αivi, with αi ≥ 0, then there is j such that v = ∑

r
i=1bαicvi +w j. Therefore

S is generated as a monoid by w1, . . . ,ws.

For a submonoid S of M, we denote by R≥0S the convex cone generated by S.

Proposition A.6.2. If S is a finitely generated submonoid of M, then we have R≥0S∩
M = Ssat, and this is a finitely generated submonoid of M.

Proof. The inclusion “⊇” is clear. For the reverse inclusion, we use the fact that if
S is generated by v1, . . . ,vd and v ∈R≥0S∩M, then by Corollary A.5.8, we can find
λ1, . . . ,λd ∈Q≥0 such that v = ∑

d
i=1 λivi. If m is a positive integer such that mλi ∈ Z

for all i, then mv∈ S, hence v∈ Ssat. This proves the first assertion in the proposition
and the second one follows from Lemma A.6.1

Remark A.6.3. If S⊆M is a finitely generated submonoid, then there is a positive in-
teger d such that du ∈ S for every u ∈ Ssat. Indeed, it follows from Proposition A.6.2
that there are finitely many elements u1, . . . ,ur ∈ Ssat that generate this monoid, and
by definition, there is a positive integer d such that dui ∈ S for all i. Therefore du∈ S
for every u ∈ Ssat.



356 A Elements of convex geometry

The following is now an immediate consequence of Lemma A.6.1, Proposi-
tion A.6.2, and the definitions.

Proposition A.6.4. The map S→R≥0S gives a bijection between finitely generated,
saturated subsemigroups of M and rational polyhedral cones in V = MR, whose
inverse is given by σ → σ ∩M.

Remark A.6.5. If σ is a strongly convex, rational polyhedral cone, S′ = σ ∩M, and
S⊆ S′ is the monoid generated by the primitive elements on the rays of σ , then using
Proposition A.6.4 we see that S′ = Ssat. It follows from Remark A.6.3 that there is a
positive integer d such that du ∈ S for every u ∈ S′.

Remark A.6.6. If S is a finitely generated submonoid of M and C = R≥0S, then

C∩MQ =
{

1
m
·u | u ∈ S,m≥ 1

}
.

This is an immediate consequence of the fact that C∩M = Ssat.

Corollary A.6.7. If M is a finitely generated, free abelian group and S and T are
saturated, finitely generated subsemigroups of M, then S∩T is a saturated, finitely
generated submonoid of M.

Proof. If σ and τ are the cones generated by S and T , respectively, then these are
rational polyhedral cones. The intersection σ ∩ τ is rational polyhedral by Corol-
lary A.5.5 and therefore σ ∩ τ ∩M = S∩ T is a saturated, finitely generated sub-
monoid of M by Lemma A.6.1.

Corollary A.6.8. Let φ : A→ B be a morphism of finitely generated, free abelian
groups. If T is a saturated, finitely generated submonoid of B, then S := φ−1(T ) is
a finitely generated, saturated submonoid of A.

Proof. We consider the induced linear map φR : AR→ BR. If τ is the convex cone
generated by T , then τ is a rational polyhedral cone, hence φ

−1
R (τ) is a rational

polyhedral cone by Corollary A.5.6. We thus conclude that

S = φ
−1(T ) = φ

−1(τ ∩B) = φ
−1
R (τ)∩A

is finitely generated and saturated by Lemma A.6.1.

A.7 Fans and fan refinements

Let V be a finite-dimensional real vector space. A fan in V is a finite collections of
polyhedral convex cones in V such that the following conditions hold:

i) If σ ∈ ∆ and τ is a face of σ , then τ ∈ ∆ .
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ii) If σ1,σ2 ∈ ∆ , then σ1∩σ2 is a face of both σ1 and σ2.

Note that unlike in toric geometry, we do not require that the cones in ∆ are strongly
convex. If V = MR, for a free, finitely generated abelian group and the cones in ∆

are rational, we say that ∆ is a rational fan. The support |∆ | of a fan ∆ is the union
of the cones in ∆ . We note that if |∆ | is convex, then it is a polyhedral convex cone,
being generated by the union of the generators of the cones in ∆ .

Example A.7.1. If C is a finite collection of polyhedral convex cones in V such that
for every σ1,σ2 ∈ C , the intersection σ1 ∩σ2 is a face of both σ1 and σ , then it is
straightforward to check that the set ∆(C ) of all faces of the cones in C is a fan.

Lemma A.7.2. If C,C1, . . . ,Cr are closed convex cones in V such that C = C1∪ . . .∪
Cr, then C can be also written as the union of those Ci with dim(Ci) = dim(C).

Proof. Let n = dim(C) and let us fix linearly independent elements v1, . . . ,vn ∈
C. Suppose that C1, . . . ,Cs are the Ci of dimension n and that we have v ∈ C r
(C1 ∪ . . .∪Cs). Since the Ci are closed, it follows that there is ε > 0 such that v +
∑

n
i=1 aivi 6∈ (C1 ∪ . . .∪Cs) if |a j| < ε for 1 ≤ j ≤ n. We choose a set of vectors

wm = v + ∑
n
j=1 a j,mv j for 1 ≤ m ≤ (r− s)(n− 1)+ 1 such that |a j,m| < ε for all j

and m and such that every n of these vectors are linearly independent. Since

wm ∈C r (C1∪ . . .∪Cs)⊆ (Cs+1∪ . . .∪Cr),

we conclude that there are at least n of the wm that lie in the same cone C j, with
j > s, contradicting the fact that dim(C j) < n.

Corollary A.7.3. If ∆ is a fan such that |∆ | is convex, then all maximal cones in ∆

have dimension equal to the dimension of the linear span of ∆ |.

Proof. It is clear that |∆ | is the union of the maximal cones in ∆ . Moreover, in
this union we cannot leave out any maximal cone: otherwise, by property ii) in the
definition of a fan, some maximal cone in ∆ would be equal to the union of its
proper faces, a contradiction. Therefore the assertion in the corollary follows from
Lemma A.7.2.

We say that a fan Σ in V refines another fan ∆ (or that ∆ is coarser than Σ ) if
|∆ |= |Σ | and every cone σ ∈ Σ is contained in some cone in ∆ .

Lemma A.7.4. If ∆ and Σ are fans in V such that Σ is a refinement of ∆ , then every
cone in ∆ is a union of cones in Σ .

Proof. We need to show that for every σ ∈ ∆ , we have σ =
⋃

τ∈Σ ,τ⊆σ τ . Note that if
this holds for σ , then the corresponding formula holds for every face of σ . Therefore
we may assume that σ is a maximal cone in ∆ . Furthermore, it is enough to show
that for every v∈Relint(σ), there is τ ∈Σ such that v∈ τ and τ ⊆σ . Since |∆ |= |Σ |,
there is τ ∈ Σ such that v ∈ τ . By assumption, there is σ ′ ∈ ∆ such that τ ⊆ σ ′. In
this case, v lies in σ ∩σ ′, which is a face of σ . Since v ∈ Relint(σ), it follows that
σ ∩σ ′ = σ . On the other hand, σ is a maximal cone in ∆ and therefore σ = σ ′ ⊇
τ .
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Corollary A.7.5. If Σ is a fan refining ∆ , then #Σ ≥ #∆ .

Proof. We have a map f : Σ → ∆ , such that f (τ) is the smallest cone in ∆ that
contains τ . Given σ ∈∆ , if v∈Relint(σ) and τ ∈Σ is such that v∈ τ , then σ = f (τ).
We thus see that f is onto, which implies the inequality in the corollary.

Lemma A.7.6. If ∆1 and ∆2 are fans with the same support, then there is a unique
coarsest fan Σ that refines both ∆1 and ∆2.

Proof. Let C be the collection of all intersections σ1∩σ2, where σ1 ∈ ∆1 and σ2 ∈
∆2. It is easy to check that if σ1,σ

′
1 ∈ ∆1 and σ2,σ

′
2 ∈ ∆2, then (σ1∩σ ′1)∩ (σ2∩σ ′2)

is a face of both σ1 ∩σ2 and σ ′1 ∩σ ′2. It thus follows from Example A.7.1 that the
set ∆(C ) consisting of all faces of the cones in C is a fan with the same support as
∆1 and ∆2. It is straightforward to check that ∆(C ) refines both ∆1 and ∆2 and that
it is the coarsest fan with these properties.

Remark A.7.7. In general, given a family (∆i)i∈I of fans with the same support, there
is no fan refining all ∆i. However, if there is one such fan, then there is a unique
coarsest one. Indeed, suppose that Σ refines all ∆i. For every finite subset J ⊆ I,
consider the unique coarsest fan ∆J that refines all ∆i, with i ∈ J. Since Σ refines all
∆J , it follows from Corollary A.7.5 that #∆J ≤ #Σ for every J. If J0 is such that #∆J0
is maximal, it is clear that ∆J = ∆J0 for every J ⊇ J0. It is then clear that ∆J0 is the
coarsest fan refining all ∆i.

