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1 Symmetric matrices

1.1 General matrices

For a positive integer n let [n] = {1,...,n}. Denote by R™ the n-dimensional space
of real vectors x = (x1,...,2,)". On R™ we have the standard inner product
(x,y) = x'y. Denote by R™*" the vector space of m x n matrices. A matrix
A € R™*™ has entry a;; in the row ¢ and column j. It would be convenient to denote
sometime the (4, j) entry of A as (A);; = a;j. So we abbreviate is as A = [aij]?j’zl or
simply A = [a;j]. Recall that dim R™*™ = mn. A standard basis in R™*" is the set
of matrices E,q , for p € [m], q € [n], whose (4, j) — th entry is 0,:0p;,% € [m],j € [n],
where &g is the Kronecker §. Recall that AT € R™™ and (AT);; = (A);i.

Assume that A = [a;;] € R™*". A has n-complex eigenvalues \i(A),..., A, (4),
which are all the n-complex roots, counting with their multiplicities, of det(zI, — A).
(Here I,, = [0;;] € R™ ™ is the identity matrix of order n.) Then the trace of A,
denoted as tr A, is > I | a;;. Recall that tr A =31 | \;(A). Clearly tr A =tr AT.

The space R™*™ has a standard inner product, when one identifies R™*" with
R™". Namely, if A = [a;], B = [bj] € R™", then (A, B) = 3", a;;b;;. Note
that the standard basis Epq,p € [m],q € [n] is an orthonormal basis for this inner
product. It is straightforward to show that

(A,B)=trAB" =trBTA=trBA".

The induced Euclidean norm [|Af = Vir AAT =, /37", a?j is called the Frobenius

norm on R™*™,

1.2 Space of symmetric matrice

A matrix A € R™*" is called symmetric if A = AT. Denote by S, C R™ " the
subspace of symmetric matrices of order n. Recall that dimS,, = % = (";rl)
Then the induced inner product on S,, is (A, B) = tr AB. An orthogonal basis in

S, is %(qu—FEqp) forl1<p<g<n.



A system of linear equations in S, is
(A;, Xy =0b;, X, A, €8,, i€[m]. (1.1)

Here, we view X as an unknown vector, and Ai,..., A, € S, are given. Geomet-
rically, (1.1) is a hyperplane in S,. Recall the necessary and sufficient conditions
of solvability of (1.1). For each nontrivial linear combination of Aq,..., A,, which
vanish the corresponding linear combination of by, ..., b,, also vanish:

m m
ZaiAi =0= Zazbl =0.
=1 =1

Assume that (1.1) is solvable. Perform the Gram-Schmidt process on Ay,..., A,
to obtain an orthonormal basis in span(Ai, ..., A,,): A,..., Al ,. The the system
(1.1)is equivalent to

<A;,X> = b;, X, A; € Sy, <A;7A;> = 5ij7ia.j S [m/] (1'2)

For simplicity of notation we will assume sometimes that the system (1.1) is already
in the form (1.2). That is, in addition to (1.1) we have the condition

<AiaAj> = 5ij7 i,J € [m] (13)

Next recall that A € S,, has n real eigenvalues with corresponding set of or-
thonormal eigenvectors:
Ax; = Ni(A)xi, x; R, x]x; = 635,14, € [n], (1.4)
)\maX(A) - )\1 (A) > 2 )\n(A> - )\min(A)-

The eigenvalues max and min of A have the Rayleigh characterization [2]

x! Ax  xAx
Amax(4) = mox " Amin(4) =l S

1.3 The cone of positive semidefinite matrices

A € S, is called positive definite or positive semidefinite,(nonnegative definite),
denoted as A = 0 or A = 0, if Apin(A) > 0 or A\pin(A) > 0. This is equivalent to
x"Ax >0 or x' Ax > 0 for all x # 0.
The following results are well known [2]. A > 0 if and only if all leading principal
minors are positive:
det([aij]ﬁjzl) >0, ke [n]

A > 0 if and only if all principal minors of A are nonnegative.
Deciding if A = 0 or A > 01is polynomial if A € S,,(Q), where S,,(Q) = S,,NQ™*™.

Algorithm 1.1 Let A = [a;5] € S,.
1. If a11 < 0 then A is not positive semidefinite.

2. If a;1 = 0 then A is not positive semidefinite if Y .o a3; +a? > 0. (This is
implied by the fact that all 2 x 2 principal minors are nonnegative.)



3. Assume that a1; = a;1 = 0 fori € [n]. Thus A =[0] ® Ay, where Ay € S;—1.
Then A =0 < A; = 0.

4. Assume ai1 > 0. Perform the following Gauss eliminations: Fori=2,....,n
subtract from row i % times row one, and from column 1 % times column

one. Call the resulting matriz A’ € S,,. So A’ = [a11] ® Ay1. Then

A0 <= A1 -0, A0 <+ A; =0.

Denote by S, + = {4 € S, A = 0}. Note that S, 1 is a closed set, with the
interior Sy | = {A€8S,,A>0}. So S, +isacone: A,B€S,+=aA+bBeS,+
for a,b > 0. It is a pointed cone: S, + N (=S, +) = {0}. (Here —S,, + = {A,—-A €
Sn+}.) It is a generating cone: S,, =S,y — Sy, 4.

