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Introduction

Modern model theory began with Morley’s [Mor65a] categoricity theorem: A
first order theory is categorical in one uncountable cardinal κ (has a unique model
of that cardinality) if and only if it is categorical in all uncountable cardinals.
This result triggered the change in emphasis from the study of logics to the study
of theories. Shelah’s taxonomy of first order theories by the stability classification
established the background for most model theoretic researches in the last 35 years.
This book lays out of some of the developments in extending this analysis to classes
that are defined in non-first order ways. Inspired by [Sac72, Kei71], we proceed
via short chapters that can be covered in a lecture or two.

There were three streams of model-theoretic research in the 1970’s. For simplic-
ity in the discussion below I focus on vocabularies (languages) which contain only
countably many relation and function symbols. In one direction workers in alge-
braic model theory melded sophisticated algebraic studies with techniques around
quantifier elimination and developed connections between model theory and alge-
bra. A second school developed fundamental model theoretic properties of a wide
range of logics. Many of these logics were obtained by expanding first order logic
by allowing longer conjunctions or longer strings of first order quantifiers; others
added quantifiers for ‘there exist infinitely many’, ‘there exist uncountably many’,
‘equicardinality’, and many other concepts. This work was summarized in the
Barwise-Feferman volume [BF85]. The use of powerful combinatorial tools such
as the Erdös-Rado theorem on the one hand and the discovery that Chang’s con-
jecture on two cardinal models for arbitrary first theories is independent of ZFC
and that various two cardinal theorems are connected to the existence of large car-
dinals [CK73] caused a sense that pure model theory was deeply entwined both
with heavy set-theoretic combinatorics and with (major) extensions of ZFC. In the
third direction, Shelah made the fear of independence illusory for the most central
questions by developing the stability hierarchy. He split all first order theories into
5 classes. Many interesting algebraic structures fall into the three classes (ω-stable,
superstable, strictly stable) whose models admit a deep structural analysis. This
classification is (set theoretically) absolute as are various fundamental properties
of such theories. Thus, for stable theories, Chang’s conjecture is proved in ZFC
[Lac72, She78]. Shelah focused his efforts on the test question: compute the func-
tion I(T, κ) which gives the number of models of cardinality κ. He achieved the
striking main gap theorem. Every theory T falls into one of two classes. T may be
intractable, that is I(T, κ) = 2κ, the maximum, for every sufficiently large κ. Or,
every model of T is decomposed as a tree of countable models and the number of
models in κ is bounded well below 2κ. The description of this tree and the proof of
the theorem required the development of a far reaching generalization of the Van
der Waerden axiomatization of independence in vector spaces and fields. This is
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viii INTRODUCTION

not the place for even a cursory survey of the development of stability theory over
the last 35 years. However, the powerful tools of the Shelah’s calculus of indepen-
dence and orthogonality are fundamental to the applications of model theory in the
1990’s to Diophantine geometry and number theory [Bou99].

Since the 1970’s Shelah has been developing the intersection of the second
and third streams described above: the model theory of the class of models of
a sentence in one of a number of ‘non-elementary’ logics. He builds on Keisler’s
work [Kei71] for the study of Lω1,ω but to extend to other logics he needs a more
general framework and the Abstract Elementary Classes (AEC) we discuss below
provide one. In the last ten years, the need for such a study has become more
widely appreciated as a result of work on both such concrete problems as complex
exponentiation and Banach spaces and programmatic needs to understand ‘type-
definable’ groups and to understand an analogue to ‘stationary types’ in simple
theories.

Our goal here is to provide a systematic and intelligible account of some central
aspects of Shelah’s work and related developments. We study some very specific
logics (e.g. Lω1,ω) and the very general case of abstract elementary classes. The sur-
vey articles by Grossberg [Gro02] and myself [Bal04] provide further background
and motivation for the study of AEC that is less technical than the development
here.

An abstract elementary class (AEC) K is a collection of models and a notion
of ‘strong submodel’ ≺ which satisfies general conditions similar to those satisfied
by the class of models of a first order theory with ≺ as elementary submodel.
In particular, the class is closed under unions of ≺-chains. A Löwenheim-Skolem
number is assigned to each AEC: a cardinal κ such that each M ∈ K has a strong
submodel of cardinality κ. Examples include the class of models of a ∀∃ first order
theory with ≺ as substructure, a complete sentence of Lω1,ω with ≺ as elementary
submodel in an appropriate fragment of Lω1,ω and the class of submodels of a
homogeneous model with ≺ as elementary submodel. The models of a sentence of
Lω1,ω(Q) (Q is the quantifier ‘there exists uncountably many’) fit into this context
modulo two important restrictions. An artificial notion of ‘strong submodel’ must
be introduced to guarantee the satisfaction of the axioms concerning unions of
chains. More important from a methodological viewpoint, without still further and
unsatisfactory contortions, the Löwenheim number of the class will be ℵ1.

In general the analysis is not nearly as advanced as in the first order case. We
have only approximations to Morley’s theorem and only a rudimentary development
of stability theory. (There have been significant advances under more specialized
assumptions such as homogeneity or excellence [GH89, HLS05] and other works
of e.g. Grossberg, Hyttinen, Lessmann, and Shelah.) The most dispositive result
is Shelah’s proof that assuming 2ℵn < 2ℵn+1 for n < ω, if a sentence of Lω1,ω is
categorical up to ℵω then is categorical in all cardinals. Categoricity up to ℵω is
essential [HS90, BK].

The situation for AEC is even less clear. One would like at least to show that
an AEC could not alternate indefinitely between categoricity and non-categoricity.
The strongest result we show here is implicit in [She99]. Theorem 15.13 asserts:
There is a Hanf number µ (not computed but depending only on the Löwenheim
number of K) such that if an AEC K satisfying the general conditions of Part 3
is categorial in a successor cardinal larger than µ, it is categorical in all larger
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cardinals. This state of affairs in a major reason that this monograph is titled
categoricity. Although a general stability theory for abstract elementary classes is
the ultimate goal, the results here depend heavily on assuming categoricity in at
least one cardinal.

There are several crucial aspects of first order model theory. By Lindström’s
theorem [Lin69] we know they can be summarized as: first order logic is the only
logic (of Lindström type) with Löwenheim number ℵ0 that satisfies the compactness
theorem. One corollary of compactness in the first order case plays a distinctive
role here, the amalgamation property: two elementary extensions of a fixed model
M have a common extension over M . In particular, the first order amalgamation
property allows the identification (in a suitable monster model) of a syntactic type
(the description of a point by the formulas it satisfies) with an orbit under the
automorphism group (we say Galois type).

Some of the results here and many associated results were originally developed
using considerable extensions to ZFC. However, later developments and the focus
on AEC rather than Lκ,ω (for specific large cardinals κ ) have reduced such reliance.
With one exception, the results in this book are proved in ZFC or in ZFC + 2ℵn <
2ℵn+1 for finite n; we call this proposition the very weak generalized continuum
hypothesis VWGCH . The exception is Chapter 17 which relies on the hypothesis

that 2µ < 2µ
+

for any cardinal µ; we call this hypothesis the weak generalized
continuum hypothesis, WGCH. Without this assumption, some crucial results have
not been proved in ZFC; the remarkable fact is that such a benign assumption as
VWGCH is all that is required. Some of the uses of stronger set theory to analyze
categoricity of Lω1,ω-sentences can be avoided by the assumption that the class of
models considered contains arbitrarily large models.

We now survey the material with an attempt to convey the spirit and not the
letter of various important concepts; precise versions are in the text. With a few
exceptions that are mentioned at the time all the work expounded here was first
discovered by Shelah in a long series of papers.

Part I (Chapters 2-4) contains a discussion of Zilber’s quasiminimal excellent
classes [Zil05]. This is a natural generalization of the study of first order strongly
minimal theories to the logic Lω1,ω (and some fragments of Lω1,ω(Q). It clearly
exposes the connections between categoricity and homogeneous combinatorial ge-
ometries; there are natural algebraic applications to the study of various expansions
of the complex numbers. We expound a very concrete notion of ‘excellence’ for a
combinatorial geometry. Excellence describes the closure of an independent n-cube
of models. This is a fundamental structural property of countable structures in a
class K which implies that K has arbitrarily large models (and more). Zilber’s
contribution is to understand the connections of these ideas to concrete mathe-
matics, to recognize the relevance of infinitary logic to these concrete problems,
and to prove that his particular examples are excellent. These applications require
both great insight in finding the appropriate formal context and substantial math-
ematical work in verifying the conditions laid down. Moreover, his work has led
to fascinating speculations in complex analysis and number theory. As pure model
theory of Lω1,ω, these results and concepts were all established in greater generality
by Shelah [She83a] more than twenty years earlier. But Zilber’s work extends She-
lah’s analysis in one direction by applying to some extensions of Lω1,ω. We explore
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the connections between these two approaches at the end of Chapter 25. Before
turning to that work, we discuss an extremely general framework.

The basic properties of abstract elementary classes are developed in Part II
(chapters 5-8). In particular, we give Shelah’s presentation theorem which repre-
sents every AEC as a pseudoelementary class (class of reducts to a vocabulary L
of a first order theory in an expanded language L′) that omit a set of types. Many
of the key results (especially in Part IV) depend on having Löwenheim number
ℵ0. Various successes and perils of translating Lω1,ω(Q) to an AEC (with count-
able Löwenheim number) are detailed in Chapters 6-8 along with the translation
of classes defined by sentences of Lω1,ω to the class of atomic models of a first or-
der theory in an expanded vocabulary. Chapter 8 contains Shelah’s beautiful ZFC
proof that a sentence of Lω1,ω(Q) that is ℵ1-categorical has a model of power ℵ2.

In Part III (Chapters 9-17) we first study the conjecture that for ‘reasonably
well-behaved classes’, categoricity should be either eventually true or eventually
false. We formalize ‘reasonably well-behaved’ via two crucial hypotheses: amalga-
mation and the existence of arbitrarily large models. Under these assumptions, the
notion of Galois type over a model is well-behaved and we recover such fundamental
notions as the identification of ‘saturated models’ with those which are ‘model ho-
mogeneous’. Equally important, we are able to use the omitting types technology
originally developed by Morley to find Ehrenfeucht-Mostowski models for AEC.
This leads to the proof that categoricity implies stability in smaller cardinalities
and eventually, via a more subtle use of Ehrenfeucht-Mostowski models, to a notion
of superstability. The first goal of these chapters is to expound Shelah’s proof of a
downward categoricity theorem for an AEC (satisfying the above hypothesis) and
categorical in a successor cardinal. A key aspect of that argument is the proof
that if K is categorical above the Hanf number for AEC’s, then two distinct Galois
types differ on a ‘small’ submodel. Grossberg and VanDieren [GV06c] christened
this notion: tame.

We refine the notion of tame in Chapter 11 and discuss three properties of
Galois types: tameness, locality, and compactness. Careful discussion of these
notions requires the introduction of cardinal parameters to calibrate the notion
of ‘small’. We analyze this situation and sketch examples related to the White-
head conjecture showing how non-tame classes can arise. Grossberg and VanDieren
[GV06b, GV06a]develop the theory for AEC satisfying very strong tameness hy-
potheses. Under these conditions they showed categoricity could be transferred
upward from categoricity in two successive cardinals. Key to obtaining categoric-
ity transfer from one cardinal λ+ is the proof that the union of a ‘short’ chain
of saturated models of cardinality λ is saturated. This is a kind of superstability
consideration; it requires a further and still more subtle use of the Ehrenfeucht-
Mostowski technology and a more detailed analysis of splitting; this is carried out
in Chapter 15.

In Chapters 16 and 17 we conclude Part III and explore AEC without as-
suming the amalgamation property. We show, under mild set-theoretic hypotheses
(weak diamond), that an AEC which is categorical in κ and fails the amalgamation
property for models of cardinality κ has many models of cardinality κ+.

In Part IV (Chapters 18-26) we return to the more concrete situation of atomic
classes, which, of course, encompasses Lω1,ω. Using 2ℵ0 < 2ℵ1 , one deduces from a
theorem of Keisler [Kei71] that an ℵ1-categorical sentence ψ in Lω1,ω is ω-stable.



INTRODUCTION xi

Note however that ω-stability is proved straightforwardly (Chapter 7) if one assumes
ψ has arbitrarily large models. In Chapters 18-23, we introduce an independence
notion and develop excellence for atomic classes. Assuming cardinal exponentia-
tion is increasing below ℵω, we prove a sentence of Lω1,ω that is categorical up to
ℵω is excellent. In Chapters 24-25 we report Lessmann’s [Les03] account of prov-
ing Baldwin-Lachlan style characterizations of categoricity for Lω1,ω and Shelah’s
analog of Morley’s theorem for excellent atomic classes. We conclude Chapter 25,
by showing how to deduce the categoricity transfer theorem for arbitrary Lω1,ω-
sentences from a (stronger) result for complete sentences. Finally, in the last chap-
ter we explicate the Hart-Shelah example of an Lω1,ω-sentence that is categorical
up to ℵn but not beyond and use it to illustrate the notion of tameness.

The work here has used essentially in many cases that we deal with classes with
Löwenheim number ℵ0. Thus, in particular, we have proved few substantive general
results concerning Lω1,ω(Q) (the existence of a model in ℵ2 is a notable exception).
Shelah has substantial not yet published work attacking the categoricity transfer
problem in the context of ‘frames’; this work does apply to Lω1,ω(Q) and does
not depend on Löwenheim number ℵ0. We do not address this work [She0x,

She00d, She00c] nor related work which makes essential use of large cardinals
([MS90, KS96].

A solid graduate course in model theory is an essential prerequisite for this
book. Nevertheless, the only quoted material is very elementary model theory (say
a small part of Marker’s book [Mar02]), and two or three theorems from the Keisler
book [Kei71] including the Lopez-Escobar theorem characterizing well-orderings.
We include in Appendix A a full account of the Hanf number for omitting types.
In Appendix B we give the Keisler technology for omitting types in uncountable
models. The actual combinatorial principle that extends ZFC and is required for
the results here is the Devlin-Shelah weak diamond. A proof of the weak diamond
from weak GCH below ℵω appears in Appendix C. In Appendix D we discuss a
number of open problems. Other natural background reference books are [Mar02,

Hod87, She78, CK73].
The foundation of all this work is Morley’s theorem [Mor65a]; the basis for

transferring this result to infinitary logic is [Kei71]. Most of the theory is due
to Shelah. In addition to the fundamental papers of Shelah, this exposition de-
pends heavily on various works by Grossberg, Lessmann, Makowski, VanDieren,
and Zilber and on conversations with Adler, Coppola, Dolich, Drueck, Goodrick,
Hart, Hyttinen, Kesala, Kirby, Kolesnikov, Kueker, Laskowski, Marker, Medvedev,
Shelah, and Shkop as well as these authors. The book would never have happened
if not for the enthusiasm and support of Rami Grossberg, Monica VanDieren and
Andres Villaveces. They brought the subject alive for me and four conferences in
Bogota and the 2006 AIM meeting on Abstract Elementary Classes were essential
to my understanding of the area. Grossberg, in particular, was a unending aid
in finding my way. I thank the logic seminar at the University of Barcelona and
especially Enriques Casanovas for the opportunity to present Part IV in the Fall of
2006 and for their comments. I also must thank the University of Illinois at Chicago
and the National Science Foundation for partial support during the preparation of
this manuscript.





Part 1

Quasiminimal Excellence and

Complex Exponentiation



In Part 1 of the book, we provide a concrete example of the applicability of
the abstract methods to a mathematical problem. That is, we describe sufficient
conditions for categoricity in all powers and elaborate a specific algebraic example.
In Parts 2 and 3 we study more general contexts where only partial categoricity
transfer methods are known. We close the book in Part 4 by describing Shelah’s
solution of the categoricity transfer problem for Lω1,ω and placing Part 1 in that
context.

One reason to study AEC is that first order logic is inadequate to describe
certain basic mathematical structures. One example is complex exponentiation;
the ring of integers is interpretable in (C, ·,+, exp) with domain the zeros of the
sine function and so the resulting theory is unstable. Zilber suggested investigating
this structure in Lω1,ω. A somewhat simpler object, the covers of the multiplica-
tive group of C, is a concrete example of a quasiminimal excellent classes. This
is a specific example of the notion of excellence discussed in Part 4. A notion of
excellence presupposes a notion of dependence. In the case of quasiminimality, this
dependence notion determines a geometry. We prove that a quasiminimal excellent
class is categorical in all uncountable powers. We expound several papers of Zilber
and explain the fundamental notion of excellence in the ‘rank one’ case. We study
the ‘covers’ situation in detail. It provides a ‘real’ example of categorical struc-
tures which are not homogenous and thus shows why the notion of excellence must
be introduced. We briefly discuss (with references) at the end of Chapter 3 the
extensions of these methods to other mathematical situations (complex exponen-
tiation and semi-abelian varieties). We return to the more general consideration
of categoricity of Lω1,ω in Part 4 and discuss the full notion of excellence. After
Proposition 25.20, we examine which parts of Zilber’s work are implied by Shelah
[She83a, She83b] and the sense in which Zilber extends Shelah.



CHAPTER 1

Combinatorial Geometries and Infinitary Logics

In this chapter we introduce two of the key concepts that are used throughout
the text. In the first section we define the notion of a combinatorial geometry and
describe its connection with categoricity in the first order case. The second section
establishes the basic notations for infinitary logics.

1.1. Combinatorial Geometries

Shelah’s notion of forking provides a notion of independence which greatly
generalizes the notion of Van der Waerden [VdW49] by allowing one to study
structures with a family of dimensions. (See Chapter II of [Bal88].) But Van der
Waerden’s notion is the natural context for studying a single dimension; in another
guise such a relation is called a combinatorial geometry. Most of this monograph is
devoted to structures which are determined by a single dimension; in the simplest
case, which we study first, the entire universe is the domain of a single combinatorial
geometry.

One strategy for the analysis of ℵ1-categorical first order theories in a countable
vocabulary proceeds in two steps: a) find a definable set which admits a nice
dimension theory b) show this set determines the model up to isomorphism. The
sufficient condition for a set D to have a nice dimension theory is that D be strongly
minimal or equivalently that algebraic closure on D forms a pregeometry in the
sense described below. It is natural to attempt to generalize this approach to study
categoricity in non-elementary contexts. In this chapter we review the first order
case to set the stage. For more detail on this chapter consult e.g. [Bue91]. In
the next few chapters, we study the infinitary analog to the first order concept
of strong minimality – quasiminimality. In Part 4 we show that the strategy of
reducing categoricity to a quasiminimal excellent subset can be carried out for
sentences of Lω1,ω.

Definition 1.1.1. A pregeometry is a set G together with a dependence relation

cl : P(G) → P(G)

satisfying the following axioms.
A1. cl(X) =

⋃{cl(X ′) : X ′ ⊆fin X}
A2. X ⊆ cl(X)
A3. cl(cl(X)) = cl(X)
A4. (Exchange) If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).
If points are closed the structure is called a geometry.

Definition 1.1.2. A geometry is homogeneous if for any closed X ⊆ G and
a, b ∈ G−X there is a permutation of G which preserves the closure relation (i.e.
an automorphism of the geometry), fixes X pointwise, and takes a to b.

3



4 1. COMBINATORIAL GEOMETRIES AND INFINITARY LOGICS

Exercise 1.1.3. If G is a homogeneous geometry, X, Y are maximally inde-
pendent subsets of G, there is an automorphism of G taking X to Y .

The most natural examples of homogeneous geometries are vector spaces and
algebraically closed fields with their usual notions of closure. The crucial properties
of these examples are summarised in the following definition.

Definition 1.1.4. (1) The structure M is strongly minimal if every first
order definable subset of any elementary extension M ′ of M is finite or
cofinite.

(2) The theory T is strongly minimal if it is the theory of a strongly minimal
structure.

(3) a ∈ acl(X) if there is a first order formula with parameters from X and
with finitely many solutions that is satisfied by a.

Definition 1.1.5. Let X,Y be subsets of a structure M . An elementary iso-
morphism from X to Y is 1-1 map from X onto Y such that for every first order
formula φ(v), M |= φ(x) if and only if M |= φ(fx).

Note that if M is the structure (ω, S) of the natural numbers and the successor
function, then (M,S) is isomorphic to (ω − {0}, S). But this isomorphism is not
elementary.

The next exercise illustrates a crucial point. The argument depends heavily on
the exact notion of algebraic closure; the property is not shared by all combinato-
rial geometries. In the quasiminimal case, discussed in the next chapter, excellence
can be seen as the missing ingredient to prove this extension property. The added
generality of Shelah’s notion of excellence is to expand the context beyond a com-
binatorial geometry to a more general dependence relation.

Exercise 1.1.6. Let X,Y be subsets of a structure M . If f takes X to Y is
an elementary isomorphism, f extends to an elementary isomorphism from acl(X)
to acl(Y ). (Hint: each element of acl(X) has a minimal description.)

The content of Exercise 1.1.6 is given without proof on its first appearance
[BL71]; a full proof is given in [Mar02]. The next exercise recalls the use of
combinatorial geometries to study basic examples of categoricity in the first order
context.

Exercise 1.1.7. Show a complete theory T is strongly minimal if and only if
it has infinite models and

(1) algebraic closure induces a pregeometry on models of T ;
(2) any bijection between acl-bases for models of T extends to an isomorphism

of the models.

Exercise 1.1.8. A strongly minimal theory is categorical in any uncountable
cardinality.

1.2. Infinitary Logic

Infinitary logics Lκ,λ arise by allowing infinitary Boolean operations (bounded
by κ) and by allowing quantification over sequences of variables length < λ. Various
results concerning completeness, compactness and other properties of these logics
were established during the late 1960’s and early 1970’s. See for example [Bar68,



1.2. INFINITARY LOGIC 5

Kei71, Kue70, BF85]. We draw on a few of these results as needed. Here we
just fix the notation.

Notation 1.2.1. For cardinals κ and λ and a vocabulary τ , Lκ,λ(τ) is the
smallest collection Φ of formulas such that:

(1) Φ contains all atomic τ-formulas in the variables vi for i < λ.
(2) Φ is closed under ¬.
(3) Φ is closed under

∨
Ψ and

∧
Ψ where Ψ is a set of fewer than κ formulas

that contain strictly less than λ free variables.
(4) Φ is closed under sequences of universal and existential quantifiers over

less than λ variables vi.

Thus, the logic Lω1,ω is obtained by extending the formation rules of first order
logic to allow countable conjunctions and disjunctions; each formula of Lω1,ω only
finitely many free variable. L∞,λ allows conjunctions of arbitrary length.

Definition 1.2.2. A fragment ∆ of Lω1,ω is a countable subset of Lω1,ω closed
under subformula, substitutions of terms, finitary logical operations and such that:
whenever Θ ⊂ ∆ is countable and φ,

∨
Θ ∈ ∆ then

∨{∃xθ :θ ∈ Θ}, ∨{φ∧θ :θ ∈ Θ},
and

∨
({φ} ∪ Θ) are all in ∆. Further, when dealing with theories with linearly

ordered models, we require that if φ,
∨

Θ ∈ ∆ then
∨

({for arb large x)θ :θ ∈ Θ}.
The following semantic characterization of Lω1,ω equivalence is an important

tool.

Definition 1.2.3. Two structures A and B are back and forth equivalent if
there is a nonempty set I of isomorphisms of substructures A onto substructures of
B such that:

(forth) For every f ∈ I and a ∈ A there is a g ∈ I such that f ⊆ g and a ∈ dom g.
(back) For every f ∈ I and b ∈ B there is a g ∈ I such that f ⊆ g and b ∈ rg g.

We write A ≈p B.

Proofs of the following theorem and related results can be found in e.g. [Bar73]
and [Kue70].

Fact 1.2.4 (Karp). The following are equivalent.

(1) A ≈p B
(2) A and B are L∞,ω-elementarily equivalent.

Either of these conditions implies that if A and B are both countable then A ≈ B,
i.e. they are isomorphic.

L(Q) or Lω1,ω(Q) is obtained by adding the further quantifier, ‘there exists un-
countably many’ to the underlying logic. Truth for Lω1,ω(Q) is defined inductively
as usual; the key point is that M |= (Qx)φ(x) if and only if |{m :M |= φ(m)}| ≥ ℵ1.
There are other semantics for this quantifier (see [BF85]). There are other inter-
pretations of the Q-quantifier, requiring for example that φ has κ solutions for some
other infinite κ.

Fact 1.2.5 (Löwenheim-Skolem theorems). Unlike first order logic, the exis-
tence of models in various powers of an Lω1,ω-theory is somewhat complicated. The
downward Löwenheim-Skolem to ℵ0 holds for sentences (not theories) in Lω1,ω. For
every α < ω1, there is a sentence φα that has no model of cardinality greater than
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iα. (See Chapter 13 of Keisler book or [Mor65b].) Appendix A implies that if a
sentence of Lω1,ω has a model with cardinality at least iω1 then it has arbitrarily
large models. Much of the difficulty of Part IV, of this text stems from dealing with
this issue.

Remark 1.2.6 (Set theoretical notation). We use with little reference such
basic notations as cf(λ) for cofinality and (cub) for closed unbounded set. For
background on such concepts see a set theory text such as [Kun80].



CHAPTER 2

Abstract Quasiminimality

In this chapter we introduce Zilber’s notion [Zil05] of an abstract quasiminimal-
excellent class and prove Theorem 2.23: Lω1,ω-definable quasiminimal-excellent
classes satisfying the countable closure condition are categorical in all powers. In
the next chapter we expound Zilber’s simplest concrete algebraic example. In Chap-
ter 25, we will place this example in the context of Shelah’s more general notion.

An abstract quasiminimal class is a class of structures in a countable vocab-
ulary that satisfy the following two conditions, which we expound leisurely. The
class is quasiminimal excellent if it also satisfies the key notion of excellence which
is described in Assumption 2.15. A partial monomorphism is a 1-1 map which
preserves quantifier-free formulas.

Assumption 2.1 (Condition I). Let K be a class of L-structures which admit
a closure relation clM mapping X ⊆M to clM (X) ⊆M that satisfies the following
properties.

(1) Each clM defines a pregeometry (Definition 1.1.1) on M .
(2) For each X ⊆M , clM (X) ∈ K.
(3) If f is a partial monomorphism from H ∈ K to H ′ ∈ K taking X ∪ {y}

to X ′ ∪ {y′} then y ∈ clH(X) iff y′ ∈ clH′ (X ′).

Our axioms say nothing explicit about the relation between clN (X) and clM (X)
where X ⊂ M ⊂ N . Note however that if M = clN (X), then monotonicity of
closure implies clN (Y ) ⊆ M for any Y ⊆ M . And, if closure is definable in some
logic L∗ (e.g. a fragment of Lω1,ω) and X ⊆ M with M ≺L∗ N then clN (X) =
clM (X). We will use this observation at the end of the chapter.

Condition 2.1.3) has an a priori unlikely strength: quantifier-free formulas
determine the closure; in practice, the language is specifically expanded to guarantee
this condition.

Remark 2.2. The following requirement is too strong: for any M,N ∈ K with
M ⊆ N and X ⊆M ,

clN (X) = clM (X).

Consider the first order theory of an equivalence relation with infinitely many in-
finite classes. Restrict to those models where every equivalence class is countable.
With the closure of a set X defined to be the set of elements that are equiva-
lent to some member of X , this class gives a quasiminimal excellent class with the
countable closure property (Definition 2.8). But it does not satisfy the stronger
condition proposed in this example. Note that in this example clM (∅) = ∅. This
class is axiomatized in L(Q).

7
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Our development here is abstract; in general there is no syntactic conditions on
the definability of K. However, as presented here, the key arguments for the exis-
tence of models in arbitrarily large cardinalities (Lemma 2.23) use the assumption
that K is definable in Lω1,ω.

Definition 2.3. Let A be a subset of H,H ′ ∈ K. A map from X ⊂ H to
X ′ ⊂ H ′, which fixes X ∩A is called a partial A-monomorphism if its union with
the identity map on A preserves quantifier-free formulas (i.e. is an isomorphism).

Frequently, but not necessarily, A will be the universe of member G of K.

Definition 2.4. Let Ab ⊂M and M ∈ K. The (quantifier-free) type of b over
A in M , written tpqf (b/A;M), is the set of (quantifier-free) first-order formulas
with parameters from A true of b in M .

Exercise 2.5. Why is M a parameter in Definition 2.4?

Exercise 2.6. Let Ab ⊂ M , Ab′ ⊂ M ′ with M,M ′ ∈ K. Show there is a
partial A-monomorphism taking a′ to b′ if and only if

tpqf (b/A;M) = tpqf (b
′/A;M ′).

The next condition connects the geometry with the structure on members of
K.

Assumption 2.7 (Condition II : ℵ0-homogeneity over models). Let G ⊆ H,H ′ ∈
K with G empty or a countable member of K that is closed in H,H ′.

(1) If f is a partial G-monomorphism from H to H ′ with finite domain X
then for any y ∈ clH(X) there is y′ ∈ H ′ such that f ∪ {〈y, y′〉} extends f
to a partial G-monomorphism.

(2) If f is a bijection between X ⊂ H ∈ K and X ′ ⊂ H ′ ∈ K which are
separately cl-independent (over G) subsets of H and H ′ then f is a G-
partial monomorphism.

Definition 2.8. We say a closure operation satisfies the countable closure
property if the closure of a countable set is countable.

Of course, this implies that for any infinite X ⊆ M ∈ K, |clM (X)| = |X |.
These semantic conditions yield syntactic consequences. A structure M is often
called ‘quasiminimal’ if every Lω1,ω-definable subset of M is countable or cocount-
able; our formal definition includes homogeneity conditions.

Lemma 2.9. Suppose clM on an uncountable structure M ∈ K satisfies Con-
ditions I, II and the countable closure property.

(1) For any finite set X ⊂ M , if a, b ∈ M − clM (X), a, b realize the same
Lω1,ω-type over X.

(2) Every Lω1,ω-definable subset of M is countable or cocountable. This im-
plies that a ∈ clM (X) iff it satisfies some φ over X, which has only count-
ably many solutions.

Proof. Conclusion 1) follows from Condition II (Assumption 2.7) by construct-
ing a back and forth: let G = clM (X). The collection S of finite G-monomorphisms
that contain 〈a, b〉 is a back and forth (see Definition 1.2.3); {〈a, b〉} ∈ S by As-
sumption 2.7.2. Go back and forth; use Assumption 2.7.2 if the new element is
independent and Assumption 2.7.1 if the extension is to a dependent element. To
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see conclusion 2), suppose both φ and ¬φ had uncountably many solutions with
φ defined over X . Then there are a and b satisfying φ and ¬φ respectively and
neither is in cl(X); this contradicts 1). �2.9

We immediately conclude a form of ω-stability. By an Lω1,ω-type of a sequence
of a of length n in M ∈ K over A, we mean the set of Lω1,ω with n free variables
and finitely many parameters from A satisfied by a. By Lemma 2.12, each such
type is determined by the countable set of formulas giving the quantifier-free type
of a.

Corollary 2.10. Suppose cl on an uncountable structure M ∈ K satisfies
Conditions I, II, and the countable closure property. Then K is syntactically stable
in every cardinality. That is, there are only |X |, Lω1,ω-types over any infinite set
X ⊆M .

Exercise 2.11. Consider the class of models of an equivalence relation such
that each class has one or two elements. Let clN (a) be the algebraic closure in
the normal first order sense. Show that this example fails both ω-homogeneity (As-
sumption 2.7.1) and Lemma 2.9. (This example was constructed by John Goodrick
and Alice Medvedev.)

The ω-homogeneity condition yields by an easy induction:

Lemma 2.12. Suppose Conditions I and II hold. Let G ∈ K be countable and
suppose G ⊂ H,H ′ ∈ K with G closed in H,H ′ if G 6= ∅.

(1) If X ⊂ H, X ′ ⊂ H ′ are finite and f is a G-partial monomorphism from
X onto X ′ then f extends to a G-partial monomorphism from clH(GX)
onto clH′(GX ′). Thus, for any M,N , clM (∅) ≈ clM (∅).

(2) If X is an independent set of cardinality at most ℵ1, and f is a G-partial
monomorphism from X to X ′ then f extends to a G-partial monomor-
phism from clH(GX) onto clH′(GX ′).