Corollary A.7.8. Given a fan ∆ in V such that |∆ | is convex and u1, . . . ,ud ∈ V ∗,
there is a fan Σ refining ∆ such that for every cone σ ∈ Σ and every i, with 1≤ i≤ d,
we have either ui ∈ σ∨ or −ui ∈ σ∨.

Proof. It is enough to prove the corollary when d = 1 since we can then iterate
the construction for u1,u2, . . . ,ud . We may assume, of course, that u1 is nonzero.
Consider the following two polyhedral convex cones

C1 = |∆ |∩{v | 〈u1,v〉 ≥ 0} and C2 = |∆ |∩{v | 〈u1,v〉 ≤ 0}.

Since it is clear that C1 ∩C2 is a face of both C1 and C2, it follows from Exam-
ple A.7.1 that the set ∆ ′ consisting of all faces of C1 and C2 is a fan with support
C1∪C2 = |∆ |. We may thus apply Lemma A.7.6 to conclude that there is a common
refinement Σ of ∆ and ∆ ′. It is clear that this has the desired property.

Corollary A.7.9. Given a fan ∆ in V such that |∆ | is convex and given polyhedral,
convex cones C1, . . . ,Cr ⊆ |∆ |, there is a fan Σ refining ∆ such that each Ci is a
union of cones in Σ .

Proof. For every i, we choose ui,1, . . . ,ui,mi that generate Ci as a convex cone. We
apply Corollary A.7.8 to construct a fan Σ refining ∆ such that for every σ ∈ Σ and
every i, j, we have either ui, j ∈ σ∨ or −ui, j ∈ σ∨. We claim that this satisfies the
condition in the corollary. Indeed, suppose that v ∈ Ci and let σ ∈ Σ be such that
v ∈ Relint(σ). It is enough to show that in this case σ ⊆Ci. If this is not the case,
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then there is j such that ui, j 6∈ σ∨. By assumption, we have −ui, j ∈ σ∨. Using the
fact that v lies in Ci, we deduce 〈ui, j,v〉= 0. Therefore v lies on a proper face of σ ,
contradicting the fact that it lies in the relative interior.

Remark A.7.10. If V = MR, for a free, finitely generated abelian group and the fans
∆1 and ∆2 in Lemma A.7.6 are rational, it follows from the proof that the fan Σ

is rational, too. As a consequence, if the fan ∆ in Corollary A.7.8 is rational and
u1, . . . ,ud ∈M∗Q, then the fan Σ can be taken to be rational. This is turn implies that
if in Corollary A.7.9 both the fan ∆ and the cones C1, . . . ,Cr are rational, then also
the fan Σ can be taken rational.

A.8 Convex functions

Let V be a finite-dimensional real vector space. If T is a convex subset of V , a
function φ : T → R is convex if

φ(tu1 +(1− t)u2)≤ tφ(u1)+(1− t)φ(u2) for all u1,u2 ∈ T and t ∈ [0.1]. (A.3)

If V = WR for a Q-vector space W and φ is only defined on the rational points of T ,
then φ is convex if (A.3) holds under the extra assumption that u1,u2 ∈ T ∩W and
t ∈Q.

Proposition A.8.1. If T is an open convex subset of V , then every convex function
φ : T → R is continuous.

Proof. Let us show that φ is continuous at a point x ∈ T . We choose a basis of V
that gives an isomorphism V ' Rn. We consider a box

P = x+{u = (u1, . . . ,un) ∈ Rn | |ui| ≤ η for1≤ i≤ n}

for some η > 0 such that P⊆ T . We denote by ∂P the boundary of this box, that is,

∂P = x+{u = (u1, . . . ,un) ∈ Rn | max
1≤i≤n

|ui|= η}.

We first note that there is M such that φ(u) ≤ M for all u ∈ P. Indeed, since
φ is a convex function, the values of φ on any line segment are bounded above
by the maximum of the values at the end points of the segment. This implies that
supu∈P φ(u) ≤ supu∈∂P φ(u). Repeating this, we see that we may take M to be the
maximum value of φ at the vertices of P.

Suppose now that z 6= x is a point in P r ∂P, and let y ∈ ∂P be such that z =
λy+(1−λ )x for some λ ∈ (0,1). Since φ is convex, we have

φ(z)≤ λφ(y)+(1−λ )φ(x)

and therefore
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φ(z)−φ(x)≤ λ (φ(y)−φ(x))≤ λ (M−φ(x)). (A.4)

Note that the second point where the line through x and z intersects ∂P is 2x− y.
Since we can write x = 1

1+λ
z + λ

λ+1 (2x− y), using one more time the convexity of
φ , we obtain

(1+λ )φ(x)≤ φ(z)+λφ(2x− y).

Therefore

φ(z)≥ φ(x)+λ (φ(x)−φ(2x− y))≥ φ(x)+λ (φ(x)−M). (A.5)

By combining (A.4) and (A.5), we obtain

|φ(z)−φ(x)| ≤ λ (M−φ(x)). (A.6)

If we have a sequence (zm)m≥1 with limm→∞ zm = x, then the corresponding λm
satisfy limm→∞ λm = 0, hence (A.6) implies limm→∞ φ(zm) = φ(x). This completes
the proof of the proposition.

Remark A.8.2. Suppose now that V = WQ, for a Q-vector space W , and φ is a func-
tion defined on the rational points of an open subset T of V . Applying verbatim the
argument in the proof of Proposition A.8.1 (by taking η ∈Q and only dealing with
the rational points in P), we see that also in this setting the convexity of φ implies
the fact that it is continuous.

Remark A.8.3. If the set T in Proposition A.8.1 is not open, the conclusion can fail.
For example, if φ is a convex function on a closed interval [a,b] in R, we can replace
φ(a) by any larger value, without affecting the convexity of the function.

A.9 Convex piecewise linear functions

Let V be a finite-dimensional real vector space, C a closed convex cone in V , and
φ : C→ R a function.

Definition A.9.1. We say that φ is piecewise linear if there is a fan ∆ with |∆ |= C
and for every cone σ ∈∆ there is a linear function `σ : V→R such that φ(v) = `σ (v)
for all v ∈ σ . It is clear that for this to hold, C has to be polyhedral.

Remark A.9.2. Note that if φ : C→ R is piecewise linear, then it satisfies φ(tv) =
tφ(v) for every v ∈ C and every t ∈ R≥0. We also note that if this condition is
satisfied, then φ is convex if and only if φ(u+ v)≤ φ(u)+φ(v) for every u,v ∈C.

Proposition A.9.3. If C is a polyhedral convex cone in V and φ : σ → R is a func-
tion, then the following are equivalent:

i) The function φ is convex and there are closed convex cones C1, . . . ,Cr and linear
functions `i : V →R such that C =C1∪ . . .∪Cr and φ(v) = `i(v) for every v∈Ci.
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ii) The are linear functions α1, . . . ,αr : V → R such that for every v ∈C, we have

φ(v) = max{αi(v) | 1≤ i≤ r}. (A.7)

iii) The function φ is convex and piecewise linear.

Proof. After replacing V by the linear span of C, we may assume that this linear
span is equal to V . Suppose first that φ satisfies i). It follows from Lemma A.7.2
that we may assume that dim(C j) = dim(V ) for all j. In particular, the linear maps
`1, . . . , `r are uniquely determined. We will show that

φ(v) = max{`i(v) | 1≤ i≤ r} (A.8)

for every i ∈ v. Since C = ∪r
i=1Ci and φ = `i on Ci, the inequality “≤” in (A.8) is

clear. Let us show now that φ(v)≥ ` j(v) for every v ∈C and every j. Let i be such
that v ∈Ci. Since dim(C j) = n, the interior of C j is nonempty (see Remark A.3.3)
and we choose a point w in the interior of C j and t ∈ (0,1) such that v′ = tv+(1−
t)w ∈C j. Using the convexity of φ , we obtain

t` j(v)+(1−t)` j(w) = ` j(v′) = φ(v′)≤ tφ(v)+(1−t)φ(w) = tφ(v)+(1−t)` j(w).

Since t > 0, we conclude that ` j(v)≤ φ(v). This completes the proof of “i)⇒ii)”.
Suppose now that we have linear functions α1, . . . ,αr as in ii). It is clear in this

case that φ(tv) = tφ(v) for every t ≥ 0 and every v ∈C. Moreover, given v,w ∈C, if
i is such that φ(v+w) = αi(v+w) = αi(v)+αi(w), then φ(v+w)≤ φ(v)+φ(w).
Therefore φ is convex. In order to show that it is also piecewise linear, for every i
with 1≤ i≤ r, we put

σi = C∩{v | αi(v)≥ α j(v) for1≤ i≤ r}.

Since C is polyhedral, it follows that each σi is polyhedral. Moreover, σi ∩σ j is
clearly a face of both σi and σ j, hence the cones σi and their faces form a fan
∆ with support C (of course, it might happen that σi = σ j for some i 6= j). It is
then clear that φ is equal to a linear function on each of the cones σi, hence it is
piecewise linear. Since the implication iii)⇒i) is trivial, this completes the proof of
the proposition.