Indeed, for z € R let x4 = max(z,0),r_ = max(—=z,0). Sox = x4 —z_. Recall
that the spectral decomposition of A induced by (1.4) is

A= QAQTa Q = [Xh B 7Xn]>A = dlag()\l(A)7 ceey )\n(A))

So Q is an orthogonal matrix, i.e., Q' Q = I,,. Here D = diag(dy,...,d,) denotes

the diagonal matrix with the diagonal entries di,...,d,. For a diagonal matrix D
as above set
Dy = diag((dh) s, ., (dn)s), D = (diag((dh) .., (dn)_).

SoDy,D_€S,+,and D=D; —D_and A= QALQT —QA_QT are the decom-
positions of D and A to a difference of two positive semidefinite matrices.

Recall that any linear functional ¢ : S,, — R is of the form ¢(X) = (X, C) for
some C € S,,.

Lemma 1.2 Denote by SX,‘F the dual cone of all linear functionals on S,, which
are nonnegative on Sy 4. Then Sy . =S, 4.

Proof. Assume that C = QA(C)Q is the spectral decomposition of C. Then
(X,0) = tr(XC) = tr((QTXQ)A(C)). Clearly Q'S,,+Q = S,,+. So it is enough
to show that tr(Y'D) > 0 for a diagonal D for each Y € S, if and only if the
diagonal entries of D = diag(dy,...,d,) are nonnegative. Clearly, a diagonal Y is
positive semidefinite if and only if the diagonal entries are nonnegative. Hence if
tr(E;D) > 0 for ¢ € [n] then D has nonnegative diagonal entries. Suppose now that
Y = [yij] = 0. Hence y;; > 0 for i € [n]. Now tr(YD) = > | yid; > 0 if all the
diagonal entries of D are nonnegative. O

The cone S,, + induces the partial order A = B and A > B which is equivalent
to A— B = 0 and A — B > 0 respectively.

Corollary 1.3 Let A,B, X € S,,. Suppose that A = B and X > 0. Then
(A, X) > (B,X). Suppose furthermore that A = B and X # 0. Then (A, X) >
(B, X).



2 Semidefinite programming

2.1 The duality theorem of linear programming

Let A € R™*" ¢ € R", b € R™. Then one has the following two linear programming
problems, (LP problems):

inf{c'x, x>0,A4x =b}, (2.1)
sup{b'y, A’y <c}. (2.2)

These two LP problems are called dual LP problems. It is understood that if the
set x > 0, Ax = b is empty then the infimum in (2.1) is oo, and if the set ATy < ¢
is empty the the supremum in (2.2) is —oco.

Proposition 2.1 (Weak duality) Assume that Axg =b,xg >0 and ATyg < c.
Then bTyo < c'xp.

Proof. The above conditions imply straightforward
by = (Ax0) "yo = x4 (AT y0) < x{ ¢ =cxo.

Theorem 2.2 Assume that at least one of the sets in (2.1) and (2.2) is feasible.
Then the infimum in (2.1) is equal to the supremum in (2.2). Suppose furthermore
that the assumption of Proposition 2.1 holds. Then the infimum in (2.1) is min and
the supremum in (2.2) are max, i.e., they are both attained and equal.

See for example [1, Appendix A].

2.2 The weak duality theorem of semidefinite programming

Let C € Sy,b = (by,...,bn)" € R™y = (y1,...,ym)" € R™. The dual semidefi-
nite programming problems are

inf{(C, X), X = 0, (A;, X) = by, i € [m]}, (2.3)

sup{b'y,y = (y1,....ym) €R™,D 44 < C}. (2.4)
=1

Again, we have the same convention as in the LP case. If the set in (2.3) is empty
then the inf = oo, and if the set in (2.4) is empty then the sup = —oo.

Proposition 2.3 Assume that the system (1.1) is solvable. Then the problem
(2.4) can be stated as a following supremum problem

sup{(F,Y),Y = 0,(B;,Y) = e;,i € [{]}, (2.5)
plus a constant, for some Y, By,...,By € Sy +.

Proof. Since the system (1.1) is solvable, it is equivalent to the system (1.2).
We first show that (2.4) is equivalent to the set of dual problems:

nf{(C, X), X = 0,(A}, X) =b,,ie[m]}, (2.6)

sup{(b") Ty’ b = (0., 0,) "y = (), .. up) T ER™D yiA 2 CY (27
=1
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Indeed, since (1.1) and (1.2) gives the same hyperplane in S,, we obtain that the
problems (2.3) is equal to the problem of (2.6). To show that (2.4) and (2.7) are
equivalent problems, it is enough to recall

m’ m/
A, = ZtijA;W b, = Ztijb;-.
Jj=1 Jj=1
Then
m m’ m
dowidi =Y yiAL vf=D uiti
i=1 j=1 i=1
Hence by = (b') Ty’

By abusing the notation, we can assume that (4;, A;) = d;; for i,j € [m]. Let
A, Apy Aty - - - Anmeny be an orthonormal basis in S,,. Observe next that

2
the inequality > ", y;4; < C is equivalent to

Y+ ydi=C, Y =0 (2.8)
i=1
Let
n(n+1)
2
Assume that Y = 0 and (B;,Y) = e; for i € [¢(]. Hence C —Y € span(A4y,...,An),
i.e. (2.8) holds. Set FF'=—>"", b;A;. Then

= —m,Bi:Am_H,ei:(Bi,C) for i € M]

> by = (=F, > yiAi) = (F,Y) = (F,C).
=1 =1

Hence the supremum in (2.4) is equal to the supremum in (2.7) plus the constant

_<F7C>' O

Proposition 2.4 (Weak duality) Assume that Xo = 0 satisfies (1.1), and Yy >
0,y0 = (¥1,0,- - - ,ymyg)—r satisfies (2.8). Then b'yy < (C, Xo).