Proof. The first statement is proved by constructing a back and forth extending
f from clH(X) to clH(X ′). Arrange the elements of clH(X) (of clH(X ′)) in order
type ω with X (X ′) first. Simultaneously construct f and f−1, extending f at
even stages and f−1 at odd stages using Assumption 2.7.1. The second follows by
induction from the first (by replacing G by clH(GX0) for X0 a countable initial
segment of X). �2.12

For algebraic closure the cardinality restriction on X is unnecessary. Assump-
tion 2.15 in the definition of a quasiminimal excellent class, allows us to extend
Lemma 2.12.2 to sets of arbitrary cardinality for classes that satisfy the countable
closure property. In particular, Lemma 2.12 implies that K is ℵ1-categorical. But
we (apparently) need the extra condition of excellence to get categoricity in higher
cardinalities.

Now we define the concept of quasiminimal excellence. It makes certain amal-
gamation requirements (Lemma 2.18) in the context of a geometry; Shelah’s notion
of excellence works in the context of a more general independence relation. We
need two technical definitions to simplify the statement of the condition.

Definition 2.13. Let C ⊆ H ∈ K and let X be a finite subset of H. We
say tpqf(X/C) is determined over the finite C0 contained in C if: for every partial
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monomorphism f mapping X into H ′, for every partial monomorphism f1 mapping
C into H ′, if f ∪ (f1 ↾C0) is a partial monomorphism, f ∪ f1 is also a partial
monomorphism. We write

tpqf(X/C0) |= tpqf(X/C)

to express this concept.

Definition 2.14. Let H ∈ K and C ⊂ H. C is called special if there is a
countable independent subset A and A0, . . . An−1 ⊆ A such that:

C =
⋃

i<n

clH(Ai).

Assumption 2.15 (Condition III: Quasiminimal Excellence). Let H ∈ K and
suppose C ⊂ H is special. Then for any finite X ⊂ clH(C), tp(X/C;H) is deter-
mined by a finite subset C0 of C.

One sort of special set is particularly important. In the following definition it
is essential that ⊂ be understood as proper subset.

Definition 2.16. Let Y ⊂M ∈ K.

(1) For any Y , cl−M (Y ) =
⋃
X⊂Y clM (X).

(2) We call C (the union of) an n-dimensional clM -independent system if
C = cl−M (Z) and Z is an independent set of cardinality n.

To visualize a 3-dimensional independent system think of a cube with the empty
set at one corner A and each of the independent elements z0, z1, z2 at the corners
connected to A. Then each of cl(zi, zj) for i < j < 3 determines a side of the cube:

cl−(Z) is the union of these three sides; cl(Z) is the entire cube.
In particular Condition III, which is the central point of excellence, asserts (for

dimension 3) that the type of any element in the cube over the union of the three
given sides is determined by the type over a finite subset of the sides. The ‘thumb-
tack lemma’ of Chapter 3 verifies this condition in a specific algebraic context.
Lemma 2.18 provides a less syntactic version of the excellence condition: there is a
particularly strong amalgam over any special set. To state it we need a definition.

Definition 2.17. We say M ∈ K is prime over the set X ⊂M if every partial
monomorphism of X into N ∈ K extends to a monomorphism of M into N .

We say a map is closed if it takes closed subsets of H to closed subsets of H ′.

Lemma 2.18. Suppose K has the countable closure property. Let H ∈ K and
suppose C ⊂ H is special. Then clH(C) is prime over C. Moreover, if f maps C

onto C′ ⊆ H ′ is a closed map then f extends to f̂ mapping clH(C) onto clH′(C′).

Proof. Let C = clH(C) and let C
′
= clH′(f(C)). They are both countable, so

choose an ordering of each of length ω. Inductively we construct partial embeddings
fn from H to H ′ for n ∈ ω such that for each n:

• preim(fn) is finite,
• fn ⊆ fn+1, and
• fn ∪ f is a partial embedding.
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Take f0 = ∅. We construct the fn for n > 0 via the back and forth method,
going forth for odd n and back for even n. For odd n, let a be the least ele-
ment of C − preimfn−1. The set preimfn−1 ∪ {a} is a finite subset of C, so by
quasiminimal excellence and finite character there is a finite subset C0 of C such
that the quantifier-free type of preimfn−1 ∪ {a} over C is determined over C0 and
a ∈ clH(C0). Let g = fn−1 ∪ f ↾C0. By induction, fn−1 ∪ f is a partial monomor-
phism, so g is a partial monomorphism. By Condition 2.7.1 (ℵ0-homogeneity),
there is b ∈ H ′ such that fn := g ∪ {(a, b)} is a partial monomorphism. Since the
type of preimfn over C is determined over C0, fn ∪ f is a partial monomorphism,
as required.

For even n, note that f(C) is special in H ′ because f is a closed partial
monomorphism. Also note that the inverse of a partial monomorphism is a partial
monomorphism. Hence we can perform the same process as for odd steps, reversing

the roles of H and H ′, to find fn whose image contains the least element of C
′
not

in the image of fn−1. Let f̂ =
⋃
n∈N fn. Then f̂ is an monomorphism extending f ,

defined on all of C, whose image is all of C
′
. Hence f̂ is a closed monomorphism.

�2.18

Theorem 2.19 generalizes the ‘extension of maps to algebraic closures’ (Ex-
ercise 1.1.6) to ‘extension of maps to quasiminimal closures’. It is instructive to
contemplate why the argument for Exercise 1.1.6 does not generalize to the current
context.

Theorem 2.19. Let K be a quasiminimal excellent class. Suppose H,H ′ ∈ K

satisfy the countable closure property. Let A,A′ be cl-independent subsets of H,H ′

with clH(A) = H, clH′ (A′) = H ′, respectively, and ψ a bijection between A and A′.
Then ψ extends to an isomorphism of H and H ′.

Proof. First, we outline the argument. We have the obvious directed union
{cl(X) :X ⊆ A; |X | < ℵ0} with respect to the partial order of finite subsets of X
by inclusion. And H =

⋃
X⊂A;|X|<ℵ0

cl(X). So the theorem follows immediately

if for each finite X ⊂ A we can choose ψX : clH(X) → H ′ so that X ⊂ Y implies
ψX ⊂ ψY . We prove this by induction on |X |. If |X | = 1, the condition is immediate
from ℵ0-homogeneity and the countable closure property. Suppose |Y | = n+1 and
we have appropriate ψX for |X | < n+ 1. We will prove two statements.

(1) ψ−
Y :cl−(Y ) → H ′ defined by ψ−

Y =
⋃
X⊂Y ψX is a monomorphism.

(2) ψ−
Y extends to ψY defined on cl(Y ).

Before completing the argument for Theorem 2.19, we describe the structure
H (and H ′) in a little more detail.

Notation 2.20. Fix a countably infinite subset A0 of A and write A as the
disjoint union of A0 and a set A1; without loss of generality, we can assume ψ is
the identity on clH(A0) and work over G = clH(A0). We may write cl∗H(X) to
abbreviate clH(A0X).

The first statement is proved in the next few paragraphs. The second step
follows immediately by Lemma 2.18. We work with a fixedX ⊂ A1 with |X | = n+1
and write Z for ψ(X) (and similarly for subsets of X).

Our first task is to prove Statement (1) of Theorem 2.19. By the induction
hypothesis it suffices to consider n-element subsets of X . Let Xi for i < m = n+ 1
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be the n-element subsets of X and let xk be the element of X not in Xk. Note
that for each J ⊂ n+ 1, each union

⋃
i∈J cl∗H(Xi) is special. By induction we have

for each i < m a map ψXi
from cl∗H(Xi) onto cl∗H′(Zi). To prove (1) it suffices

to show that
⋃
i<m ψXi

is a G-monomorphism. The exchange axiom guarantees
that cl∗H(Xi) ∩ cl∗H(Xj) = cl∗H(Xi ∩ Xj). By the global induction, the maps ψXi

agree where more than one is defined so
⋃
i<m ψXi

is a 1-1 map. We prove by
induction on k ≤ m that ψk =

⋃
i<k ψXi

is a G-monomorphism. This is evident
for k = 1. When k = m, we finish. At the induction step, we first prove there is

a map ψ̂ mapping cl∗H(Xk) monomorphically onto cl∗H′(Zk) and extending ψk ∪ f .
For k = 2, this follows from Lemma 2.12. For k ≥ 2, since Ck =

⋃
i<k cl∗H(Xi) is

special, cl∗H(Ck) is prime over
⋃
i<k cl∗H(Xi). So ψ̂ exists, as cl∗H(Ck) = cl∗H(Xk).

Note any c ∈ Ck can be written as ab with a ∈ Ck−1 and b ∈ clH(GXk).
Take an arbitrary such tuple ab. We will construct a submodel H0 ⊂ H and a
monomorphism τ from H0 into H ′ such that ψk and τ agree on a and b. This
suffices to show ψk is a monomorphism.

Let B be a finite subset of A0 so that a,b ∈ clH(BX). Let z ∈ A0 − B,
let H0 = clH(BXz), and let H ′

0 = clH′(ψ(BXz)). By Lemma 2.12.2, there is an
automorphism σ of H0, fixing clH(BXk) and swapping xk and z.

The idea is to compare ψk on H0 with the composite embedding τ = σ′−1ψXk
σ,

where σ′ is an automorphism of H ′
0 which ‘corresponds’ to σ. We find σ′ by

conjugating σ by ψ̂ :σ′ = ψ̂σψ̂−1. Let

τ = σ′−1ψXk
σ = ψ̂σ−1ψ̂−1ψXk

σ.

Write Xik for Xi ∩Xk. The tuple a ∈ Ck−1 =
⋃
i<k−1 clH(BXi), so

σ(a) ∈
⋃

i<k−1

clH(BXikz) ⊂
⋃

i<k−1

cl∗H(Xik) ⊂ domψk−1.

By hypothesis, for i < k, ψXk
agrees with ψXi

on cl∗H(Xik), hence ψXk
agrees with

ψk−1 on
⋃
i<k cl∗H(Xik). Also ψ̂ and ψk both extend ψk−1, so

τ(a) = ψ̂σ−1ψ̂−1ψXk
σ(a) = ψk−1σ

−1ψ−1
k−1ψk−1σ(a) = ψk−1(a) = ψk(a).

The tuple b is in clH(BXk), so it is fixed by σ. The monomorphisms ψXk
and

ψ̂ preserve the closure, so ψ̂−1ψXk
(b) ∈ clH(BXk) is fixed by σ−1. So

τ(b) = ψ̂σ−1ψ̂−1ψXk
σ(b) = ψ̂ψ̂−1ψXk

(b) = ψXk
(b) = ψk(b).

Thus for any quantifier-free formula R,

H |= R(a,b) ↔ H ′ |= R(τ(a), τ(b)) ↔ H ′ |= R(ψk(a), ψk(b)).

This holds for any tuples a,b (for a suitable choice of τ) and so ψk is a partial
embedding. In particular, ψX = ψn+1 is a partial embedding. It is a union of finitely
many closed partial embeddings, hence is a closed partial embedding. �2.19

This completes the proof of Theorem 2.19; We have shown that the isomorphism
type of a structure in K with countable closures is determined by the cardinality
of a basis for the geometry. If M is an uncountable model in K that satisfies the
countable closure property, the size of M is the same as its dimension so there is
at most one model in each uncountable cardinality which has countable closures.
It remains to show that there is at least one.
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Definition 2.21. Define M ≺K N on the quasiminimal excellent class K if
M,N ∈ K, M is a substructure of N , and clM (X) = clN (X) for X ⊆M .

Lemma 2.22. Let K be a quasiminimal excellent class such that the class K

and the closure relation is definable in Lω1,ω. The class K
′ of models of K that

have infinite dimension and satisfy the countable closure property is closed under
unions of increasing ≺

K
-chains.

Proof. Let H be a model with countable dimension. Let L∗ be a countable
fragment of Lω1,ω containing the Scott sentence σ of H (see 6.1.6) and the formulas
defining independence and the definition of the class K. Note that if H0 ⊆ H1, with
both in K

′, a back and forth shows H0 is an L∗-elementary submodel of H1. Now
let 〈Hi : i < µ〉 be a ≺

K
-increasing chain of members of K

′. Then the union is also
a model Hµ ∈ K. For any countable X ′ ⊆ Hµ and a ∈ clHµ

(X ′), there is a finite
X ⊆ X ′ with a ∈ clHµ

(X). There is an i with X ⊆ Hi and clHi
(X) = clHµ

(X); so
since Hi satisfies the countable closure property, so does Hµ. �2.22

Now we get the main result.

Theorem 2.23. Let K be a quasiminimal excellent class such that the class K

and the closure relation is definable in Lω1,ω. If there is an H ∈ K which contains
an infinite cl-independent set, then there are members of K of arbitrary cardinality
which satisfy the countable closure property.

Thus, the M ∈ K that have the countable closure property form a class that is
categorical in all uncountable powers.

Proof. Fix H,L∗, σ and K
′ as in the proof of Lemma 2.22. Let X be a

countable independent subset of H , H1 the closure of Xa where a is independent
from X and let H0 = clH1(X). Note that H0 ≺L∗ H1 by a back and forth. Since
cl is L∗-definable, the argument after Assumption 2.1 yields clH1(Y ) = clH0(Y ) for
any Y ⊂ H0. So we have a model which is isomorphic to a proper L∗-elementary
and ≺K -extension. By Vaught’s old argument (Theorem 5.3 of [Vau61]) since all
members of K with countably infinite dimension are isomorphic, one can construct
a continuous L∗-elementary increasing chain of members of K for any α < ℵ1. Thus
we get a model of power ℵ1 which has countable closures by Lemma 2.22. Now
by cardinal induction, we construct for every κ a model of cardinal κ that has the
countable closure property. We use categoricity below κ (obtained by induction)
to continue the chain at limit ordinals. The categoricity now follows by argument
immediately before the statement of Definition 2.21. �2.23

Remark 2.24. Zilber omitted exchange in his original definition but it holds in
the natural contexts he considers so we made it part of our definition of quasimini-
mal excellence. This decision was validated when Zilber (unpublished) later found
an example showing the necessity of assuming exchange in his general context. The
exact formulation of Conditions I-III refine Zilber’s statement; they resulted from
examples suggested by Goodrick-Medvedev and Kirby and further vital discussions
with Kirby who contributed greatly to the final versions of the proofs of Lemma 2.18
and Theorem 2.19. He provides further variations and extensions in [Kir07]. Our
argument by direct limits for Theorem 2.19 is more conceptual than Zilber’s and
avoids his notion of a ‘perfect’ subset.
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In the remainder of this chapter we foreshadow the connections of quasimini-
mal excellent classes with the more general concepts which are investigated in the
remainder of the book.

We can glean from the proofs of Theorem 2.23 and Lemma 2.22 that the models
of a quasiminimal class (definable in Lω1,ω) that have the countable closure property
form an abstract elementary class (Definition 4.1) with ≺

K
from Definition 2.21 as

the notion of submodel and with arbitrarily large models. Note that the requirement
that cl(X) ∈ K combined with the countable closure property implies that K has
Löwenheim-Skolem number ℵ0.

Lemma 2.25. Suppose class K is a quasiminimal excellent class and the closure
relation is definable in Lω1,ω. Let K

′ be the class of those models of a quasiminimal
excellent class K such that satisfy the countable closure property. Define M ≺K N

as in Definition 2.21. Then (K ′,≺
K

) is an abstract elementary class with the
amalgamation property (Definitions 4.1, 4.10).

Proof. Lemma 2.22 shows that Condition A.3 is satisfied; LS(K ′) = ℵ0 since
the class is axiomatized in Lω1,ω; the other conditions of Definition 4.1 are routine
for ≺K . To show amalgamation, choose Z0 ⊂ H0, Z1 ⊂ H1−H0, and Z2 ⊂ H2−H0

so that H1 = clH1(Z0Z1) and H2 = clH2(Z0Z2). Note that Z0Z1 and Z0Z2 are
each independent. Now choose a model G that is the closure of the independent
set X0, X1, X2 where for each i, |Xi| = |Zi|. Note that H1 ≈ clG(X0X1) and
H2 ≈ clG(X0X2); this completes the proof. �2.25

Remark 2.26. In Lemma 2.25, we assumed the closure relation was definable
in Lω1,ω. It follows using the Q-quantifier to express countable closure that K

′

is Lω1,ω(Q)-definable. Note however, that the notion of strong submodel is not
Lω1,ω(Q)-elementary submodel; there are countable models. Kirby [Kir07] proves
a converse: if K is a quasi-excellent class as defined here and the class of models in
K with the countable closure condition is closed under unions of ≺K -chains then

K
′ is definable in Lω1,ω(Q).

In the language introduced in Definition 8.7, the following lemma says that the
Galois types in a quasiminimal excellent classes are the same as the syntactic types
in Lω1,ω. And in the terminology of Chapter 11, this implies the class is ‘tame’.
One might hope for a straightforward observation that in the quasiminimal context,
syntactic and Galois types are the same. But, the argument for the following corol-
lary relies on the explicit consequence of excellence which is half of the categoricity
argument. However, we don’t need to know that K has arbitrarily large models
nor that K is Lω1,ω-definable.

Corollary 2.27. Let K be a quasiminimal excellent class, with G ≺
K

H,H ′

all in K. If a ∈ H, a′ ∈ H ′ realize the same quantifier free type over G (i.e. there
is a G-monomorphism taking a to a′) then there is a K-isomorphism from cl(Ga)
onto cl(Ga′). Thus,

(1) (G, a,H) and (G, a′, H ′) realize the same Galois type.
(2) Galois types are the same as Lω1,ω-types.

Proof. For countable G the result follows from Lemma 2.12. But for uncount-
able G, we use Theorem 2.19 with Z as a basis for G and A = Za, A′ = Za′.
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The first conclusion is now immediate; we have an embedding of clH(Ga) into H ′.
For the second, slightly stronger variant, just note that Galois types always refine
syntactic types and we have just established the converse. �2.27

The following notion is useful for studying covers of semi-abelian varieties
(Chapter 3, [Zil06, BZ00, Gav06]). As in higher rank first order structures,
we cannot define a combinatorial geometry on the whole structure. Here are the
main features of the definition.

Definition 2.28. Let K be a class of L-structures which admit a function clM
mapping X ⊆M to clM (X) ⊆M that satisfies the following properties.

(1) clM satisfies conditions A1-A3 of the definition of a combinatorial geom-
etry (Definition 1.1.1 ) (not exchange).

(2) clM induces a quasiminimal excellent geometry on a distinguished sort U .
Conditions 2.1 and 2.7.

(3) M = clM (U).

Exercise 2.29. Formalize Definition 2.28 and prove almost quasiminimal classes
with countable chain condition are categorical in all powers ([Zil05]).

We will extend the following basic example at several points including Chap-
ter 26. Here the notion of ‘almost’ is particularly strong; the model is the algebraic
closure of the quasiminimal set. The more general definition is motivated in Para-
graph 3.20.1.

Example 2.30. Consider a three-sorted structure with an infinite set I and
G the collection of all functions with finite support from I into the third sort
that contains only {0, 1} and with the evaluation predicate: E(i, g, a) holds if and
only if g(i) = a. Note that this structure is almost quasiminimal; the I sort is
quasiminimal; the G-sort is not. The natural addition on G and 2 is definable so
in further considerations we may often add those functions.





CHAPTER 3

Covers of the Multiplicative Group of C

In this chapter, we expound a relatively simple algebraic example [Zil06,

BZ00] of a categorical quasiminimal excellent class and apply the results of Chap-
ter 2 to conclude it is categorical in all uncountable powers. Even this example
requires some significant algebraic information which is beyond the scope of this
monograph. But as we discuss at the end of the chapter, it provides a concrete
algebraic example of an Lω1,ω sentence which is categorical in all powers without
every model being ℵ1-homogeneous. This example will further serve to illustrate a
number of the complexities which we will investigate in the final part of the book,
beginning with Chapter 18. The concepts introduced here are not used essentially
later in the book. At the end of the chapter we briefly survey two further directions
that Zilber has laid out: replacing the multiplicative group of C treated here by a
semi-abelian variety, and studying the full structure of the complex numbers under
exponentiation.

The first approximation to finding an infinitary axiomatization of complex ex-
ponentiation considers short exact sequences of the following form.

0 → Z → H → F ∗ → 0.(3.1)

H is a torsion-free divisible abelian group (written additively), F is an algebraically
closed field, and exp is the homomorphism from (H,+) to (F ∗, ·), the multiplicative
group of F . We can code this sequence as a structure for a language L that includes
(H,+, π, E, S) where π denotes the generator of ker exp, E(h1, h2) iff exp(h1) =
exp(h2) and we pull back sum by defining H |= S(h1, h2, h3) iff F |= exp(h1) +
exp(h2) = exp(h3). Thus H now represents both the multiplicative and additive
structure of F . We want to show that the class of all such H (with standard Z) is
categorical in each uncountable cardinal.

Let exp :H 7→ F ∗. To guarantee Assumption 2.1.3 we include the following

symbols in L. For each affine variety over Q, V̂ (x1, . . . xn), we add a relation symbol
V interpreted by

H |= V (h1, . . . , hn) iff F |= V̂ (exp(h1), . . . , exp(hn)).

This includes the definition of S mentioned above; we skip over some fuss to handle
the pullback of relations which have 0 in their range.

Lemma 3.1. There is an Lω1,ω-sentence Σ such that there is a 1-1 correspon-
dence between models of Σ and sequences (3.1).

Proof. The sentence asserts first that the quotient of H by E with the image
of + corresponding to × and the image of S to + is an algebraically closed field.
That is a first order condition; using Lω1,ω we guarantee every element of the kernel

17
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is and integer multiple of the fixed element π. This same proviso insures that the
relevant closure operation (Definition 3.2) has countable closures. �3.1

Definition 3.2. For X ⊂ H |= Σ,

cl(X) = exp−1(acl(exp(X)))

where acl is the field algebraic closure in F .

Using this definition of closure the key result of [Zil06] asserts:

Theorem 3.3. Σ is quasiminimal excellent with the countable closure condition
and categorical in all uncountable powers.

Our goal is this section is to prove this result modulo one major algebraic
lemma. We will frequently work directly with the sequence (1) rather than the
coded model of Σ. Note that (1) includes the field structure on F . That is, two
sequences are isomorphic if there are maps H to H ′ etc. where the first two are
group isomorphisms but the third is a field isomorphism, that commute with the
homomorphism in the short exact sequence.

It is easy to check Condition I, cl gives a combinatorial geometry, and to see
that the closure of finite sets is countable. We need more notation about the divis-
ible closure (in the multiplicative group of the field) to understand the remaining
conditions.

Definition 3.4. By a divisibly closed multiplicative subgroup associated with
a ∈ C∗, aQ, we mean a choice of a multiplicative subgroup containing a and iso-
morphic to the additive group Q.

Definition 3.5. We say b
1
m

1 ∈ bQ
1 , . . . b

1
m

ℓ ∈ bQ
ℓ ⊂ C∗, determine the isomor-

phism type of bQ
1 , . . . b

Q
ℓ ⊂ C∗ over the subfield k of C if given subgroups of the form

cQ
1 , . . . c

Q
ℓ ⊂ C∗ and φm such that

φm :k(b
1
m

1 . . . b
1
m

ℓ ) → k(c
1
m

1 . . . c
1
m

ℓ )

is a field isomorphism it extends to a field isomorphism

φ∞ :k(bQ
1 , . . . b

Q
ℓ ) → k(cQ

1 , . . . c
Q
ℓ ).

To see the difficulty consider the following example.

Example 3.6. Let b1, b2 (respectively c1, c2) be pairs of linearly independent
complex numbers such that each satisfies (x1 − 1)2 = x2. Suppose φ, which maps
Q(b1, b2) to Q(c1, c2), is a field isomorphism; φ need not extend to a field iso-
morphism of their associated multiplicative subgroups bQ, cQ. To see this fix a
square root function on C. Let b2 be transcendental and b1 = 1 +

√
b2. Let c2

be another transcendental and set c1 = 1 − √
c2. Now Q(b1, b2) is isomorphic to

Q(c1, c2), taking bi to ci. But suppose we also specify that b
1/2
1 =

√
(1 +

√
b2),

b
1/2
2 =

√
b2, c

1/2
1 =

√
(1 −√

c2), c
1/2
2 =

√
c2. There is no field isomorphism taking

Q(b1, b2, b
1
2
1 , b

1 1
2

2 ) to Q(c1, c2, c
1
2
1 , c

1
2
2 ) with b

1
m

i going to c
1
m

i (for i and m being 1 or
2).

From another perspective we can see that both the b1, b2 and c1, c2 satisfy the
irreducible variety W given by:

(X1 − 1)2 = X2.
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But there are two different choices for an irreducible variety W 1/2, which is
mapped onto W by squaring in each coordinate. The first is given by

(Y 2
1 − 1)2 = Y 2

1

Y 2
1 − Y2 = 1

and the second by
(Y 2

1 − 1)2 = Y 2
1

Y 2
1 + Y2 = 1.

As in Chapter 2, for G a subgroup of H,H ′ and H,H ′ |= Σ, a partial function
φ on H is called a G-monomorphism if it preserves L-quantifier-free formulas with
parameters from G.

Lemma 3.7. Suppose b1, . . . bℓ ∈ H and c1, . . . cℓ ∈ H ′ are each linearly inde-
pendent sequences (over and from G) over Q. Let Ĝ (Ĥ) be the subfield generated
by exp(G) (exp(H)). If

Ĝ(exp(b1)
Q, . . . exp(bℓ)

Q) ≈ Ĝ(exp(c1)
Q, . . . exp(cℓ)

Q)

as fields, then mapping bi to ci is a G-monomomorphism preserving each variety
V .

Proof. Let G ⊂ H , hi ∈ H − G, gi ∈ G, with b = hg and suppose qi, ri are
rational numbers. Note

H |= V (q1h1, . . . qℓhℓ, r1g1, . . . rmgm)

iff
Ĥ |= V̂ (exp(q1h1), . . . exp(hℓbℓ), exp(r1g1), . . . exp(rmgm))

iff
Ĝ(exp(h1)

Q, . . . exp(hℓ)
Q, exp(g1)

Q, . . . exp(gm)Q)

|= V̂ (exp(q1h1), . . . exp(qℓhℓ), exp(r1g1), . . . exp(rmgm)).

Now apply the main hypothesis and then retrace the equivalences for c. �3.7

From this fact, it is straightforward to see Condition II.2 (Assumption 2.7.2);
we need that there is only one type of a closure-independent sequence. But Fact 3.7
implies that for b ∈ H to be closure independent, the associated exp(b) must be
algebraically independent and of course there is a unique type of an algebraically
independent sequence.

For Condition II.1 and the excellence condition III we need an algebraic result.
We call this result, Theorem 3.10, the thumbtack lemma based on the following
visualization of Kitty Holland. The various nth roots of b1, . . . bm hang on threads
from the bi. These threads can get tangled; but the theorem asserts that by sticking
in a finite number of thumbtacks one can ensure that the rest of strings fall freely.

Remark 3.8. Let k be an algebraically closed subfield in C and let a ∈ C− k.
A field theoretic description of the relation of a to k arises by taking the irreducible
variety over k realized by a: a is a generic realization of the variety given by the
finite conjunction φ(x,b) of the polynomials generating the ideal in k[x] of those
polynomials which annihilate a. From a model theoretic standpoint we can say,
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choose b so that the type of a/k is the unique nonforking extension of tp(a/b).
We use the model theoretic formulation below. See [Bal88], page 39.

The ten page proof by Zilber and Bays of the next algebraic lemma is beyond
the scope of this book. (See [Zil06, BZ00]). The argument in [Zil06] left out the
crucial independence hypothesis we next describe. [BZ00] corrects this difficulty,
notes the necessity of naming π, and extends the result to arbitrary characteristic.
The proof involves the theory of fractional ideals of number fields, Weil divisors,
and the normalization theorem.

Definition 3.9. A set of algebraically closed fields L1, . . . Ln, Li ⊂ F , each
with finite transcendence degree over Q is said to be from an independent system
if there is a subfield C of F and finite set B of elements that are algebraically
independent over C and so that each Li = acl(CBi) for some Bi ⊆ B.

The following general version of the thumbtack lemma is applied for various
sets of parameters to prove different conditions of quasiminimal excellence. In
Theorem 3.10 we write

√
1 for the group of roots of unity. If any of the Li are

defined, the reference to
√

1 is redundant. We write gp(a) for the multiplicative
subgroup generated by a ∈ C.

Theorem 3.10 (Thumbtack Lemma). [Zil06, BZ00] Let P ⊂ C be a finitely
generated extension of Q and L1, . . . Ln be from an independent system of subfields
of P̂ = acl(P ). Fix divisibly closed subgroups aQ

1 , . . . a
Q
r with a1, . . . ar ∈ P̂ and

bQ
1 , . . . b

Q
ℓ ⊂ C∗. If b1 . . . bℓ are multiplicatively independent over gp(a1, . . . ar) ·

√
1 · L∗

1 · . . . L∗
n then for some m b

1
m

1 ∈ bQ
1 , . . . b

frac1m
ℓ ∈ bQ

ℓ ⊂ C∗, determine the

isomorphism type of bQ
1 , . . . b

Q
ℓ over P (L1, . . . Ln,

√
1, aQ

1 , . . . a
Q
r ).

The Thumbtack Lemma immediately yields:

Lemma 3.11. Condition II.1 (ℵ0-homogeneity over models, Assumption 2.7.1)
of quasiminimal excellence holds.

Proof. We first show the case G = ∅. This proceeds in two stages. Note
that for any H |= Σ the elements of dclH(∅) have the form qπH and exp(qπH).
That is, dclH(∅) is (Q,Q(

√
1)). Thus, any partial isomorphism of an H and H ′

must map qπH to qπH′ and exp(qπH) to exp(qπH′ ) for every q. We show this
map is actually an L-isomorphism. That is, we show that for any finite sequence
of rationals and e = 〈q0πH , . . . , qsπH〉 ∈ H and e′ = 〈q0πH′ , . . . , qsπH′ 〉 ∈ H ′,
qftpL(exp(e)) = qftpL(exp(e′)). For sufficiently large N , there are primitive Nth
roots of unity, η, η′, such that exp(e) ⊆ Q(η) and similarly exp(e′) ⊆ Q(η′). Thus

each qiπH = ηmi for appropriate mi and qiπH′ = η′m
′
i . Now mapping η to η′

induces an isomorphism between two isomorphic copies of the field Q[x]/(xN − 1).
So there is a unique isomorphism between dclH(∅) and dclH′(∅), with domain Q.
Now to verify Condition II.1 on the rest of H , apply Lemma 3.10 with P = Q, no
L’s and the xi as the ai and y as b1.

It remains to show: If G |= Σ and f = (〈x1, x
′
1〉 . . . 〈xr, x′r〉) is a partial G-

monomorphism from H to H ′ then for any y ∈ H there is y′ in some H ′′ with
H ′ ≺K H ′′ such that f ∪ {〈y, y′〉} extends f to a partial G-monomorphism. Since

G |= Σ, exp(G) = Ĝ is an algebraically closed field that is in the domain of any G-
monomorphism. We work in the ω-stable theory of this field (See Remark 3.8.) For
each i, let ai denote exp(xi) and similarly for x′i, a

′
i. Choose a finite sequence d ∈
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exp(G) such that the sequences (a1, . . . ar, y) and (a′1, . . . a
′
r) are each independent

(in the forking sense) from exp(G) over d and tp((a1, . . . ar)/d) is stationary. Now
we apply the thumbtack lemma. Let P0 be Q(d). Let n = 1 and L1 be the algebraic
closure of P0. We set P0(d, a1, . . . ar) as P . Take b1 as exp(y) and set ℓ = 1.

Now apply Lemma 3.10 to find m so that b
1
m

1 determines the isomorphism

type of bQ
1 over L1(a

Q
1 , . . . a

Q
r ) = P0(L1, a

Q
1 , . . . a

Q
r ). Let f̂ denote the (partial)

map f induces from exp(H) to exp(H ′) over exp(G). Choose b′1
1
m to satisfy

the quantifier-free field type of f̂(tp(b
1
m

1 /L1(a
Q
1 , . . . a

Q
r )) and with (a′1, . . . a

′
ℓ, b

′
1

1
m )

independent from Ĝ over d. Now by Lemma 3.10, f̂ extends to field isomor-
phism between L1(a

Q
1 , . . . a

Q
r , b

Q
1 ) and L1((a

′
1)

Q, . . . (a′r)
Q, (b′1)

Q). Since the sequence

(a1, . . . ar, b1
1
m ) and (a′1, . . . a

′
r, b

′
1

1
m ) are each independent (in the forking sense)

from exp(G) over L1, we can extend this map to take exp(G)(aQ
1 , . . . a

Q
r , b

Q
1 ) to

exp(G)((a′1)
Q, . . . (a′r)

Q, (b′1)
Q) and pull back to find y′; this suffices by Fact 3.7.