Corollary A.9.4. If C is a polyhedral convex cone in V and φ : C→R is a piecewise
linear, convex function, then there is a coarsest fan that satisfies the condition in
Definition A.9.1; more precisely, every other fan that satisfies this condition is a
refinement of ∆ .

Proof. After replacing V by the linear span of C, we may assume that this linear
span is equal to V . We use the notation in the proof of Proposition A.9.3. Note first
that by the proposition, there are linear functions α1, . . . ,αr on V such that (A.7)
holds. We claim that the fan ∆ constructed using these functions is minimal with the
property that it satisfies Definition A.9.1 (only minimality is left to prove). Suppose
that Σ is another fan that satisfies Definition A.9.1. Let τ be a maximal cone in Σ
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and let ` : V → R be a linear map such that φ(v) = `(v) for v ∈ τ . Note that τ has
dimension equal to dim(V ) by Corollary A.7.3, hence ` is uniquely determined. It
follows from (A.7) that there is i such that ` = αi. Indeed, otherwise we can find for
every i an element vi ∈ τ such that `(vi) > αi(vi) (note that by (A.7), we also have
`(vi)≥ α j(vi) for all j). We thus have

`(v1 + . . .+ vr) > α j(v1 + . . .+ vr)

for 1 ≤ j ≤ r, contradicting (A.7). Therefore we can find i such that ` = αi, which
gives τ ⊆ σi. We conclude that Σ is a refinement of ∆ .

Remark A.9.5. Suppose that C is a polyhedral convex cone in V and (φi)i∈I is a
family of piecewise linear, convex functions on C. If there is a fan ∆ with |∆ | = C
such that each φi is linear on the cones of ∆ , then there is a unique coarsest fan
with this property. Indeed, this is the coarsest fan refining all ∆i (see Remark A.7.7),
where ∆i is the coarsest fan such that φi is linear on all cones of ∆i.

Suppose now that M is a finitely generated, free abelian group, V = MR, and
C ⊆ VR is a rational polyhedral cone. Given φ : C∩MQ→ R, we say as in Defini-
tion A.9.1 that φ is piecewise linear if there is a rational fan ∆ with |∆ |= C and for
every cone σ ∈ ∆ there is a linear function `σ : MQ→Q such that φ(v) = `σ (v) for
all v ∈ σ ∩MQ. It is clear that Proposition A.9.3 and Corollary A.9.4 have variants
in this setting.

The next proposition gives examples of piecewise linear, convex functions. We
make use of this result in studying the consequences of finite generation for section
rings associated to several line bundles.

Proposition A.9.6. Let M be a finitely generated, free abelian group and C the con-
vex cone generated by v1, . . . ,vd ∈MR. For every α = (α1, . . . ,αd)∈Qd

≥0, if a func-
tion φα : C∩MQ→ R satisfies

φα(v) = min

{
d

∑
j=1

λ jα j | λ1, . . . ,λd ∈Q≥0,
d

∑
j=1

λ jv j = v

}
for all v ∈C∩MQ,

(A.9)
then φα is convex and piecewise linear. Furthermore, there is a rational fan ∆ with
support C such that each φα as above is linear on the cones in ∆ .

Proof. Let us first check that φα is convex. It is clear that φα(tv) = t · φα(v) for
every t ∈ Q≥0 and v ∈ C. Moreover, if v = ∑ j λ jv j and v′ = ∑ j λ ′jv j are such that
φα(v) = ∑ j λ jα j and φα(v′) = ∑ j λ ′jα j, then v+v′= ∑ j(λ j +λ ′j)v j and by definition

φα(v+ v′)≤∑
j
(λ j +λ

′
j)α j = φα(v)+φα(v′).

We next show that if v∈C and v = ∑ j λ jv j is such that φα(v) = ∑ j λ jα j, then we
may assume that the v j for which λ j 6= 0 are linearly independent. The argument for
this follows closely the proof of Proposition A.5.7. We may assume that the number
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of nonzero λ j is minimal among those (λ1, . . . ,λd) ∈Qd
≥0 such that v = ∑ j λ jv j and

φα(v) = ∑ j λ jα j. Let J = { j | λ j 6= 0}. Suppose that there is a relation ∑ j∈J a jv j = 0
such that not all a j are 0. After possibly multiplying this relation by (−1), we may
assume that ∑ j∈J a jα j ≥ 0 and a j > 0, for some j ∈ J (we use the fact that α j ≥ 0
for all j). Let i ∈ I be such that λi/ai = min{λ j/a j | j ∈ J,a j > 0}. In this case we
can write

v = ∑
j∈Jr{i}

(
λ j−λi

a j

ai

)
v j

and

∑
j∈J

(
λ j−λi

a j

ai

)
α j = φα(v)− λi

ai
∑
j∈J

a jα j ≤ φα(v),

a contradiction with the minimality in the choice of J.
Let Λ1, . . . ,Λr be the subsets of {v1, . . . ,vd} that consist of linearly independent

vectors and let C j be the convex cone generated by Λ j. We apply Corollary A.7.8 to
construct a rational fan ∆ with |∆ |=C such that each C j is a union of cones in ∆ . We
claim that every φα is linear on the cones in ∆ . Indeed, for every σ ∈ ∆ , let J(σ) be
the set consisting of those j such that σ ⊆C j. For every j, we have linear functions
u j,i ∈ M∗Q, for i ∈ Λ j, such that for every v ∈ C j, we have v = ∑i∈Λ j〈u j,i,v〉vi. Let
L j ∈M∗Q be given by L j = ∑i∈Λ j αiu j,i. Note that if v lies on a proper face C j′ of C j

(that is, if some 〈u j,i,v〉 are zero) and if we run the same process with respect to C j′ ,
then L j(v) = L j′(v). We thus conclude that for every v ∈ σ , we have

φα(v) = min
j∈J(σ)

L j(v).

Since each L j is a linear function, we deduce from Proposition A.9.3 that −φα

is convex on σ . On the other hand, we have seen that φα is a convex function.
Therefore φα is linear on σ and this completes the proof of the proposition.

Remark A.9.7. Proposition A.9.6 has a variant for a finite-dimensional real vector
space V . More precisely, if C is the cone generated by v1, . . . ,vd ∈ V and if for
α ∈ Rd

≥0 we have a function φα that satisfies

φα(v) = min

{
d

∑
j=1

λ jα j | λ1, . . . ,λd ∈ R≥0,
d

∑
j=1

λ jv j = v

}
for all v ∈C,

then there is a fan ∆ with support C such that each φα as above is linear on the cones
in ∆ .





Appendix B
Birational maps and resolution of singularities

In the first section we collect a few elementary facts that are used elsewhere in the
book. We then discuss birational maps and exceptional loci and in the last section
we review the terminology concerning various types of resolutions of singularities
and give the existence statements. All schemes are assumed to be separated and of
finite type over a ground field k.

B.1 A few basic facts

We begin with the following easy lemma.

Lemma B.1.1. Let f : Y → X be a surjective morphism between complete varieties,
with dim(Y ) > dim(X). If H is an ample, effective Cartier divisor on Y , then f (H) =
X.

Proof. Indeed, if f (H) 6= X and x ∈ X r f (H), then (H ·C) = 0 for every curve C
contained in f−1(x), contradicting the fact that H is ample.

Corollary B.1.2. If f : Y → X is a surjective morphism between complete schemes,
then for every irreducible, closed subset Z of X, there is an irreducible, closed subset
W of Y such that f (W ) = Z and dim(W ) = dim(Z). Moreover, given a dense open
subset U of Y , which dominates X, then we may assume that W ∩U 6= /0.

Proof. We may replace f by f−1(Z)→ Z and thus assume that Z = X . We argue by
induction of dim(Y ). After replacing Y by an irreducible component that dominates
X , we may also assume that Y is irreducible. Note that dim(Y )≥ dim(X) and if we
have equality, then there is nothing to prove.

Suppose now that dim(Y ) > dim(X). By Chow’s lemma, we have a surjective
morphism g : Y ′ → Y , with Y ′ irreducible and projective and dim(Y ′) = dim(Y ).
If we can find a closed, irreducible closed subset W ′ in Y ′ with f (g(W ′)) = X and
dim(W ′) = dim(X) (and, in the presence of U , such that W ′∩g−1(U) 6= /0), then W =

365
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g(W ′) satisfies the required conditions (note that dim( f (g(W ′)) ≤ dim(g(W ′)) ≤
dim(W ′), hence both these are equalities). Therefore we may assume that Y is pro-
jective. Let H be an ample effective Cartier divisor on Y (which we may, in the
presence of U , assume that intersects U). It follows from Lemma B.1.1 that H sur-
jects onto X . The assertion now follows by induction.

Remark B.1.3. In Lemma B.1.1, the same result holds if we only assume that f is
a proper, surjective morphism of varieties and H is f -ample. This implies that in
Corollary B.1.2 it is enough to assume that f is proper and surjective.

Proposition B.1.4. If X is a connected, complete scheme, then for every two (closed)
points x 6= y in X, there is a connected, 1-dimensional closed subscheme Z of X
containing x1 and x2 in its support.