Proof. As (Yy, Xo) > 0 it follows that

m m m
(C, Xo) = (Yo + > wi0Ai, Xo) = (Yo, Xo) + Y _ vi0(Ai, Xo) > Y giobi = b yo.
i—1 i=1 i=1

a

Corollary 2.5 The infimum in (2.3) is not less than the supremum in (2.4).

Note that when the both sets in (2.3) and in (2.4) are not feasible we have the trivial
gap —oo < 0o. Same situation holds for the LP programs. However, it is possible
that at least one of the sets in (2.3) and in (2.4) are feasible and the infimum in
(2.3) is strictly bigger than the supremum in (2.4). This strict inequality is called
the gap of SDP. Also the analog of Theorem 2.2 can fail as we see in the following
simple examples in the next subsection.



2.3 Examples
Example 2.6 Let

Ti11 T2 1 0 0
X = , C = LAy =
o ]e=lo o) =)

Then the infimum in (2.3) is 0 but not attainable. The supremum in (2.4) is 0 and
is attainable.

[on=1

O M=

Proof. Observe that (41, X) = 1 yields that 15 = 1. As X > 0 it follows that

Z11,%22 > 0 and xy1299 — 1 > 0. Hence 17 > 0. Next, (C, X) = z12. Note that

e 1

XE = 1 é
but is not achievable.

The dual SDP problem (2.4) is y14; < C, ie., C —y;A; = 0. In particular

v

0 < det(C — y141) = +- So y1 = 0 gives a unique feasible solution. Hence
biy1 = y1 = 0. So the supremum is attainable and is equal to 0. a

is a feasible solution for any € > 0. Hence the infimum in (2.3) is 0

In this example we do not have a gap.

Example 2.7 Let

_1
e [ P )
T12 T22 -1 1 1

_1

2
Then the infimum in (2.3) is 0 and is attainable. The equality (2.8) is not feasible.
Hence the supremum (2.4) is —oo.

Proof. Note that (4;,X) =1"X1,1=(1,1)". As X > 0 it follows that 1 is
an eigenvector of X corresponding to the eigenvalue 0. So x11 +x12 = T19+ x99 = 0.
Hence x1; = x99 = —x12 = a > 0. Now (C, X) = —z12 — x99 = 0. So the infimum
is 0 and is achieved. The dual set is 1A < C < 0 =< C —y1A = D. First the
diagonal elements of D are nonnegative. This condition yields that y; < —1. The
determinant condition is

1 1
< —y(=1—11) — (= 2 - _=
0 < —ui( Y1) (2+y1) g

which is impossible. Hence the supremum in (2.4) is —oc. O

In this example we do have a gap. This situation can not happen for the linear
programming problem. Another situation that can not happen in LP is that not all
SDP are polynomially solvable with given precision € > 0. See
https://cstheory.stackexchange.com/questions/14548 /solving-semidefinite-programs-
in-polynomial-time /14550

2.4 Strong SDP duality

Theorem 2.8 (Strong duality first version) Assume that (2.8) solvable with
Y > 0. Denote by 8 the supremum in (2.4). Then the infimum in (2.3) is equal to
B. Furthermore, < oo if and only if the infimum in (2.3) is attainable.



To prove the theorem we need the following results.

Theorem 2.9 (Separation theorem.) Let ¥1,39 C RP be two convex closed sets,
such that 1 N Yo = (0. Suppose furthermore that Y1 is compact and Yo is a cone.
Then there exists a linear functional ¢ : RP — R such that ¢(u) > 0 for each u € 39
and ¢(v) < 0 for each v € 3.

See for example [9].

Lemma 2.10 Let Fy,...,F, € S,. Consider the linear map L : S, — RP given
by X — ((F1,X),...,(F,, X))". Assume that span(Fy, ..., F,) contains a positive
definite matriz Z >~ 0. Then L(S, ) is closed. That is if X; = 0 for i € N, and
lim; o0 L(X;) =x = (21, ... ,iL‘p)T € RP, then there exists a convergent subsequence
Xijy 1 <ig < such that limj_moXij =X >0.

Proof. Assume that Z = )"7_, zF; > 0. We claim that
. Zi*l Tizq
Lim sup Apax(X;) < =F=—=——.
i—)oop e ( Z) )\mln(Z)

First recall the spectral decomposition of A € S,, given by (1.4): A = Y7 \j(A)x;x; .
AsI, =31, x;x; it follows that A—Ayin(A), = ?:_11()\i(A)—)\min)(A)xix;r = 0.
Recall that Z = 0 <= Apin(Z) > 0. So Z = Apin(Z) I, > 0.