�3.11

Note there is no claim that y′ ∈ H ′ and there can’t be.

One of the key ideas discovered by Shelah in the investigation of non-elementary
classes is that in order for types to be well-behaved one may have to make restric-
tions on the domain. (E.g., we may have few types over models but not over arbi-
trary substructures.) This principle is illustrated by the following result of Zilber,
proving Condition III, excellence for covers of (C∗, ·). Note that in Lemma 3.12,
G1, . . . Gn form an independent system in the sense of the combinatorial geometry
just if the Li = exp(Gi) are independent in the sense of Definition 3.9.

Lemma 3.12. Suppose Z = {G1, . . . Gn} where each Gi ⊂ H is an n-dimensional
independent system. If h1, . . . hℓ ∈ G− = cl(G1 ∪ . . . Gn) then there is finite set
A ⊂ G− such that any φ taking h1, . . . , hℓ into H which is an A-monomorphism is
also a G−-monomorphism.

Proof. Let Li = exp(Gi) for i = 1, . . . , n; bqj = exp(qhj) for j = 1, . . . , ℓ and q ∈
Q. We may assume the hi are linearly independent over the vector space generated
by the Gi; this implies the bi are multiplicatively independent over L∗

1 ·L∗
2 · . . . L∗

n.
Now apply the thumbtack lemma with r = 0. This gives an m such that the field

theoretic type of b
1
m

1 , . . . , b
1
m

ℓ determines the quantifier free type of (h1, . . . , hℓ) over
G−. So we need only finitely many parameters from G− and we finish. �3.12

Proof of Theorem 3.3. We just show that Σ defines a quasiminimal excellent
class with the countable closure condition. The homogeneity conditions of Condi-
tion II.1 (Assumption 2.7) were established in Lemma 3.11. The fact that closure
forms a combinatorial geometry (Assumption 2.1.1,2) with the countable closures is
immediate from the definition of closure (3.2). Assumption 2.1.3 (quantifier elimi-
nation) holds by the first part of the argument for Lemma 3.11 and since we added
to the language of Σ predicates for the pull-back of all quantifier-free relations on
the field F . Corollary 3.12 asserts Excellence (Assumption 2.15). So we finish by
Theorem 2.19; the quasimimimal excellence implies categoricity. �3.3

This completes the proof that covers of the multiplicative group form an exam-
ple of a quasiminimal excellent class. We now investigate the inhomogeneity aspects
of this example. In Part 1, homogeneity generally means sequence homogeneity in



22 3. COVERS OF THE MULTIPLICATIVE GROUP OF C

the following sense. Parts 2 and 3 usually consider the more restricted notion of
model homogeneity.

Definition 3.13. A structure M is κ-sequence homogeneous if for any a,b ∈
M of length less than κ, if (M,a) ≡ (M,b) then for every c, there exists d such
that (M,ac) ≡ (M,bd). Usually, the ‘sequence’ is omitted and one just says κ-
homogeneous.

Keisler[Kei71] generalized Morley’s categoricity theorem to sentences in Lω1,ω,
assuming that the categoricity model was ℵ1-homogeneous. This theorem is the
origin of the study of homogeneous model theory which is well expounded in e.g.
[BL03]. We now give simple model theoretic examples showing the homogeneity
does not follow from categoricity. Marcus and later Julia Knight [Mar72, Kni77]
(details in Example 18.9) showed:

Fact 3.14. There is a first order theory T with a prime model M such that

(1) M has no proper elementary submodel.
(2) M contains an infinite set of indiscernibles.

Exercise 3.15. Show that the Lω1,ω-sentence satisfied only by atomic models
of the theory T in Fact 3.14 has a unique model.

Example 3.16. Now construct an Lω1,ω-sentence ψ whose models are par-
titioned into two sets; on one side is an atomic model of T , on the other is an
infinite set. Then ψ is categorical in all infinite cardinalities but no model is ℵ1-
homogeneous because there is a countably infinite maximal indiscernible set.

Example 3.17. Now we see that the example of this chapter has the same
inhomogeneity property. Consider the basic diagram:

0 → Z → H → F ∗ → 0.(3.2)

Let a be a transcendental number in F ∗. Fix h with exp(h) = a and define
an = exp(hn ) + 1 for each n. Now choose hn so that exp(hn) = an. Let Xr = {hi :
i ≤ r} and let X =

⋃
rXr. Note that am = a

1
m +1 where we have chosen a specific

mth root.

Claim 3.18. For each r, tp(h/Xr) is a principal type, but, tpLω1,ω
(h/X) is not

implied by its restriction to any finite set.

Proof. We make another application of the thumbtack Lemma 3.10 with
Q(exp(span(Xr)) as P , a1, . . . ar as themselves, all Li are empty, and a as b1.

By the lemma there is an m such that a
1
m determines the isomorphism type of

aQ over P (aQ
1 , . . . a

Q
r ). That is, if φm is the minimal polynomial of a

1
m over P ,

(∃y)φm(y) ∧ ym = x generates tp(a/ exp(span(Xr))). Pulling back by Lemma 3.7,
we see tp(h/Xr) is principal and even complete for Lω1,ω. In particular, for any
m′ ≥ m, any two m′th roots of a have the same type over exp(Xr). But for suffi-
ciently large s, one of thesem′th roots is actually inXrs so for each r, pr = tp(a/Xr)
does not imply p = tp(a/X). Any realization c of pr, behaves like a; i.e. tp(c/X)
is not isolated. That is, tp(a/X) is not implied by its restriction to any finite set.
And by Lemma 3.7, this implies tpLω1,ω

(h/X) is not implied by its restriction to

any finite set. �3.18
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Now specifically to answer the question of Keisler [Kei71], page 123, for this
example we need to show there is a sentence ψ in a countable fragment L∗ of Lω1,ω

such that ψ is ℵ1-categorical but has a model which is not (ℵ1, L
∗)-homogeneous.

Let L∗ be a countable fragment containing the categoricity sentence for ‘covers’.
Fix H,X and p as in Claim 3.18. We have shown no formula of Lω1,ω (let alone L∗)
with finitely many parameters from X implies p. By the omitting types theorem
for L∗, there is a countable model H0 of ψ which contains an L∗-equivalent copy
X ′ of X and omits the associated p′. By categoricity, H0 imbeds into H . But H
also omits p′. As, if h′ ∈ H , realizes p′, then exp(h′) ∈ acl(exp(X ′)) ⊆ H0, as
exp(h′) = (a′n − 1)n. So since the kernel of exp is standard, in any extension of
H0, any choice of a logarithm of exp(h′) is in H0. In particular, h′ ∈ H0, which
is a contradiction. Thus the type p′ cannot be realized and H is not homogeneous
since the map from X to X ′ cannot be extended.

Exercise 3.19. Show that X in Example 3.17 is a set of indiscernibles.

Remark 3.20 (Extensions). This work can be extended in at least two direc-
tions.

1. The first is to study covers of other algebraic groups. The first step in this
work is to replace (C∗, ·) by the multiplicative group of the algebraic closure of
Zp; this was accomplished by [BZ00]. A more ambitious goal is to replace the
multiplicative group of the field by a general semi-abelian variety. Continuing work
on elliptic curves is due to Gavrilovich [Gav06, Gav08] and Bays’s forthcoming
thesis. For higher dimensional varieties, one needs the notion of almost quasimin-
imality introduced in Chapter 2. But, defining clH(X) as exp−1(acl(exp(X)) fails
exchange. The solution in [Zil03] uses the inverse image of a rank 1 subvariety
as the quasiminimal set whose closure is the universe. This work is particularly
exciting as in [Zil03], Zilber draws specific ‘arithmetic’ (in the sense of algebraic
geometry) consequences for semi-abelian varieties from categoricity properties of
the associated short exact sequence. These conclusions depend on Shelah’s deduc-
tion of excellence from categoricity up to ℵω, which we expound in Part 4. The
categoricity (or not) of various higher dimensional varieties is very open and will
in many cases require extensions of the language.

2. The most ambitious aim of Zilber’s program is to realize (C,+, ·, exp) as a
model of an Lω1,ω-sentence discovered by the Hrushovski construction. Here are
two steps towards this objective.

Objective A. Model theory: Using a Hrushovski-like dimension function (Ex-
ample 4.9) expand (C,+, ·) by a unary function f which behaves like exponentiation.
Prove that the theory Σ of (C,+, ·, f) in an appropriate logic is well behaved.

This objective is realized in [Zil04]. A summary connecting Zilber’s program
with this monograph appears in [Bal04], updated in [Bal06].

Objective B. Algebra and analysis: Prove (C,+, ·, exp) is a model of the
sentence Σ found in Objective A.

Attempting to resolve this objective raises enormous and interesting problems
in both algebraic geometry and complex analysis; see [Zil04, Zil02, Mar06].





Part 2

Abstract Elementary Classes



‘Non-elementary classes’ is a general term for any logic other than first or-
der. Some of the most natural extensions of first order logic arise by allowing
conjunctions of various infinite lengths or cardinality quantifiers. In this chapter
we introduce a precise notion of ‘abstract elementary class’ (AEC) which general-
izes the notion of a definable class in some of these logics. In this monograph we
pursue a dual track of proving certain results for general AEC and some for very
specific logics, especially Lω1,ω and Lω1,ω(Q). A natural source of further examples
is [BF85]. We show in this Part the relation between these various logics and the
more general notion of an AEC. The main purpose of introducing the notion of AEC
is to provide a common semantic framework to prove results for many (infinitary)
logics without the distraction of specific syntax.

We introduce the notion of an AEC in Chapter 4 and provide a number of
examples. We prove Shelah’s presentation theorem which allows us to use the
technology of Ehrenfeucht-Mostowski models. We give a detailed account of the role
of Hanf numbers in AEC. These results and related terminology are fundamental for
Part 3. We survey the connections of AEC with other extensions of first order logic
such as continuous logic and homogeneous model theory and refer to formulations
in category theoretic terms.

Chapter 5 contains the proof of the Lopez-Escobar theorem, Theorem 5.1.6.
Although this result, which asserts that ℵ1 is a bound on the length of well-orderings
that can be defined in Lω1,ω(Q), has independent interest, the principal application
in this monograph is as a tool for further analysis as we mention in the next few
paragraphs. We analyze the difficulties in representing the models of an Lω1,ω(Q)-
sentence as an AEC with Löwenheim number ℵ0. In the second section we present
Keisler’s fundamental result that a sentence of Lω1,ω(Q) with less that 2ℵ1 models
of cardinality ℵ1 has only countably many syntactic types over the empty set.

In Chapter 6, we explore in detail the notion of a ‘complete theory’ in an in-
finitary logic. We see that the easy remark in first order logic that ‘categoricity
implies completeness’ becomes problematic. Indeed the whole notion that a struc-
ture uniquely determines ‘its theory’ becomes problematic. We apply the Lopez-
Escobar Theorem 5.1.6 to prove Theorem 6.3.2, which asserts that a sentence in
Lω1,ω(Q) that has few models in power ℵ1 is implied by a ‘complete’ sentence of
Lω1,ω(Q) that has an uncountable model. This is an essential step in preparing for
the analysis of categoricity for sentences of Lω1,ω that takes place in Part 4. And
in Chapter 7, we apply Theorem 5.1.6 again to present Shelah’s beautiful proof (in
ZFC) that if a sentence in Lω1,ω(Q) is ℵ1-categorical then it has a model in ℵ2. In
Chapter 19, we will strengthen this result by replacing ℵ1-categorical by ω-stable
but at the cost of developing a certain amount of stability theory for Lω1,ω.



CHAPTER 4

Abstract Elementary Classes

In this chapter we introduce the semantic notion of an Abstract Elementary
Class (AEC) and give a number of examples to introduce the concept. One impor-
tant feature distinguishing abstract elementary classes from elementary classes is
that they need not have arbitrarily large models. We prove a surprising syntactic
representation theorem for such classes. This representation provides a sufficient
condition for an AEC to have arbitrarily large models.

We always work in the context of the class of all structures in a fixed vocabulary
(similarity type) τ . Structure is taken in the usual sense: a set with specified
interpretations for the relation, constant and function symbols of τ .

When Jónsson generalized the Fräıssé construction to uncountable cardinalities
[J5́6, J6́0], he did so by describing a collection of axioms, which might be satisfied
by a class of models, that guaranteed the existence of a homogeneous-universal
model; the substructure relation was an integral part of this description. Morley and
Vaught [MV62] replaced substructure by elementary submodel and developed the
notion of saturated model. Shelah [She87a, She87b] generalized this approach in
two ways. He moved the amalgamation property from a basic axiom to a constraint
to be considered. (But this was a common practice in universal algebra as well.)
He made the substructure notion a ‘free variable’ and introduced the notion of an
Abstract Elementary Class: a class of structures and a ‘strong’ substructure relation
which satisfied variants on Jonsson’s axioms.

The most natural exemplar of the axioms below is the class of models of a
complete first order theory with ≺K as first order elementary submodel. In Part 4
we will study AEC given as the models of a sentence φ in Lω1,ω with ≺

K
as

elementary submodel in fragment generated by φ. The quasiminimal excellent
classes of Part 1 are another example and we will discuss many other examples in
the course of the book.

In the following a chain 〈Ai : i < δ〉 is a sequence of members of K such that if
i < j,Ai ≺K

Aj ; the chain is continuous if for each limit ordinal α, Aα =
⋃
β<αAβ .

Definition 4.1. A class of τ-structures equipped with a notion of ‘strong sub-
model’, (K,≺K), is said to be an abstract elementary class (AEC) if the class K

and class of pairs satisfying the binary relation ≺
K

are each closed under isomor-
phism and satisfy the following conditions.

• A1. If M ≺
K

N then M ⊆ N .
• A2. ≺K is a partial order (i.e. a reflexive and transitive binary relation)

on K.
• A3. If 〈Ai : i < δ〉 is a continuous ≺K -increasing chain:

(1)
⋃
i<δ Ai ∈ K;

(2) for each j < δ, Aj ≺K

⋃
i<δ Ai

27
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(3) if each Ai ≺K M ∈ K then
⋃
i<δ Ai ≺K M .

• A4. If A,B,C ∈ K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.
• A5. There is a Löwenheim-Skolem number LS(K) such that if A ⊆ B ∈
K there is an A′ ∈ K with A ⊆ A′ ≺K B and |A′| ≤ |A| + LS(K).

Exercise 4.2. Show that the same (K,≺K) are AEC if the word continuous
is deleted from the hypothesis of A3.

We refer to A4 as the coherence property; it is sometimes called ‘the funny
axiom’ or, since it is easily seen to follow in the first order case as an application of
the Tarski-Vaught test for elementary submodel, the Tarski-Vaught property. How-
ever, Shelah sometimes uses ‘Tarski-Vaught’ for the union axioms. We frequently
write Löwenheim-number for Löwenheim-Skolem number as we are representing
only the downward aspect of the Löwenheim-Skolem theorem. For simplicity, we
usually assume the Löwenheim-number is at least |τ |. For a more formal approach
see Notation 4.19.

Notation 4.3. (1) By a direct union we will mean a direct limit of a
directed system 〈Mi, fij : i, j ∈ I〉 where each Mi ∈ K and each fij is a
≺K -inclusion (so i < j implies Mi is a subset of Mj).

(2) If f :M 7→ N is 1-1 and fM ≺
K

N , we call f a K-embedding or strong
embedding or sometimes carelessly just embedding.

(3) A ≺
K

-direct limit of members of K is a direct limit of a directed system
〈Mi, fij : i, j ∈ I〉 with each Mi ∈ K and each fij is a K-embedding.

Note that while reflexivity and transitivity from A2 are true for strong em-
beddings as well as strong submodels, antisymmetry need not be. The following
exercise often simplifies notation.

Exercise 4.4. Let K be an AEC. Show that if there is a strong embedding of
M ∈ K into N ∈ K, then there is an M ′ ∈ K which extends M and is isomorphic
to N .

Grossberg and Shelah pointed out in [GS83], an AEC can be viewed as a con-
crete category; we expand on this idea in Example 4.39. The inductive argument
that shows that closure under well-ordered direct limits implies closure under arbi-
trary direct limits (See e.g. Theorem 21.5 of [Grä68].) translates in our situation
to the following straightforward Lemma.

Lemma 4.5. Any AEC is closed under directed unions and closed under ≺K -
direct limits.

Note however that Grätzer proves that the concrete construction of a direct
limit satisfies the universal mapping property for direct limits of 1-1 homomor-
phisms. In our context A.3.3 is the assertion that the well-ordered union satisfies
the universal mapping property of direct limits of morphisms. So the categorical
version of Lemma 4.5 is: a category that is closed under well-ordered 1-1 direct
limits is closed under arbitrary 1-1 direct limits. In general one can not pass from
closure under 1-1 direct limits to arbitrary direct limits; however, an interesting
collection of AEC where this is possible is discussed in [BET07].

Exercise 4.6. Show the class of well-orderings with ≺
K

taken as end ex-
tension satisfies the first four properties of an AEC. Does it have a Löwenheim-
number?



4. ABSTRACT ELEMENTARY CLASSES 29

Exercise 4.7. Show that any model M in an AEC K admits a filtration;
that is, it can be written as a continuous increasing chain of submodels Mi with
|Mi| ≤ |i|+ LS(K), such that for i < j, Mi ≺K

Mj and all Mi ≺K
M . Note that

A.3.3 is convenient but not essential for this decomposition.

Exercise 4.8. The models of a sentence of first order logic or any countable
fragment of Lω1,ω with the associated notion of elementary submodel as ≺K gives
an AEC with Löwenheim-number ℵ0.

Classes given by sentences of the logics L(Q) and Lω1,ω(Q) (defined in Chap-
ter 1) are not immediately seen as AEC. We discuss several approaches to remedying
this in Chapters 5, 6, and 7. One of the most fertile sources of examples of AEC is
the Hrushovski construction.

Example 4.9 (Hrushovski Construction). Hrushovski constructed a number of
important counterexamples in model theory by introducing a dimension function
and defining a distinguished submodel in terms of this dimension [Hru93, Wag94].
If (K,≺

K
) is derived from a dimension function in this way (e.g. [Bal02, Bal04,

BS97]), the closure of the class K under unions of ≺K -chains is an AEC. More
precisely, let 〈K(N),∧,∨〉 be a lattice of substructures of a model N . For present
purposes a rank is a function δ from K(N) to a discrete subgroup of the reals (R),
which is defined on each N in a class K. We write δ(A/B) = δ(A ∨B) − δ(B) to
indicate the relativization of the rank. We demand only that δ is lower semimodular:

δ(A ∨B) − δ(B) ≤ δ(A) − δ(A ∧B).

For A,B ∈ K, we say A is a strong substructure of B and write A ≺K B if for
every B′ ∈ K−1 with B′ ⊆ B, δ(B′/B′∩A) ≥ 0. Under reasonable conditions, this
class is an AEC and the first order theory of the ≺K -homogeneous-universal for
various classes K and choices of δ provide a series of interesting examples. Many
are discussed in the surveys mentioned above. Zilber refined this construction by
requiring certain sets to be fixed under strong extensions. In particular, he [Zil04]
exploits this construction to explore complex exponentiation. Further in [PZ03],
Zilber tries to explain these examples as analytic Zariski structures; he links this
notion more closely to AEC in [Zil00].

We will see below the importance of several properties that an AEC may pos-
sess.

Definition 4.10. Let K be an AEC.

(1) K has the amalgamation property if M ≺K N1 and M ≺K N2 ∈ K

with all three in K implies there is an N3 into which both N1 and N2 can
be strongly embedded over M .

(2) K has the disjoint amalgamation property if the images of the imbedding
in part i) intersect in the image of N .

(3) Joint embedding means any two members of K can be strongly embedded
some member of K.

The following is an exercise in ‘renaming’.

Exercise 4.11. More formally, K has the amalgamation property if for every
pair of strong embeddings from M ∈ K into N1, N2 there exists a model N ∈ K

and g1, g2 with gi a strong embedding of Ni into N such that f1g1 = f2g2. Show
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that an equivalent condition arises if f1, f2 are assumed to be identity maps and
that one of the gi can then be chosen as the identity.

Exercise 4.12. [Hod93] Show that if (K,≺K ) is the class of models of a com-
plete first order theory under elementary submodel, then (K,≺

K
) has the disjoint

amalgamation property.

Remark 4.13. The generality of the notion of AEC can be seen by some
rather strange ways that examples can be generated. On the one hand, taking
a universal-existential first order theory T , and setting ≺K as just substructure
provides some mischievous counterexamples (Example 7.6). One can also restrict
to the existentially closed models of T , also with substructure; in this case, if T has
amalgamation, this is known as a Robinson theory [She75b, Hru].

On the other hand if K is any class of models which is closed under elementary
equivalence, taking ≺K as elementary submodel yields an AEC. Thus, any class
defined by an infinite disjunction of first order sentences or even an infinite dis-
junction of first order theories becomes an AEC. In particular, the class of Artinian
(descending chain condition) commutative rings with unit becomes an AEC under
elementary submodel. (See [Bal78].) This class is not sufficiently cohesive to really
accord with the intuition of an AEC as generalizing the notion of a complete theory.
This is not an accident. If ≺K is elementary embedding, K has the amalgama-
tion property by the standard first order argument. We can then use elementary
equivalence to split the given AEC into a family of disjoint first order classes and
restrict to the study of these. (Compare Lemma 16.14.)

Although in studying categoricity it is natural to think in terms of complete
theories, AEC also are a natural generalization of varieties or universal Horn classes.
Further interesting examples arise from the notion of cotorsion theories in the study
of modules [BET07, EM90, GT06, Trl].

Example 4.14. The set K = {α :α ≤ ℵ1} with ≺K as initial segment is an
AEC with ℵ1 countable models. It is ℵ1-categorical and satisfies both amalgamation
and joint embedding but is not ω-Galois stable [Kue08].

We call the next result: the presentation theorem. Shelah’s result [She87a]
allows us to replace the entirely semantic description of an abstract elementary
class by a syntactic one. Remarkably, the notion of an AEC, which is designed to
give a version of the Fräıssé construction and thus saturated models, also turns out
to allow via Theorem 4.15 the use of the second great model theoretic technique of
the 50’s: Ehrenfeucht-Mostowski models [EM56].

The proof of the presentation theorem can be thought of as having two stages.
By adding LS(K) function symbols to form a language τ ′ we can regard each model
of cardinality at most LS(K) as being finitely generated. If we look at finitely
generated τ ′-structures, the question of whether a structure is in K is a property
of the quantifier free type of its generators. Similarly the question of whether one
τ ′ finitely generated structure is strong in another is a property of the τ ′ type of
the generators of the larger model. Thus, we can determine membership in K and
strong submodel for finitely generated (and so all models of cardinality LS(K))
by omitting types. For the second stage, every model is a direct limit of finitely
generated models so using the AEC axioms on unions of chains (and coherence) we
can extend this representation to models of all cardinalities.
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Theorem 4.15 (Shelah’s Presentation Theorem). If K is an AEC (in a vocab-
ulary τ with |τ | ≤ LS(K)) with Löwenheim-number LS(K), there is a vocabulary
τ ′ ⊇ τ with cardinality |LS(K)|, a first order τ ′-theory T ′ and a set Γ of at most

2LS(K) partial types such that:

K = {M ′ ↾ τ :M ′ |= T ′ and M ′ omits Γ}.
Moreover, the ≺

K
relation satisfies the following conditions:

(1) if M ′ is a τ ′-substructure of N ′ where M ′, N ′ satisfy T ′ and omit Γ then
M ′ ↾ τ ≺

K
N ′ ↾ τ ;

(2) if M ≺K N there is an expansion of N to a τ ′-structure such that M is
the universe of a τ ′-substructure of N ;

(3) Finally, the class of pairs (M,N) with M ≺
K

N forms a class that we

called in Definition 4.27 a PCΓ(LS(K), 2LS(K))-class.

Without loss of generality we can guarantee that T ′ has Skolem functions.

Proof. Let τ ′ contain n-ary function symbols Fni for n < ω and i < LS(K). We
take as T ′ the theory which asserts that for each i < lg(a), Fni (a) = ai. (This just
says that the first n elements enumerated in the substructure generated by the n-
tuple a are the components of a.) For any τ ′-structure M ′ and any a ∈M ′, let M ′

a

denote the subset of M ′ enumerated as {Fni (a) : i < LS(K)} where n = lg(a). We
also write M ′

a for the partial τ ′-structure induced on this set from M ′. Note that
M ′

a may not be either a τ ′ or even a τ -structure since it may not be closed under
all the operations. The isomorphism type of M ′

a (and thus whether M ′
a is in fact a

τ ′-structure) is determined by the quantifier free τ ′-type of a. We use the notations:
Ma and M ′

a throughout the proof. Let Γ be the set of quantifier free τ ′-types of
finite tuples a such that M ′

a ↾ τ 6∈ K or for some b ⊂ a, M ′
b ↾ τ 6≺

K
M ′

a ↾ τ .
We claim T ′ and Γ suffice. That is, if

K
′ = {M ′ ↾ τ :M ′ |= T ′ and M ′ omits Γ}

then K = K
′.

Let the τ ′-structure M ′ omit Γ; in particular, each M ′
a ↾ τ is a τ -structure.

Write M ′ as a direct limit of the finitely generated partial τ ′-structuresM ′
a. (These

may not be closed under the operations of τ ′.) By the choice of Γ, each M ′
a ↾ τ ∈

K and if a ⊆ a
′, M ′

a ↾ τ ≺K M ′
a′ ↾ τ , and so by the unions of chains axiom

(Definition 4.1 A3.1) M ′ ↾ τ ∈ K.
Conversely, if M ∈ K we define by induction on |a|, τ -structures Ma for each

finite subset a of M and expansions of Ma to partial τ ′-structures M ′
a. Let M∅ be

any ≺
K

-substructure of M with cardinality LS(K) and let the {F 0
i : i < LS(K)}

be constants enumerating the universe of M∅. Given a sequence b of length n+ 1,
choose Mb ≺K M with cardinality LS(K) containing all the Ma for a a proper

subsequence of b. Let {Fn+1
i (b) : i < LS(K)} enumerate the universe of Mb. Now

each Ma ↾ τ ∈ K and if b ⊂ c, Mb ≺K Mc by the coherence property so M ′ omits
Γ as required.

Now we consider the moreover clause. For 1) we have M ′ is a direct limit
of finitely generated partial τ ′-structures M ′

a and N ′ is a ≺K -direct limit of N ′
a

where M ′
a = N ′

a for a ∈ M because M ′ ↾ τ is a τ -substructure of N ′ ↾ τ . Each
M ′

a ↾ τ ≺K N ′ ↾ τ so, using Definition 4.1 A3.3 and Lemma 4.5, the direct limit
M ′ ↾ τ is a strong submodel of N ′ ↾ τ . For 2), just be careful in carrying out the
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expansion of N to a τ ′ structure in the paragraph beginning ‘conversely’, that if
a ∈ M ′, Ma ⊆ M . The third clause is now evident. And since T ′ is a universal
theory we can Skolemize without changing the class of universes of substructures
of models. �4.15

Remark 4.16. (1) There is no use of amalgamation in this theorem.
(2) The only penalty for increasing the size of the language or the Löwenheim

number is that the size of L′ and the number of types omitted may increase.
(3) Clauses 1 and 2 of Theorem 4.15 are more useful than Clause 3; see

Theorem 8.18 and its applications.

Much of this book is concerned with the spectrum of an AEC: the function
which tells us the number of members of K in each cardinality. Formally,

Notation 4.17. For any class of models K, I(K, λ) denotes the number of
isomorphism types of members of K with cardinality λ.

Using the presentation theorem we have a first basic fact about the spec-
trum. Before proving it, we introduce the general notion of a ‘Hanf number’. Hanf
[Han60] introduced the following extremely general and soft argument. P (K, λ)
ranges over such properties as K has a model in cardinality λ, K is categorical in
λ, or the type q is omitted in some model of K of cardinality λ.

Theorem 4.18 (Hanf). Fix a set of classes K of a given kind (e.g. the classes
of models defined by sentences of Lµ,ν for some fixed µ, ν of a given similarity type).
For any property P (K, λ) there is a cardinal κ such that if P (K, λ) holds for some
λ > κ then P (K, λ) holds for arbitrarily large λ.

Proof. Let

µK = sup{λ :P (K, λ) holds if there is such a max}
then

κ = supµK

as K ranges over the set of all classes of the given type. �4.18

Since there are a proper class of sentences in L∞,ω, there are a proper class of
aec with a given similarity type. So we have to modify this notion slightly to deal
with AEC.

Notation 4.19. For any aec K, let κK = sup(|τK |,LS(K)).

Now, for any cardinal κ, there are only a set AEC K with κK = κ. As, the
AEC is determined by its restriction to models below the Lówenheim number (just
close the small models under union). (Compare Exercise 16.13.) And there are
only a set of such restrictions. So we can apply Hanf’s argument if we replace |τ |
by κ

K
. And we can strengthen the result if we prove a crucial property.

Definition 4.20. P is downward closed if there is a κ0 such that if P (K, λ)
holds with λ > κ0, then P (K, µ) holds if κ0 < µ ≤ λ.

The following is obvious.

Theorem 4.21. If a property P is downward closed then for any κ there is a
cardinal µ such for any AEC K with κ

K
= κ, if some model in K with property

P has cardinality greater than µ, then there is a model in K with property P in all
cardinals greater than µ.
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That is, if AEC are downward closed for a property P there is a Hanf Number
for P in the following stronger sense.

Definition 4.22 (Hanf Numbers). The Hanf number for P , among AEC K

with κK = κ, is µ if:
there is a model in K with cardinality > µ that has property P , then there is a
model with property P in all cardinals greater than µ.

In this sense it is obvious that there is a Hanf Number for existence using the
Löwenheim Skolem downward property. Note that this formulation also includes a
Hanf number for categoricity. The property P is: every model of |M | is isomorphic
to M . We now give an explicit calculation of that number. This analysis is a de-
scendent of results [Cha68, CK73, Mor65b] linking the Hanf number for various
infinitary logics with the Hanf number for omitting types.

We will speak of several notions of type. There is a natural syntactic notion
of type with respect to any logic and the semantic notion of Galois type plays a
fundamental role in Part 3.

Definition 4.23. For any logic L, a syntactic partial L-type p is a set of L
consistent set of first order formulas in a fixed finite number of variables realized in
a model. p is a complete type over a set A if every L-formula with parameters from
A (or its negation) is in p. If necessary we write L(τ) to specify the vocabulary
under consideration.

The syntactic types of first order logic are play a crucial role in this chapter.

Notation 4.24 (Hanf Function). (1) A (first order syntactic) type p is
a consistent set of first order formulas in a fixed finite number of variables.
p is a complete type over a set A if every formula with parameters from
A (or its negation) is in p. We sometimes say partial for emphasis.

(2) Let η(λ, κ) be the least cardinal µ such that if a first order theory T with
|T | = λ has models of every cardinal less than µ which omit each of a
set Γ of types, with |Γ| = κ, then there are arbitrarily large models of T
which omit Γ. We call η(λ, κ) the Hanf function for omitting κ types for
theories of size λ.

(3) Write η(κ) for η(κ, κ).
(4) We write H(κ) for i(2κ)+ .
(5) For a similarity type τ , H(τ) means H(|τ |). With a fixed K, we write H1

for H(κ
K

) = H(sup(τ
K
,LS(K))).

Morley’s omitting types theorem [Mor65b][Cha68], Theorem A.3 of the ap-
pendix, is a crucial tool for this book. It computes the Hanf function for omitting
types. Dealing with infinitary logics smears the clear distinction in the first or-
der case between results for countable and uncountable similarity types. We use a
strong version of the computation of Hanf numbers from Shelah’s book, [She78],
VII.5.4, VII.5.5. It is an immediate corollary of Theorem A.3.