Proof. We argue by induction on n = dim(X). Since X is connected, we can find
irreducible components X1, . . . ,Xr of X such that x ∈ X1, y ∈ Xr, and Xi ∩Xi+1 6= /0
for 1≤ i≤ r−1. If we choose zi ∈ Xi∩Xi+1, then it is enough to prove the assertion
in the proposition for each of the pairs (x,z1),(z1,z2), . . . ,(zr−1,y) that consist of
distinct points. Therefore we may assume that X is irreducible. Of course, after
replacing X by Xred, we may assume that X is also reduced.

Note that if f : X ′ → X is a surjective, proper, generically finite morphism and
if x′ ∈ f−1(x) and y′ ∈ f−1(y), then for every subscheme Z′ of X ′ that satisfies the
conclusion of the proposition for x′ and y′, its image f (Z) satisfies the conclusion for
x and y. Therefore, after applying Chow’s lemma and then taking the normalization,
we may assume that X is normal and projective. If n = 1, then we may take Z =
X . On the other hand, if n ≥ 2, then we consider a very ample, effective Cartier
divisor H on X such that x,y ∈H. Since H is connected by [Har77, Cor. III.7.9] and
dim(X) = n−1, we can apply the inductive hypothesis to complete the proof.

Corollary B.1.5. If X is a connected, complete scheme and Y is a proper, nonempty
subset of X, then there is a curve C in X that is not contained in Y , but meets Y .

Proof. Let x1 ∈ Y and x2 ∈ X rY . If Z is a closed subscheme of X as in Proposi-
tion B.1.4, then some irreducible component C of Z satisfies the conditions in the
corollary.

Remark B.1.6. If the ground field is algebraically closed, then one can do better
then in Proposition B.1.4: if X is any irreducible scheme, any two distinct points
x,y ∈ X lie on a curve C on X , that is, the scheme in the proposition can be taken
to be irreducible. In order to prove this, we argue by induction. By Chow’s lemma,
we may assume that X is a quasi-projective variety and by taking the closure in
a suitable projective space, we may assume that X is projective. If dim(X) ≥ 2,
then we consider the blow-up π : X ′→ X along {x,y} and an effective, very ample
Cartier divisor H on X ′. By taking H general in the corresponding linear system,
we may assume that H is irreducible by a version of Bertini’s theorem, see [Jou83,
Théorème 6.3] (it is here that we use the assumption that k is algebraically closed,
since we need X ′ to be geometrically irreducible). Since H is ample, it intersects
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both π−1(x) and π−1(y). Therefore there are points x′,y′ ∈ H lying over x and y,
respectively. By induction, there is a curve C′ on H containing x′ and y′ and C =
π(C′) is a curve that contains both x and y.

B.2 Birational maps and exceptional loci

Suppose that f : Y → X is a proper birational morphism between varieties over a
field k. Let U be the largest open subset of X on which the inverse rational map
f−1 is defined. Equivalently, U is the largest open subset of X such that f is an
isomorphism over U . The closed subset Y r f−1(U) is the exceptional locus of f ,
that we denote by Exc( f ). We say that a Weil divisor on Y is exceptional if its
support is contained in Exc( f ). We denote by ExcDiv( f ) the sum of the exceptional
divisors of f .

Note that if X is normal, then codim(X rU,X)≥ 2. In particular, a prime divisor
E on Y is exceptional if and only if dim( f (E)) < dim(E). We also note that in
this case, every prime divisor D on X intersects U , hence its strict transform D̃ is
well-defined as a prime divisor on Y . If ∆ = ∑i aiDi is an R-divisor on X , we put
∆̃ = ∑i aiD̃i.

Suppose now that X is normal and ∆ is an effective R-Cartier R-divisor on X .
It follows from definition that the difference f ∗(∆)− ∆̃ is an effective exceptional
R-divisor.

Lemma B.2.1. If g : Z→ Y and f : Y → X are proper, birational morphisms, then

Exc( f ◦g) = g−1(Exc( f ))∪Exc(g).

Proof. Suppose first that x 6∈ g−1(Exc( f ))∪ Exc(g). In this case there are open
neighborhoods U of f (g(x)) and V of g(x) such that f−1 is defined on U and g−1

is defined on V . In this case ( f ◦ g)−1 is defined on U ∩ ( f−1)−1(V ). Therefore
x 6∈ Exc( f ◦g), proving the inclusion “⊆” in the lemma.

On the other hand, if x 6∈ Exc( f ◦ g), then ( f ◦ g)−1 is defined in some neigh-
borhood W of f (g(x)). In this case f−1 = g ◦ ( f ◦ g)−1 is defined on W and
g−1 = ( f ◦ g)−1 ◦ f is defined on the open neighborhood f−1(W ) of g(x). There-
fore x 6∈ g−1(Exc( f ))∪Exc(g), completing the proof of the lemma.

Lemma B.2.2. If f : Y → X is a proper birational morphism between two varieties
and y∈Y lies on an irreducible component of f−1( f (y)) of positive dimension, then
y ∈ Exc( f ). The converse holds if X is normal.

Proof. The first assertion is clear. For the converse, note that if Y is normal, then
f is a fiber space. In particular, f has connected fibers by Zariski’s Main Theorem.
Suppose that y ∈ Y is such that {y} is a zero-dimensional component of f−1( f (y)).
In this case there is an open neighborhood V of y such that every y′ ∈ V has the
same property (see [Har77, Exer. II.3.22]). The connectedness of each f−1( f (y′))
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then implies that for every y′ ∈ V , we have f−1( f (y′)) = {y′}. We deduce that if
W = f (V ), then V = f−1(W ). Since f is closed, this implies that W = X r f (Y rV )
is open. The morphism V →W is a bijective fiber space, hence an isomorphism, and
we see that y 6∈ Exc( f ).

Lemma B.2.3. If f : Y → X is a proper birational morphism between smooth va-
rieties, then Exc( f ) is an effective divisor. In fact, if KY/X is the effective divisor
defined by the nonzero morphism of line bundles π∗(ωX )→ωY , then Supp(KY/X ) =
Exc( f ).

Proof. If n = dim(X) = dim(Y ), then we have a morpshim of rank n vector bundles
f ∗(ΩX )→ΩY , which is an isomorphism over an open subset of Y . By taking the top
exterior powers, we obtain an injective map of line bundles f ∗(ωX )→ ωY , which
corresponds to a nonzero section of ωY ⊗ f ∗(ωX )−1. The zero-locus of this section
is KY/X . Therefore

Supp(KY/X ) = {y ∈ Y | f is not étale at y}.

It follows from the definition of the exceptional locus that Supp(KY/X ) ⊆ Exc(π).
The reverse inclusion follows from Lemma B.2.2.

Example B.2.4. If Z is a smooth, closed subvariety of a smooth variety X , of codi-
mension r, and f : Y → X is the blow-up of X along Z, with exceptional divi-
sor E, then KY/X = (r− 1)E. Indeed, this can be checked in local charts. Sup-
pose that we have coordinates x1, . . . ,xn on an affine open subset U of X , such
that Z ∩U is defined by (x1, . . . ,xr). A typical chart on π−1(U) has local coordi-
nates xi,y1, . . . , ŷi, . . . ,yr,xr+1 . . . ,xn, for some i with 1≤ i≤ r, and where x j = xiy j
for all j with 1 ≤ j ≤ r, j 6= i. Note that in this chart E is defined by (xi). Since
dx j = xidy j + y jdxi for 1≤ j ≤ r, with j 6= i, one can easily check that

dx1∧ . . .∧dxn =±xr−1
i ·dxi∧dy1∧ . . .∧ d̂yi∧ . . .∧dyr ∧dxr+1∧ . . .∧dxn

and we see that in this chart we have KY/X = (r−1)E.

The following lemma is an easy, but often useful fact.

Lemma B.2.5. If f : Y → X is a proper birational morphism of normal varieties, D
is a Cartier divisor on X, and E is an effective exceptional divisor on Y , then we
have an equality OX (D) = f∗OY ( f ∗(D)+ E) of subsheaves of the function field of
X. In particular, we have OX = f∗(OY (E)).

Proof. We need to show that if U is an open subset of X and φ is a nonzero rational
function on X , then divX (φ)+D is effective on U if and only if

divY (φ)+ f ∗(D)+E = f ∗(divX (φ)+D)+E

is effective on f−1(U). The “only if” part is clear since E is effective. On the other
hand, if F is a prime divisor on X intersecting U whose coefficient aF in divX (φ)+D
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is negative, then also the coefficient of F̃ in divY (φ)+ f ∗(D)+E is negative, being
equal to aF . This completes the proof of the lemma.

Corollary B.2.6. If f : Y → X is a proper, birational morphism of smooth varieties,
then we have a canonical isomorphism f∗(ωY )' ωX .

Proof. We have seen in Lemma B.2.3 that there is an effective, exceptional divisor
KY/X on Y such that ωY ' f ∗(ωX )⊗OY (KY/X ). It follows from Lemma B.2.5 and
the projection formula that

f∗(ωY )' ωX ⊗ f∗(OY (KY/X ))' ωX .