Next consider the spectral decomposition of Xj:

(2.9)

n
Xi =Y N(Xo)xpix[, M(Xi) > .= M(X3) > 0,x) Xgi = p.q,0,q € [n],i €N
=1

Hence X; = )\maXXMXL. Therefore:

p
> (Br, Xi) = (2, X3) = (2, Xi) > (Z, Anax (Xi)x13%] ;) >
k=1
)\min(Z)Ina Amax(Xi)Xl,iXIz‘> = )\min(Z))\max(Xi) tr(Inxl,iXIi) = Amin(Z))\maz(Xi)-
Let i — oo and recall the assumption that lim; . L(X;) = x = (ZL’I,...,.%'p)T.
Combine that with the above inequality to deduce (2.9).

We claim that the sequence X;,i € N is bounded. Assume that X = [z;;] € S, 4.
The the maximal characterization and the minimal characterization of A\pax(X) and
Amin (X) yield that 0 < x4 < Apae(X) for @ € [n]. As all 2 x 2 principal minors of
X are nonnegative we deduce that |z;;| < \/T47j; < Amax(X) for 4,5 € [n]. The
inequality (2.9) yields that all the entries of X;,i € N are uniformly bounded. Hence
there exists a subsequence X, j € N that converges to X € S, . O

Proof of Theorem 2.8. Assume first that § = co. The weak duality theorem
yields that there is no X > 0 which satisfies (1.1). Hence the the infimum in (2.3)
is B by definition.

Assume now that the infimum in (2.3) is attainable. The weak duality theorem
yields that g < oo.

Assume now that § < co. We will show that there exists X > 0 satisfying the
equalities (1.1), such that (C,X) = 3. Let L : S,, — R™*! be given by L(X) =



(C, X), (A1, X),..., (A, X))T. Clearly L(S, ) C R™! is a cone. The assump-
tion that (2.8) solvable with Y > 0 implies that Y € span(C, A4,..., A,,). Lemma
(2.10) implies that L(S, +) is a closed convex set in R™ 1. Let x = (8,b1,...,bm)".
Suppose first x € L(S, +). This is equivalent to the existence of X > 0 satisfying
the equalities (1.1), such that (C, X) = g.

It is left to show that we can’t have the possibility x ¢ L(S, +). Assume to
the contrary that x ¢ L(S, +). Theorem 2.9 yields that there exists a linear func-
tional ¢ : R™"! — R such that ¢(y) > 0 for y € L(S,+) and ¢(x) < 0. Let

(Y0, Y1, - - -, Ym1) 1) = D12 fiyi for y € R™*!. Hence

FolC.X) + 3" £l A, X) = (foC + Y fidi, X) > 0if X > 0.

=1 =1

Lemma (1.2) yields that foC + >, fiA; = 0. The assumption that ¢(x) < 0 is
foB+ >0 fibi <O0.

Suppose first that fo > 0. by dividing by fy we can assume that f, = 1.
That is C + ;" fiAi = Z = 0. Equivalently, C = > (—f;)A;. The maximal
characterization of § yields that 8 > Y | bj(—f;). This contradicts the assumption
that ¢(x) < 0.

Assume second that fo = 0. Then Y ;" fib; < 0and Y ;" f;A; = 0. Recall that
we assumed that (2.8) solvable with Y > 0. Let ¢ > 0. Then Y /", (y; —tfi)Ai < C.
Hence 8> >0 bi(ys — tfi) = =t > i  bifi + > ity biyi. Letting t — oo we we will
obtain a contradiction.

Assume now that fo < 0. By dividing by —fy we can assume that fy = —1.
Hence 8 > Y,_ fibi. Furthermore —C+>_"", f;A; = 0. Let us choose an admissible
point z = (21,...,2m) " such 37 2 A; < C and S bifi < S bizi < B. Let
t > 0. Then

m

Z(yl+t(2l—fl))Al = (Z yiAi)+tZziAi+t Z(_szz) < (C—FtC—l—t(—C)) =C.
i=1 i=1 i=1

i=1

As 3 is the supremum of (2.4) it follows that

B> t((Y biz) = QO bif)) + D fivie
=1 =1 =1

Letting t — oo we obtain a contradiction. O

Theorem 2.11 (Strong duality second version) Assume that there exists X > 0
satisfying (1.1). Let a be the infimum in (2.3). Then the supremum in (2.4) is equal
to a.. Furthermore, a > —o0 if and only if the supremum in (2.4) is attainable.

Proof. The assumption that there exists X > 0 satisfying (1.1), implies that the
system (1.1) is solvable. We now use Proposition 2.3 and the arguments of its proof.
For simplicity of notation we can assume that Aj,..., Anmt1y is an orthonormal

2

basis in S,, . Hence the problem (2.4) is equivalent to the problem (2.7). Clearly,
(2.7) is equal to

Cinf{(—FY),Y = 0,(B;,Y) = es,i € [{]}, (2.10)



Recall that

- (n+1)
~F=Y"bidy, Bi = Apyiei = (Bi,C)ie ), 6= """ .
i=1 2
Note that the system (B;,Y) = e;,7 € [{] is solvable in S,,. We claim that the dual
to (2.10) is (2.3) plus a constant. To show that we apply the arguments of the proof
of Proposition 2.3. Thus the dual to (2.10) is

—sup{(G, X), X =0, (A;, X) = (A;,—F), i € [m].