Corollary 4.25. η(κ, 2κ) ≤ H(κ) = i(2κ)+ .

Corollary 4.26. If K is an AEC and K has a model of cardinality at least
H1 = H(κK) then K has arbitrarily large models.
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When κK = max(LS(K), |τ(K)|), H(κK ) = H1 is sometimes called the Hanf
number of K. This is somewhat misleading because a single class can not have a
Hanf number – a Hanf number is a maximum for all sentences and for all similarity
types of a given cardinality (and in the case of AEC a fixed Löwenheim-Skolem
number). We are not calculating the Hanf number of K but the Hanf number for
all AEC with the same κ

K
. Crucially, the classes (which are not AEC) of models

we consider next have the same property: for any model M with |M | ≥ η(τ), (again
|τ | = LS(K)) there are models of all cardinalities in the class that omit all types
omitted in M .

In the presentation theorem we have represented K as a PCΓ class in the
following sense. Recall that a PC (pseudoelementary) class is the collection of
reducts to a vocabulary τ of models of a theory T ′ in an expanded vocabulary τ ′.

Definition 4.27. Let Γ be a collection of first order types in finitely many
variables over the empty set in a vocabulary τ ′. A PC(T,Γ) class is the class of
reducts to τ ⊂ τ ′ of models of a first order theory τ ′-theory which omit all members
of the specified collection Γ of partial types.

We write PCΓ to denote such a class without specifying either T or Γ. And we
write K is PC(λ, µ) if K can be presented as PC(T,Γ) with |T | ≤ λ and |Γ| ≤ µ.
(We sometimes write PCΓ(λ, µ) to emphasize the type omission. In the simplest
case, we say K is λ-presented if K is PC(λ, λ).)

In this language the Presentation Theorem 4.15 asserts any AEC K is 2LS(K)-
representable.

Keisler [Kei71] proves a number of strong results for some special cases of
PCΓ-classes. In particular, Keisler proves a categoricity transfer theorem between
cardinals κ and λ of certain specific forms. (See Theorem 24 of [Kei71] and Re-
mark 14.10). He calls a class of models a PCδ-class if it is the class of reducts of
a countable first order theory. Keisler has a different name for what Shelah calls
PC(ℵ0,ℵ0) and I call PCΓ(ℵ0,ℵ0):

Definition 4.28 (Keisler). K is a PCδ class over Lω1,ω if K is the class of
reducts to τ(K) of the class of models of a sentence of Lω1,ω in some expansion τ
to a countable vocabulary τ ′.

The following example of Silver highlights the weakness of PCΓ-classes and the
need to study AEC.

Example 4.29. Let K be class of all structures (A,U) such that |A| ≤ 2|U|.
Then K is actually a PC-class. But K is κ-categorical if and only if κ = iα for
a limit ordinal α. (i.e. µ < κ implies 2µ < κ.) Thus there are PC-classes for
which both the categoricity spectrum and its complement are cofinal in the class of
all cardinals.

One of the main problems in the study of AEC is Shelah’s conjecture that
there is a Hanf number for categoricity, a κ such that categoricity above κ implies
categoricity in all larger cardinals. See Conclusion 15.13 for an account of the
current status. Silver’s example shows such a conjecture fails for PC-classes and
so certainly for PCΓ classes. Thus, AEC are a more reasonable candidate for a
framework in which to study categoricity.

Exercise 4.30. Show that the class K of Example 4.29 with ≺K as elementary
submodel satisfies all axioms for an AEC except unions of chains.
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We will see many problems concerning the spectrum of classes defined in Lω1,ω

can be reduced to classes of structures of the following sort. We specialize the
notion of PCΓ in two ways; we work in the original language instead of allowing
reducts; the omitted types are complete types in finitely many variables over the
empty set.

Definition 4.31. (1) A finite diagram or EC(T,Γ)-class is the class of
models of a first order theory T which omit all types from a specified
collection Γ of complete types in finitely many variables over the empty
set.

(2) EC(T,Atomic) denotes the class of atomic models of T .

Definition 4.31.2 abuses the EC(T,Γ) notation, since for consistency, we re-
ally should write non-atomic. But atomic is shorter and emphasizes that we are
restricting to the atomic models of T .

Exercise 4.32. The models of an EC(T,Γ) with the ordinary first order notion
of elementary submodel as ≺

K
gives an AEC with Löwenheim-number |T |.

Some authors attach the requirement that K satisfy amalgamation over sets to
the definition of finite diagram. We stick with the original definition from [She70]
and reserve the more common term, homogeneous model theory for the classes with
set amalgamation.

Definition 4.33. We say an AEC admits amalgamation over arbitrary sets if
for any pair of embeddings f, g from a set A into M,N ∈ K, there exist an M ′ ∈ K

and strong embeddings f1, g1 from M,N into M ′ so that f1f = g1g.

Definition 4.34. If K is an abstract elementary class which admits amalga-
mation over arbitrary subsets of models, the study of all submodels of a monster
model is called: homogeneous model theory.

If T is a first order theory which admits elimination of quantifiers, then for any
Γ, EC(T,Γ) will have sequentially homogeneous universal domains just if it admits
amalgamation over arbitrary sets.

There is extensive study of homogeneous model theory by Buechler, Grossberg,
Hyttinnen, Lessmann, Shelah and others developing many analogs of the first or-
der theory including the stability hierarchy, DOP, simplicity etc. ([HS00, BL03,

GL02, Les00, HS01]. We briefly discuss several examples of homogeneous model
theory and other notions closely related to AEC.

Example 4.35. Banach spaces do not form an AEC because the union of
complete spaces need not be complete. Indeed, the union of a countable chain of
Banach spaces is not a Banach space, but its completion is a Banach space. From
the perspective of Banach space model theory [HI02, Iov02, Iov99a, Iov99b,

BB04, SU06a, Hir06], there is no distinction between a Banach space and a
dense subset of it. The theory of a Banach space X is determined uniquely by the
theory of any dense subset of X. (This is a consequence of the fact that in Banach
space model theory we deal with approximations.)

Thus, Banach space model theory can be thought of as the study not of Banach
spaces, but of structures whose completion is a Banach Space. Alternatively, one
can say the class of subspaces of Banach spaces forms an AEC.
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Example 4.36 (Robinson Theories). One important example of homogeneous
model theory is the study of Robinson theories. This notion was developed first in
[She75b] but rediscovered and baptized in the unpublished [Hru]. We follow the
terminology of [PW06]. Let ∆ be a family of (first order) formulas which is closed
under conjunction, disjunction, negation, and subformula. A Robinson theory T
is a theory with ∆-amalgamation that is axiomatized by the universal closures of
∆-formulas.

Abusing normal language, a Robinson theory is said to be stable or simple
if appropriate translations of stable and simple are true for ∆-formulas on the
existentially closed models of T . (Usually, this is phrased in terms of behavior on a
universal domain.) In the interesting cases, the class of existentially closed models
is not first order so this is an inherently infinitary setting.

Example 4.37 (CATS). Robinson theories were further generalized by Pillay
[Pil01] and then by Ben Yaacov [BY03a, BY03b, SU]. T is said to be positive
Robinson if the requirement that ∆ be closed under negation is dropped and for
a ∈ M , b ∈ N , (M,N ∆-existentially closed model of T ): if tpM∆ (a) ⊆ tpN∆(b),
a and b have the same ∆-existential type. Again simple and stable are defined
in terms of the behavior of ∆-formulas on a universal domain. The existentially
closed models of a positive Robinson theory form an AEC.

The universal domain of a cat is just a ”monster of kind III” in [She75b] ( i.e.
it is a particular case of a big (D,λ) homogeneous model for good D as in [She70]
with the extra assumption of compactness for positive existential formulas. In this
sense the universal domain of a cat is certainly a particular case of a ”monster” for
an abstract elementary class. Thus, there is no chance of interpreting an arbitrary
AEC in a cat but in a weak sense one can regard a CAT as an AEC.

However, if one wants to recover a class of models satisfying Shelah’s axioms of
an AEC from the universal domain, the situation is different. Just as with Banach
spaces, the union axiom must be adjusted by taking the completion of a union.
To recover the class of the models and be ”faithful” to what people studying cats
actually care about, would in certain cases (for example, Hausdorff cat, or any
metric cat as in [SU06b]) yield, e.g. an abstract metric class, not an AEC.

Thanks to Olivier Lessmann, Jose Iovino, and Alex Usvyatsov for outlining the
issues above.

Example 4.38 (Metric AEC). Hirvonen and Hyttinen [HH00] and Shelah and
Usvyatsov [SU] discuss the notion of a metric abstract elementary class . There is
further unpublished work by Villaveces and Zambrano. This study of many-sorted
structures with a complete metric on each sort provides a common generalization of
AEC and CATS. As in AEC, there is no compactness hypothesis. [HH00] provide
both a clear summary of the connections between the various context and develop
the theory of metric AEC to prove categoricity transfer for homogeneous metric
AEC.

Example 4.39 (Categorical Approaches). Kirby [Kir08] provides a categorical
treatment unifying the two notions of AEC and metric AEC. The precise formula-
tion of this idea involves describing the relations between two classes of morphism:
the τ -embeddings and the morphisms that represent strong embeddings; this allows
the formalization of the Löwenheim-Skolem number. This axiomatization nicely
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encapsulates the notion of an AEC as the closure under direct limits of a set of a
structures. (Compare Definition 16.10 and following exercises.)

Lieberman [Lie09] formulates the connection with category theory differently;
he addresses the Löwenheim-Skolem through the notion of µ-presentability and
describes a translation between the language of AEC’s and that of accessible cat-
egories [AR94, Ros97] and draws conclusions for the Galois stability spectrum.
He also develops a topology of spaces of Galois types.

Although not directed towards AEC, the analysis in Appendix A of [Hru02] of
‘schemes versus universal domains’ provides a useful perspective.

Example 4.40 (Primal Framework). Still another approach to dealing with
the problem of completing a metric space is provided by [BS90, BS91], where the
approach is to axiomatize the notion of prime model over a union.

We have introduced the purely semantic notion of an abstract elementary class.
We gave a more syntactic representation of AEC in the Presentation Theorem. But
this representation is just a tool for studying properties of the models. We have
not introduced any notion of ‘definable’ subsets of models of an AEC. We will
introduce Galois types in Part 3; this is an analog to type-definable subsets of
models in first order theories. But Galois types are introduced as subsets of the
model that are invariant under appropriate automorphisms, not as realizations of
formulas. We have also introduced the use of Ehrenfeucht-Mostowski models in the
AEC context; they play a powerful role in the investigation of categoricity. In the
next two chapters we investigate in more detail the model of theory of Lω1,ω and
Lω1,ω(Q). We combine the two themes of AEC and these infinitary logics to provide
sufficient conditions for categoricity in ℵ1 of a class K to imply the existence of a
model in ℵ2. We return to the general situation in Part 3.





CHAPTER 5

Two Basic Results about Lω1,ω(Q)

This chapter has two parts. First, we extend the Lopez-Escobar/Morley theo-
rem [LE66, Mor65b] on the non-definability of well-order from Lω1,ω to Lω1,ω(Q).
This extension seems to be well-known to cognoscenti but I was unable to find it
in the literature1. We begin the exploration of ways to fit Lω1,ω(Q) into the AEC
framework.

The second section contains the proof of Keisler’s theorem if a sentence of Lω1,ω

with less than 2ℵ1 models in ℵ1 then for any countable fragment LA, then every
member of K realizes only countably many LA-types over ∅. This is the key to
showing (assuming 2ℵ0 < 2ℵ1) that an ℵ1 categorical sentence is ω-stable.

5.1. Non-definability of Well-order in Lω1,ω(Q)

We begin with attempts to regard the models of an Lω1,ω(Q) as an AEC. It is
easy to see:

Exercise 5.1.1. The models of a sentence of L(Q) with the associated notion
of elementary submodel as ≺

K
does not give an AEC.

So we want to consider some other notions of strong submodel.

Definition 5.1.2. Let ψ be a sentence in Lω1,ω(Q) in a countable vocabulary
and let L∗ be the smallest countable fragment of Lω1,ω(Q) containing ψ. Define a
class (K,≺K) by letting K be the class of models of ψ in the standard interpreta-
tion. We consider several notions of strong submodel.

(1) M ≺∗ N if
(a) M ≺L∗ N and
(b) M |= ¬(Qx)θ(x,a) then

{b ∈ N :N |= θ(b,a)} = {b ∈M :N |= θ(b,a)}.
(2) M ≺∗∗ N if

(a) M ≺L∗ N ,
(b) M |= ¬(Qx)θ(x,a) then

{b ∈ N :N |= θ(b,a)} = {b ∈M :N |= θ(b,a)}
and

(c) M |= (Qx)θ(x,a) implies {b ∈ N : N |= θ(b,a)} properly contains
{b ∈M :N |= θ(b,a)}.

The following exercises are easy but informative.

1In fact, I later found Barwise[Bar81] had given a quite different proof deducing the result
on the well-ordering number of Lω1,ω(Q) from the omitting types theorem for L(Q).

39



40 5. TWO BASIC RESULTS ABOUT Lω1,ω(Q)

Exercise 5.1.3. (K,≺∗) is an AEC with Löwenheim Number ℵ1.

Exercise 5.1.4. (K,≺∗∗) is not an AEC. (Hint: Consider the second union
axiom A3.3 in Definition 4.1 and a model with a definable uncountable set.)

Remark 5.1.5. The Löwenhheim number of the AEC (K,≺∗) defined in Defi-
nition 5.1.2 is ℵ1. We would like to translate an Lω1,ω(Q)-sentence to an AEC with
Löwenhheim number ℵ0 and which has at least approximately the same number of
models in each uncountable cardinality. This isn’t quite possible but certain steps
can be taken in that direction. This translation will require several steps. We begin
here with a fundamental result about Lω1,ω(Q); in Chapter 6, we will complete the
translation.

Here are the background results in Lω1,ω. They are proved as Theorem 12 and
Theorem 28 from [Kei71]. In applications, we may add the linear order to the
vocabulary to discuss structures which do not admit a definable order in the basic
vocabulary.

Theorem 5.1.6 (Lopez-Escobar, Morley). Let ψ be an Lω1,ω(τ)-sentence and
suppose P,< are a unary and a binary relation in τ . Suppose that for each α <
ω1, there is a model Mα of ψ such that < linear orders P (Mα) and α imbeds
into (P (Mα), <). Then there is a (countable) model M of ψ such that (P (M), <)
contains a copy of the rationals.

If N is linearly ordered, N is an end extension of M if every element of M
comes before every element of N −M . We give some further explanation of the
following result in Appendix B

Theorem 5.1.7 (Keisler). Let L∗ be a countable fragment of Lω1,ω. If a count-
able linearly-ordered model M has a proper L∗-elementary end extension, then it
has one with cardinality ℵ1.

These two results can be combined to show that if a sentence in Lω1,ω has a
model that linearly orders a set in order type ω1 then it has a model of cardinality
ℵ1 where the order is not well-founded. We imbed that argument in proving the
same result for Lω1,ω(Q).

Theorem 5.1.8. Let τ be a similarity type which includes a binary relation
symbol <. Suppose ψ is a sentence of Lω1,ω(Q), M |= ψ, and the order type of
(M,<) is ω1. There is a model N of ψ with cardinality ℵ1 such that the order type
of (N,<) imbeds Q.

Proof. Extend the vocabulary τ to τ ′ by adding a function symbol fφ(x, y) for
each formula (Qy)φ(y,x) in Lω1,ω(Q) and a constant symbol for ω. Expand M to
a τ ′-structure M ′ by interpreting fφ as follows:

(1) If M |= (Qy)φ(y,a), (λy)fφ(y,a) is a partial function with domain the
solution set of φ(y,a) onto M .

(2) If M |= ¬(Qy)φ(y,a), (λy)fφ(y,a) is a partial function with domain the
solution set of φ(y,a) into the imbedded copy of ω.

Now let L∗ be a countable fragment in τ ′ of Lω1,ω which contains every subformula
of ψ which is in Lω1,ω and a sentence θ expressing the properties of the Skolem
functions for Lω1,ω(Q) that we have just defined. Let ψ∗ be the conjunction of
θ with an L∗-sentence which asserts that ‘ω is standard’ and a translation of ψ
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obtained by replacing each subformula of ψ of the form (Qy)φ(y, z) by the formula
fφ(y, z) is onto and each formula of the form (¬(Qy)φ(y, z)) by (fφ(y, z) maps into
ω. Then for any τ ′-structure N of cardinality ℵ1 which satisfies ψ∗, N ↾ τ is a model
of ψ. Now expand τ ′ to τ ′′ by adding a new unary predicate P . Let the sentence
χ assert M is an elementary end extension of P (M). For every α < ω1 there is
a model Mα of ψ∗ ∧ χ with order type of (P (M), <) greater than α. (Start with
P as α and alternately take an L∗-elementary submodel and close down under <.
After ω steps we have the P for Mα.) Now by Theorem 5.1.6 there is a countable
structure (N0, P (N0)) such that P (N0) contains a copy of (Q,<) and N0 is an
elementary end extension of P (N0). By Theorem 5.1.7, N0 has an L∗-elementary
extension N of cardinality ℵ1. Clearly, P (N) contains a copy of (Q,<) and, as
observed, N |= ψ. �5.1.8

It is easy to modify the proof to obtain the conclusion by weakening the hypoth-
esis from one model with order type ℵ1 to a family of models that define arbitrarily
long countable well-orderings.

5.2. The number of models in ω1

The next theorem is the key tool for the main result announced in the intro-
duction to this chapter. It is proved as Theorem B.6.

Theorem 5.2.1. Fix a countable fragment LA of Lω1,ω, a theory T in LA such
that < is a linear order of each model of T . For each p(x) an LA-type (possibly in-
complete) over the empty set, there is a sentence θp ∈ Lω1,ω satisfying the following
conditions.

(1) If p is omitted in an uncountable model (B,<) of T then for any countable
(A,<) such that (B,<) is an end LA-elementary extension of (A,<),
(A,<) |= θp.

(2) θp satisfies:
(a) If B |= θp then B omits p.
(b) θp is preserved under unions of chains of LA-elementary end exten-

sions;
(c) for any family X of LA-types 〈pm :m < ω〉 over ∅ and any count-

able A, if A |= θpm
for each M then A has a proper LA-elementary

extension that satisfies each θpm
.

(3) Let X be a collection of complete LA′(τ ′)-types (for some A′ ⊆ A and
τ ′ ⊆ τ) over the empty set that are realized in every uncountable model of
T . Then, X is countable.

Note the following immediate corollary.

Corollary 5.2.2. Let (A,<) be countable and suppose A |= θpm
for each

m < ω. Then there is an uncountable end extension B of A omitting all the pm.

Proof. By condition Theorem 5.2.1 2c) there is a proper elementary end exten-
sion of A1 of A satisfying all the θpm

. Iterate this construction through ω1 using
Theorem 5.2.1 2b) at limit stages. By Theorem 5.2.1 2a) the limit model omits all
the pm. �5.2.2

The following example (Baldwin/Marker) shows the significance of end exten-
sion in the statement above.
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Remark 5.2.3. The fragment is first order logic. In the base model M we have
points of two colors–say red and blue and the red points and blue points each form
a copy of (Z, s). Let p be the type which says there are no new red points and q
the type which says no new blue points. Of course it is true that M has elementary
extensions of cardinality ℵ1 omitting p and extensions of size ℵ1 omitting q but
none omitting both.

But–this observation does not take into account the end extension. We also
have some linear order > of A. One of the following holds: a) there exists x all
y > x are the same color; b) for all x there are y, z > x of different colors.

If a) holds then only one of p or q can be omitted in an elementary end extension.
If b) holds then neither p nor q can be omitted in an elementary end extension.

The remaining results do not assume there is a linear ordering in the language;
we will add one in order to apply Theorem B.6. That is why the generality of PCδ
class over Lω1,ω-classes (our PCΓ(ℵ0,ℵ0) from Definition 4.28) is necessary. The
notion of an LA-type is defined in Definition 4.23.

Theorem 5.2.4. If a PCδ over Lω1,ω class K has an uncountable model then
for any countable fragment LA, there are only countably many LA-types over ∅
realized in every uncountable member of K.

Proof. Let φ be a τ ′-sentence of Lω1,ω such that K is the class of τ reducts of
models of φ. Let LA(τ ′) be the smallest fragment that contains φ. Let X be the
collection of LA(τ)-types over ∅ realized in every uncountable model of φ.

Add < to the vocabulary to get τ ′′. Well-order an uncountable model of φ
in order type ω1 to get the τ ′′-structure (B,<). Let T ′′′ be the LA(τ ′′)-theory
of (B,<). We can construct (A,<) such that (B,<) is an uncountable LA-end
extension of (A,<). If p is realized in every uncountable model in K then p is
realized in every uncountable model of T ′′. So applying Theorem 5.2.1.3 to T ′′ and
X we have the result. �5.2.4

Theorem 5.2.5 (Keisler). If a PCδ over Lω1,ω class K has an uncountable
model but less than 2ω1 models of power ℵ1 then for any countable fragment LA,
then every member of K realizes only countably many LA-types over ∅.

Proof. Let T ′ = {φ} be a τ ′-sentence of Lω1,ω such that K is the class of τ
reducts of models of φ. Let LA(τ ′) be the smallest fragment that contains φ.

If the conclusion fails for some natural number p there are uncountably many
LA(τ)-types over the empty set realized in some model B ∈ K; without loss of
generality, |B| = ℵ1. First note that we can expand the language with a unary
predicate and functions so that there is a set U of p-tuples that realize distinct
p-types and U has the same cardinality as the universe. This can be expressed
by a sentence of Lω1,ω, so we have a PCδ over Lω1,ω-class K

′′ such that every
uncountable model realizes uncountably many types. We will show K

′′ has 2ℵ1

models of cardinality ℵ1. Indeed their reducts to τ are pairwise not mutually
embeddible.

Suppose that K
′′ is axiomatized in the fragment LA′′ and let B′′ be an un-

countable model. Now fix A′′ = A∅ as a countable submodel so that B′′ is an
LA′′-end extension of A′′ and p∅ as any LA-p-type over ∅ realized in A′′. We con-
struct a family of countable τ ′′-models As for s ∈ 2<ω1 and LA-types ps over the
empty set to satisfy the following conditions:
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(1) if s < t then At is an LA′′-end extension of As;
(2) if s ≤ t then At realizes ps;
(3) if s < t and ŝ i 6≤ t (for i ∈ {0, 1}) then At |= θpŝi

and so omits pŝ i.

Then if σ ∈ 2ω1 and s ∈ 2<ω1 , Mσ =
⋃
s⊂σMs realizes ps iff s < σ. This

clearly suffices as σ 6= τ ∈ 2ω1 implies the τ -reduct Mσ cannot be embedded in the
τ -reduct Mτ .

Now for the construction. For the limit stage we need to know that if we have
an increasing chain Mi such that for i0 < j < α, Mj |= θpi0

then so does Mα. This
is immediate from Theorem B.6.2b.

Now for the successor stage. We have an As satisfying the conditions. That
is, As realizes pt if t ≤ s and As |= θpt̂i

if t < s and t̂ i 6≤ s. Let K
3 be the class

of all τ -reducts of LA′′ -end extensions of As that omit pt̂ i if t < s and t̂ i 6≤ s.
Corollary 5.2.2 gives us an uncountable LA′′ -end extension Bs of As in K

3. By
Theorem 5.2.4 only countably many LA types over ∅ are realized in all models in
K

′′′. So we can choose pŝ 0 that is realized in Bs but omitted in some uncountable
LA′′-end extension of As, B1 ∈ K

3. Choose Aŝ 0 as a countable LA′′ -end extension
of As that realizes pŝ 0 and with

As ≺LA′′ Aŝ 0 ≺LA′′ Bs.

By Theorem B.6.1, Aŝ 0 |= θpt
for t < s and t̂ i 6≤ s.

To choose pŝ 1 and Aŝ 1, we now apply Theorem 5.2.4 to K
4 obtained by

requiring in addition to K
3 that pŝ 0 is omitted. We know B1 is one LA′′ -end

extension of As that is in K
4. Since B1 realizes ℵ1-types there must be a type pŝ 1

realized in B1 and omitted in some uncountable LA′′ -end extension of Aŝ 0; thus
Aŝ 0 |= θpŝ1

. Let Aŝ 1 be a countable LA′′ -end extension of As with B1 an LA′′ -
end extension of Aŝ 1 so that Aŝ 1 realizes pŝ 1; by Theorem B.6.1 Aŝ 1 satisfies
condition 3). This completes the construction.

Remark 5.2.6. We have chosen to proven Theorem 5.2.5 only for Lω1,ω but
Keisler (Corollary 5.10 of [Kei70]) proves the result for Lω1,ω(Q) and Kaufmann
[Kau85] asserts that result extends to Lω1,ω(aa).





CHAPTER 6

Categoricity Implies Completeness

We defined the logics Lω1,ω and Lω1,ω(Q) in Chapter 1.2. We now give full ar-
guments for understanding the relationship between categoricity and completeness
in Lω1,ω and the resulting alternative descriptions of categorical classes in Lω1,ω.
We introduce the role of complete sentences in Lω1,ω and Lω1,ω(Q) in Section 1.
In Sections 2 and 3, we explain how to obtain complete sentences in Lω1,ω from
the hypothesis of arbitrarily large models and few models in ℵ1, respectively. In
those three sections we consider certain arguments that work for both Lω1,ω and
Lω1,ω(Q) but restrict to Lω1,ω when necessary. We discuss finishing the arguments
for Lω1,ω(Q) in Section 4.

This chapter is a prelude for Part 4; the following example of David Kueker
shows dealing with Lω1,ω is a real restriction. There are categorical AEC that are
not closed under Lω1,ω-equivalence (and so certainly are not Lω1,ω-axiomatizable).

Example 6.1. There is an AEC (K,≺K) satisfying AP and JEP, with LS(K) =
ω, that is κ-categorical for all infinite κ, but which is not closed under L∞,ω-
elementary equivalence. The vocabulary L consists of a single unary predicate P .
K is the class of all L-structures M such that |PM | = ω and |(¬P )M | is infinite.
Define M ≺

K
N if and only if PM = PN and M ⊆ N . Clearly K is categorical

in all infinite powers. Since K-extensions can’t expand P, it is possible to keep the
cardinality of P fixed while still satisfying the unions of chains axioms.

6.1. Completeness

We have a natural definition of completeness for Lω1,ω (and analogously for
Lω1,ω(Q)).

Definition 6.1.1. A sentence ψ in Lω1,ω is called complete if for every sen-
tence φ in Lω1,ω, either ψ |= φ or ψ |= ¬φ.

In first order logic, the theory of a structure is a well-behaved object; here such
a theory is not so nice. An infinite conjunction of first order sentences behaves very
much like a single sentence; in particular it satisfies both the upward and downward
Löwenheim Skolem theorems. In contrast, the conjunction of all Lω1,ω-sentences
true in an uncountable model may not have a countable model. In its strongest form
Morley’s theorem asserts: Let T be a first order theory having only infinite models.
If T is categorical in some uncountable cardinal then T is complete and categorical
in every uncountable cardinal. This strong form does not generalize to Lω1,ω; take
the disjunction of a sentence which is categorical in all cardinalities with one that
has models only up to, say, i2. Since Lω1,ω fails the upwards Löwenheim-Skolem
theorem, the categoricity implies completeness argument, which holds for first order
sentences, fails in this context. However, if the Lω1,ω-sentence ψ is categorical in
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κ, then, applying the downwards Löwenheim-Skolem theorem, for every sentence
φ that is consistent with ψ either all models of ψ ∧ φ or all models of ψ ∧ ¬φ have
cardinality less than κ. So if φ and ψ are κ-categorical sentences with a common
model of power κ they are equivalent on models of cardinality ≥ κ.

This is a real obstacle to downward categoricity transfer. Let α < ω1. If φ is a
sentence categorical in all powers and φα is a sentence of Lω1,ω that has no model
of cardinality greater than iα (see Fact 1.2.5), φ∨ψα is categorical in all cardinals
above iα but not (in general) below. Thus, any conjecture concerning downward
categoricity transfer will have to add some feature (e.g. joint embedding in the
appropriate category or for sufficiently large).

Exercise 6.1.2. Suppose φ ∈ Lω1,ω is categorical in κ ≥ iω1 . Use the fact that
the Hanf number of Lω1,ω is iω1 ( Fact 1.2.5) to show all models of φ of cardinality
greater than iω1 satisfy the same sentences of Lω1,ω.

The fundamental tool for discussing complete sentences gives them their name:
Scott sentences. We reproduce a proof (which Keisler attributes to Chang) of the
Scott isomorphism theorem from the first chapter of Keisler’s book [Kei71]. The
first step of the proof is extended to Lω1,ω(Q) in Lemma 6.1.5. We present a weaker
version (due to Kueker) of the main Scott theorem for Lω1,ω(Q) that is adequate
for our purpose in Theorem 6.4.2. Of course, a direct translation of Scott’s theorem
to Lω1,ω(Q) makes no sense as there are no countable models.

We will show that under certain conditions any categorical sentence is implied
by a complete sentence. The following example, based on one given by David
Marker, shows this replacement is significant. The straightforward translation of
the Baldwin-Lachlan theorem to Lω1,ω is false.

Example 6.1.3. There is a sentence φ of Lω1,ω that is ℵ1-categorical and
satisfies the amalgamation property but has 2ℵ0 countable models and does not
satisfy the joint embedding property. Let the vocabulary contain a unary relation
P , a constant symbol 0, and a binary symbol S. We require that if M |= φ,
(M,S, 0) is a model of the first order theory of (Z, S). Further, let φ assert that if
P is non-empty every element of M is a finite predecessor or successor of 0. Thus
there are 2ℵ0 countable maximal models of φ. In the uncountable models there are
no elements of P .

We need some definitions. By L∗-type here, as in Definition 4.23, we mean ‘a
maximal (over the given domain) satisfiable set of L∗-formulas’.

Definition 6.1.4. (1) A τ-structure M is L∗-small for L∗ a countable
fragment of Lω1,ω(Q)(τ) if M realizes only countably many L∗-types.

(2) A τ-structure M is Lω1,ω(Q)-small if M realizes only countably many
Lω1,ω(Q)(τ)-types.

(3) We have the analogous notions for Lω1,ω.

The following Lemma holds, mutatis mutandis, for Lω1,ω. We extend Scott’s ar-
gument in two ways: countable is replaced by ‘small’ and we allow the Q-quantifier.

Lemma 6.1.5. If the structure M is Lω1,ω(Q)-small, then there is a countable
fragment L∗ of Lω1,ω(Q) such that for every tuple a in M there is a formula φa(x) ∈
L∗ such that M |= φa(a) and M |= φa(x) → ψ(x) for each Lω1,ω(Q)-formula true
of a.
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Proof. Choose a countable subset A of M that is ‘relatively ω-saturated’ in the
following sense. Every Lω1,ω(Q)-type over a finite sequence from A that is realized
in M is realized in A. For each finite tuple a ∈ A and each countable ordinal β, we
define a formula φαa(x).

φ0
a(x) is the conjunction of basic formulas satisfied by a

If β is a limit ordinal,

φβa(x) is
∧

γ<β

φγa(x)

For successor ordinals we need some preliminary notation. For each pair a, a
let ψαa,a be that one of the two formulas (Qx)φαaa(ax), ¬(Qx)φαaa(ax) that is true

in M . For each pair a, φβa, let

Aa,φβ

a
= {a ∈ A :M |= (∃x)φβa,a(ax)}.

(This notation is finer than needed here; A would suffice. But we use A
a,φβ

a

in proving Theorem 6.4.2.) Now, φβ+1
a (x) is:

φβa(x) ∧
∧

a∈A

ψβa,a ∧
∧

a∈A
a,φ

β

a

(∃x)φβa,a(x, x) ∧ (∀x)
∨

a∈A
a,φ

β

a

φβa,a(x, x).

Note that for all a ∈ A and all β, M |= φβa(a). If α < β,

M |= (∀x)[φβa(x) → φαa(x)].

Thus, since A is countable and since all types realized in M are also realized
in A, for every a there is a countable α such that for all β ≥ α,

M |= (∀x)[φβa(x) ↔ φαa(x)].