B.3 Resolutions of singularities

In this section we assume that all varieties are defined over a field k of characteristic
zero. For a variety X over k we denote by Xsm the smooth locus of X .

Definition B.3.1. Given a variety X , a resolution of singularities of X is a projective
birational morphism f : Y → X , with Y a smooth variety.

The following is a fundamental result of Hironaka [Hir64].

Theorem B.3.2. Every variety over k has a resolution of singularities f : Y → X
which is an isomorphism over Xsm.

In several instances one defines invariants of an algebraic variety in terms of
a resolution of singularities. In each such case, one needs to check independence
of the chosen resolution. The following proposition allows to compare two such
resolutions.

Proposition B.3.3. If f1 : Y1→ X and f2 : Y2→ X are two resolutions of singulari-
ties of X, then there is a third resolution dominating both of them, that is, there is a
smooth variety Y and projective, birational morphisms g1 : Y → Y1 and g2 : Y → Y2
such that f ◦g1 = f ◦g2.

Proof. Let W = Y1×X Y2 and p1 : W → Y1 and p2 : W → Y2 the canonical projec-
tions. Since f1 and f2 are birational, it follows that there is an open subset U of X
such that the induced map h : W → X is an isomorphism over U . With the reduced
scheme structure, W0 := h−1(U) is a variety such that p1|W0 and p2|W0 are projective
birational morphisms. If g : Y →W0 is a resolution of singularities, then g1 = p1 ◦g
and g2 = p2 ◦g satisfy the requirements in the proposition.

We will also need the following version of resolution of singularities for a divisor,
which is also due to Hironaka [Hir64].
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Theorem B.3.4. If X is a smooth variety and ∆ is an effective divisor on X, then
there is a projective morphism f : Y → X, with Y smooth, which is an isomorphism
over X r Supp(∆), and such that f ∗(∆) has simple normal crossings.

We also consider two extensions of the above notion. In the first one we treat
nonzero ideals on arbitrary varieties.

Definition B.3.5. If a is a nonzero ideal on the variety X , then a log resolution of
(X ,a) (or simply of a) is a projective birational morphism f : Y → X such that

i) Y is smooth,
ii) a ·OY = OY (−D) for an effective divisor D, and

iii) the divisor D+Exc( f ) has simple normal crossings.

Corollary B.3.6. Given a nonzero ideal a on the variety X, there is a log resolution
f : Y → X of (X ,a) which is an isomorphism over Xsm rZ(a) and such that Exc( f )
is an effective divisor.

Proof. We first take f1 : X1 → X be the blow-up of X along a, hence a ·OX1 is the
ideal of an effective Cartier divisor. Note that f1 is an isomorphism over the com-
plement of Z(a). We then apply Theorem B.3.2 to get a resolution of singularities
f2 : X2 → X1 of X1 which is an isomorphism over the smooth locus of X1. We do
not know much about the exceptional locus W of f1 ◦ f2, so we repeat the previ-
ous process in order to get the exceptional locus be a divisor: we let f3 : X3 → X2
be the blow-up of X2 along W , and f4 : X4→ X3 a resolution of singularities of X3
that is an isomorphism over the smooth locus of X3. In particular, it follows from
Lemma B.2.1 that the exceptional locus of the composition g : X4→X is the support
of the divisor E = ( f3 ◦ f4)−1(W ). Let ∆ be the effective Cartier divisor on X4 such
that a ·OX4 = OX4(−∆). We apply Theorem B.3.4 to find a projective morphism
f5 : Y → X4, with Y smooth, which is an isomorphism over X r Supp(∆ + E), and
such that f ∗5 (∆ +E) is a divisor with simple normal crossings. Let f : Y → X be the
composition of the above maps. Note first that f is an isomorphism over Xsm rZ(a).
It follows from construction and Lemma B.2.3 that Exc( f5) is a divisor with support
contained in Supp( f ∗5 (∆ +E)). Furthermore, we deduce from Lemma B.2.1 that

Exc( f ) = Exc( f5)∪ f−1
5 (Exc(g)),

hence this is a divisor with support contained in Supp( f ∗5 (∆ + E)). It is now clear
that f satisfies the conditions for being a log resolution of (X ,a).

Remark B.3.7. If a1, . . . ,ar are nonzero ideals on the variety X , then we may con-
sider a log resolution f : Y → X for (X ,a1 · . . . ·ar). It is easy to see that if a product
of nonzero coherent ideal sheaves on an integral scheme is locally principal, then
each of the ideals is locally principal. It follows that for every i we can write ai ·OY =
OY (−Di) for an effective divisor Di on Y , and that ExcDiv( f )+ D1 + . . .+ Dr has
simple normal crossings.
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Remark B.3.8. If ∆ is an effective R-Cartier R-divisor on the variety X , then we
may consider log resolutions for the pair (X ,∆), as follows. If we write ∆ = ∑i aiFi,
where the Fi are effective Cartier divisors and ai ∈ R≥0, then a log resolution of
(X ,∆) is provided by a log resolution f : Y → X of the product ∏i OX (−Fi). Note
that this has the property that f ∗(∆)+ ExcDiv( f ) is a simple normal crossings R-
divisor.

We will also consider a version of log resolutions in the presence of a Weil divi-
sor.

Definition B.3.9. Suppose that X is a normal variety, ∆ = ∑i aiFi is an R-divisor
on X , and a is a nonzero ideal on X . A log resolution of (X ,∆ ,a) is a projective
birational morphism f : Y → X such that

i) Y is smooth,
ii) we have a ·OY = OY (−D) for an effective divisor D, and

iii) the divisor D+ExcDiv( f )+∑i F̃i has simple normal crossings.

Corollary B.3.10. Given a nonzero ideal a on the normal variety X, and an R-
divisor ∆ = ∑i aiFi on X, there is a log resolution f : Y → X of (X ,∆ ,a) which is
an isomorphism over Xsm r (Z(a)∪Supp(∆)) and such that Exc( f ) is an effective
divisor.

Proof. We first apply Theorem B.3.2 to get a resolution of singularities g : X1→ X
which is an isomorphism over Xsm. Let a′ denote the ideal of the reduced effective
divisor ∑i F̃i. If a′′ is the ideal defining Exc(g) (with reduced structure), then we let
f be the composition of g with a log resolution h : Y → X1 of (X1,a ·a′ ·a′′), which is
an isomorphism over X1 rZ(a ·a′ ·a′′). We take f = g◦h. By Lemma B.2.1, we have
Exc( f ) = Exc(h)∪h−1(Z(a′′)) and it is clear that f is a log resolution of (X ,∆ ,a),
and that it is an isomorphism over the complement of Xsm r (Z(a)∪Supp(∆)).

Remark B.3.11. If instead of one ideal a in Corollary B.3.10 we have several
nonzero ideals a1, . . . ,ar, then we can proceed as in Remark B.3.7 by taking a log
resolution for (X ,∆ ,a1 · . . . ·ar).

Remark B.3.12. Arguing as in Remark B.3.3, we see that any two log resolutions
(for example, in the setting in Corollary B.3.10) can be dominated by a third one.

The known results on resolution of singularities offer more information on the
resolutions, that are sometimes useful. We only mentions two such stronger ver-
sions, that we will need.

Remark B.3.13. In the context of Theorem B.3.2, one can construct the resolution
f : Y→X as a composition of blow-ups of subschemes (in fact, smooth subvarieties)
lying over X r Xsm:

Y = Ym
fm→ Ym−1

fm−1→ . . .→ Y1
f1→ X .
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Note that if fi is the blow-up along the subscheme Zi−1 ↪→Yi−1 and if Ei = f−1
i (Zi),

then Ei is an effective Cartier divisor on Yi such that OYi(−Ei) is fi-ample. Using
Proposition 1.6.15, we deduce that there is an effective Cartier divisor E on Y with
Supp(E)⊆ f−1(X r Xsm) such that OY (−E) is f -ample.

Remark B.3.14. In the context of Theorem B.3.4, if U is an open subset of X
such that ∆ |U has simple normal crossings, then one can construct the morphism
f : Y → X such that it is an isomorphism over U . Moreover, f can be taken to be a
composition of blow-ups with smooth centers, all centers lying above X rU . The
fact that f can be taken to be an isomorphism over U is useful, for example, when
compactifying pairs (X ,∆), where X is a smooth quasiprojective variety and ∆ is a
simple normal crossing divisor on X . More precisely, we can find an open immer-
sion X ↪→ X ′, where X ′ is a smooth projective variety, and a divisor ∆ ′ on X ′ such
that

i) X ′r X is a divisor E.
ii) ∆ ′|X = ∆ and ∆ ′ has no common components with E.

iii) ∆ ′+E has simple normal crossings.