Here G = — Zf:l eiB;. Recall that (A;,—F) = b; for i € [m]. Recall next C' =
n(n+1)

Yoei (Ar, C)Ag. Hence —G = C — Y77 (A;,CYA;. If (A, X) = b, 1 € [m] we
obtain

(-G, X) = (C,X) =) (4, C);.
i=1
Thus the dual to (2.10) is (2.3) plus a constant. Now use Theorem 2.8 to deduce
the theorem. O

2.5 Flexibility of SDP

We first observe that the problems of linear programming can be stated as an SDP
problem. Consider first the system Ax = b,x > 0, where x € R" and A € R™*",
For x = (1,...,2,)" € R” denote by D(x) = diag(z1,...,2,) € Sp. Let X =
[xi;] € Sp. Then the set of all diagonal matrices in S, is given by the @
conditions

linear

(Epg+ Egp, X)=0for 1 <p<gq<n.
Furthermore x > 0 if and only if D(x) > 0. Let a; be the i-th row of A for i € [m)].
Then the system Ax = b is equivalent to
(D(a;), D(x)) =b;, i€ [m]

Hence the LP (2.1) can be stated as (2.3).
Suppose we have an SDP problem with £ matrices X1,..., X} € Sp, 4:

k
inf{) (Ck, Xy}, X; € Sn 1, (Aij, X;) = bij,i € [my],j € [k]}. (2.11)
i=1
Then it is possible convert this problem to the problem (2.3) for X € Sy, +. Consider
the block diagonal symmetric matrix X = diag(X1,...,X;) € Sg,. The subspace
of such matrices X € Sy, is given by a corresponding number homogeneous linear
conditions. Then Xi,...X; € S, <= X = diag(X1,...,Xk) € Sgn+. Let
C = diag(Cy, ..., Cy). Then (C, X) = % (Cy, X,).

3 Applications of SDP to combinatorial optimization

A good reference to this topic is [5].



3.1 Max and min boolean problems

Let
{_1,1}71:{)(: (:L‘l,...,xn)T GRn,lT%:"':ZEi:l},

A vector x € {—1,1}" is called a boolean vector. (Note that x is boolean if and only
if x =2y — 1,, where y = (y1,...,¥n) " and y; € {1,0},i € [n].) For a symmetric
matrix B € S,, denote

Vmax(B) = xe?iff(l}” x ' Bx, Vmin(B) = xg?—lilr,ll}" x| Bx (3.1)

The above two quantities are called the boolean (binary) optimizations. Clearly
Vmax(B) = —Vmin(—B). (3.2)
It is straightforward to show that
nAn(A) = nAmin(B) < Vmin(B) < Vmax(B) < nAmax(B) = nA1(B). (3.3)
Actually, we have better bounds. We state these bounds for vyax(B).

Lemma 3.1 For Be€ S, let
Winin(B) = min{nApax(B + D(u)),u = (uy,...,u,) € R", 1 u=0}. (3.4)

Then
VmaX(B) S wmin(B)- (35)

Proof. Note that if x € {—1,1}" then [x|> = x"x = n. The maximum
Rayleigh characterization yields that

TAx 1
XXTXX = EXTBX for x € {—1,1}".

)\max(B) >

Hence the right hand side of (3.3) hold. (The minimum characterization of Amin(B)
yields the left hand side of (3.3).) Observe that for u = (u1,...,u,) ", x = (21,...,2,)" €
R™ we have the equality x' D(u)x = Y7 | #2. Thus if 1'u =0 and x € {-1,1}"
we obtain that x ' D(u)x = 0. In particular, vpax(B) = Vmax(B + D(u)). Use (3.3)
to deduce (3.5). O

For xi,...,x, € R™ denote by G(x1,...,x,) = [(xi,X;)] € S, the Gramian
matrix.

Lemma 3.2 1. Let x1,...,%x, € R™. Then G(X1,...,X,) € Sy 4. Further-
more, G(X1,...,X,) = 0 if and only if x1,...,%x, are linearly independent.
Moreover, rank G(X1,...,Xy) is the dimension of span(Xi,...,Xy).

2. Let X € S, and assume that rank X = m > 1. Then X € S, 1 if and only
if X = G(x1,...,%y,) for some x1,...,x, € R™. Furthermore, the vectors
X1,...,Xp are determined uniquely up the action of the orthogonal group on
R™: {X1,...,Xn} = O{x1,...,x,} = {0x1,...,0x%x,}.
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Proof. 1. Letxi,...,x, ER™any = (y1,...,yn) . Theny' G(x1,...,%X,)y =
(D0im1 vixi, > iy yj%;) > 0. Hence G(x1, . ..,%,) = 0. Note that v G(Xy,...,Xp)y =
0 if and only if >, y;x; = 0. In particular, G(x1,...,%,) > 0 if and only if
X1,...,Xy are linearly independent.