Choosing φa as this φαa we have that φa decides all formulas in M . That is,
for every lg(a)-ary formula χ either M |= [φa → χ] or M |= [φa → ¬χ]; the answer
depends on whether a satisfies χ.

Since A is countable, there is a countable α such for all n and all n-tuples a,
for all β ≥ α,

M |= (∀x)φαa ↔ φβa.

So we choose L∗ to contain all the φαa for this α. Note that although we have
formulas φαa only for a ∈ A, the ‘ω-saturation’ of A guarantees that for each
b ∈M , there is an a with φa(b). �6.1.5

A Scott sentence for a countable model M is a complete sentence satisfied by
M ; it characterizes M up to isomorphism among countable models. The Scott
sentence for an uncountable small model is the Scott sentence for a countable L∗-
submodel of M , where L∗ is the smallest fragment containing a formula for each
type realized in M .

Lemma 6.1.6 (Scott’s Isomorphism Theorem). Let M be a τ-structure for some
countable τ that is small for Lω1,ω. There is an Lω1,ω-sentence φM such that
M |= φM and all countable models of φM are isomorphic. This implies that φM is
complete for Lω1,ω.
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Proof. Apply the notation from and let α be the bound from the proof of
Lemma 6.1.5 (but omitting the reference to the Q-quantifier in the construction).
Let φM be the sentence

φα∅ ∧
∧

n<ω;a∈A

(∀x)[φαa → φα+1
a ].

Let L∗ be the fragment generated by φM and the φγa for a ∈ A and γ ≤ α+ 1.
Let M ′ be a countable L∗-elementary submodel of M .

Now we show by a back and forth argument that if N is a countable model
of φM , then N ≈ M ′. It suffices to show that for finite tuples of the same length
m ∈M ′,n ∈ N , if N |= φαm(n) then for every m ∈M ′ there is an n ∈ N such that
(forth)

N |= φαmm(nn)

and (back) for each n ∈ N there is an m ∈M ′ such that:

N |= φαmn(mm).

For the ‘forth’, note that since N |= φ, N |= φα+1
m (n)]. This implies N |=

(∃x)φαmm(nx)] and this exactly what is needed. The ‘back’ is similar.
Now the downward Löwenheim-Skolem theorem for Lω1,ω yields that φM is

complete and M |= φM by construction. �6.1.6

A complete sentence in Lω1,ω is necessarily ℵ0-categorical (using downward
Löwenheim-Skolem). Moreover, every countable structure is characterized by a
complete sentence – its Scott sentence. So if a model satisfies a complete sentence,
by Fact 1.2.4 is L∞,ω-equivalent to a countable model.

Let M be the only model of power κ of an Lω1,ω-sentence ψ. We want to
find sufficient conditions so that there is a complete sentence ψ′ which implies ψ
and is true in M . We will consider two such conditions: ψ has arbitrarily large
models; ψ has few models of cardinality ℵ1. Scott’s theorem and the downward
Löwenheim-Skolem theorem easily yield the next result.

Exercise 6.1.7. If ψ is a complete sentence in Lω1,ω in a countable vocabulary
τ then every model M of ψ realizes only countably many Lω1,ω-types over the empty
set. I.e., every model of ψ is small.

One key tool for our study is a different representation for the class of models of
complete Lω1,ω-sentences, as reducts of the atomic models of a complete first order
theory (Theorem 6.1.12). We begin with a somewhat weaker characterization: as
models omitting a set of partial types. This result stems from Chang, Scott, and
Lopez-Escobar (see e.g. [Cha68]).

Theorem 6.1.8. Let ψ be a sentence in Lω1,ω in a countable vocabulary τ .
Then there is a countable vocabulary τ ′ extending τ , a first order τ ′-theory T , and
a countable collection of τ ′-types Γ such that reduct is a 1-1 map from the models
of T which omit Γ onto the models of ψ.

Proof. Expand τ to τ ′ by adding a predicate Pφ(x) for each Lω1,ω formula φ
which is a subformula of ψ. This includes a nullary predicate symbol Pχ, taken as
a propositional constant, for any subformula χ of ψ that is a sentence. Form the
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L′-theory T by adding axioms saying that for atomic formula φ, Pφ ↔ φ and the
Pφ represent each finite Boolean connective and quantification faithfully: E.g.

P¬φ(x) ↔ ¬Pφ(x),

and
P(∀x)φ(x) ↔ (∀x)Pφ(x),

and that, as far as first order logic can, the Pφ preserve the infinitary operations:
for each i,

Pφi(x) → P∨
i φi(x)

and

P∧
i φi(x) → Pφi(x).

Consider the set Γ of partial types

p∧
i φi(x) = {¬P∧

i φi(x)} ∪ {Pφi(x) : i < ω}
where

∧
i φi(x) is a subformula of ψ and

p∨
i φi(x) = {P∧

i φi(x)} ∪ {¬Pφi(x) : i < ω}
where

∨
i φi(x) is a subformula of ψ.

Finally add to T the axiom: Pψ . Since Γ contains a type for each infinite
conjunction that is a subformula, if M is a model of T which omits all the types
in Γ, M ↾ τ |= ψ. Moreover, each model of ψ has a unique expansion to a model of
T which omits the types in Γ (since this is an expansion by definitions in Lω1,ω).
�6.1.8

Since all the new predicates in the reduction described above are Lω1,ω-definable,
this is a natural extension of Morley’s procedure of replacing each first order for-
mula φ by a predicate symbol Pφ. In the first order case, this quantifier elimination
guarantees amalgamation over arbitrary sets for first order categorical T ; the amal-
gamation does not follow in this case. (Compare Chapter 13 of [Sac72].)

We have represented the models of ψ as a PCΓ class in the sense of Defi-
nition 4.27. Reformulating Theorem 6.1.8 in this language, we have shown the
following result for Lω1,ω.

Corollary 6.1.9. Every Lω1,ω-sentence in a countable language is ω-presented.
That is, the class of models of ψ is a PC(ℵ0,ℵ0)-class.

Exercise 6.1.10. Show that ψ is a sentence in Lλ+,ω in a language of cardi-
nality κ, ψ is µ-presented where µ is the larger of κ and λ.

Exercise 6.1.11. In general a PCΓ class will not be an AEC class of τ struc-
tures. Why?

More strongly, since there is a 1-1 correspondence between models of ψ and
models of T that omit Γ, we can reduce spectrum considerations for an Lω1,ω-
sentence ψ to the study of an EC(T,Γ)-class (Definition 4.31). In general there
may be uncountably many complete L∗-types over the empty set consistent with
ψ where L∗ is the minimum fragment containing ψ. If ψ is complete, then there
are only countably many Lω1,ω-types realized in a model of ψ. We can modify the
proof of Theorem 6.1.8 to guarantee that the models of T omitting Γ are atomic.
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Theorem 6.1.12. Let ψ be a complete sentence in Lω1,ω in a countable vocab-
ulary τ . Then there is a countable vocabulary τ ′ extending τ and a complete first
order τ ′-theory T such that reduct is a 1-1 map from the atomic models of T onto
the models of ψ.

Proof. Fix a model M of ψ. Let L∗ be a countable fragment of Lω1,ω that con-
tains ψ and the formulas φαa from Lemma 6.1.5. Thus, every Lω1,ω-type consistent
with ψ is represented by an L∗-formula. Now modify the proof of Theorem 6.1.8
by adding predicates Pχ(x) for every χ(x) ∈ L∗. In particular each a realizes the
isolated type generated by Pφα

a
. The resulting theory T and collection of types Γ

is as required. �6.1.12

So in particular, any complete sentence of Lω1,ω can be replaced (for spectrum
purposes) by considering the atomic models of a first order theory.

The crux is that to get an atomic and so ℵ0-categorical class rather than just
a PCΓ(ℵ0,ℵ0)-class, we have to first have a complete sentence. This will be our
task in the next two sections (Theorem 6.2.12 and Theorem 6.3.2). We begin with
an example (derived from more specific examples of Marker and Kueker) showing
that this a real task.

Example 6.1.13. Let φ be a sentence of Lω1,ω with 2ℵ0 countable models and
no uncountable models. Let ψ be a sentence (in a disjoint vocabulary) that is
categorical (with models) in every infinite cardinal. Then φ∨ψ is categorical in all
powers and has 2ℵ0 countable models. No such example with joint embedding is
known.

6.2. Arbitrarily Large Models

To show a categorical sentence with arbitrarily large models is implied by a
complete sentence we use Ehrenfeucht-Mostowski models. To find them we need
Morley’s omitting types theorem (Section 7.2 of [CK73], Appendix A), a funda-
mental technique in first order model theory. The theorem is essential for the
foundations of simplicity theory and for the construction of indiscernibles in infini-
tary logic. We use the first order version here; in Lemma 14.2 we prove the analog
for abstract elementary classes.

Notation 6.2.1.

(1) For any linearly ordered set X ⊆M where M is a τ ′-structure and τ ′ ⊇ τ ,
we write Dτ (X) (diagram) for the set of τ-types of finite sequences (in
the given order) from X. We will omit τ if it is clear from context.

(2) Such a diagram of an order indiscernible set, Dτ (X) = Φ, is called ‘proper
for linear orders’ .

(3) If X is a sequence of τ-indiscernibles with diagram Φ = Dτ (X) and any τ
model of Φ has built in Skolem functions, then for any linear ordering I,
EM(I,Φ) denotes the τ-hull of a sequence of order indiscernibles realizing
Φ.

(4) If τ0 ⊂ τ , the reduct of EM(I,Φ) to τ0 is denoted EMτ0(I,Φ).

What we here call the ‘diagram’ of a set indiscernibles is variously referred to
as a template or an EM-set.
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Exercise 6.2.2. Suppose τ ‘contains Skolem functions’ and X ⊂M is sequence
of order indiscernibles with diagram Φ. Show that for any linearly ordered set Z,
EM(Z,Φ) is a model that is τ-elementarily equivalent to M .

Lemma 6.2.3. If (X,<) is a sufficiently long linearly ordered subset of a τ-
structure M , for any τ ′ extending τ (the length needed for X depends on |τ ′|) there
is a countable set Y of τ ′-indiscernibles (and hence one of arbitrary order type)
such that Dτ (Y ) ⊆ Dτ (X). This implies that the only (first order) τ-types realized
in EM(X,Dτ ′(Y )) were realized in M .

The phrase ‘sufficiently long’ is evaluated in Theorem 8.18 using Theorem A.3.1
(which implies Lemma 6.2.3). At this stage, we stress the overall outline of the
argument in the easiest case. We need a little background on orderings; see [Ros82]
for a fuller treatment.

Definition 6.2.4. A linear ordering (X,<) is k-transitive if every map between
increasing k-tuples extends to an order automorphism of (X,<).

Exercise 6.2.5. Show a 2-transitive linear order is k-transitive for all finite k.

Exercise 6.2.6. Show there exist 2-transitive linear orders in every cardinal;
hint: take the order type of an ordered field.

Exercise 6.2.7. If Φ(Y ) is the diagram of a sequence of τ-order indiscernibles,
show any order automorphism of Y extends to an automorphism of the τ-structure
EM(Y,Φ).

Definition 6.2.8. For any model M and a,B contained in M , the Galois-type
of a over B in M is the orbit of a under the automorphisms of M which fix B.

Remark 6.2.9 (Warning). The notion of Galois type requires an ambient model
M . To link the notion of Galois-type, or rather saturation with respect to Galois
types, with a notion of homogeneity, one must make an amalgamation hypotheses.
Then one can find a ‘monster model’ in which to work. We develop Galois types
over models under appropriate assumptions in Chapter 8 and the sequel. We will
speak indiscriminately of the number of Galois types over M as an upper bound
on the number of Galois n-types for any finite n.

Exercise 6.2.10. If Y is a 2-transitive linear ordering, then for any τ and Φ
is proper for linear orders, EM(Y,Φ) has |τ | Galois types over the empty set.

The following easy exercise uses the notion of L-type from Definition 4.23.

Exercise 6.2.11. For any reasonable logic L (i.e. a logic such that truth is
preserved under isomorphism) and any model M the number of L-types over the
empty set in M is at most the number of Galois types over the empty set in M .

Using Ehrenfeucht-Mostowski models we now show any sentence in Lω1,ω with
arbitrarily large models has arbitrarily large models that are Lω1,ω-equivalent to
a countable model. We have used Galois types in the proof of Corollary 6.2.12 to
prefigure our work in Chapter 8, but this was not essential; see the problem set in
Chapter 13 of [Kei71].

Corollary 6.2.12. Suppose an Lω1,ω(τ)-sentence ψ has arbitrarily large mod-
els.
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(1) In every infinite cardinality ψ has a model that realizes only countably
many Lω1,ω(τ)-types over the empty set.

(2) Thus, if ψ is categorical in some cardinal κ, ψ is implied by a consistent
complete sentence ψ′, which has a model of cardinality κ.

Proof. By Theorem 6.1.8, we can extend τ to τ ′ and choose a first order
theory T and a countable set of types Γ such mod(ψ) = PCτ (T,Γ). Since ψ
has arbitrarily large models we can apply Theorem 6.2.3 to find τ ′′-indiscernibles
for a Skolemization of T in an extended language τ ′′. Now take an Ehrenfeucht-
Mostowski τ ′′-model M for the Skolemization of T over a set of indiscernibles
ordered by a 2-transitive dense linear order. Then for every n, M has only countably
many orbits of n-tuples and so realizes only countably many complete types over
the empty set in any logic where truth is preserved by automorphism – in particular
in Lω1,ω. So the τ -reduct of M realizes only countably many Lω1,ω(τ)-types. If ψ
is κ-categorical, let ψ′ be the Scott sentence of this Ehrenfeucht-Mostowski model
with cardinality κ. �6.2.12

We will extend this result to Lω1,ω(Q) in Section 6.4. We do not actually need
the categoricity for Corollary 6.2.12; we included it to make the statement parallel
to Theorem 6.3.2.

Exercise 6.2.13. Show that the ψ′ chosen in Theorem 6.2.12 is unique.

6.3. Few models in small cardinals

Recall that the goal of this chapter is to show that a categorical sentence in
Lω1,ω (Lω1,ω(Q)) is implied by a complete sentence, which has an uncountable
model. In section 6.2, we assumed the existence of arbitrarily large models, now
we assume I(ℵ1, ψ) < 2ℵ1 . We rely on the undefinability of well-order in Lω1,ω(Q),
which we treated in Chapter 5. We treat the two cases together in the begin-
ning of this section, then finish Lω1,ω; we complete the argument for Lω1,ω(Q) in
Section 6.4. For Theorem 6.3.1 analogous arguments work for both Lω1,ω(Q) and
Lω1,ω.

Theorem 6.3.1. If the Lω1,ω(Q)-τ-sentence ψ has a model of cardinality ℵ1

which is L∗-small for every countable τ-fragment L∗ of Lω1,ω(Q), then ψ has a
Lω1,ω(Q)-small model of cardinality ℵ1.

Proof. Add to τ a binary relation <, interpreted as a linear order of M with
order type ω1. Using that M realizes only countably many types in any τ -fragment,
define an continuous increasing chain of countable fragments Lα for α < ℵ1 such
that each type in Lα that is realized in M is a formula in Lα+1. Extend the
similarity type further to τ ′ by adding new 2n + 1-ary predicates En(x,y, z) and
n+ 1-ary functions fn. Let M satisfy En(α,a,b) if and only if a and b realize the
same Lα-type and let fn map Mn+1 into the initial ω elements of the order, so that
En(α,a,b) if and only if fn(α,a) = fn(α,b). Note:

(1) En(β,y, z) refines En(α,y, z) if β > α;
(2) En(0,a,b) implies a and b satisfy the same quantifier free τ -formulas;
(3) If β > α and En(β,a,b), then for every c1 there exists c2 such that

(a) En+1(α, c1a, c2b) and
(b) if there are uncountably many c such that En+1(α, ca, c1a) then there

are uncountably many c such that En+1(α, cb, c2b).
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(4) fn witnesses that for any a ∈M each equivalence relation En(a,y, z) has
only countably many classes.

All these assertions can be expressed by an Lω1,ω(Q)(τ ′) sentence φ. Let L∗ be the
smallest τ ′-fragment containing φ∧ψ. Now by Theorem 5.1.8 there is a structure N
of cardinality ℵ1 satisfying φ ∧ ψ such that there is an infinite decreasing sequence
d0 > d1 > . . . in N . For each n, define E+

n (x,y) if for some i, En(di,x,y). Now
using 1), 2) and 3) prove by induction on the quantifier rank of φ that N |=
E+
n (a,b) implies N |= φ(a) if and only if N |= φ(b) for every Lω1,ω(Q)(τ)-formula

φ. (Suppose the result holds for all n and all θ with quantifier rank at most γ.
Suppose φ(a) is (∃x)ψ(a, x) with n = lg(a), ψ has quantifier rank γ, and E+

n (a,b).
So for some i, En(di,a,b) and for some a, N |= ψ(a, a). By the conditions on the
En, there is a b such that En+1(di+1,a, a,b, b). By induction we have N |= ψ(b, b)
and so N |= φ(b). Use 3b) for the Q-quantifier.) For each n, En(d0,x,y) refines
E+
n (x,y) and by 4) En(d0,x,y) has only countably many classes; so N is small.

�6.3.1

Now we show that sentences of Lω1,ω(Q) (Lω1,ω) that have few models can be
extended to complete sentences in the same logic that have uncountable models.
We rely on Theorem 5.2.5 for Lω1,ω and Corollary 5.10 of [Kei70] for Lω1,ω(Q)).
We get the main result of this chapter for Lω1,ω now; we extend to Lω1,ω(Q) in
Section 6.4

Theorem 6.3.2. If an Lω1,ω-sentence ψ has fewer than 2ℵ1 models of cardinal-
ity ℵ1 then there is a complete Lω1,ω-sentence ψ0 that implies ψ and has a model
of cardinality ℵ1.

Proof. By Theorem 5.2.5 every model of ψ of cardinality ℵ1 is L∗-small for
every countable fragment L∗. By Theorem 6.3.1 ψ has a model of cardinality ℵ1

which is τ -small. By Lemma 6.1.6, we finish. �6.3.2

A weaker version of this result (requiring fewer than 2ℵ0 models of cardinality
ℵ1) was obtained by Makkai using admissible model theory in [Mak77]. We used
the proof of Theorem 6.3.2 to provide a more direct proof that any counterexample
to Vaught’s conjecture has a small model of size ℵ1 in [Bal07b].

To study categoricity of an Lω1,ω-sentence ψ, we have established the following
reduction. If ψ has arbitrarily large models, without loss of generality, ψ is complete
and therefore small. If ψ has few models of power ℵ1, we can study a subclass of
the models of ψ defined by a complete Lω1,ω-sentence ψ′. We will in fact prove
sufficiently strong results about ψ′ to deduce a nice theorem for ψ. Note that
since ψ′ is complete, the models of ψ′ form an EC(T,Atomic)-class in an extended
similarity type τ ′. We study these atomic classes in Chapters 18-26.

Conclusion 6.3.3. The uncountable models of ℵ1-categorical sentences in Lω1,ω

can be studied by proving sufficiently strong results about atomic classes.

By the Scott isomorphism theorem, the reduction to complete sentences de-
stroys any study of the countable models of an incomplete sentence in Lω1,ω. In
particular then this reduction is not helpful for studying Vaught’s conjecture that
no sentence of Lω1,ω can have exactly ℵ1-countable models. The notion of a finitary
AEC [HK06, HK00, HK07] may provide some tools for this problem.
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6.4. Categoricity and Completeness for Lω1,ω(Q)

In this section we explore formulating Theorem 6.2.12 and Conclusion 6.3.3 for
Lω1,ω(Q). We will see that obtaining a complete sentence proceeds in the same
way. But then there is much more to the story.

Definition 6.4.1. A sentence ψ in Lω1,ω(Q) is called complete for Lω1,ω(Q)
if for every sentence φ in Lω1,ω(Q), either ψ |= φ or ψ |= ¬φ.

We first note that a ‘small’ model has an Lω1,ω(Q)-Scott sentence. The details
of this argument are due to David Kueker; the assertion is implicit in [She75a].

Theorem 6.4.2. If the τ-structure M realizes only countably many Lω1,ω(Q)
types, then there is a complete sentence σM of Lω1,ω(Q) such that M |= σM .

Proof. Choose a subset A of M as in Lemma 6.1.5. We showed in Lemma 6.1.5
that for each a ∈M there is a formula φa that decides all formulas in M with |a|
free variables. Now let σM be the conjunction of the following sentences:

(1) (∀x)∨
a∈A φa(x)

(2)
∧
a∈A(∃x)φa(x)

(3) (∀x)[φa(x) → (∀x)∨
a∈Aa,φa

φa,a(x, x)]

(4) (∀x)[φa(x) → ∧
a∈Aa,φa

(∃x)φa,a(x, x)]

(5) (∀x)[φa(x) → λ(x) for any basic formula λ satisfied by a.
(6) (Qx)φa(x) if this sentence is true in M .
(7) ¬(Qx)φa(x) if this sentence is true in M .
(8) (∀x)[φa(x) → (Qx)φaa(xx)] if this sentence is true in M .
(9) (∀x[φa(x) → ¬(Qx)φaa(xx)] if this sentence is true in M .

Claim 6.4.3. If N |= σM then for all a ∈ A and all b ∈ N , if N |= φa(b),
then for any formula ψ,

M |= ψ(a) if and only if N |= ψ(b).

Proof. We prove this result by induction on ψ. Suppose N |= φa(b). If
ψ(x) is quantifier-free then φa(x) → ψ(x) by definition. The interesting cases are
when ψ has the form (∃x)χ(x, x), (∀x)χ(x, x), or (Qx)χ(x, x). By the induction
hypothesis, for every a ∈ A and b ∈ N , if N |= φaa(bb) then for any χ(x, y),
M |= χ(aa) if and only if N |= χ(bb). For (∃x) apply condition 4); for (∀x), apply
condition 3); Q is slightly more involved. By our choice of φaa to decide all formulas
on M , we know either N |= φaa(xx) → χ(xx) or N |= φaa(xx) → ¬χ(xx). Now
since A is countable and using the last observation, the following four statements
are equivalent.

• M |= (Qx)χ(a, x).
• There is an a ∈ A such that χ(a, a) and M |= (Qx)φaa(ax).
• There is an a ∈ A and b ∈ N such that N |= φaa(bb), N |= χ(b, b) and
N |= (Qx)φbb(bx).

• N |= (Qx)χ(b, x).

The equivalence of the second pair uses 8) and 9). We conclude M and N agree
on all sentences of Lω1,ω(Q) by the claim. �6.4.2

Just as in proving Theorem 6.3.2 we can invoke Theorem 5.2.5 and Theo-
rem 6.3.1 to conclude:
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Theorem 6.4.4. If an Lω1,ω(Q)-sentence ψ has fewer than 2ℵ1 models of car-
dinality ℵ1 then there is a complete small Lω1,ω(Q)-sentence ψ0 that implies ψ and
has a model of cardinality ℵ1 and such that every model of ψ0 is small.

Theorem 6.4.4 differs from Theorem 6.3.2 because the sentence ψ0 in Theo-
rem 6.4.4 does not have a countable model (it implies Qx(x = x)). We further
transform ψ0 to a ψ′ as in the following definition.

Definition 6.4.5. Let ψ0 be a Lω1,ω(Q)-complete sentence with vocabulary τ
in the countable fragment L∗ of Lω1,ω(Q) such that every model of ψ0 is small.
Form τ ′ by adding predicates for formulas as in Theorem 6.1.8 but also add for
each formula (Qx)φ(x,y) a predicate R(Qx)φ(x,y) and add the axiom

(∀x)[(Qx)φ(x,y) ↔ R(Qx)φ(x,y)].

Let ψ′ be the conjunction of ψ0 with the Lω1,ω(Q)-τ ′-axioms encoding this expan-
sion. Let K1 be the class of atomic τ ′-models of T (ψ), the first order τ ′-theory
containing all first order consequences of ψ′.

Notation 6.4.6. (1) Let ≤∗ be the relation on K1: M ≤∗ N if M ≺τ ′ N
and for each formula φ(x,y) and m ∈ M , if M |= ¬R(Qx)φ(x,m) then
Rφ(x,m) has the same solutions in M and N .

(2) Let ≤∗∗ be the relation on K1: M ≤∗∗ N if M ≺τ ′ N and for each
formula φ(x,y) and m ∈ M , M |= ¬R(Qx)φ(x,m) if and only if Rφ(x,m)

has the same solutions in M and N .

It is easy to check that (K1,≤∗) is an AEC, but (K1,≤∗∗) need not be an AEC.
It can easily happen that each of a family of models Mi ≤∗∗ M but

⋃
iMi 6≤∗∗ M .

To bring the Löwenheim-Skolem number down to ℵ0, we allowed countable
models of K1 that are not models of ψ; unfortunately, we may also have gained
uncountable models of K1 that are not models of ψ. Working with (K1,≤∗), one
cannot show that many models for K1 implies many models of ψ. We will see in
Chapter 7, one example of using (K1,≤∗∗) to work around this difficulty.

If we are willing to drop our demand that the target class have Löwenheim
number ℵ0, then we can construct an AEC from each sentence φ of Lω1,ω(Q);
namely consider the uncountable members of K1 with ≺

K
as ≤∗. (Note that the

restriction to complete sentences was not really needed to define ≤∗.) Thus the
work in this monograph on AEC in Part 3 applies to sentences of Lω1,ω(Q); but
the analysis of categoricity of Lω1,ω(Q) in Part 4, which uses Löwenheim number
ℵ0, requires very different arguments. For a much more sophisticated analysis see
such not yet published articles such as [She0x, She00d, She00c].

Conclusion 6.4.7. There is no known straightforward translation of (categor-
ical) sentences of Lω1,ω(Q) into AEC with Löwenheim number ℵ0. There are two
procedures for continuing the analysis of categorical Lω1,ω(Q)-sentences:

(1) Work with various notions of substructure on an associated class K1 of
atomic models.

(2) Regard classes defined by sentences of Lω1,ω(Q) as an AEC with Löwenheim
number ℵ1.





CHAPTER 7

A Model in ℵ2

A first order sentence with an infinite model has models in all cardinalities; in
particular no sentence is absolutely categorical, has exactly one model. Sentences
of Lω1,ω may be absolutely categorical but only if the unique model has cardinality
ℵ0. In the early 70’s, I asked whether a sentence of L(Q) could have exactly one
model and that model have cardinality ℵ1. Shelah [She75a] showed the answer was
no for (Lω1,ω(Q)) with some additional set theoretic hypotheses that he removed in
[She87a]. In this chapter we introduce methods of getting structural properties on
the models in an AEC that have cardinality λ by restricting the number of models
of cardinality λ+. And from these conditions on models of cardinality λ and λ+, we
show the existence of a model of power λ++. Most concretely, we present Shelah’s
proof [She87a] that if a sentence of Lω1,ω(Q) is categorical in ℵ1 then it has a
model of cardinality ℵ2.

An example of Julia Knight [Kni77] shows that there are sentences of Lω1,ω

that have models only in cardinality ℵ0 and ℵ1 so the restriction on the number
of models is necessary. Hjorth [Hjo07] has extended this to find a sentence φα of
Lω1,ω that has models of cardinality only up ℵα for any countable ordinal α.

The general setting here will be an AEC. We show first that if an AEC is
categorical in λ and λ+ and has no ‘maximal triple’ in power λ then it has a model
in power λ++. We then restrict our attention to Lω1,ω. We have shown in Chapter 6
that there is no loss of generality in assuming an ℵ1-categorical sentence in Lω1,ω is
also ℵ0-categorical. Then we show for such sentences in Lω1,ω there are no maximal
triples in ℵ0. We finish by massaging the proof to handle Lω1,ω(Q).

Definition 7.1. We say (M,N) is a proper pair in λ, witnessed by a, if
M ≺

K
N and a ∈ N −M and |M | = |N | = λ.

Shelah [She87a] describes this concept in terms of the class of triples K
3
λ =

{(M,N, a) : (M,N) is proper pair witnessed by a}. The fixed a is not used in the
next Lemma but plays a central role in the proof of Lemma 7.4.

Lemma 7.2. If an AEC (K,≺K) is categorical in λ and has a proper pair
(M,N) in λ then there is a model in K with cardinality λ+.

Proof. Let M0 = M . For any α, given Mα, choose Mα+1 so that (M,N) ≈
(Mα,Mα+1) and take unions at limits. The union of Mα for α < λ+ is as required.
�S7.2

Definition 7.3. A maximal triple is a triple (M,a,N) such that a witnesses
that (M,N) is a proper pair and there is no proper pair (M ′, N ′) witnessed by a
such that M ≺K M ′, M 6= M ′, N ≺K N ′.
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In Shelah’s language a maximal triple is a maximal element when K
3
λ is ordered

by the relation
(M,a,N) ≤ (M ′, a′, N ′)

if a = a′, N ≺
K

N ′, M ≺
K

M ′ and this last inclusion is proper.

Lemma 7.4. If there are no maximal triples of cardinality λ and there is a
proper pair of cardinality λ then there is a proper pair of cardinality λ+.

Proof. Let a witness that (M0, N0) is a proper pair in λ. Since there are no
maximal triples, for i < λ+ we can construct proper pairs (Mi, Ni) such that Mi+1

is a proper ≺K extension of Mi and Ni+1 is a ≺K extension of Ni but no Mi

contains a; that is, the properness of each (Mi, Ni) is witnessed by the same a. So
(
⋃
i<λ+ Mi,

⋃
i<λ+ Ni) is the required proper pair. �7.4

We have shown that if there are no maximal triples in λ and K is λ+-categorical
then there is a model in λ++. We will show there are no maximal triples in ℵ0 if
K is ℵ0-categorical and has few models in ℵ1. For this, we need another definition.

Definition 7.5. M ≺K N is a cut-pair in λ if |M | = |N | = λ and there exist
models Ni for i < ω such that M ≺

K
Ni+1 ≺

K
Ni ≺K

N with Ni+1 a proper
submodel of Ni and

⋂
i<ω Ni = M .

Let (K,≺
K

) be the collection of dense linear orders with elementary submodel
and let (Q, <) be the rational order. Then ((−∞,

√
2), (−∞,∞)) is a cut-pair.

Tapani Hyttinen has provided the following barebones example of a maximal triple.

Example 7.6 (Maximal Triple). Let τ contain unary predicate symbols P and
S and infinitely many constant symbols ci. Let K be the class of τ structures M
such that.

(1) P and S partition M .
(2) There is at most one element in P .
(3) The ci are distinct and lie in S.
(4) If there is an element in S not named by one of the ci then there is an

element in P .

It is easy to check that (K,≺K ) (where ≺K is interpreted as substructure) is an
AEC.

Now let P be empty in M and suppose the ci exhaust S(M). Let N extend M
by adding just a point a in P . Then (M,a,N) is a maximal triple. Of course, K

is not ℵ0-categorical.

We rely on the following classical result of Ulam (see e.g. 6.12 of [Kun80] or
II.4.12 of [EM02]) and an easy consequence.

Fact 7.7. For any regular κ > ω,

(1) For any regular κ > ω there is family of κ stationary subsets of κ that are
pairwise disjoint.

(2) Moreover, there exist a family of stationary set Si for i < 2κ such if i 6= j,
Si − Sj is stationary.

We give the idea of the following proof; the details are clear in both [She87a]
and [Gro02].