Indeed, we can first embed X as an open subset of a projective variety W . After
possibly replacing W by its blow-up along W r X , we may assume that W r X is
the support of an effective Cartier divisor F . By Theorem B.3.2, we may construct a
resolution of singularities f : Y →W that is an isomorphism over X . If ∆ = ∑i ai∆i
and ∆Y = ∑i ai∆i is the corresponding divisor on Y , then we consider a projective
and birational morphism g : X ′→ Y such that X ′ is smooth, g∗(∆Y +F) has simple
normal crossings, and g is an isomorphism over f−1(X). It is then clear that on X ′

we can choose ∆ ′ that satisfies i), ii), and iii) above.



Appendix C
Finitely generated graded rings

In this appendix we collect some standard facts concerning finite generation for
graded rings. In what follows we consider rings generated by semigroups. We do
not aim for the most general statements and sometimes make restrictive hypotheses
if these simplify the proofs and they are satisfied in the cases of interest for us. We
refer to Section A.6 for the definitions related to semigroups. We denote by N the
monoid (Z≥0,+).

If S is a monoid, an S-graded ring is a ring1 R with a direct sum decomposition
R =

⊕
u∈S Ru, where each Ru is an abelian subgroup of R, such that 1 ∈ R0 and

Ru ·Rv ⊆ Ru+v for all u,v ∈ S. It is clear that in this case R0 is a ring, each Ru is an
R0-module, and R is an R0-algebra. If f ∈ Ru is nonzero, then we put deg( f ) = u.
Elements of Ru, for u ∈ S, are called homogeneous. If k is a fixed field, an S-graded
k-algebra is a k-algebra that has a decomposition as above, such that each Ru is a
k-vector subspace. In particular, R0 is a k-algebra. A graded subring of R =

⊕
u∈S Ru

is a subring R′ of R such that R′ =
⊕

u∈S(R′∩Ru).

Remark C.0.1. If R is an S-graded ring as above and S is a submonoid of a monoid
T , then we may consider R in a natural way as a T -graded ring.

Remark C.0.2. Suppose that S is a finitely generated submonoid of a finitely gener-
ated, free abelian group M. If S has no nonzero invertible elements, then the convex
cone σ generated by S in MR is strongly convex. Therefore there is a group homo-
morphism ` : M→ Z such that `(u) > 0 for every nonzero u ∈ S. Given an S-graded
ring R =

⊕
u∈S Ru, we can use ` to put on R a structure of N-graded ring, by writing

R =
⊕

m∈N Rm, where Rm =
⊕

u∈S,`(u)=m Ru. This can be sometimes used to deduce
properties of S-graded rings from the N-graded case.

We now list some basic results about the finite generation of graded rings.

Lemma C.0.3. If S is a monoid and R =
⊕

u∈S Ru is an S-graded domain that is
finitely generated as an R0-algebra, then the submonoid T = {u ∈ S | Ru 6= 0} of S
is finitely generated.

1 All rings will be assumed commutative, with unit 1 6= 0.
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Proof. Note first that indeed T is a submonoid of S, since R is a domain. Let
f1, . . . , fn ∈ R be a system of generators of R as an R0-algebra. We may clearly
assume that all fi are homogeneous and nonzero. If ui = deg( fi) ∈ S, then it is
straightforward to see that u1, . . . ,um generate T .

If R is an S-graded ring and T is a submonoid of S, then the restriction of R to T
defined by R|T :=

⊕
u∈T Ru is a T -graded ring.

Lemma C.0.4. Let R be an S-graded ring, where S is a monoid. If S is the union of
the submonoids S1, . . . ,Sr and each R|Si is a finitely generated R0-algebra, then R is
a finitely generated R0-algebra.

Proof. The assertion is clear, since R = R|S1 + . . .+R|Sr as R0-modules.

Lemma C.0.5. If S is a submonoid of a finitely generated, free abelian group and R
is an S-graded ring, then R is a domain if and only if for every two homogeneous
nonzero elements f ,g ∈ R, we have f g 6= 0.

Proof. Since S is a submonoid of a finitely generated, free abelian group A, we can
put on S a total order that is compatible with addition. For example, choose an iso-
morphism A'Zn, and consider on Zn the lexicographic order. Suppose that f ,g∈R
are nonzero elements such that f g = 0. Writing f = ∑u∈S fu and g = ∑u∈S gu, with
fu,gu ∈ Ru, let

v = max{u ∈ S | fu 6= 0} and w = max{u ∈ S | gu 6= 0}.

Since fvgw is the component of f g of degree v + w, it follows that fvgw = 0. This
gives the assertion in the lemma.

Proposition C.0.6. Let S be a monoid and T ⊆ S a submonoid, such that for every
u ∈ S, there is m ∈ Z>0 such that mu ∈ T . We consider an S-graded ring R such
that R0 is Noetherian. If R is a finitely generated R0-algebra, then R|T has the same
property. Furthermore, the converse holds if R is a domain and S is finitely gener-
ated.

Proof. Suppose that R is a finitely generated R0-algebra, with generators f1, . . . , fN .
We may and will assume that each fi is nonzero and homogeneous. If mi is a
positive integer such that mi · deg( fi) ∈ T , then gi = f mi

i ∈ R|T . The R0-algebra
R′ = R0[g1, . . . ,gN ] is finitely generated over R0, hence it is Noetherian. We have
the ring extensions R′ ↪→ R|T ↪→ R and since R is finite over R′, it follows that also
R|T is finite over R′. Since R′ is a finitely generated R0-algebra, we deduce that R|T
has the same property.

Conversely, suppose that R|T is finitely generated over R0, hence it is Noetherian,
and that R is a domain Given u ∈ S, let Mu :=

⊕
w∈T Ru+w. It is clear that Mu is

an R|T -submodule of R and we claim that it is finitely generated. This is trivial if
Mu = 0. Otherwise, there is h ∈Mu nonzero. Let q ∈ Z>0 be such that qu ∈ T . Since
R is a domain, multiplication by hq−1 induces an injective R|T -linear map Mu ↪→R|T .



C Finitely generated graded rings 375

Since R|T is Noetherian, we conclude that Mu is a finitely generated R|T -module, as
claimed.

Consider now generators u1, . . . ,ur of S, and let m be a positive integer such that
mui ∈ T for all i. It follows that for every u ∈ S, there are a1, . . . ,ar ∈ {0, . . . ,m−1}
and w ∈ T such that u = a1u1 + . . .+arur +w. Therefore R = ∑u Mu, where u varies
over the finite set

{a1u1 + . . .+arur | 0≤ ai ≤ m−1for all i}.

This implies that R is a finitely generated R|T -module. Since R|T is a finitely gener-
ated R0-algebra, we conclude that R has the same property.

Remark C.0.7. If in Proposition C.0.6 we drop the assumption that R is a domain,
it can happen that R|T is a finitely generated R0-algebra, but R does not have this
property. Suppose, for example, that R is the following N-graded ring: R0 is a field,
R2m = 0 for m≥ 1, and R2m−1 = R0εm, for m≥ 1, with εi · ε j = 0 for all i, j ≥ 1. It
is clear that R|2N = R0, but R is not finitely generated as an R0-algebra.

We also have the following variant of the first assertion in Proposition C.0.6.

Proposition C.0.8. Let S be a submonoid of a finitely generated, free abelian group
M. If R =

⊕
u∈S Ru is an S-graded ring that is a finitely generated R0-algebra, with

R0 Noetherian, then for every finitely generated submonoid T ⊆ S, the R0-algebra
R|T is finitely generated.

Proof. We may replace S by M and, by Proposition C.0.6, T by T sat, hence we may
assume that T is saturated in M. Let y1, . . . ,yn be generators of R as an R0-algebra.
We may and will assume that each yi is nonzero, homogeneous, of degree ui ∈ S.
Therefore we have a surjective morphism of R0-algebras f : A = R0[x1, . . . ,xn]→ R,
with f (xi) = yi. We also consider the morphism of free abelian groups φ : Zn→M
given by φ(ei) = ui, where e1, . . . ,en is the standard basis of Zn. It is clear that if we
consider A with the natural Nn-graded ring structure, then f (Au) ⊆ Rφ(u) for every
u ∈ Nn. If L = φ−1(T )∩Nn, then L is a finitely generated monoid by Corollar-
ies A.6.7 and A.6.8, hence R0[x1, . . . ,xn]|L is a finitely generated R0-algebra. There-
fore its image via f , which is equal to R|T , is a finitely generated R0-algebra.

The following proposition is very useful when dealing with finitely generated
N-graded rings.

Proposition C.0.9. If R =
⊕

m∈N Ru is an N-graded ring which is a finitely gen-
erated R0-algebra, then there is a positive integer d such that R′ :=

⊕
m∈N Rdm is

generated as an R0-algebra in degree 1.

Proof. Let y1, . . . ,yn be generators of R as an R0-algebra. We may assume that each
yi is nonzero and homogeneous of degree ai ≥ 1. We divide I = {1, . . . ,n} into
subsets I1, . . . , Ir, such that all ai in a set I j are equal to some α j and the α j are
mutually distinct. We argue by induction on r. If r = 1, then we are done by taking
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d to be the common value of the positive ai (if I is empty, then R = R0, and the
assertion in the proposition is trivial).