It is left to show that rank G(xi,...,x,) = dimspan(xi,...,x,). Let m =

dimspan(xi,...,Xy). Assume that dimspan(xj,...,x,) = m > 1. Son > m.
If m = n then x1,...,x, are linearly independent. Hence G(xi,...,%,) > 0 and
rank G(x1,...,X,) = n. Vice versa, if rank G(x1,...,x,) = n then G(x1,...,x,) >
0 and x3,...,X, are linearly independent.

Let us assume that n > m > 1 and 1 < rank G(x1,...,X,) < n. By renaming
the x1,...,%, we can assume that xi,...,X,, are llinearly independent. Observe
that G(x1,...,X;,) is a prinicple submatrix of G(x1,...,X;,). Our previous results
show that G(x1,...,X;,) > 0. In particular, the m rows of G(x1, .. .,X;,) are linearly
independent. Therefore the first m-row of G(x1,...,%,) are linearly independent.
Hence rank G(x1,...,%,) > m. Recall that x; = > /" a;ix; for j > m. Now
subtract from row j the sum of aj; times row r; for j = m+1,...,7n to deduce that
the new matrix has n — m zero rows. So the rank of G(xy,...,%y) < m. Therefore
rank G(x1,...,Xpy) = m.

Suppose now that rank G(x1,...,%,) =7, 1 <r <n. If G(x;) = ||[xi||> = 0, i.e.,

the i-th diagonal entry is zero then x; = and the row ¢ and the column ¢ are zero.
Perform Algorithm 1.1 to deduce that r = dim{x1,...,x,}.
2. Suppose that X € S, . Then X = QAQT, where QQ" = QTQ = I, and
A = diag(A1(X), ..., A (X)) where A1 (X) > -+ A (X) > 0 for i € [n]. Set Az =
diag(yv/ A1 (X), ...,/ A(X)). Let Y = A2QT. Then X = YY. Set y; to be the
i-th column of Y for i € [n]. Then X = G(yi,...,yn). Assume that rank X = m.
So A (X) > 0 and A1 (X) = -+ = A\ (X) = 0. So the last n —m rows of Y are
zero. That is y; = (x;,0), where x; € R™ for i € [n]. Thus X = G(x1,...,X,),
where x1,...,X, € R™. As we claimed.

Let O € R™*™ be an ortthogonal matrix: O'O = I,,. Denote z; = Ox; for
i € [n]. Then x/x; =z z; for 7,7 € [n]. Thus G = G(x1,...,%x,) = G(z1,...,2n),
X1,.eesXn,Z1,---,2Zn € R™ and rank G = m.

Assume that G = G(x1,...,X,) = G(2Z1,...,2p), X1,...,Xp,Z1,...,Zp, € R
and rank G = m. By renaming xi,...,x, and 21, ...,2, accordingly, we can as-
sume that xi,...,X,, are linearly independent. So G(xi,...,X;) > 0. Hence
G(z1,-.,2m) = G(X1,...,Xy) > 0, 80 z1,...,%,, are linearly idependent. Thus
X =[x1xn),Z =212y € R™™ are two invertible matrices. Therefore

Gx1,.o 0 Xp) = X' X =G(2z1,...,2m) =2 Z= (X")'Z2")(Z2X ) = I,.

Hence the matrix O = ZX ! is an orthogonal matrix. Thus Ox; = z; for i € [m].
Let y; = Ox; for j = m+1,...,n. Observe next that

G(X1,...,Xn) = G(Ox1,...,0%x,) = G(21, .-, Zmys Ymt1s-- - Yn) = G(21,...,2y).
Hence (y;,z;) = (z;,2z;) for i € [m]. That is (y; — z;,2;) = 0 for ¢ € [m]. As

Z1,...,%Zy, are linearly independent in R they span R™. Therefore y; = z; for
jm+1,...,n. Thatis z; = Oxj for j=m+1,...,n. O
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X = [zj] € Sy + is called a correlation matrix if z;; = 1 for ¢ € [n]. So X is a

correlation matrix if and only if X = G(x1,...,Xy) where ||x1]| = ... = ||x,|| = 1.
Denote by K, the convex set of correlation matrices:
Kn={X €S+, (Bi,X)=1, i€]n]}. (3.6)

Note that C,, is a compact set. Denote
X, = {xx", xe{-1,1}"}. (3.7)
Clearly, X,, C K,,. Observe next that
Vmax(B) = max{(B, X), X € X} vmin(B) = min{(B,X), X € &,}.  (3.8)

The following max and min problems are called the SDP relaxations of the above
max and min problems:

Tmax(B) = {(B,X), X € K}, ~Ymin(B) = min{(B, X), X € £,}. (3.9)

Clearly
VmaX(B) < ’VmaX(B)a 'Ymin(B) < Vmin(B)~ (3.10)

Theorem 3.3 Let B € S,,. The the dual SDP problem to the mazimum problem
characterizing Ymax(B) is the following minimum problem

n n
1=1 =1

Both problems has positive definite feasible solutions. Hence the strong duality holds.
Furthermore, the dual problem (3.11) is equal to the minimum problem (3.4).