Lemma 7.8. Suppose (K,≺K) is λ-categorical. If K has a cut-pair in cardi-

nality λ and it has a maximal triple in λ, then I(λ+,K) = 2λ
+

.
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Proof. Let (M,N) be a cut-pair and let (M ′, a,N ′) be a maximal triple. For S a
stationary subset of λ+, define MS

i for i < λ+ so that the universe of MS
i is a subset

of λ+ and the union of the MS
i has universe λ+. We demand that (MS

i ,M
S
i+1) is

isomorphic to (M,N) if i is 0 or a successor ordinal. But if i is a limit ordinal, let
(MS

i ,M
S
i+1) be a cut-pair if i 6∈ S and for some ai, let (MS

i , ai,M
S
i+1) ≈ (M ′, a,N ′)

if i ∈ S. Then, let MS =
⋃
i<λ+ MS

i . Now, if S1 −S2 is stationary, MS1 6≈MS2 . If
f is an isomorphism between them, we find a contradiction by intersecting S1 −S2

with the cub E consisting of those δ < λ+ such that MS1

δ and MS2

δ both have
domain δ and i < δ if and only if f(i) < δ. If δ is in the intersection, as δ ∈ S1,

aS1

δ ∈MS1

δ+1−MS1

δ ; f(aS1

δ ) ∈MS2−MS2

δ . But, MS2

δ =
⋂
n<ωM

S2,n
δ for appropriate

MS2,n
δ , since (MS2

δ ,MS2

δ+1) is a cut pair. So f(aS1

δ ) 6∈ MS2,n
δ for some n. Let N

denote f−1(MS2,n
δ ). Then for some γ ∈ E ∩ (S1 − S2), N ≺K MS1

γ . But then

(N, aS1

δ ,M
S1
γ ) properly extends (MS1

δ , aS1

δ ,M
S1

δ+1) and this contradiction yields the
theorem. �7.8

Now we need the following result, which depends heavily on our restricting λ
to be ℵ0 and also requiring the AEC to be a PCΓ(ℵ0,ℵ0) class. Some extensions
to other cardinalities are mentioned in [She87a] and a more detailed argument
appears in [She01] and as Theorem 7.11 in [Gro02]. See also [Mak85].

Recall from Corollary 6.1.9 an ℵ1-categorical sentence in Lω1,ω can be repre-
sented as an AEC which is a PCΓ(ℵ0,ℵ0) class.

Lemma 7.9. If (K,≺K ) is an ℵ0-categorical PCΓ(ℵ0,ℵ0) class that is also an
AEC and has a model of power ℵ1, then there is a cut pair in ℵ0.

Proof. By definition, K is the class of τ -reducts of models of a first order
τ1-theory T , which omit a countable set Γ of types. Let M ∈ K be a model with
universe ℵ1; write M as

⋃
i<ℵ1

Mi with the Mi countable. For simplicity, assume
the universe of M0 is ℵ0. Expand M to a τ∗-structure M∗ by adding to τ1, an
order < and a binary function g. Interpret < as the natural order on ℵ1 and
g so that g(i, x) is a τ -isomorphism from M0 to Mi witnessing that each Mi is
countable. Note that a unary predicate P naming M0 and a binary relation R(x, y)
such that R(a, i) if and only a ∈Mi are easily definable from g. Moreover, for each
i, {x :R(x, i)} is closed under the functions of τ1.

Let ψ be a sentence in Lω1,ω(τ∗) describing this situation; the existence of ψ
follows since K is a PCΓ(ℵ0,ℵ0) class. By Theorem 5.1.6 (Theorem 12 of [Kei71]),
there is a model N∗ of ψ with cardinality ℵ0 in which < is not well-founded. For
any b ∈ N∗, let

Nb = {x ∈ N∗ :R(x, b)}.
Let ai for i < ω be a properly descending chain. Then Nai

has universe

{x ∈ N∗ :R(x, ai)}
and

Nai
↾ τ ≺K N∗ ↾ τ

by the moreover clause of the presentation theorem, Theorem 4.15. Because of g,
each Nai

is τ -isomorphic to P (N∗). Let I be the set of b ∈ N∗ such that for every
i, b < ai. By the union axiom, Definition 4.1 A3.3,

NI =
⋃

b∈I

Nb ↾ τ ≺
K

N∗ ↾ τ.
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Our required cut-pair is (NI , N0). �7.9

Theorem 7.10. If K is a ℵ0-categorical PCΓ(ℵ0,ℵ0) class that is also an AEC
and has a unique model of power ℵ1, then there is a model of power ℵ2.

Proof. By Lemma 7.9, there is a cut-pair in ℵ0. Since ψ is ℵ1-categorical,
Lemma 7.8 implies there is no maximal triple in ℵ0. So by Lemma 7.4 there is a
proper pair in ℵ1 and then by Lemma 7.2, there is a model of power ℵ2. �7.10

Corollary 7.11. An ℵ1-categorical sentence ψ in Lω1,ω has a model of power
ℵ2.

Proof. By Theorem 6.3.2, we may assume ψ has the form of Theorem 7.10.
�7.11

We want to extend Corollary 7.11 from Lω1,ω to Lω1,ω(Q). The difficulty is to
find an appropriate AEC. By Theorem 6.4.4, we can find a small Lω1,ω(Q)-complete
sentence ψ0 which is satisfied by the model of cardinality ℵ1. Since ψ0 is small, the
associated T (ψ) can be taken ℵ0-categorical.

Recall the associated classes (K1,≤∗) and (K1,≤∗∗) from Chapter 6, Nota-
tion 6.4.6. K1 is a class of models of a first order theory T (ψ). (cf. Definition 6.4.5.)
We call these ‘nonstandard models’ of ψ while standard models are models of the
original Lω1,ω(Q) sentence ψ. We would like to transfer our attention to K1, But,
K1 may have 2ℵ1 (nonstandard) models of cardinality ℵ1. Although (K1,≤∗) is an
AEC, we can’t just work with it as in that class we don’t generate 2ℵ1 (standard)
models of ψ. And we can’t just apply our results to (K1,≤∗∗) as it does not satisfy
Definition 4.1 A3.3. However, by working with (K1,≤∗∗), we are able to apply the
idea of the proof of Lemma 7.8 and get the maximal number of standard models
in ℵ1. The failure to satisfy Definition 4.1 A3.3 is evaded by proving the following
variant on Lemma 7.9.

Lemma 7.12. (K1,≤∗∗) has a cut pair in ℵ0.

Proof. The argument is identical to Lemma 7.9 except for two key points.
In Lemma 7.9, we described an expansion of a model of power ℵ1 in the first

paragraph. In the second paragraph we formalized this description in Lω1,ω(τ∗), re-
lying on the assumption K is a PCΓ(ℵ0,ℵ0) class. For the Lω1,ω(Q)-case, just write
the description in Lω1,ω(Q) and apply Theorem 5.1.8 rather than Theorem 5.1.6.
We can use a sentence of Lω1,ω(Q) since from the ℵ1-categoricity we know our
sentence is small.

The penultimate sentence of the proof of Lemma 7.9 read: by the union axiom:
Definition 4.1 A3.3,

NI =
⋃

b∈I

Nb ↾ τ ≺K N∗ ↾ τ.

This is precisely the union axiom that fails for ≤∗∗. But in this situation, for any
i < ω we have NI ≤∗ Ni+1 ≤∗∗ Ni so NI ≤∗∗ Ni, which is exactly what we need.
�7.12

Now we can get the main result. We are working with the class (K1,≤∗∗),
which is not an AEC. So we must check that each time we use an argument about
AEC’s, we do not rely on the condition that fails for (K1,≤∗∗). We can naturally
define cut pairs and maximal triples in this context.
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Corollary 7.13. An ℵ1-categorical sentence ψ in Lω1,ω(Q) has a model of
power ℵ2.

Proof. Since Lemma 7.2 uses only A3.1 of Definition 4.1, which holds of
(K1,≤∗∗), it suffices to show there is a (K1,≤∗∗) proper pair of cardinality ℵ1

that are standard models of ψ. By the proof of Lemma 7.12, there is a (K1,≤∗∗)
cut-pair in ℵ0. Lemma 7.8 does not depend on A3.3. So by the same proof, we
get 2ℵ1 non-isomorphic models of K1 and since we took ≤∗∗-extensions ℵ1-times,
each is actually a standard model of ψ. But this contradicts the categoricity of ψ
so there must no maximal triple in (K1,≤∗∗). By Lemma 7.4 (which again does
not depend on A3.3) we have a standard (K1,≤∗∗) proper pair of cardinality ℵ1

and we finish. �7.13

[She87a], [Gro02] and [Mak85] were the major sources for this Chapter.
Coppola [Cop05] has provided a notion ofQ-abstract elementary class which allows
one to give an axiomatic proof including the case of Lω1,ω(Q).





Part 3

Abstract Elementary Classes with

Arbitrarily Large Models



Parts Three and Four addresses two distinct themes in the study of non-
elementary classes. In Part 3, we study abstract elementary classes under a few
additional conditions and try to determine the eventual behavior of the class. The
motivating problem is Shelah’s conjecture that if a class is categorical in arbitrarily
large cardinalities, then it is categorical for all sufficiently large cardinals. Thus, we
assume that each K has arbitrarily large models. Part Four addresses the conjec-
ture that if there are few models in each cardinal then the class must have arbitrarily
large models; it proceeds in a much more specific vein by studying classes defined
in Lω1,ω.

In chapters 8-15 we work under the following strong assumption. We will see
that strong analogs of Morley’s theorem can be proved in this context.

Assumption. K is an abstract elementary class.

(1) K has arbitrarily large models.
(2) K satisfies the amalgamation property and the joint embedding property.

Of course, first order logic logic and homogeneous model theory are special
cases of this situation. But they have far more special properties. Examples which
are not homogeneous include the covers of algebraic groups (see Chapter 3, [Zil03]),
cotorsion theories of modules [BET07, EM90, GT06, Trl], and the Hart-Shelah
examples (Chapter 26, [HS90],[BK]).

Part 3 largely expounds the work of Shelah in [She99] but includes clarifications
and extensions by Grossberg, VanDieren, Hyttinen and the author.

Recall that we say K has the amalgamation property if M ≤ N1 and M ≤ N2 ∈
K with all three in K implies there is a common strong extension N3 completing
the diagram. Joint embedding means any two members of K have a common strong
extension. Crucially, we amalgamate only over members of K; this distinguishes
this context from the context of homogeneous structures.

As we note in Lemma 16.14, it is easy to partition an AEC with the amal-
gamation property into a collection of AEC which each have the joint embedding
property as well. This is an essential, albeit trivial, reduction; it is easy to construct
counterexamples (with sporadic small models) to the main results in this analysis
if the joint embedding hypothesis is dropped.

In Chapter 8, we introduce the crucial notion of a Galois-type. Although this
notion can be defined without assuming amalgamation, it is best-behaved under
that hypothesis. With amalgamation, we have a monster (homogeneous-universal
with respect to strong embeddings) model and the Galois types are the orbits within
this model. Even for classes defined in very nice logics (e.g. Lω1,ω) and which satisfy
amalgamation, the Galois type may differ from the natural syntactic notion (see
Chapter 26). We define saturation and stability for Galois types in Chapter 8 and
prove that categoricity in λ implies Galois-µ-stability for µ < λ.

The notion of a brimful model introduced in Chapter 9 is used in Chapter 10 to
discuss the relationship between special, limit, saturated models and models gen-
erated by sequences of indiscernibles. Limit models are an alternative which apply
in cases where Galois-saturation is vacuous (in LS(K)). There may be limit mod-
els that are not saturated (e.g. in stable but not superstable first order theories).
We discuss three properties (tameness, locality, compactness) that are automatic
for first order syntactic types but problematic for Galois types in Chapter 11. We
defined in Chapter 4 the Hanf number H1 for AEC with vocabulary of a fixed
cardinality. The most important result in Chapter 11 is: if an AEC satisfying our
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general assumption is categorical in λ > H1 then for any µ < cf(λ) it is (χµ, µ)
(weakly) tame for some χµ < H1. (The proof due to Baldwin-Hyttinen substan-
tially simplifies the argument advanced in [She99].)

In Chapter 12, we introduce the appropriate notion of independence for this
context, based on non-splitting and develop its basic properties. In Chapter 13, we
prove the theorem of Grossberg-VanDieren that categoricity in a cardinal and its
successor transfer upwards for tame AEC. Chapter 14 generalizes the techniques
of Keisler and Morley to AEC and invokes the notion of splitting to prove that
if K is categorical in some successor λ > H2 (a larger Hanf number explained in
the introduction to Chapter 14) then it is categorical on the interval [H2, λ]. (This
slightly weakens the claim in [She99].) Finally, in Chapter 15, we use the methods
of Chapter 9, non-splitting and E-M models to analyze a kind of superstability
for this context. We prove that that if K is categorical in λ then for µ less than
λ, the union of < µ+ models that are µ-saturated is also µ-saturated. Assuming
tameness, this yields directly upward categoricity transfer from a successor λ+ with
λ > LS(K). This yields Conclusion 15.13: There is a cardinal µ depending on κ
such that K is an AEC with κK = κ, and K is categorical in some successor
cardinal λ+ > µ, then K is categorical in all cardinals greater than µ.

In the last two Chapters of this Part, we drop our global assumption of amal-
gamation. Chapter 16 explores some results that can be proved without assuming
amalgamation and describes some weakenings of that hypothesis. We show in Chap-

ter 17 that, assuming the weak diamond, if K has few (< 2λ
+

) models of cardinality
λ+ then it has amalgamation in λ. This argument plays a key role in Part 4. The
result also provides a justification for the hypotheses of this Part: chapter 17 shows
eventual categoricity implies eventual amalgamation; the main theme of Part 3 is
a partial converse.





CHAPTER 8

Galois types, Saturation, and Stability

In this chapter we take advantage of the standing assumptions in Part 3, joint
embedding and amalgamation to find a monster model. That is, we give an abstract
account of Morley-Vaught [MV62]. We then define the fundamental notion of Ga-
lois type in terms of orbits of stabilizers of submodels. This allows an identification
of ‘model-homogeneous’ with ‘saturated’. We further show that a λ-categorical
AEC is µ-stable for µ with LS(K) ≤ µ < λ and that the model in the categoricity
cardinal is Galois-saturated when λ is regular.

Definition 8.1. (1) M is µ-model homogeneous if for every N ≺K M
and every N ′ ∈ K with |N ′| < µ and N ≺K N ′ there is a K-embedding
of N ′ into M over N .

(2) M is strongly µ-model homogeneous if it is µ-model homogeneous and for
any N,N ′ ≺

K
M and |N |, |N ′| < µ, every isomorphism f from N to N ′

extends to an automorphism of M .
(3) M is strongly model homogeneous if it is strongly |M |-model homoge-

neous.

Exercise 8.2. Show that since K has the joint embedding property, if M is
µ-model homogeneous, N ∈ K and |N | < µ there is a K-embedding of N into M

To emphasize, this differs from the homogeneous context (Definition 4.34) be-
cause the N must be in K. Note that if M is µ-model homogenous, it embeds
every model in K of cardinality ≤ µ. When µ = LS(K), the notion of µ-model
homogeneity is problematic; all models of cardinality µ may be trivially µ-model
homogenous. For µ > LS(K), it is easy to show:

Lemma 8.3. If M1 and M2 have cardinality µ and are µ-model homogeneous
with µ > LS(K) then M1 ≈M2.

Proof. If M1 and M2 have a common submodel N of cardinality < µ, this is
an easy back and forth. Now suppose N1, (N2) is a small submodel of M1, (M2)
respectively. By the joint embedding property there is a small common extension
N of N1, N2 and by model homogeneity N is embedded in both M1 and M2. �8.3

Note that in the absence of joint embedding, to get uniqueness we would (as
in [She87a]) have to add to the definition of ‘M is model homogeneous’ that all
models of cardinality < µ are embedded in M .

Exercise 8.4. Suppose M is µ-model homogeneous with |M | = µ, and for each
i < 3 Ni ∈ K and |Ni| < µ. Suppose further that N0 ≺ N1, N2 ≺ M , and f is an
isomorphism between N1 and N2 over N0. Then f extends to an automorphism of
M .

67
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An easy induction shows:

Theorem 8.5. If µ∗<µ∗ = µ∗ (which implies µ∗ is regular) and µ∗ ≥ 2LS(K)

then there is a model M of cardinality µ∗ which is strongly model homogeneous and
in particular model homogeneous.

We call the model M constructed in Theorem 8.5, the monster model. From
now on all, structures considered are substructures of M with cardinality < µ∗.
The standard arguments for the use of a monster model in first order model the-
ory ([Hod93, Bue91] apply here. Although the existence of a monster model as
described above requires some extension of set theory (e.g. the existence of arbi-
trarily large strongly inaccessible cardinals or the GCH), all the arguments can be
reworked to avoid this assumption. One method of reworking is to show any model
M can be embedded in a strongly |M |-homogeneous model. This construction is
fairly routine but the result is so basic to later discussions that we give a lengthy
sketch of the argument in the following exercise.

Exercise 8.6. Recall that we assume K has the amalgamation property. Show
that for each λ, and each model M of size λ there is a strongly λ-model homogeneous
model N containing M . As in Proposition 2.2.7 of [Bue91] follow the next few
steps.

(0) Without loss of generality, we can apply Exercise 8.4 iteratively to replace
M by a possibly larger model which is λ-model homogeneous to guarantee the first
clause of strong λ-model homogeneity.

(1) Given M and f mapping M1 into M , with M1 a substructure of M of size
λ, there is an N extending M and g extending f such that g :N 7→ N .

(That N is the domain of g is not a misprint; construct g and N via an ω-chain
using amalgamation as formulated in Exercise 4.11.)

(2) Given M and f :M1 7→M , with M1 ≺K M of size λ, there is N extending
M and g an automorphism of N extending f .

This is a back-and-forth ω-chain using (1)
(3) Given M there is N such that any f : M1 7→ M of size λ extends to an

automorphism of N . Enumerate all such functions f and apply (2) repeatedly.
(4) The full result is then obtained by an ω-chain from (3).

We now define the notion of a Galois type; the most general definition is an
equivalence relation on triples (M,a,N) where M is a base model and a ∈ N −M .
We will quickly show that in the presence of amalgamation, the classes of this
equivalence relation are represented as orbits of subgroups of the automorphism
group of the monster model. We use our own notation but the relation to that of
Shelah in [She01, She99] should be clear.

Definition 8.7. (1) For M ≺
K

N1 ∈ K, M ≺
K

N2 ∈ K and a ∈
N1 − M , b ∈ N2 − M , write (M,a,N1) ∼AT (M, b,N2) if there exist
strong embeddings f1, f2 of N1, N2 into some N∗ which agree on M and
with f1(a) = f2(b).

(2) Let ∼ be the transitive closure of ∼AT (as a binary relation on triples).
(3) We say the Galois type a over M in N1 is the same as the Galois type a

over M in N2 if (M,a,N1) ∼ (M, b,N2).

Exercise 8.8. If K has amalgamation, ∼AT is an equivalence relation and
∼=∼AT .
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And now the homogeneity of the monster model yields a more concrete repre-
sentation.

Lemma 8.9. Suppose K has amalgamation and joint embedding. (M,a,N1) ∼
(M, b,N2) if and only if there are embeddings g1 and g2 of N1, N2 into M that agree
on M and such that for some α ∈ autM(M), α(g1(a)) = g2(b).

Proof: For the non-trivial direction, apply strong |M |-model homogeneity to
g−1
1 ◦ g2. �8.9

Lemma 8.9 justifies the following equivalent definition of Galois type (when K

has amalgamation and joint embedding).

Definition 8.10. Let M ∈ K, M ≺K M and a ∈ M. The Galois type of
a over M (∈ M) is the orbit of a under the automorphisms of M which fix M .
Denote it by tp(a/M).

We freely use the phrase, ‘Galois type of a over M ’, dropping the (∈ M) since
M is fixed and any M and a are contained in M. We usually use Galois type
in the sense of Definition 8.10. But examples are sometimes easier to verify with
Definition 8.7; we study the situation when amalgamation has not been assumed
in Chapter 16.

Definition 8.11. The set of Galois types over M is denoted S(M).

Note that since M is homogeneous, S(M) depends only on the isomorphism
type of M and not on the particular strong embedding of M into M. We could
define in the same way S(A) for an arbitrary subset of A; this notion is not an
isomorphism invariant of A but depends on the embedding of A into M .

Definition 8.12. Let M ⊆ N ⊂ M and a ∈ M. The restriction of tp(a/N) to
M , denoted tp(a/N) ↾M is the orbit of a under autM(M).

We say a Galois type p over M is realized in N with M ≺
K

N ≺
K

M if
p ∩N 6= ∅.

Definition 8.13. The model M is µ-Galois saturated if for every N ≺
K

M
with |N | < µ and every Galois type p over N , p is realized in M .

Again, a priori this notion depend on the embedding of M into M; but with
amalgamation it is well-defined. The notion is badly behaved in LS(K); it is easy
to have non-isomorphic saturated models in LS(K). For this reason some authors
require in the definition that Galois saturated models have cardinality greater than
LS(K).

The following model-homogeneity=saturativity theorem was announced with
an incomplete proof in [She87b]. Full proofs are given in Theorem 6.7 of [Gro02]
and .26 of [She01]. Here, we give a simpler argument making full use of the
amalgamation hypothesis. In Chapter 16, we discuss what can be done with weaker
amalgamation hypotheses.

Theorem 8.14. For λ > LS(K), The model M is λ-Galois saturated if and
only if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois saturated. Let
M ≺K M be λ-saturated. We want to show M is λ-model homogeneous. So fix
M0 ≺K M and N with M0 ≺K N ≺K M. Say, |N | = µ < λ. We must construct
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an embedding of N into M over M0. Enumerate N −M0 as 〈ai : i < µ〉. We will
define fi for i < µ an increasing continuous sequence of maps with domain Ni and
range Mi so that M0 ≺

K
Ni ≺K

M, M0 ≺
K

Mi ≺K
M and ai ∈ Ni+1. The

restriction of
⋃
i<µ fi to N is the required embedding. Let N0 = M0 and f0 the

identity. Suppose fi has been defined. Choose the least j such that aj ∈ N −Ni.

By the model homogeneity of M, fi extends to an automorphism f̂i of M. Using

the saturation, let bj ∈ M realize the Galois type of f̂i(aj) over Mi. So there is

an α ∈ autM which fixes Mi and takes bj to f̂i(aj). Choose Mi+1 ≺
K

M with

cardinality µ and containing Mibj . Now f̂−1
i ◦ α maps Mi to Ni and bj to aj . Let

Ni+1 = f̂−1
i ◦ α(Mi+1) and define fi+1 as the restriction of α−1 ◦ f̂i to Ni+1. Then

fi+1 is as required. �8.14

Remark 8.15. Analysis of the preceding argument shows that the notion of
Galois type has been defined precisely so that assuming amalgamation, Galois-
saturated models of the same cardinality are isomorphic. If one has amalgamation
over sets, then one can formulate this condition in terms of first order types– the
classical notion of homogeneity. But once the domains are restricted to models,
trying to prove with no further hypotheses that models saturated for such types
are isomorphic leads one (or at least led Shelah) to the current formulation of Galois
types.

The identification in Theorem 8.14 allows us to develop many properties of
Galois-saturated models similar to those in first order model theory. In particular
they are homogenous with respect to Galois types over models. David Kueker noted
the necessity for later arguments of making these points explicit and provided the
proof below of Corollary 8.17.

Exercise 8.16. Suppose M is µ-Galois-saturated.

(1) Every N ∈ K of cardinality at most µ can be strongly embedded in M .
(2) If M0 ≺K M , M0 ≺K N , |M0| < µ, and |N | ≤ µ there is a strong

embedding of N into M over M0.

Corollary 8.17. Let M be Galois- saturated, LS(K) < |M|. Let M ′ ≺K M ,
with LS(K) < |M′| < |M|. Assume a, b ∈ M have the same galois-type over M ′.
Then there is an automorphism of M fixing M ′ and taking a to b.

Proof. Using Definition 8.10, let h be an automorphism of the monster fixing
M ′ and taking a to b. Pick M ′′ such that M ′ ≺K M ′′ ≺K M , a ∈ M ′′, and
|M ′′| < |M |. Let N = h[M ′′]. (Note that b ∈ N and M ′ ≺

K
N .) It suffices to

show that there is a K-embedding g of N into M fixing M ′ and b. As, then we
can let f be the restriction to M ′′ of the composition of h followed by g; f fixes M ′

and maps a to b, and by Exercise 8.4 f extends to the desired automorphism of M .
Now, to get g, pick M∗ such that M ′ ≺K M∗ ≺K M , (M ∩N) ⊆M∗, |M∗| = |N |
and pick N∗ such that N ≺K N∗, M∗ ⊆ N∗, and |N∗| = |N |. Then the proof of
Theorem 8.14 yields g∗ embedding N∗ into M over M∗ whose restriction to N is
the required g. �8.17

We turn now to defining Galois stability and deriving stability from categoricity.
Using the Presentation Theorem and Morley’s omitting types theorem, we can find
Skolem models over sets of indiscernibles in an AEC. Recall Notation 6.2.1.
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Theorem 8.18. If K is an abstract elementary class in the vocabulary τ , which
is represented as a PCΓ class witnessed by τ ′, T ′,Γ that has arbitrarily large models,
there is a τ ′-diagram Φ such that for every linear order (I,<) there is a τ ′-structure
M = EM(I,Φ) such that:

(1) M |= T ′.
(2) I is a set of τ ′-indiscernibles in M .
(3) M ↾ τ is in K.
(4) If I ′ ⊂ I then EMτ (I

′,Φ) ≺K EMτ (I,Φ).

Proof. The first three clauses are a direct application of Lemma A.3.1 , Morley’s
theorem on omitting types. See also problem 7.2.5 of Chang-Keisler [CK73]. It is
automatic that EM(I ′,Φ) is an τ ′-substructure of EM(I,Φ). The moreover clause
of Theorem 4.15 allows us to extend this to EMτ (I

′,Φ) ≺
K

EMτ (I,Φ). �8.18

We define the notion of stability both for a structure and for an AEC. Applying
the presentation theorem we are able to get a Galois-stable model analogously to
the first order case. Using amalgamation, we are able to move from a stable model
to a stable class.

Definition 8.19. (1) Let N ⊂ M. N is λ-Galois-stable if for every M ⊂
N with cardinality λ, only λ Galois-types over M are realized in N .

(2) K is λ-Galois-stable if M is. That is autM(M) has only λ orbits for every
M ⊂ M with cardinality λ.

Since we are usually working in an AEC, we will frequently abuse notation and
write stable rather than Galois-stable. This definition does not depend on a choice
of monster model. For a given λ any pair of strongly λ′-model homogeneous models
with λ′ > λ will agree on the number of λ-Galois types.

Claim 8.20. If K is λ-categorical, the model M with |M | = λ is σ-Galois
stable for every σ < λ.

Proof. Represent M as EM(λ,Φ). For any µ < λ and any submodel N of size
µ, we show M realizes only µ-types over N . For, N ⊂ EM(K,Φ) for some K, and
any a ∈M is given as a term σ(k, j). There are only µ choices for the isomorphism
type of Kj because λ is well ordered. Suppose j and j′ have the same order type
over K, a = σ(k, j) and a′ = σ(k, j′). Then

EM(K,Φ), a, EM(Kj,Φ) ∼ EM(K,Φ), a′, EM(Kj′,Φ).

By Definition 8.7, a and a′ realize the same Galois type over N . �8.20

Theorem 8.21. If K is categorical in λ, then K is σ-Galois-stable for every
σ with LS(K) ≤ σ < λ.

Proof. Suppose K is not σ-stable for some σ < λ. Then by Löwenheim-Skolem
and amalgamation, there is a model N of cardinality σ+ which is not σ-stable. Let
M be the σ-stable model with cardinality λ constructed in Claim 8.20. Categoricity
and joint embedding imply N can be embedded in M . The resulting contradiction
proves the theorem. �8.21

Remark 8.22. We don’t need the full assumption that K has amalgamation;
it would suffice to assume amalgamation on K<λ.

While we state the following result for λ ≥ LS(K), note that in the Löwenheim
number, saturation may be a trivial notion (if there are no smaller models).
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Corollary 8.23. Suppose K is stable in λ ≥ LS(K).

(1) If λ is regular, there is a saturated and so model homogeneous model of
power λ.

(2) For general λ, there is cf(λ)-saturated model of power λ.
(3) If K is categorical in a regular κ, the categoricity model is saturated.

Proof. Choose in Mi ≺
K

M using λ-stability and Löwenheim-Skolem, for
i < λ so that each Mi has cardinality ≤ λ and Mi+1 realizes all types over Mi. By
regularity, it is easy to check that Mλ is saturated; a standard modification does
parts 2 and 3. �8.23

This result is from [She99]; a different argument is provided in [Bal05].
Much is the same as in the first order case, but there are subtle differences.

Categoricity implies stability but only below the categoricity cardinal. We have a
good notion of saturated model but only for Galois types over models and only
above LS(K).



CHAPTER 9

Brimful Models

We continue to assume the amalgamation property and the existence of arbi-
trarily large models and thus can work in the monster model. We introduce the
notion of a brimful model and prove some elementary properties of such models.
They will play an important role in Chapters 10, 12, and 15

Since we deal with reducts, we will consider several structures with the same
universe; it is crucial to keep the vocabulary of the structure in mind. The AEC
under consideration has vocabulary τ ; it is presented as reducts of models of theory
T ′ (which omit certain types) in a vocabulary τ ′. In addition, we have the class of
linear orderings (LO) in the background.

We really have three AEC’s: (LO,⊂), (K ′,≺
K

′), which is the models of T ′

with ≺
K

′ as τ ′-closed subset, and (K,≺K). We are describing the properties of

the EM-functor between (LO,⊂) and K
′ or K. K

′ is only a tool that we are
singling out to see the steps in the argument. The following definitions hold for any
of the three classes and I write ≤ for the notion of substructure. In this chapter I
am careful to use ≤ when discussing all three cases versus ≺K for the AEC.

Definition 9.1. M2 is (relatively) σ-universal over M1 in N if M1 ≤M2 ≤ N
and whenever M1 ≤M ′

2 ≤ N , with |M1| ≤ |M ′
2| ≤ σ, there is a ≤-embedding fixing

M1 and taking M ′
2 into M2.

Remark 9.2. The restriction to M ′
2 ≤ N is crucial. We introduce in Defi-

nition 10.4 a stronger notion, σ-universal, where this restriction is omitted. The
notions are equivalent if N is saturated. But we use the weaker notion as a tool to
establish stability and to find saturated models.

I introduce one term for shorthand. It is related to Shelah’s notion of brimmed
in [She0x] but here the brimful model is bigger than the models it is universal over
while brimmed models may have the same cardinality. (Brimful comes from the
English expression, ‘brim full’; it refers to a bucket which is completely full (to the
brim).)

Definition 9.3. M is brimful if for every σ < |M |, and every M1 ≤ M with
|M1| = σ, there is an M2 ≤ M with cardinality σ that is σ-universal over M1 in
M .

The next notion makes it easier to write the proof of the lemma that follows it.

Notation 9.4. Let J ⊂ I be linear orders. We say a and b in I realize the
same cut over J and write a ∼J b if for every j ∈ J , a < j if and only if b < j.

Exercise 9.5. Prove the order type (otp) of the lexicographic linear order on
I = λ<ω is neither dense nor well-founded.
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Claim 9.6 (Lemma 3.7 of [KS96]). The lexicographic linear order on I = λ<ω

is brimful.

Proof. Let J ⊂ I have cardinality θ < λ. Without loss of generality we can
assume J = A<ω for some A ⊂ λ. For any σ ∈ I let σ∗ be σ ↾n for the least n such
that σ ∼J σ ↾n. Then for any τ , σ ∼J τ if and only if σ∗ ∼J τ∗. Then the cut of A
is determined by σ ↾(n−1) and the place of σ(n−1) in A. Thus there are only θ cuts
over J realized in I. For each cut Cα, α < θ, we choose a representative σα ∈ I−J
of length n such that σα ↾ (n− 1) ∈ J , so Cα contains {σα τ̂ : τ ∈ λ<ω}. We can
assume any J∗ extending J is J∗ = B<ω for someB ⊂ λ, say with otp(B) = γ < θ+.
Thus, the intersection of J∗ with a cut in J is isomorphic to a subset of γ<ω. We
finish by noting for any ordinal with |γ| = θ, γ<ω can be embedded in θ<ω. Thus,
the required θ-universal set over J is J ∪ {σα τ̂ :τ ∈ θ<ω, α < θ}.

Qing Zhang has provided the following elegant argument for the last claim.
First show by induction on γ there is a map g embedding γ in θ<ω. (E.g. if
γ = limi<θ γi, and gi maps γi into θ<ω , let for β < γ, g(β) = î gi(β) where
γi ≤ β < γi+1.) Then let h map γ<ω into θ<ω by, for σ ∈ γ<ω of length n, setting
h(σ) = 〈g(σ(0)), . . . , g(σ(n− 1))〉. �9.6

The argument for Claim 9.6 yields:

Corollary 9.7. Suppose µ < λ are cardinals. Then for any X ⊂ µ<ω and
any Y with X ⊆ Y ⊂ λ<ω and |X | = |Y | < µ, there is an order embedding of Y
into µ<ω over X.