We now prove the induction step. It is enough to show that after possibly replac-
ing R by R|`N, for some positive integer `, the value of r goes down. In fact, we will
show that ` = lcm(α j | 1≤ j ≤ r) has this property.

By assumption, we have a surjective ring homomorphism

f : A = R0[x1, . . . ,xn]→ R, f (xi) = yi for all i.

If we consider A to be N-graded, such that deg(xi) = ai for all i, it is clear that
f (Am)⊆ Rm for all m ∈N. Since f is surjective, it follows that it is enough to prove
that A|`N is generated as an R0-algebra by elements of degrees `,2`, . . . ,(r− 1)`.
Therefore, it is enough to show that if

Lm = {(u1, . . . ,un) ∈ Nn | a1u1 + . . .+anun = m},

then every element in Lm`, with m ≥ r, can be written as the sum of two elements,
lying in L(m−1)` and L`, respectively.

Suppose that u = (u1, . . . ,un) ∈ Lm`, hence

r

∑
j=1

α j ·∑
i∈I j

ui = m`.

If there is j such that ∑i∈I j ui ≥ `
α j

, then we can write u = v + w, with v ∈ L(m−1)`

and w ∈ L` (simply take v with vi = ui for i ∈ I r I j and vi ≤ ui for i ∈ I j such that
∑i∈I j vi =− `

α j
+∑i∈I j ui). On the other hand, since we assume m≥ r, there is always

such j: otherwise

m` =
r

∑
j=1

α j ·∑
i∈I j

ui <
r

∑
j=1

α j ·
`

α j
= r`.

This completes the proof of the proposition.

Proposition C.0.10. Let S be a finitely generated submonoid of a finitely gener-
ated, free abelian group M, such that S contains no nonzero invertible elements. If
R =

⊕
u∈S is an S-graded domain which is a finitely generated R0-algebra, with R0

Noetherian, then for every nonzero v1, . . . ,vm ∈ S, the Nm-graded ring

T :=
⊕

(a1,...,am)∈Nm

Ra1v1+...+amvm

is a finitely generated R0-algebra.

Proof. Note that the multiplication in R induces a multiplication on T which makes
it an Nm-graded ring such that T0 = R0. After possibly replacing S by Ssat, we may
assume that S is saturated. It follows from Proposition C.0.8 that it is enough to
prove that the S×Nm-graded ring
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T̃ :=
⊕

(a,u)∈S×Nm

Ru+a1v1+...+umvm

is a finitely generated R0-algebra. On the other hand, T̃ is a obtained from R by
iterating m times the construction for m = 1. It follows that arguing by induction
on m, it is enough to show that T̃ is a finitely generated R0-algebra when m = 1 (in
which case we write v = v1). Note that since R is a domain, we deduce that T̃ is a
domain using Lemma C.0.5.

We first prove the assertion about T̃ when S = N. By Proposition C.0.9, in
this case we can find a positive integer d such that R|dN is generated by elements
x1, . . . ,xr of degree d. This implies that T̃ |dN×dN is generated as an R0-algebra by
x1, . . . ,xr ∈ T̃(0,1) and by all monomials of degree v in x1, . . . ,xr, considered as el-
ements of T̃(1,0). Since we know that T̃ is a domain, this implies that T̃ is finitely
generated by Proposition C.0.6.

In the general setting, we use Remark C.0.2 to reduce to the N-graded case. Let
` : M→ Z be a group homomorphism such that `(u) > 0 for all nonzero u ∈ S. We
may consider R to be N-graded by writing is as R =

⊕
i∈N R(i), where

R(i) =
⊕

u∈S,`(u)=i

Ru.

By applying what we have already proved to this N-graded ring and to `(v), we
conclude that the N2-graded ring

T ′ =
⊕

(i,a)∈N2

R(i+a`(v)), whereR(i+a`(v) =
⊕

u∈S,`(u)=i+a`(v)

Ru,

is a finitely generated R0-algebra. On the other hand, we may consider T ′ as an
S′-graded ring, where

S′ = {(i,a,u) ∈ N×N×S | `(u) = i+a`(v)}.

It is easy to see that S′ is finitely generated: note that S′ is the intersection of the sat-
urated submonoid N2×S of Z2×M with a linear subspace and the assertion follows
from Proposition A.6.1. Moreover, we may consider N×S as a submonoid of S′ by
the injective map that takes (a,u) to (`(u),a,u + av). Since T̃ is the restriction of
T to this submonoid, we may apply Proposition C.0.8 to conclude that T̃ is finitely
generated.





Appendix D
Integral closure of ideals

In order to discuss the consequences of the finite generation of the section ring of
several line bundles, we need some preparations regarding the integral closure of
ideals. In introducing this concept we follow the geometric approach from [Laz04b,
Chapter 9.6.A]. Let X be a normal variety1. Given a nonzero coherent ideal a on
X , consider a proper birational morphism f : Y → X , with Y normal and such that
a : OY = OY (−F) for an effective Cartier divisor F on Y (for example, we could
take Y to be the normalization of the blow-up of X along a). With this notation, the
integral closure a of a is given by f∗(OY (−F)). Note that since X is normal, we
have f∗(OY (−F)) ⊆ φ∗(OY ) = OX , hence a is a coherent ideal sheaf on X , which
clearly contains a.

Lemma D.0.1. The definition of a is independent of the choice of the morphism f .

Proof. Since any two such morphisms are dominated by a third one, it is enough to
consider another proper birational morphism g : Z → Y , with Z normal, and show
that f∗(OY (F)) = ( f ◦g)∗(−g∗(F)). Note that since Y is normal we have g∗(OZ)'
OY and the projection formula gives

g∗(OY (−g∗(F))' OY (−F)⊗g∗(OZ)'PY (−F).

Corollary D.0.2. If X is a normal, affine variety and a is a nonzero ideal on X, then

Γ (X ,a) = {φ ∈ OX (U) | ordE(φ)≥ ordE(a) for all divisorsE overX}.

Proof. With the notation in the definition, it is clear that Γ (X ,a) is equal to the set
of those φ ∈ OX (U) such that ordE(φ) ≥ ordE(a) for all prime divisors E on Y .
SInce the definition is independent of the choice of f , we obtain the description in
the corollary.

1 In fact, in this subsection we do not need to work over a ground field; everything that follows
holds without any change if X is a normal, integral, Noetherian scheme.
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For a = 0, we put a = 0. One says that an ideal a is integrally closed if a = a. We
collect in the next proposition some basic properties of integral closure.

Proposition D.0.3. Let X be a normal variety and a,b coherent ideals on X.

i) We have ordE(a) = ordE(a) for every divisor E over X.
ii) The ideal f a is integrally closed.

iii) We have a ⊆ b if and only if ordE(a) ≥ ordE(b) for every divisor E over X. In
particular, we have a = b if and only if ordE(a) = ordE(b) for every divisor E
over X.

iv) If a⊆ b, then a⊆ b.

Proof. All assertions are local, hence we may assume that X is affine. Let E be a
divisor over X . Since a⊆ a, we have ordE(a)≥ ordE(a). Since the reverse inclusion
follows from Corollary D.0.2, this proves i). The assertion in ii) now follows from
i) and the description of integral closure in Corollary D.0.2.

If a⊆ b, then i) implies

ordE(a) = ordE(a)≥ ordE(b) = ordE(b)

for every divisor E over E. Conversely, if ordE(a)≥ ordE(b) for every divisor E over
X , then Corollary D.0.2 implies a ⊆ b. We thus have iii). The remaining assertions
are immediate consequences.

Corollary D.0.4. Let X be a normal variety. If a and b are coherent ideals on X
such that one of the following conditions holds:

i) am ⊆ b
m

for some m≥ 1.
ii)

am ⊆ c ·bm

for some nonzero ideal c and all m� 0,

, then a⊆ b.

Proof. Let E be a divisor over X . In case i), we have by Proposition D.0.3

ordE(a) =
1
m

ordE(am)≥ 1
m

ordE(bm) = ordE(b) = ordE(b).

In case ii), for every m≥ 1, we have

ordE(c)+m ·ordE(b) = ordE(c ·bm)≤ ordE(am) = m ·ordE(a). (D.1)

Since ordE(c) is finite, dividing (D.1)i) by m and letting m go to infinity gives
ordE(b)≤ ordE(a). We thus conclude that in both cases we have ordE(b)≤ ordE(a)
for all divisors E over X and Proposition D.0.3iii) implies a⊆ b.

Corollary D.0.5. Let X be a normal variety. For every coherent ideals a and b on
X, we have

a ·b = a ·b.
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Proof. If E is a divisor over X , then using Proposition D.0.3i) we obtain

ordE(a ·b) = ordE(a)+ordE(b) = ordE(a)+ordE(b) = ordE(a ·ordE(b)).

Since a ·b and a ·b have the same order of vanishing along every E, the two ideals
have the same integral closure by Proposition D.0.3iii).

The following proposition gives another description for the integral closure of an
ideal which explains its name. This is usually taken as the definition in the algebraic
approach to this concept.