Proof. Let

H,={X€S,, (EiX)=1,i€]n]}. (3.12)
Then K,, = H, NSy 4. Thus
Ymax(B) = {max(B, X), X = 0,(E;, X) =1, for i € [n]}. (3.13)

Note that 0 < I,, € K,,. Hence (3.11) is the dual problem of (3.13). The inequality
>, zEi; = B can be stated as an equation:

n
~Y 4+ #E;=B, Y =0. (3.14)
i=1
By choosinf z; > 0 for i € [n] we deduce that there is a feasible solution in the above
system with Y > 0. Hence the dual also a positive definite solution. In particular
the strong duality holds.

It is left to show that the minimum in (3.11) is the minimum in (3.4). Clearly
S ziEy; = D(z), where z = (21,...,20) . Set u; = —z + %Z:‘L:1 z. Let
u = (u1,...,u,) . Note that 1]u = 0. Then the condition D(z) = B is equiv-
alent to #In > (B + D(u)). The last condition is equivalent to > ;' ; z; >
nA1(B + D(u)). Since we are minimizing Y & | 2; for fixed u satisfying 1) u = 0
we choose 1" ;| zi = nA1(B + D(u)). This arguments yields that the minimum in
(3.11) is the minimum in (3.4). O

In a similar way we deduce:
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Corollary 3.4 The dual SDP problem to ~min(B) is
Wmax(B) = max{nAmin(B + D(u)),u = (u1,...,u,) € R",1Ju=0}. (3.15)

For a given B € S,, N1 Q™™ and 0 < € € Q one can find a ¢ aprroximation of
Ymax(B) in a polynomial time in the data (B) + (¢) by an interior method. Indeed,

n(n—1

consider the hyperplane (3.12) It can be identified with R™2 . So K, is a convex
set in H,,, with an interior point I,,. The open ball

B(In,1) = {X € Hp, (X —1,, X —I,) <1} (3.16)

is contained in the interior of K,. Hence the interior method for finding v(A) is
applicable. So we can have an approximate solution Xy € Kp,: (B, Xo) < Ymax(B),
such that (theoretically) (B, Xo) > Ymax(B) — €.

Next, the dual problem (3.11) has also a feasible solution Y = al, for some
zi = b,i € [n]. Hence we also apply the interior method to find upper bound
Ymax(B). Combining together we obtain the practical bound for ~yax(B):

(B, X0) < Ymax(B) < 1, 2. (3.17)

In particular, if 1, zg— (B, X) are not satisfactory small, we can iterate the interiror
methods for X and zg to improve (3.17).

A theoretical problem is to supply an estimate how far ymax(B) is from vpyax(B),
(and similarly how far ymin(B) is from vy (B))?

The major result in this area is a result contained in Rietz [6] and usually
attributed to Nesterov [7]:

Theorem 3.5 Let B €S, . Then

Vmax(B) > %'Ymax(B)- (318)

We will point out a proof of this inequality in §3.3. We also explain Rietz’s result
in the context of the Grothendieck inequality.

3.2 Boolean least square

Given A € R™*" b € R™ find
a(A) = min{||Ax — b||?, x = (21,...,2,) " subject x € {—1,1}}. (3.19)

See Stephen Boyd ’s Zaborsky Disitnguished Lecture Series, September 18, 2016:
https://ese.wustl.edu/eseatwashu/Documents/Seminars/BoydLecturel.pdf
SDP approximation: Observe first

|Ax —b||? =x"ATAx —2b" Ax + b b.

T T
Alz[AA b ]

Set

b b'b
Note that A; = 0. Then

a(A) = min{yTAy,y e {-1, 1}"“} = Unin(41).
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Indeed, by considering +y it is enough to assume that y' = (x", —1). Then we get
y A1y = ||Ax — b||2. Hence a lower bound for a(A) is the Ymin(A1):

O[(A) > erin(Al)-

Since A; = 0 and X € K4 is positive semidefinite then by Lemma 1.2 (41, X) > 0.
Hence ymin (A1) > 0. The strong duality theorem combined with Corollary 3.4 yields
that Ymin(A1) = wmax(A1). Note that Theorem 3.5 is not applicable here. Of course
it would be nice if there was an explicit constant not depending on n such that
a(A) < Cymin(A1) at least for some interesting cases of Al

3.3 Max-cut

Let G = (V,E) be a simple graph. Assume that |V| = n and |E| = m. Let
V = {v1,...,v,} We associate with G the symmetric 0 —1 matrix A(G) = [ai;] € Sp
as follows: a;; = 1 if and only if the edge v;v; € E. All other entries are zero. (In
particular a; = 0 for i € [n].) A(G) is called the adjacency matrix of the G.
Suppose that each edge e € E' in the graph has weight w(e). Let w : E — R. Then
we have a weighted graph G = (V, E,w). Denote by w(E) = > _.pw(e). The the
corresponding weighted matrix is a weighted adjacency matrix A(G,w) = [aij] € Sp.
So a;; = 0if v;v; € E and a;; = a;; = w(e) if e = v;v;. A cut in G is a of nonempty
strict subset of vertices W C V. Denote 6(W) C E the set of all edges whose one
end is in W and the other one in V'\ W. The set §(W) is called a cut, (an edge-cut),
Then the weight of is given as