Exercise 9.8. For an ordinal γ, let γω∗ denote the functions from ω to γ with
only finitely many non-zero values ([Ros82]). Show γω∗ is a dense linear order
and so is not isomorphic to γ<ω. Vary the proof above to show γω∗ is brimful.

Exercise 9.9. Show that every decreasing chain in λ<ω is countable.

Since every τ ′-substructure N of EM(I,Φ) is contained in a substructure
EM(I0,Φ) for some subset I0 of I with |I0| = |N |, we have immediately:

Claim 9.10. If I is brimful as a linear order, EM(I,Φ) is brimful as an τ ′-
structure.

Now there are some subtle uses of the ‘coherence axiom’: M ⊆ N ≺K N1 and
M ≺

K
N1 implies M ≺

K
N .

Claim 9.11. If I is brimful as linear order, EMτ (I,Φ) is brimful as a member
of K.

Proof. Let M = EM(I,Φ); we must show M ↾ τ is brimful as a member of
K. Suppose M1 ≺K M ↾ τ with |M1| = σ < |M |. Then there is N1 = EM(I ′,Φ)
with |I ′| = σ and M1 ⊆ N1 ≤ M . By Theorem 8.18.5, N1 ↾ τ ≺

K
M ↾ τ . So

M1 ≺K N1 ↾ τ by the coherence axiom. Let M2 have cardinality σ and M1 ≺K
M2 ≺

K
M ↾ τ . Choose a τ ′-substructure N2 of M with cardinality σ containing N1

and M2. Now, N2 can be embedded by a map f into the σ-universal τ ′-structure
N3 containing N1 which is guaranteed by Claim 9.10. But f(N2) ↾ τ ≺K N3 ↾ τ by
the coherence axiom so N3 ↾ τ is the required σ-universal extension of M1. �9.11

Note that this argument does not address extensions M2 of M1 unless they are
already embedded in M ↾ τ ; we weaken that hypothesis in the next chapter.



CHAPTER 10

Special, Limit and saturated models

In this chapter we consider the relations among special, limit, saturated and
Ehrenfeucht-Mostowski models. Making heavy use of the Ehrenfeucht-Mostowski
models we establish the uniqueness of limit models in µ (though not over their base)
if LS(K) < µ < λ and λ is a regular categoricity cardinal. These are the key tools
for erecting a theory of superstability in Chapter 15.

Even for stable first order theories there are no saturated models in cardinalities
with cofinality κ(T ). The notion of a special model as a union of saturated models
was developed in [MV62] (see also [CK73, Hod93]) to address the need to use
GCH to find saturated models. For regular cardinals this problem is easily solved
for stable theories but special models provide a substitute for saturation in limit
cardinals. For stable AEC with amalgamation, we develop limit models [She87a,

SV99, Van06] as an analog to saturation. If LS(K) < µ < λ and λ is a regular
categoricity cardinal, we will see that limit models in µ are saturated and thus
unique. Note however, that even in the case of a countable first order stable theory;
when λω = λ, there are saturated models but there are limit models which are not
saturated. A saturated model M is |M |-homogeneous but not |M |+-homogeneous;
in even the simplest situations, a saturated model can be embedded in itself in
various ways. For example, if T is the first order theory of successor on the integers,
a model consists of many copies of the integers. The theory is categorical in every
uncountable power. Let M be the model of power ℵ1; it can be embedded in itself
with any ‘codimension’ up to ℵ1. ‘M is a limit model over N ’ captures some of the
properties of such an embedding with maximal codimension without introducing a
notion of dimension of types.

Finally, the notion of saturated model is useless for studying models of cardinal-
ity LS(K); every model may be trivially saturated (if there are no smaller models).
Limit models provide a substitute for saturation in LS(K). We begin with the
definition of a special model and develop some properties of special models.

Definition 10.1. (1) Let |N | = |M | = µ. For any ordinal α, we say
N is an α-special extension of M if N =

⋃
Mi where 〈Mi : i < µ × α〉

is a continuous increasing chain with M0 = M , and Mi+1 is a strong
extension of Mi which realizes all 1-Galois types over Mi.

(2) We say M is λ-special where λ is a singular cardinal if M is union of a
continuous increasing chain 〈Mi : i < λ〉 so that each Mi has cardinality
< λ and Mi+1 realizes all types over Mi.

Shelah [She99] writes M <1
µ,α N for our n is α-special over M . He also writes

M <0
µ,α N

′ if M ≤0
µ,α N and N ≺K N ′. We noted in Theorem 8.23 that if K is

categorical in a regular cardinal, the categoricity model is saturated; for singular
λ > LS(K) we have the obvious weakening.
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Corollary 10.2. Suppose K is categorical in λ and λ is singular. The model
of power λ is λ-special.

Proof. Choose in Mi ≺K
M using < λ-stability and Löwenheim-Skolem, for

i < λ so that each Mi has cardinality < λ and Mi+1 realizes all types over Mi.
�10.2

Using our standard amalgamation hypothesis, it is routine to show:

Lemma 10.3. If K is stable in µ and α < µ+, every M of cardinality µ has an
α-special extension.

To study limit models we replace the relative notion of σ-universality from
Chapter 9 by the following unrestricted notion of σ-universality, which was also
introduced by Shelah (cf. [She99]). The important case is |M1| = |M2|.

Definition 10.4. Let M1,M2 ∈ K. M2 is σ-universal over M1 if M1 ≺K M2

and whenever M1 ≺
K

M ′
2, with |M1| ≤ |M ′

2| ≤ σ, there is a K-embedding fixing
M1 and taking M ′

2 into M2.

The uniqueness of α-special models (Lemma 10.5) is a bit more intricate than
their existence. The argument is a back and forth, similar to Theorem 8.14; the
chain has length µ × α precisely to give enough space for this back and forth.
Lemma 10.5.1 is asserted without proof in 1.15 of [She0x]; another exposition of
the result is in [GV06b].

Lemma 10.5. (1) If M ∈ Kκ and M1 is 1-special over M , M1 is κ-
universal over M .

(2) If α is a limit ordinal and N and N ′ are both α-special over M then they
are isomorphic over M .

Proof. Part 1). As M1 is 1-special over M , Definition 10.1 tells us M1 is
a continuous union for i < κ of Mi with M0 = M , and each Mi+1 realizes all
Galois types over Mi. Now fix any strong extension N of M with |N | = κ. We
will construct a K-isomorphism f from M1 into an extension N1 of N with N ⊂
N ≺K N1, where N denotes the range of f . By the coherence axiom f−1 ↾N is
the required map.

To construct f , enumerate N −M as 〈ai : i < κ〉. We construct a continuous
increasing sequence of maps fi. Let f0 = 1M . Suppose we have defined fi, Ni and
fi taking Mi onto Ni. (Note Ni may not be a submodel of N .) Let j be least with
aj 6∈ Ni. By the definition of special f−1

i (tp(aj/Ni)) ∈ S(Mi) is realized by some
b ∈Mi+1. So there is an automorphism g of M extending fi and mapping b to aj .
Let fi+1 be g ↾Mi+1 and Ni+1 = f(Mi+1). Finally f is the union of the fi and N1

is the union of the N ′
i .

For part 2), use the universality to construct a back and forth mapping Mγ

into Nγ+1 for even successor γ and vice versa for odd γ. �10.5

Now we introduce limit models as in [She87a, SV99, Van06]. The following
notion is most useful when δ is a limit ordinal.

Definition 10.6. Suppose M = 〈Mi : i < δ〉 is a sequence of models of cardi-
nality µ, and δ ≤ µ+ with Mi+1 µ-universal over Mi.

(1) We call such a sequence a (µ, δ)-chain and, when δ is a limit ordinal, Mδ

a (µ, δ)-limit model.
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(2) M is a proper limit model if for some M with
⋃
M = M each Mi+1 is a

proper universal extension of Mi.

We note one fine point; there may be maximal limit models. Indeed, any
maximal model is a limit model by a constant chain. But rather than define such
objects away we show they are unimportant.

We say p ∈ S(M) is non-algebraic if is not realized in M .

Lemma 10.7. If M is a limit model and some p ∈ S(M) is a non-algebraic type
then M is a proper limit model.

Proof. If M is a limit model but not a proper limit model, for some δ, M =
Mδ+k = Mδ+k+1. But then M has no proper extension and so there is no non-
algebraic p ∈ S(M). �10.7

Note a simple back and forth argument shows that the isomorphism type of a
limit model over M depends only on the cofinality of δ. In particular,

Lemma 10.8. If N and N ′ are respectively a δ and a |M | × δ limit model over
M , where δ is a limit ordinal less than µ+, then N and N ′ are isomorphic over M .

We will show quickly that limit models are the same as special models and two
towers of the same limit length are isomorphic. More strongly we will show that
for µ less than the categoricity cardinal if α, α′ < µ+ are limit ordinals then an
α-limit and an α′-limit over a saturated M are isomorphic, although our argument
does not show isomorphism over M . Our proof proceeds by showing they can
both be represented as EM models and giving a simple test for the isomorphism of
EM-models.

Note that Theorem 10.9 applies with κ = LS(K); later results involving satu-
ration are proved only above the Löwenheim number.

Theorem 10.9. Let K be κ-Galois stable with the amalgamation property.
Suppose |M | = κ and α ≤ κ+.

(1) An α-special model over M is an (|M |, α)-limit model.
(2) If N and N ′ are α-special and (|M |, |M | × α)-limit over M respectively,

then they are isomorphic over M .
(3) If α is a limit ordinal and N is α-special over both M and M ′ and f is

an isomorphism from M onto M ′, then f extends to an automorphism of
N .

Proof. Part 1) is an easy induction from Lemma 10.5.1 and Part 2) follows
from Lemma 10.5 and Lemma 10.8. Part 3) is just a translation of Lemma 10.5.2).
�10.9

Now we show that we can also represent limit models as Ehrenfeucht-Mostowski
models and this will enable us to show the uniqueness of limit models.

Notation 10.10. For any diagram Ψ in the vocabulary τ with Ehrenfeucht-
Mostowski τ-models EM(I,Ψ) and any τ ′ ⊆ τ , EMτ ′(I,Ψ) denotes the reduct of
EM(I,Φ) to τ ′. Let τ0 be the vocabulary of K. Fix the EM-diagram Φ as in
Theorem 8.18 and Definition 6.2.1.

We need one key technical fact asserted by Shelah [She99] and given a clear
proof by Hyttinen; it provides further sufficient conditions for finding saturated
models.
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Lemma 10.11. Suppose Φ satisfies for every linear order I, EMτ0(I,Φ) ∈ K.
If K is λ-categorical for a cardinal λ then for every J with |τ(Φ)| ≤ LS(K) < |J| <
cf(λ) such that for each θ < |J |, J contains an increasing sequence of cardinality
θ+, M = EMτ0(J,Φ) is Galois-saturated.

Proof. For each θ < |J |, we prove M is θ+-saturated. Choose an increasing
sequence J0 of J of length θ+ and form J ′ by inserting a copy of λ immediately after
the sequence. By the categoricity and since θ+ ≤ cf(λ), applying Corollary 8.23.2,
N = EMτ0(J

′,Φ) is θ+-saturated. Now let M0 ≺K M have cardinality θ and let
q ∈ S(M0). Then q is realized in N by some ρ(j, j′) where j ∈ J and j′ is in the
new copy of λ. Choose K ⊂ J with |K| = θ and M0j ⊆ EMτ0(K,Φ). Since J0 has
length θ+, we can find j′′ ∈ J0 such that Kjj′ and Kjj′′ have the same order type.
Thus ρ(j, j′′) ∈M realizes q. �10.11

The following slightly more general result is stated in [She00b].

Exercise 10.12. Show the same result holds if we assume that J has descending
sequences of length θ+ for each θ.

Exercise 10.13. Show the argument generalizes to show under the same cate-
goricity hypothesis that if J is a linear order that contains an increasing sequence
of cardinality θ+ for each θ < µ for some µ ≤ |J |, then M = EMτ0(J,Φ) is
µ-Galois-saturated.

Here is an immediate application of Lemma 10.11. Many results in the next few
chapters have the hypothesis that K is categorical in a regular cardinal λ. The role
of the regularity is to guarantee that the unique model in the categoricity cardinal
is saturated (Lemma 8.23).

Corollary 10.14. Suppose K is an AEC with vocabulary τ that is categorical
in λ and λ is regular.

(1) If LS(K) < µ ≤ λ then Mµ = EMτ (µ
<ω,Φ) is saturated and, in particu-

lar, it is µ-model homogeneous.
(2) If EMτ (I0,Φ) is µ-saturated for some ordering I0 that satisfies the hy-

potheses of Lemma 10.11 and I ′0 is an extension of I, then EMτ (I
′
0,Φ) is

µ-saturated.
(3) Suppose K is λ-categorical for regular λ. If κ is a cardinal with κ ≤ λ,

then EMτ (κ,Φ) is saturated.

Proof. Just note that each of the orderings satisfies the conditions of Lemma 10.11
or Exercise 10.13 . �10.14

In [Bal05], we proved the existence of saturated models in limit cardinals below
a regular categoricity cardinal using the brimful models studied in Chapter 9. Now
we turn to the connections between limit models and EM-models. A straightforward
back and forth yields.

Lemma 10.15. Let δ be a limit ordinal with δ < µ+. Suppose M and N are
(µ, µ × δ)-limits with M0 ≈ N0. Then M and N are term by term isomorphic on
the subsequence of models indexed by the µ× i for i < δ.

Now we get a stronger representation of limit models below the categoricity
cardinal. Note that here and below, we sometimes state a result as true all µ < λ
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where λ is regular while the proof yields the stronger statement, true for arbitrary
λ and all µ < cf(λ); we may apply the stronger version.

Lemma 10.16. Suppose K is λ-categorical (with λ regular and µ < λ). Let δ
be a limit ordinal with δ < µ+ and I = µ<ω.

(1) 〈EM(I × α,Φ):α < δ〉 is a (µ, δ)-chain over EM(I,Φ).
(2) For any α < µ+, EM(I × α,Φ) ≈ EM(I × µ× α,Φ).
(3) Every (µ, δ)-chain over M0 ≈ EM(I,Φ) is isomorphic to EM(I × δ,Φ).
(4) Finally, if M is δ-special over M0 ≈ EM(I,Φ), M ≈ EM(I × δ,Φ).

Proof. First we show 1). For each α, I × α is an initial segment of I × λ so if
X ⊂ I×α, and X ⊂ Y ⊂ I×λ, with |Y | = µ, Y −X is the disjoint union of a subset
Y0 of (I×α)−X and a subset Y1 with cardinality µ of I×λ which lies entirely above
I × α. By the universality over the empty set of µ<ω (see the proof of Claim 9.6),
the second set can be embedded in the α+1st copy of µ<ω. But since EM(I×λ,Φ)
is saturated (by categoricity) this implies EM(I×(α+1),Φ) is actually µ-universal
over EM(I × α,Φ). This strengthens the conclusion of Claim 9.11.

Now we consider part 2). For each i < µ, let Ii = {î σ : σ ∈ µ<ω}. Since
µ<ω is isomorphic to Ii by the map σ 7→ î σ; so I ≈ I × µ. This implies that for
any α < µ+, EM(I × α,Φ) ≈ EM(I × µ × α,Φ). Part 3) is now immediate from
Lemma 10.15 and Part 1). And by part 3) and part 2) again we see that if M is
α-special over M0, then M ≈ EM(I × µ× α,Φ) ≈ EM(I × α,Φ). �10.16

Here are two very useful applications of this analysis.

Theorem 10.17. Suppose K is λ-categorical for a regular cardinal λ. Suppose
LS(K) < µ < λ, |M | = µ and M ′ is a (µ, α) limit model over M where α < µ+ is
a limit ordinal. Then M ′ is saturated.

Thus, if α, α′ < µ+ are limit ordinals and N,N ′ are (µ, α) and (µ, α′) limits
over M , then N and N ′ are isomorphic.

Proof. Without loss of generality, invoking Lemma 10.8, we replace α by µ×α.
The first three terms of the sequence are M,M1,M2. By Corollary 10.14, there is
a saturated model M ′

0 ≈ EM(Iµ,Φ) of cardinality µ, which again without loss of
generality extends M . Since M1 is universal over M , we can take M ′

0 ≺K M1.
Moreover, we can assume M2 is universal over M ′

0. (Let N be any strong extension
of M ′

0. By amalgamation let N ′ be a (literal) extension of M1 with N strongly
embedded in N ′. The universality of M2 over M1 gives an embedding of N into
M2 over M ′

0. Now we replace the original sequence by one beginning with M ′
0,M2;

clearly the limit model is the same. By Lemma 10.16.3, M ′ can be represented
as EM(I × α,Φ). Since I satisfies the hypothesis of Lemma 10.11, so does I × α.
Thus,M ′ is saturated. We conclude the isomorphism by the uniqueness of saturated
models. �10.17

Shelah (6.5.3 of [She99]) asserts that any two limit models over a model M0

are isomorphic over M0. The proof in [She99] only shows saturation as above.
Lemma 4.8 of [She0x] yields the stronger result but I have not worked out the
exact hypotheses. Grossberg, VanDieren, and Villaveces in [GVV] have clarified
this situation. To state their work we need to describe certain refinements of the
disjoint amalgamation property (Definition 4.10.ii)).

Definition 10.18. An AEC (K,≺K) is said to have the µ-disjoint amalga-
mation property over limit models if M1 and M2 are ≺K -extensions of the limit
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model M and all three models have cardinality µ then M1 and M2 can be disjointly
amalgamated over M .

The following extension of Example 4.14 illustrates the distinction between
µ-dap and µ-dap over limit models.

Example 10.19. Let (K,≺
K

) be the collection of all infinite well-orders of
order type less than ω1 with ≺K as initial segment. Add a second sort which is a
model of pure equality and use elementary submodel on this sort.

(1) LS(K) = ℵ0

(2) K has the amalgamation property
(3) K is not ω-stable (Kueker).
(4) K does not have ℵ0-dap.
(5) K does have ℵ1-dap over limit models.
(6) K has ℵ1 models of each infinite cardinality.

Suppose (K,≺K) has the ap and joint embedding properties and arbitrarily
large models. If (K,≺

K
) is categorical in λ then it has µ-dap over limit mod-

els for µ < λ. This is established by an Ehrenfeucht-Mostowski argument under
somewhat weaker hypotheses in [Van02]. The argument makes essential use of the
restriction to limit models. But it remains an open question to find a categori-
cal AEC (with arbitrarily large models, amalgamation and joint embedding) that
fails disjoint amalgamation over arbitrary models. To understand the hypothesis
κ(K, µ) = ω of the next theorem read Definition 15.1; the hypothesis is a supersta-
bility condition analogous to ‘no infinite forking chains’. The main result of [GVV]
(slightly reformulated) says:

Theorem 10.20 (Grossberg-VanDieren-Villaveces). Suppose (K,≺K) is an
AEC that has amalgamation and joint embedding in µ and

(1) K is µ-stable,
(2) K has µ-dap over limit models,
(3) κ(K, µ) = ω,

then (K,≺K) has uniqueness of limit models in µ in the following strong sense. If
M1 and M2 are limit models over M (all with cardinality µ) then M1 is isomorphic
to M2 over M .

This work is notable, in particular, because it works entirely in the context
of a ‘stability calculus’; here splitting plays the role of non-forking in first order
theories. The proof uses notions of strong types, reduced towers, splitting etc. and
does not explicitly invoke EM-models. However, to conclude uniqueness of limit
models in the strong sense from categoricity requires very significant use of the
Ehrenfeucht-Mostowski technology to establish the hypotheses of Theorem 10.20.

The following exercise is almost immediate if µ is regular and the same idea
works for singular µ.

Exercise 10.21. Suppose (K,≺
K

) is µ-stable. Show that if for any M with
|M | = µ, any two limit models over M are isomorphic over M , then all limit models
in µ are saturated.

Two union of chains results should be distinguished. The union of a (µ, δ)-chain
is automatically a limit model; the task is to show all such limits are isomorphic.
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A confusingly similar result asserts that the union any continuous increasing chain
of saturated models is saturated. The conclusion of Theorem 10.20 implies that for
µ > LS(K), ‘(µ, δ)-limit model’ is equivalent to ‘saturated model’. We give now an
easy proof, for the special case of limit λ, that unions of saturated models in µ are
saturated. The result for general µ, Theorem 15.8, requires an even more technical
use of Ehrenfeucht-Mostowski technology.

Theorem 10.22. Suppose χ is a limit cardinal with LS(K) < χ < λ+ and
K is categorical in λ+. Then the increasing union of δ < χ+ saturated models of
cardinality χ is saturated.

Proof. Note that there are saturated models of cardinality χ by Lemma 10.14.
Let N =

⋃
i<δ Ni where each Ni is χ-saturated. Let M ≺K N have cardinality

κ < χ and fix p ∈ S(M). We must show p is realized in N . Let µ = κ+. Let
X = {i < δ : (Ni+1 ∩M)−Ni 6= ∅}. Then |X | ≤ κ and we can list X as 〈xi : i < δ′〉
where δ′ < max(µ, cf(δ)+) < χ. Construct a continuous increasing chain Mγ of µ-
saturated models, each with cardinality µ, for γ < δ′ so that (M∩Nxγ

) ⊆Mγ ⊂ Nxγ

and Mγ+1 is µ-universal over Mγ . This is possible by the µ+-saturation of Ni for
each i. If κ < cf(δ) then p is realized in Mγ+1 for some γ < δ′. If cf(δ) ≤ κ,
〈Mγ : γ < δ′〉 is a (µ, δ′)-chain. Now by Lemma 10.16.3 and Corollary 10.14.2
Mδ′ ≺K N is µ-saturated. So p is realized in N and we finish. �10.22





CHAPTER 11

Locality and Tameness

In this chapter we discuss some important ways in which Galois types behave
differently from ‘syntactic types’ (types given by sets of formulas). In first order
logic or even homogeneous model theory, the union of an increasing chain of types is
a type. Moreover, in the same contexts, if two types are different, this difference is
witnessed by their restriction to a small subset of the domain. However, the notion
of the union of an increasing chain of Galois-types is not well-behaved in general.
We can find an upper bound for an ω-chain of types. But it may not be unique. A
chain of length κ, with κ > ω may not even have an upper bound. We continue to
work in an AEC with amalgamation and M denotes the monster model.

Tameness is an incredibly important property; all categoricity transfer results
proved for AEC in Part 3 depend on tameness in some way. In Theorem 11.15 we
derive a weak-tameness below the categoricity cardinal lemma which is a crucial
tool for the downward categoricity transfer in Chapter 14.

In this chapter we explore the variations of ‘locality phenomena’. The following
argument is subsumed below but for concreteness we separate it out.

Theorem 11.1. If M =
⋃
i<ωMi is an increasing chain of members of K and

{pi : i < ω} satisfies pi+1 ↾Mi = pi, there is a pω ∈ S(M) with pω ↾Mi = pi for each
i.

Proof. Let ai realize pi. By hypothesis, for each i < ω, there exists fi which
fixes Mi−1 and maps ai to ai−1. Let gi be the composition f1 ◦ . . . fi. Then gi
maps ai to a0, fixes M0 and gi ↾Mi−1 = gi−1 ↾Mi−1. Let M ′

i denote gi(Mi) and M ′

their union. Then
⋃
i<ω gi is an isomorphism between M and M ′. So by model-

homogeneity there exists an automorphism h of M with h ↾Mi = gi ↾Mi for each
i. Let aω = h−1(a0). Now g−1

i ◦ h fixes Mi and maps aω to ai for each i. This
completes the proof. �11.1

The following condition on an increasing chain allows us to find upper bounds
in certain cases.

Definition 11.2. Let 〈Mi : i < γ〉 be an increasing ≺
K

-chain of submodels
of M. A coherent chain of Galois types of length γ is an increasing chain of
types pi ∈ S(Mi) equipped with realizations ai of pi and for i < j < γ functions
fij ∈ aut(M) such that fij fixes Mi, fij(aj) = ai and (this is the coherence) for
i < j < k < γ, fij ◦ fjk = fik.

The following easy result has a number of nice consequences. It could easily be
extended to direct limits.

Theorem 11.3. (1) If pi ∈ S(Mi) for i < δ is a coherent chain of Galois
types, there is a pδ ∈ S(Mδ) that extends each pi so that 〈pi : i ≤ δ〉 is a
coherent sequence.

83
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(2) Conversely, if pδ ∈ S(Mδ) extends pi ∈ S(Mi) for i < δ, there is a choice
of fi,j for i ≤ j ≤ δ that witness 〈pi : i ≤ δ〉 is a coherent sequence.

Proof. Note that the commutativity conditions on the fij imply that the se-
quence of maps f0j ↾Mj for j ≤ k < δ is an increasing sequence. I.e.,

f0k ↾Mj = (f0j ↾Mj) ◦ (fjk ↾Mj) = f0j ↾Mj .

Let fδ =
⋃
j f0j ↾Mj and let h be an extension of fδ to an automorphism of M; h

exists by Exercise 8.4. Choose h−1(a0) as aδ and let pδ = tp(aδ/Mδ). Let fi,δ be

f−1
0,i ◦ h. Check that this is the required coherent system.

For the converse, if aδ realizes pδ and ai realizes pi we have maps fi,δ which fix

Mi and map aδ to ai. The required maps fi,j for i ≤ j are fi,δ ◦ f−1
j,δ . �11.3

Now we introduce two specific notions of locality.

Definition 11.4. (1) K has (κ, λ)-local galois types if for every contin-
uous increasing chain M =

⋃
i<κMi of members of K with |M | = λ and

for any p, q ∈ S(M): if p ↾Mi = q ↾Mi for every i then p = q.
(2) Galois types are (κ, λ)-compact in K if for every model M with |M | = λ

and for every continuous increasing chain M =
⋃
i<κMi of members of

K and every increasing chain {pi : i < κ} of members S(Mi) there is a
p ∈ S(M) with p ↾Mi = pi for every i.

As usual with such parameterized notions we can write abbreviations such as
(< κ,≤ λ) to mean any cardinality < κ in the first coordinate and any cardinality
≤ λ in the second coordinate. In this notation, Theorem 11.1 says every AEC is
(ℵ0,∞)-compact.

Locality is a uniqueness condition: a chain of Galois types has at most one
upper bound. Compactness is an existence condition: a chain of Galois types has
an upper bound. Both of these conditions are trivially true for syntactic types. We
explore in Example 11.10 various mathematical situations where these conditions
fail. Coherence (Definition 11.2) provides a way to build increasing chains that
have upper bounds without any locality assumptions; we exploit this technique to
find minimal types in Theorem 12.23.

Shelah asserts in e.g. [She99] that if uniqueness holds for chains of length less
than κ then existence holds at κ; we give a straightforward proof now.

Lemma 11.5. For any λ, if K has (< κ,≤ λ)-local Galois types, then Galois
types are (≤ κ,≤ λ)-compact in K.

Proof. Consider a continuous increasing chain M =
⋃
i<κMi of members of

K with cardinality at most λ and an increasing chain {pi : i < κ} of members
S(Mi). It suffices to find a coherent system representing the chain. Define the
ai and fi,j by induction. At successor stages define fj,j+1 as any function fixing
Mj with fj,j+1(aj+1) = aj . Define the other fi,j+1 by composition to meet the
conditions. At limit stages apply Theorem 11.3 to find an aδ and fi,δ. Note that
since the aδ satisfies each pi for i < δ, the locality guarantees that it satisfies the
given pδ. �11.5

Just reformulating the notation, Lemma 11.5 implies that if K is (< κ,∞)-local
then it is (κ,∞)-compact.
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Now we turn to the notion of tameness. The property was first isolated in
[She99] in the midst of a proof. Grossberg and VanDieren [GV06b] focused at-
tention on the notion as a general property of AEC’s. We introduce a parameter-
ized version in hopes of deriving tameness from categoricity by an induction. And
weakly tame is the version that can actually be proved (Theorem 11.15).

Definition 11.6. (1) We say K is (χ, µ)-weakly tame if for any satu-
rated N ∈ K with |N | = µ if p, q,∈ S(N) with q 6= p then for some
N0 ≤ N with |N0| ≤ χ, p ↾N0 6= q ↾N0.

(2) We say K is (χ, µ)-tame if the previous condition holds for all N with
cardinality µ.

Finally, we say K is κ (weakly)-tame if it is (κ, λ)-(weakly)-tame for every λ
greater than κ. Note that for any µ, any K is (µ, µ)-tame. There are a few relations
between tameness and locality.

Exercise 11.7. Prove the following algebraic version of tameness. K is (χ, µ)-
tame if for any model M of cardinality µ and any a, b ∈ M:

If for every N ≺K M with |N | ≤ χ there exists α ∈ autN(M) with α(a) = b,
then there exists α ∈ autM(M) with α(a) = b.

Lemma 11.8. If λ ≥ κ and cf(κ) > χ, then (χ, λ)-tame implies (κ, λ)-local.

Proof. Suppose 〈Mi, pi : i < κ〉 is an increasing chain with
⋃
iMi = M and

|M | = λ. If both p, q ∈ S(M) extend each pi, by (χ, λ)-tameness, there is a model
N of cardinality χ on which they differ. Since cf(κ) > χ, N is contained in some
Mi. �11.8

Lemma 11.9. If K is (< µ,< µ)-local then M is (LS(K), µ)-tame.

Proof. We prove the result by induction on µ and it is clear for µ = LS(K).
Suppose it holds for all κ < µ. Let p, q be distinct types in S(M) where |M | = µ
and write M as an increasing chain 〈Mi : i < µ〉 with |Mi| ≤ |i| + LS(K). Let pi,
respectively qi denote the restriction to Mi. Since p 6= q, locality gives an Mj with
pj 6= qj and |Mj | < µ. By induction there exists an N ≺

K
Mj with |N | = LS(K)

and pj ↾N 6= qj ↾N . But then, p ↾N 6= q ↾N and we finish. �11.9

Example 11.10. In Chapter 26.5 we give an example of a type which is not
(ℵ0,ℵ1)-tame. By Lemma 11.8, it is not (ℵ1,ℵ1)-local.

Nontameness can arise in natural mathematical settings. An Abelian group
is ℵ1-free if every countable subgroup is free. An Abelian group H is Whitehead
if every extension of Z by H is free. Shelah constructed an Abelian group of
cardinality ℵ1 which is ℵ1-free but not a Whitehead group. (See [EM90] Chapter
VII.4.) Baldwin and Shelah [BS08] code this into an example of nontameness.
Essentially certain points in models of the AEC K code an extension of Z by an
abelian group H . Every short exact sequence

0 → Z → V → H ′ → 0.(11.1)

where H ′ is a countable submodel of H splits but the short exact sequence ending
in H does not. Thus the AEC is not (ℵ1,ℵ1)-local nor (ℵ1,ℵ0)-tame. Further
variants on the construction provide (Lemma 3.10 of [BS08]) an AEC that is not
even (ℵ0,ℵ0)-local. Section 3 of [BS08] shows that consistently (e.g. if V = L),
there is an AEC such that some increasing chain of Galois types of length at most
ℵ2 does not have an upper bound.
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The following argument by Baldwin, Kueker, and VanDieren [BKV06] shows
the strength of assuming tameness and the even greater strength of assuming lo-
cality as well.

Theorem 11.11. [BKV06] Suppose LS(K) = ℵ0. If K is (ℵ0,∞)-tame and
µ-Galois-stable for all µ < κ and cf(κ) > ℵ0 then K is κ-Galois-stable.

Proof. For purposes of contradiction suppose there are more than κ types
over some model M∗ in K of cardinality κ. We may write M∗ as the union of a
continuous chain 〈Mi | i < κ〉 under ≺K of models in K which have cardinality
< κ. We say that a type over Mi has many extensions to mean that it has ≥ κ+

distinct extensions to a type over M∗. For every i, there is some type over Mi with
many extensions. To see this note that each type over M∗ is the extension of some
type over Mi and, by our assumption, there are less than κ many types over Mi,
so at least one of them must have many extensions.