Proposition D.0.6. Let X = Spec(R) be a normal, affine variety and a an ideal in
R. Given f ∈ R, we have f ∈ a if and only if f satisfies an equation of the form

f n +α1 f n−1 + . . .+αn = 0

where αi ∈ ai for 1≤ i≤ n.

We first prove the following lemma.

Lemma D.0.7. If X is a normal variety and a is a coherent ideal on X, then for
every m� 0 we have am+1 = a ·am = a ·am.

Proof. The equalities hold trivially if a = 0, hence from now on we assume that
a 6= 0. Let f : Y → X be the normalization of the blow-up of X along a, with a ·
OY = OY (−F). Note that OY (−F) is f -ample. Note that we clearly have OY (−F) ·
OY (−mF) ⊆ OY (−(m + 1)F), hence a · am ⊆ am+1 for every m. Since we know
that a ⊆ a, in order to complete the proof of the lemma, it is enough to show that
am+1 ⊆ a ·am for m� 0. By considering a finite affine open cover of X , we see that
we may assume that X is affine. Let f1, . . . , fr be generators of a, hence we have a
surjective morphism O⊕r

X → a. This induces a surjective morphism O⊕r
Y →OY (−F)

on Y . Since OY (−F) is f -ample, we see that after tensoring this morphism with
OY (−mF), for m� 0, and applying f∗, the induced morphism is again a surjection.
This means that f∗OY (−(m+1)F)⊆ a · f∗OY (−mF), hence am+1 ⊆ a ·am for m�
0.

Proof of Proposition D.0.6. We may assume that a is nonzero, since otherwise the
assertion is clear. Suppose first that f ∈ a. It follows from Lemma D.0.7 that there
is m > 0 such that f ·am ⊆ a ·am. We now use the “determinant trick”: if u1, . . . ,un
are generators of am and we write

f ·ui =
n

∑
j=1

bi, ju j for 1≤ i≤ n, with bi, j ∈ a,

then det( f In−B) ∈ Ann(am) = 0, where B = (bi, j)1≤i, j≤n. By expanding the deter-
minant, we see that

f n +α1 f n−1 + . . .+αn = 0 (D.2)
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for suitable αi ∈ ai.
Conversely, suppose that f satisfies (D.2). If E is a divisor over X , since ordE

is a valuation, we deduce that ordE( f n)≥ ordE(αi f n−i) for some i, with 1≤ i≤ n.
Therefore

i ·ordE( f )≥ ordE(αi)≥ ordE(ai) = i ·ordE(a).

Since ordE( f )≥ ordE(a) for all divisors E over X , we conclude that f ∈ a by Propo-
sition D.0.3iii).

Corollary D.0.8. If X is a normal variety and a is a coherent ideal on X, then the
normalization of Spec

(⊕
m≥0 am

)
is Spec

(⊕
m≥0 am

)
.

Proof. The assertion is clear if a = 0, hence we may and will assume that a is
nonzero. By considering a finite affine open cover of X , we see that it is enough to
prove the corollary when X = Spec(R) is affine. Let f : Y → X be the normalization
of the blow-up of X along a, with a ·OZ = OZ(−F). In general, if Z is a projective
normal scheme over an affine scheme and L is an ample line bundle on Z, then it is
well-known that the ring ⊕m≥0Γ (Z,L m) is normal. Applying this with Z = Y and
L = OY (−F), we obtain that the ring

⊕
m≥0 am is integrally closed.

On the other hand, the ring extension

R1 =
⊕
m≥0

am ↪→ R2 =
⊕
m≥0

am

is integral. Indeed, if f ∈ am, then Proposition D.0.6 implies that f satisfies an equa-
tion

f n +
n

∑
i=1

αi f n−i = 0,

where αi ∈ aI′m for 1 ≤ i ≤ n. This implies that f , considered as a homogeneous
element of degree m of R2 is integral over R1. We thus conclude that R2 is the
normalization of R1.

Corollary D.0.9. If a is an ideal on X, then the normalizations of the blow-ups of X
along a and a are canonically isomorphic.

Proof. The assertion is an immediate consequence of Corollary D.0.8 and of the fact
that an = an for every n (this equality can be easily deduced from Corollary D.0.2).



Appendix E
Constructible sets

In this section we review some basic facts about constructible sets. Recall that if X
is a Noetherian scheme, a subset A⊆ X is constructible if it can be written as a finite
union of locally closed subsets of X . It is easy to check that in fact, the union can be
taken to be disjoint. Furthermore, any constructible subset W of X contains an open
dense subset of W (see [Har77, Exercise II.3.18]). It is clear from definition that the
constructible subsets of X form an algebra of subsets, that is, any finite union or
intersection of constructible subsets, as well as the difference of two constructible
subsets, are again constructible.

Suppose that X is as above and A is a subset of X . If Z is a subset of A, closed
with respect to the induced topology, then Z∩A = Z. Therefore any chain of closed
subsets Z1 ( Z2 ( . . . ( Zr of A induces a corresponding chain of closed subsets
Z1 ( Z2 ( . . . ( Zr. Since X is Noetherian, it follows that A is Noetherian, and
dim(A)≤ dim(X).

If X is a Noetherian scheme and W is a constructible subset of X , then W is a
Noetherian topological space, hence it has a decomposition into irreducible compo-
nents W = W1∪ . . .∪Wn. Since each Wi is closed and irreducible in X and Wi 6⊆Wj
for i 6= j (otherwise we would get Wi = Wi ∩W ⊆Wj ∩W = Wj), it follows that
W = W1∪ . . .∪Wn is the irreducible decomposition of W .

It is clear from definition that if f : X→Y is a morphism of Noetherian schemes,
then f−1(B) ⊆ X is constructible if B ⊆ Y is constructible. The importance of the
concept of constructible sets comes from the following theorem of Chevalley: if f
is, in addition, of finite type, then f (A) ⊆ Y is contractible for every constructible
subset A of X .

Suppose now that X is a scheme of finite type over a field k. In particular, every lo-
cally closed subset of X has finite dimension. We first note that if A is a constructible
subset of X , then dim(A) = dim(A). Indeed, the inequality “≤” holds since A is a
subspace of A, while the reverse inequality follows from the fact that A contains a
dense open subset U of A, hence dim(A)≥ dim(U) = dim(A). This implies that if we
have A = A1∪ . . .∪Am, with each Ai constructible in X , then dim(A) = maxi dim(Ai),
since this holds after taking closures.
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Let X be a scheme of finite type over a field k and A a constructible subset of
X , with dim(A) = d. Suppose that we have a disjoint decomposition A = A1t . . .t
Ar, with each Ai locally closed (or, more generally, constructible). This induces a
decomposition A = A1 ∪ . . .∪Ar. If Z is an irreducible component of some Ai and
Z′ 6= Z is an irreducible component of some A j, then Z ∩A 6= Z′ ∩A. This implies
that if dim(Z) = d, then Z ∩A is an irreducible component of A of dimension d.
Furthermore, it is clear that every irreducible component of A of dimension d is of
this form, for a unique i and a unique irreducible component Z of Ai.

Suppose now that f : X → Y is a morphism of schemes of finite type over k and
A ⊆ X and B ⊆ Y are constructible subsets such that f induces a piecewise trivial
vibration g : A→ B, with fiber F . By definition, there is a disjoint decomposition
B = B1 t . . .tBr such that each Bi is locally closed in Y , each Ai := g−1(Bi) is
locally closed in X , and we have an isomorphism Ai ' Bi×F for every i (where on
Ai and Bi we consider the reduced scheme structures). Since dim(Ai) = dim(Bi)+
dim(F) for every i, we conclude that dim(A) = dim(B)+ dim(F). Furthermore, if
k is algebraically closed and F is irreducible, we see that A and B have the same
number of irreducible components of maximal dimension.

Proposition E.0.1. If X is a scheme of finite type over an uncountable field k, then
for every descending sequence A1 ⊇ A2 ⊇ . . . of nonempty constructible subsets of
X, we have ∩m≥1Am 6= /0.

Proof.
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Băd01. Lucian Bădescu. Algebraic surfaces. Universitext. Springer-Verlag, New York,

2001. Translated from the 1981 Romanian original by Vladimir Maşek and re-
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CL12. Paolo Cascini and Vladimir Lazić. New outlook on the minimal model program,
I. Duke Math. J., 161(12):2415–2467, 2012. 97, 215
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741, 359–386 (1992), 1991. Séminaire Bourbaki, Vol. 1990/91. 290

dF. Tommaso de Fernex. Fano hypersurfaces and their birational geometry. To appear
in the proceedings of the conference ”Groups of Automorphisms in Birational and
Affine Geometry”, Levico Terme (Trento), 2012. Preprint, arXiv:1307.7482. 327

dF13. Tommaso de Fernex. Three-dimensional counter-examples to the Nash problem.
Compos. Math., 149(9):1519–1534, 2013. 318, 322

DI87. Pierre Deligne and Luc Illusie. Relèvements modulo p2 et décomposition du
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