w(o(W)) = Z w(e) = Z aij. (3.20)

ecs(W) v EWu;eVAW

Denote by xyw = (21,...,2,)" € {—1,1}" a modified characteristic vector of the
set W. Namely z; = 1if v; € W and z; = —1if j € V' \ W. Denote by 1y = 1,, =
(1,...1)T, the characteristic vector of V. A straightforward calculation shows
1
w(d(W)) = 5 TAG, w1, — 17, A(G, w)1y). (3.21)
Recall that if w > 0 then the min-cut problem min{w(6(W), W, # W C V} can
be solved in polynomial time using flows or contraction algorithms [1]. The max-cut
problem is
w(G,w) = max{w(6(W), W,0 £#W C V}. (3.22)

If w= 1, i.e., all edges in G are given the weight 1, then u(G) = u(G,1g), and
1(G) is called the max-cut of G. The problem of deciding if ;(G) < k for an integer
k(< @) is NP-complete [3].

Assume that w > 0. Then 2w(E) = 1] A(G,w)1, > 1], A(G,w)1ly. Hence
(3.21) yields

(G, w) = w(E) + %v(—A(G,w)), w20, w(E) = L AG WL, (3.23)

For w > 0 denote by L(G,w) € S, + the weighted Laplacian matrix corresponding
Gw:
L(G,w) = D(A(G,w)1,) — A(G,w). (3.24)
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So the off-diagonal entries of L(G, w) are the off-diagonal of —A(G, w), the diagonal
entry are nonnegative and each row sum is 0: L(G,w)1, = 0. It is well known that

L(G,w) =0 [2, §6.6]. As
x' D(A(G,w)1,)x = 2w(E), for each x € {—1,1}",

it follows that )
w(G,w) = iymaX(L(G,w)) for w > 0. (3.25)
Hence the SDP relaxation of p(G, W) is 39max(L(G,w)). Combine the above

result to deduce that with Theorem 3.5 to deduce the inequality
1 1
*’Ymax(L(va)) < :U’(G7W) < §7maX(L(G7W))‘

T
We now point out briefly a “proof” of (3.18) using the identity of Goemens-

Williamson[4]. For « € [—1, 1] denote by arcsin x the principal value of the Arcsine

of x. Hence arcsinz € [—~7F, §]. Recall that teh convergent series of arcsin z:
(3.26)

) +1953+1><3955+ <1
arcs = _— R .
I'CSIN T X 23 2><44 y X

Note that the coefficients of even powers are zero and the coefficient of odd powers
are positive. For X =|z;;] € S, and a positive integer k denote by X°F = [mfj], the
k — th Schur power of X. It is well known that if X € S, then X°* € S, , [2,

Chapter 5]. (Note that ®*X > 0. Then X°F is a principal submatrix of ®*X.)
(3.27)

Let
Sn([=1,1]) ={Y = [yij] € Sn, |yl <1, for i, j € [n]}.
Observe next that if X = [z;;] € K,, then |z;;| < 1. (This follows from the fact that

all 2 x 2 minors of X are nonnegative.) Hence IC,, C S, ([—1,1])
For Y = [y;;] € Sn([—1,1]) define arcsinY = [arcsiny;j]. Observe that the

following map maps S, ([—1, 1]) to itself:
2
¢:Sn([—1,1]) = Sp([—1,1], ¢(Y) = —arcsinY. (3.28)
T
As %arcsin:): has exactly 3 fixed

Denote the set of fixed points of ¢ by Fix(¢)
points on [—1,1] it follows that Y €Fix(¢) if and only if all the entries of Y are in
{=1,0,1}. (The graph of y = arcsin z is strictly convex on [0, 1] and strictly concave
on [—1,0].)
Assume that Y = [y;5] is in the interior of S,,([—1,1]), i.e., |yi;| < 1 for i,5 € [n].
In view of (3.26) it follows that

1Y% 1x3Y°
nY =Y + =
arest t93 Taxas

Suppose furthermore that Y > 0. The above identity yields that arcsinY = Y. The
continuity argument yield that
arcsin X = X for X € K,,. (3.29)
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Lemma 1.2 yields:
(A,arcsin X) > (A, X)if A€ S, and X € K. (3.30)

The last step in the proof of (3.18) is the identity of Goemans-Williamson [4]:

2
Umax(A) = - max{(A,arcsin X), X € K, }, for A €S,,. (3.31)

This result is equivalent to the following statement:

Lemma 3.6 The closed set ¢(KC,,) is contained in the convex hull spanned X, =
{xx",x € {~1,1}"}.

Proof. Recall that &,, CFix(¢). Hence ¢(K,) D X,. Suppose to the contrary
that conv &,, does not ¢(K,). Hence conv ¢(kC,,) contains an extreme point X €
¢(K,) which is not in X,,. Then there must be a linear functional on H, which
supports conv ¢(KC,,) at X. This linear functional is (A,-) for some A € S,,. (We
can assume that A has zero diagonal.) That is v(A) < (A, X) which contradicts
(3.31).

3.4 The Grothendieck inequality
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