More strongly, for every i, if the type p over Mi has many extensions, then
for every j > i, p has an extension to a type p′ over Mj with many extensions.
This follows as, every extension of p to a type over M∗ is the extension of some
extension of p to a type overMj. By our assumption there are less than κmany such
extensions to a type over Mj, so at least one of them must have many extensions.

We can further show, for every i, if the type p over Mi has many extensions,
then for all sufficiently large j > i, p can be extended to two types over Mj each
having many extensions. By the preceding paragraph, it suffices to establish the
result for some j > i. So assume that there is no j > i such that p has two
extensions to types over Mj each having many extensions. Again, the preceding
paragraph tells us that for every j > i, p has a unique extension to a type pj over
Mj with many extensions. Let S∗ be the set of all extensions of p to a type over
M∗ – so |S∗| ≥ κ+. Then S∗ is the union of S0 and S1, where S0 is the set of all q
in S∗ such that pj ⊆ q for all j > i, and S1 is the set of all q in S∗ such that q does
not extend pj for some j > i. Now if q1 and q2 are different types in S∗ then, since
K is (ℵ0,∞)-tame and cf(κ) > ℵ0, their restrictions to some Mi ≺K

M∗ with
i < κ must differ. Hence their restrictions to all sufficiently large Mj must differ.
Therefore, S0 contains at most one type. On the other hand, if q is in S1 then, for
some j > i, q ↾Mj is an extension of p to a type over Mj which is different from pj,
hence has at most κ extensions to a type over M∗. Since there are < κ types over
each Mj (by our stability assumption) and just κ models Mj there can be at most
κ types in S1. Thus S∗ contains at most κ types, a contradiction.

Now we can conclude that there is a countable M ≺K M∗ such that there are

2ℵ0 types over M . Let p be a type over M0 with many extensions. By the preceding
paragraph, there is a j1 > 0 such that p has two extensions p0, p1 to types over
Mj1 with many extensions. Iterating this construction we find a sequence of models
Mjn and a tree ps of types for s ∈ 2ω with the 2n types ps (where s has length
n) all over Mjn and each ps has many extensions. Invoking ℵ0-tameness, we can
replace each Mjn by a countable M ′

jn
and ps by p′s over M ′

jn
while preserving the

tree structure on the p′s. Let M̂ be the union of the M ′
jn . Now for each σ ∈ 2ω,

pσ =
⋃
s⊂σ ps is a Galois-type, by Theorem 11.1.

We have now contradicted ω-Galois-stability: this establishes Theorem 11.11.
�11.11
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By adding locality we get a much stronger result. The article [BKV06] gets
somewhat stronger results assuming only weak-tameness.

Corollary 11.12. Suppose LS(K) = ℵ0 and K has the amalgamation prop-
erty. If K is (ℵ0,∞)-tame, (ω,∞)-local, and ω-Galois-stable then K is Galois-
stable in all cardinalities.

Proof. We prove the result by induction on cardinals. Theorem 11.11 extends
to limit cardinals of uncountable cofinality with no difficulty. For limit cardinals
of cofinality ω, at the stage where we called upon ℵ0-tameness to show each type
over Mi with many extensions has two extensions over Mj for j > i, we now use
the hypothesis of (ω,∞)-locality. �11.12

We now provide a surprising sufficient condition for tameness. Note that EM
models built on sequences of finite sequences have the following property. Suppose
that we can find a sequence of countably many order indiscernibles bi where each
bi is a sequence bi0, . . . b

i
k−1 and Φ is an Ehrenfeucht-Mostowski template for models

built on indiscernible sequences of k-tuples. If J is k isomorphic linear orders placed
one after the other then EMτ (J,Φ) ∈ K.

Recall from Definition 6.2.4 and the following exercises that a linear order L is
transitive if for any k < ω and any increasing sequences of length k, a,b, there is
an automorphism of L taking a to b. In particular, any two intervals (including
intervals of the form (a,∞) or (−∞, b)) are required to be isomorphic. Moreover
there are k-transitive linear orderings of all infinite cardinalities.

Notation 11.13. Recall from Definition 4.22 that H(κ) denotes i(2κ)+ and
that we write H1, for H(|τ0|), the Hanf number for AECs whose vocabulary has
cardinality |τ0|. With a fixed K, we write H1 for H(κ

K
) = H(sup(τ

K
,LS(K))).

We established in Chapter 6.2 the convention that the vocabulary of EM(I,Φ) is
the vocabulary τ(Φ) of Φ, while for any τ ′ ⊆ τ(Φ), EMτ ′(I,Φ) denotes the reduct of
EM(I,Φ) to τ ′. We exploit the subtle relationship among such reducts in the next
proof and this notation must be examined carefully to understand the argument.

Lemma 11.14. Let H1 ≤ µ < λ = |I|. Suppose N = EMτ0(J,Φ) where J is
a transitive linear order that contains an increasing sequence of length |J | = µ.
Suppose further that J is an initial segment of I and that M = EMτ0(I,Φ) is
saturated. Now suppose a, b ∈M −N and realize the same Galois type over N0 for
any N0 ≺

K
N with |N0| < H1. Then a, b realize the same Galois type over N .

Proof. For some terms σ, ρ: a = σ(s, t) and b = ρ(s, t) where s ∈ J and
t ∈ I−J . Say the length of s is k so s = 〈s0, . . . sk−1〉. Since J is an initial segment
the elements of t are all greater than all elements of J .

For each cardinal χ < H1 we find a sublinear order Kχ of J whose Skolem hull,
N1
κ = EM(Kχ,Φ) is a prototype model of cardinality χ where a and b realize the

same Galois type over N1
κ . We then use Theorem A.3.1 to transfer this picture to

an arbitrary linear order L. Finally, we get the desired result that a and b have
the same type over N if we take L as J − s. After this sketch of the argument, we
begin in earnest.

By the transitivity we may write J−{s} as the union of k intervals Ji, separated
by the si such that each interval contains an increasing sequence of length |J |. Let
Kχ be a subset of J composed of k isomorphic linear orders Kχ

i ⊂ Ji, each of which
contains an increasing sequence of length χ. Since, |Kχs| < H1, a and b realize the
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same Galois type over EM(Kχs,Φ). So, there is an automorphism α of M fixing
EM(Kχ,Φ) and s and taking a to b. Let Nχ

1 be the structure whose universe is the
closure of Kχst under the τ1 = τ(Φ) functions and α. If τ2 is obtained by adding
constant symbols s∗, t∗ for s, t and a function symbol F to τ1 and interpreting F
as α, Nχ

1 is naturally a τ2-structure of cardinality χ satisfying:

(1) Nχ
1 ↾ τ0 is in K.

(2) clτ1(Kχst,M) ↾ τ0 ≺K clτ1,α(Kχst,M) ↾ τ0.
(3) α fixes clτ1(Kχs,M) and takes a = σ(s, t) to b = ρ(s, t).

The first two conditions hold by the characterization of submodels in the Pre-
sentation Theorem 4.15, since each of Nχ

1 , clτ1(Kχst,M), clτ1,α(Kχst,M) are τ1
substructures of EM(I,Φ). The third holds by the choice of α. The first two are
determined by the omission of τ2-types and so are preserved in other EM-models.

By Theorem A.3.1 we can obtain a countable sequence bi of τ2-indiscernibles
where each bi is a sequence bi0, . . . b

i
k−1 and the type of the 〈bij : i < n〉 is realized

in Kχ
j for each n. Let Φ2 be the τ2-diagram of these indiscernibles. Now for any

linear order L consisting of k isomorphic segments we can form τ2-Skolem hulls of
L by interpreting s as points separating the segments and t as a sequence at the
end. Then, we have:

a. NL = EMτ0(L,Φ2) is in K,
b. EMτ0(Lst,Φ) ≺K EMτ0(L,Φ2),
c. and F is an automorphism of NL which takes σ(s, t) to ρ(s, t) and fixes
EMτ0(Ls,Φ) pointwise.

In particular, if we take J − s for L, c) yields that NJ−s = EMτ0(J − s,Φ2) has an
automorphism which takes σ(s, t) to ρ(s, t) and fixes EMτ0(J,Φ) = N pointwise.

Let τ−2 be τ2 without the constant symbols s∗, t∗ and Φ−
2 the corresponding

restriction of Φ2. Then EMτ−
2

(Jt,Φ−
2 ) ≈ EMτ−

2
(J − s,Φ2) by mapping s to the

interpretation of s∗ and t to the interpretation of t∗ in EM(J − s,Φ2). Restricting
further to τ0, NJ−s = EMτ0(J − s,Φ2) ≈ EMτ0(Jt,Φ−

2 ).
By conditions a) and b) EMτ0(Jt,Φ) ≺M and EMτ0(Jt,Φ) ≺ EMτ0(Jt,Φ−

2 ).
So we can embed NJ−s ≈ EMτ0(Jt,Φ−

2 ) into M over EMτ0(Jt,Φ) by some g. The
image under g of the interpretation of F in EM(Jt,Φ−

2 ) is an automorphism β of
gNJ−s which fixes N and takes a to b. Invoking the homogeneity of M , β extends
to an automorphism of M and proves that a and b realize the same Galois type
over N as required. �11.14

Now we apply this result and the fact that each element of N = EM(J,Φ) is
given by one of small number of terms to conclude the required weak-tameness.

Theorem 11.15. If K is λ-categorical for λ ≥ H1, then for any µ with H1 ≤
µ < cf(λ), for some χ < H1, K is (χ, µ)-weakly tame.

Proof. Let M be the categoricity model and let N be a saturated submodel of
M of smaller cardinality µ. By Lemma 10.11, we can represent N as EMτ0(J,Φ)
where τ0 is the vocabulary of K and J is a transitive linear order that contains an
increasing sequence of length |J | = µ. Now write M as EM(I,Φ) where J is an
initial segment of I. We want to choose χ so that if two types over N disagree they
disagree on a model of cardinality less than χ. Suppose a ∈ M realizes p ∈ S(N).
Since M is µ+-homogenous universal there is an automorphism of M fixing N and
mapping a into M . So we reduce to considering a, b ∈ M − N . For some terms
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σ, τ : a = σ(s, t) and b = ρ(s, t) where s ∈ J and t ∈ I − J . Say the length of s

is k. By the contrapositive of Lemma 11.14, there is χ < H1 and an N0 ≺K N
with |N0| = χ so that tp(a/N0) 6= tp(b/N0). Since J is an initial segment of I and
J is k-transitive, this also holds for any a′, b′ given by σ(s′, t′) and ρ(s′, t′). Since
there are only |τ1| pairs of terms and |τ1| is not cofinal in H1, we have the result.
�11.15

This result is stated in [She99] and [She00b]; the straightforward proof of
Lemma 11.14 is due to Tapani Hyttinen after reading [She00b] and various com-
ments thereon by both Baldwin and Shelah. The argument given in [She00b]
contains many ideas that are not necessary for the exact result here, but may be
useful for generalizations.

Question 11.16. The argument for Theorem 11.15 does not immediately give
that there is a cardinal χ(Φ) < H1 such that K is (χ(Φ), [H1, < λ))-tame. Can
we obtain that result? Of course it is (H1, [H1, < λ))-tame. In the downward
categoricity argument, we actually use the exact formulation of Theorem 11.15: for
each µ < λ there is a χµ < H1 such that K is (χµ, µ) tame.

Locality and tameness provide key distinctions between the general AEC case
and homogenous structures. In homogeneous structures, types are syntactic objects
and locality is trivial. Thus, as pointed out by Shelah, Hyttinen, and Buechler-
Lessmann, Lemma 11.5 applies in the homogeneous context.





CHAPTER 12

Splitting and Minimality

In this chapter we introduce the notion of splitting for AEC. This is an ap-
proximation to an independence notion such as forking. In this chapter we work
in a a K with arbitrarily large models and the amalgamation property which is
categorical in a successor cardinal λ.

We use splitting to construct types with the following properties. For a model
M with cardinality µ, we want to find p ∈ S(M) which is a) nonalgebraic (i.e.
not realized) b) minimal (Definition 12.21), and c) extendible (has a non-algebraic
extension to the model of cardinality λ). For µ < λ, any M with cardinality µ,
and any nonalgebraic p ∈ S(M) we will always be able to find p ∈ S(M ′) for an
extension M ′ of M that is minimal. And if M is saturated with |M | > LS(K), we
will be able to extend any nonalgebraic p ∈ S(M). Thus, if K is µ-categorical and
µ > LS(K) (so saturation makes sense), the problem is solved in this chapter. But
in parallel we will be preparing to handle the situation where K is not µ-categorical
(Chapter 15) or µ = LS(K) ([Les05b] for LS(K) = ℵ0).

Now, we introduce the key notion of splitting.

Definition 12.1. A type p ∈ S(N) µ-splits over M ≺K N if and only if there
exist N1, N2 ∈ K≤µ and h, a K-embedding from N1 into N with h(N1) = N2 such
that M ≺

K
Nl ≺K

N for l = 1, 2, h fixes M , and p ↾N2 6= h(p ↾N1).

In the next lemma we isolate the key tool for finding submodels over which
a type does not split. Note the implicit use of amalgamation to get the monster
model required in the next proof. We are given a type p and a sequence of models
in the monster model; just as in the first order case we make copies of this situation
to form a tree of types.

Lemma 12.2. Let κ be the least cardinal with 2κ > µ. Suppose there is an
increasing chain of models Mi with |Mi| ≤ µ for i < κ and p ∈ S(Mκ) = S(

⋃
i<κMi)

such that for each i, p ↾Mi+1 µ-splits over Mi. Then K is not stable in µ.

Proof. In this proof we discuss various elementary maps h between structures

of size µ; for any such h, ĥ denotes an extension of h to an automorphism of the
monster model which remains fixed throughout the argument.

For each i, there exist M1
i ,M

2
i ≺

K
Mi+1 with Mi ≺

K
M1
i ,M

2
i and a K-

embedding fi which fixes Mi, maps M1
i to M2

i but fi(p ↾M1
i ) 6= p ↾M2

i .
For each η ∈ 2≤κ we define a map hη with domain Mlg(η), a model Nη and a

type pη ∈ S(Nη).
Let N∅ = M0, h∅ = idM0 , p∅ = p ↾M0. Take h0 = idM1 , N0 = M1, p0 = p ↾M1;

and set h1 = f̂0, N1 = f̂0(M1), p1 = f̂0(p ↾M1). Take unions at limits. At

successors, let hη̂0 = ĥη ↾Mlg(η)+1 and hη̂1 = ĥη ◦ f̂lg(η) ↾Mlg(η)+1.

91
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Then, let Nη = hη(Mlg(η)) and pη = hη(p ↾Mlg(η)). Let M∗
κ be a model

of cardinality µ, chosen by the Lowenheim-Skolem property to contain all the
hη(Mγ) = Nη for γ < κ and η ∈ 2γ . We can easily extend each pη to a type
p̂η over M∗

κ . But if η 6= η′ then p̂η 6= p̂η′ . To see this, let η ∧ η′ = ν (where ∧ is
‘meet’). Then p̂η ↾Nν̂0 6= p̂η′ ↾Nν̂1 since the domain of each contains hν(M

2
lg(ν))

and hν(p ↾M2
lg(ν)) 6= hν(flg(ν)(p ↾M1

lg(ν))) as p ↾M2
lg(ν) 6= flg(ν)(p ↾M1

lg(ν)). �12.2

Notice three easy facts about µ-splitting.

Exercise 12.3. (1) If p ∈ S(M) χ-splits over M0 then for any χ′ ≥ χ
with χ ≤ |M |, p χ′-splits over M0.

(2) If p ∈ S(M) does not χ-split over M0 and M0 ≺K M1 ≺K M with
|M1| = χ, then
(a) p ∈ S(M) does not χ-split over M1.
(b) p ↾M1 does not χ-split over M0.

Exercise 12.4. Construct an example showing the converse to Exercise 12.3.2
does not hold. (Hint: Consider Example 19.13. A weaker ‘converse’ is Exer-
cise 12.9.)

We now establish existence, uniqueness and extension for nonsplitting in this
context. More precisely, existence requires only stability; uniqueness (except in
the same cardinal) requires tameness as well; and the ability to make non-splitting
extensions to models of greater cardinality depends on categoricity in a still larger
cardinal.

Lemma 12.5 (Existence). Suppose |M | ≥ µ ≥ LS(K), and K is µ-stable. Then
for every p ∈ S(M), there is an Np ≺K M with |Np| = µ such that p does not
µ-split over Np.

Proof. If |M | = µ, the result is trivially true with Np = M , so suppose |M | > µ.
Fix κ minimal so that µκ > µ. If the conclusion fails, we can construct a sequence
of models 〈Ni : i < κ〉 such that p ↾Ni+1 µ-splits over Ni for each i (so |Ni| ≤ µ).
That is, there exist N1

i , N
2
i ≺K M with Ni ≺K N1

i , N
2
i and a K-embedding fi

which fixes Ni, maps N1
i to N2

i but fi(p ↾N1
i ) 6= p ↾N2

i . Choose Ni+1 ≺K M

to contain N1
i , N

2
i . Take unions at limits. Either at some stage we find an Ni of

cardinality µ such that p does not split over Ni or we find a chain of length κ as
in Lemma 12.2. The union of this chain has cardinality µ. By Lemma 12.2, we
contradict µ-stability. �12.5

The trivial case of Lemma 12.5, p does not µ-split over its domain if that domain
has cardinality µ, is not sufficient to gain non-splitting extensions. We provide two
ways to find extensions. We can derive the existence of a non-splitting extension
to models of size µ by requiring that N is universal over Np; later we do even more
if N is saturated. The following argument is based on one of VanDieren [Van06].

Lemma 12.6. If N ≺K M ≺K M ′ all have cardinality µ, M is µ-universal
over N and p ∈ S(M) does not µ-split over N , there is an extension of p to
p′ ∈ S(M ′) that does not µ-split over N .

Proof. Let α be a K-embedding of M ′ into M over N . By monotonic-
ity, Exercise 12.3.2.a, α extends to an automorphism of the monster model that
fixes N . Fix a realization a of p. Let N1 = α−1(M). So we have N ≺K
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α(M ′) ≺K M ≺K M ′ ≺K N1. Since tp(a/M) does not split over N , by in-

variance p′ = tp(α−1(a)/N1) does not µ-split over N . As, α(N1) = M , the non-
splitting guarantees that α(p′) = p′ ↾α(N1). That is, tp(a/M) = tp(α−1(a)/M).
So, p′ is a non-splitting extension of p to N1 and its restriction to M ′ meets the
requirements. �12.6

The following uniqueness of non-splitting extensions result is stated without
proof in [She99]; we follow the idea of a variant in [Van06].

Theorem 12.7 (Uniqueness). Assume K is (χ, |N |)-tame for some LS(K) ≤
χ ≤ µ . Let M0 ≺K M ≺K N with χ ≤ |M0| ≤ µ and suppose M is µ-universal
over M0. Then if p ∈ S(M) does not µ-split over M0, p has at most one extension
to S(N) that does not µ-split over M0.

If N is saturated, we need only (χ, |N |)-weak tameness.

Proof. Suppose for contradiction that r and q in S(N) are distinct non-splitting
extensions of p. By tameness, there is an N1 with M0 ≺K N1 ≺K N with
|N1| = max(χ, |M0|) and q ↾N1 6= r ↾N1. Since M is µ-universal over M0, there is
an embedding f of N1 into M over M0; let N2 denote f(N1). Since r and q don’t µ-
split over M0, r ↾N2 = f(r ↾N1) and q ↾N2 = f(q ↾N1) . But since r ↾N1 6= q ↾N1,
f(r ↾N1) 6= f(q ↾N1). By transitivity of equality, r ↾N2 6= q ↾N2. Since N2 ≺K M ,
this contradicts that r and q both extend p ∈ S(M). �12.7

The tameness hypothesis in Lemma 12.7 is needed only to move to larger car-
dinalities; specifically:

Exercise 12.8. Show that the ‘tameness’ hypothesis in Lemma 12.7 is not
needed if the conclusion is weakened to consider only |M | = |N | = µ.

Use the uniqueness to show.

Exercise 12.9. If M0 ≺
K

M1 ≺
K

M2, |M0| = |M2|, each of the extensions
is |M0|-universal, p ∈ S(M2) does not split over M1 and p ↾M1 does not |M0|-split
over M0, then p does not split over M0. Show that the restriction on the cardinality
of M2 can be replaced by assuming K is (< |M0|, |M2|)-tame.

Before considering the strongest versions of the extension property, we note
that Grossberg and VanDieren partially calculated the stability spectrum of K.

Theorem 12.10. [GV06b] Let µ ≥ LS(K). If K is (µ,∞)-tame and µ-stable
then K is stable in all κ with κµ = κ.

Proof. We show S(M) has cardinality κ if |M | = κ. Fix any N ≺K M with
cardinality µ. Applying µ-stability, Lemmas 10.3 and 10.5 extend N to a model
N ′ which is µ-universal over N . Then let M ′ be an amalgam of M and N ′ over N
with cardinality κ; M ′ is µ-universal over N . Repeating this process κµ = κ times
we get a model N1 such that every submodel N0 of M with cardinality µ has a
µ-universal extension N ′

0 in N1. Now iterate that construction µ+ ≤ κ times to

get a model M̂ of cardinality κ such that every submodel N0 of M̂ with cardinality

µ has a µ-universal extension N ′
0 ≺K M̂ . Since every type over M has at least

one extension (possibly algebraic) to M̂ , it suffices to prove S(M̂) = κ. Clearly

|M | > µ. So, if p ∈ S(M̂), by Lemma 12.5, p does not µ-split over a submodel Np

of size µ. By construction there is an N ′
p ≺K M̂ , which is µ-universal over Np.



94 12. SPLITTING AND MINIMALITY

By tameness and Theorem 12.7, p is the unique extension of p ↾N ′
p to M̂ which

does not split over Np. So the number of nonsplitting extensions of p ↾Np to M̂ is

bounded by |S(N ′
p)| = µ. Then |S(M̂)| ≤ κµ · µ = κ and we finish. �12.10

Lieberman [Lie, Lie09] obtains a variant on Theorem 12.10 considering weak
tameness rather than tameness; notably, an appeal to the study of accessible cate-
gories replaces the use of splitting. Baldwin, Kueker and VanDieren [BKV06] tells
us bit more about the stability spectrum under tameness hypotheses.

Theorem 12.11. [BKV06] Let K be an abstract elementary class with the
amalgamation property that has Löwenheim-Skolem number ≤ κ and is (κ, κ+)-
weakly-tame. Then if K is Galois-stable in κ it is also Galois-stable in κ+.

Proof We proceed by contradiction and assume that M∗ is a model of cardinal-
ity κ+ with more than κ+ types over it. By Lemmas 10.3 and 10.9, we can extend
M∗ to a (κ, κ+)-limit model which is saturated. Since M∗ has at least as many
types as the original we just assume that M∗ is a saturated, (κ, κ+)-limit model
witnessed by 〈Mi : i < κ+〉.

Let {pα : α < κ++} be a set of distinct types over M∗. Stability in κ and
Lemma 12.5 yield that for every pα there exists iα < κ+ such that pα does not
κ-split over Miα . By the pigeon-hole principle there exists i∗ < κ+ and A ⊆ κ++

of cardinality κ++ such that for every α ∈ A, iα = i∗.
Now apply the argument for Theorem 11.11 to the pα for α ∈ A to conclude

there exist p, q ∈ S(M∗) and i < i′ ∈ A, such that neither p nor q κ-splits over Mi

or Mi′ but p ↾Mi′ = q ↾Mi′ . By weak tameness, there exists an ordinal j > i′ such
that p ↾Mj 6= q ↾Mj. Notice that neither p ↾Mj nor q ↾Mj κ-split over Mi. This
contradicts Lemma 12.7 by giving us two distinct extensions of a non-splitting type
to the model Mj which by construction is universal over Mi′ . �12.11

If we assume (κ,∞)-tameness as well, an immediate induction extends Theo-
rem 12.11 to deduce stability in κ+n for every n < ω from stability in κ.

By autM(M) we mean the set of automorphisms of M which fix M pointwise.
Now we establish a sufficient condition on M for finding a non-splitting extension of
p ∈ S(M). The requirement in Lemma 12.13 that p be realized in N is guaranteed
by the saturation of N if K is λ-categorical. The term ‘nonalgebraic’ is traditional
for the following concept; as examples will show, ‘unrealized’ might be better.

Definition 12.12. A type p ∈ S(N) is nonalgebraic if it is not realized in N .

Lemma 12.13 (Extension). Let µ < λ, M = EM(µ<ω,Φ) = EM(I,Φ), and
suppose p ∈ S(M) is nonalgebraic. Suppose p does not |M0|-split over M0 =
EM(I0,Φ) with I0 ⊂ I and |I0| < |I|. If p is realized in N = EM(J,Φ) (J = λ<ω),
then there is an extension p̂ of p to N so that for some M ′

0 with |M ′
0| = |M0|, p̂

does not |M0|-split over M ′
0.

Proof. Let τ(a) ∈ N realize p (for some term τ). We can increase I0 to I ′0 so
that (a∩M) ⊂ I ′0 and let M ′

0 = EM(I ′0,Φ). Now extend J to J ′ by adding a finite
sequence a

′ with a′i in the same I-cut as ai but a′i greater than any element of J in
that cut. Now since a and a

′ realize the same type in the language of orders over I,
a compactness argument shows there is an extension J ′′ of J ′ and an automorphism
f of J ′′ which fixes I and maps a to a

′. Thus, α = τ(a′) realizes p in EM(J ′′,Φ).



12. SPLITTING AND MINIMALITY 95

We now show p′ = tp(τ(a′)/N) does not |M0|-split over M ′
0. Consider any N1, N2

in N with |N1| = |N2| = |M0| and a map h over M ′
0 which maps N1 to N2; by

homogeneity of the monster, h extends to an η ∈ autM0(M). We will show there is
a map η̂ ∈ autN2(M) witnessing that h(p′ ↾N1) = p′ ↾N2; that is η̂ maps η(α) to
α. Choose K ⊆ J with |K| < |M | such that N1, N2 ≺K N3 = EM(K,Φ). By the
‘relative saturation’ (Corollary 9.7) of I in J there is an order isomorphism g fixing
I ′0 and mapping K to K ′ ⊆ I. Moreover, without loss of generality, we take the
domain of g to be I ′0Ka

′ and g fixes a
′. (To see this, note that every decreasing

chain in µ<ω is countable. For each a′i, choose a countable Xi ⊂ I with a′i as the
infimum of Xi. Then require

⋃
iXi as well as I ′0 to be fixed by g.) Thus g extends

to a γ ∈ aut(M), such that γ fixes EM(I ′0a
′,Φ). In particular, γ fixes M ′

0α. Let N ′
1

denote γ(N1) and N ′
2 denote γ(N2). Then η′ = γηγ−1 ∈ autM′

0
(M) takes N ′

1 to N ′
2.

Since p does not split over M0 (and thus not over M ′
0) there is an η̂′ ∈ autN′

2
(M),

taking η′(α) to α. We claim γ−1η̂′γ is the required η; clearly this map fixes N2.
But since γ fixes α,

γ−1η̂′γ(η(α)) = γ−1η̂′γ(η(γ−1α))

which is γ(η̂′(η′(α))) = α, by the choice of η̂′ and since γ fixes α. �12.13

Using very heavily the representation of saturated models as specific kinds of
EM-models we can conclude:

Lemma 12.14. Suppose the AEC K is categorical in the regular cardinal λ. If
M ≺

K
N is saturated for LS(K) < |M| ≤ |N| ≤ λ and p is a nonalgebraic type

in S(M), then for some Np ≺K M , p has an extension p̂ to S(N) which does not
|Np|-split over Np. (The cardinality of Np can be chosen with LS(K) ≤ |Np| < |N|.)

Proof. Using Exercise 12.3.1 it suffices to prove the result for the model N of
cardinality λ. Note that categoricity in λ implies that N ≈ EM(λ<ω,Φ). By the
saturation of M and N and using Exercise 8.4 we may assume M has the form
EM(µ<ω,Φ). Choose χ with LS(K) ≤ χ < µ; then K is χ-stable. By Lemma 12.5
(with χ playing the role of µ), each p ∈ S(M) does not split over an Np with
|Np| ≤ χ < µ. Since M is saturated, M is |Np|-universal over Np. We can extend
Np to have the form EM(I0,Φ) for some I0 ⊆ χ<ω by Exercise 12.3.2. We finish
by Lemma 12.13. �12.14

With some further work and assuming tameness, we can show that this non-
splitting extension is in fact non-algebraic. We show the existence of non-algebraic
extensions in two stages. In first order logic it is immediate that a non-algebraic
type over a model M has many realizations. David Kueker provided the following
example showing that if M is not saturated this ‘obvious’ fact may fail.

Example 12.15. Let the language L contain equality and one unary predicate
symbol P . Let K be the collection of L-structures M such that |P (M)| ≤ 1. Then
(K,⊆) is an AEC with the amalgamation property. Let M ∈ K with |P (M)| = 0
and let M ⊂ N with a ∈ P (N). Then tp(a/M) is non-algebraic but never has more
than one realization. Moreover, tp(a/N) does not |M |-split over M .

We will give two arguments showing that a non-algebraic type over a saturated
model has a non-algebraic extension. The first is a lemma of Lessmann that uses
tameness; the second uses the hypothesis that we are below a categoricity cardinal.
We will obtain the saturated model M in the hypothesis of Lemma 12.16 from
categoricity in some regular λ ≥ |M |. Then, we will invoke tameness to convert the
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existence of non-splitting extensions obtained in Lemma 12.14 to the existence of
non-algebraic extensions to models of larger cardinality.

Lemma 12.16. Suppose K is (χ, µ)-weakly tame with LS(K) ≤ χ < µ and
that K is χ-stable. Let M be a saturated model of cardinality µ. If p ∈ S(M) is
nonalgebraic and M ≺

K
N with |N | = |M | then p has a nonalgebraic extension to

N . In particular, p has at least µ+ realizations in M.

Proof. Choose M0 ≺
K

M with |M0| = χ so that p does not χ-split over M0.
(Apply Lemma 12.5 with χ here as µ there.) Since K is χ-stable and χ < µ we can
choose M1 with M0 ≺K M1 ≺K M and M1 is 1-special over M0 (so |M1| = χ).
By Theorem 10.9.1, M1 is χ-universal over M0. Since there is a saturated model of
cardinality µ, there is a proper K-elementary extension N ′ of N which is saturated
(See Exercise 8.16). Let f be an isomorphism between M and N ′ which fixes M1.
Then both p and f(p) ↾M are non-χ-splitting extensions of p ↾M1; by Lemma 12.7,
f(p) extends p. We need only weak tameness because M is saturated. Clearly,
f(p) is nonalgebraic. We obtain the ‘in particular’ by choosing N to realize p and
iterating. �25.2

Now we find µ+ realizations without invoking tameness but using that we
are below a categoricity cardinal to quote Lemma 10.17. In this alternative to
Lemma 12.14, |Np| = |M |.

Theorem 12.17. Suppose K is λ-categorical for a regular λ with λ > µ >
LS(K), M is saturated of cardinality µ, and p ∈ S(M). Then

(1) There is an Np ≺K M with M universal over Np such that p does not
split over Np;

(2) any non-algebraic p ∈ S(M) is realized µ+ times.

Proof. Let κ be the least cardinal with 2κ > µ and let α be the ordinal
κ+ ω. By Lemma 10.3 we can extend M to an M1 that is α-special over M . But
by Lemma 10.17, M1 is saturated so we can take M as M1 and know that it is
α-special over a model of cardinality µ, say by 〈Mj :j < µ× α〉.

1) For any p ∈M , apply the actual construction in Lemma 12.5, choosing the
Ni ≺K

Mµ×i, N
1
i , N

2
i ≺

K
Mµ×i+1 and Ni+2 ≺

K
Mµ×i+2 to find an Np ≺

K
M

with M µ-universal over Np and p does not µ-split over Np. 2) apply Lemma 12.6
iteratively, we have the result. �12.17

Now we show that, assuming categoricity, there are nonalgebraic extensions up
to the categoricity cardinal. The following exercise is key. Note that Example 12.15
showed the possibility that p̂ in the next exercise is realized.

Exercise 12.18. Show that if p ∈ S(M) extends to p̂ ∈ S(N) and p̂ is realized
in N but p̂ does not split over M , then p̂ has a unique realization in N .

Theorem 12.19. Suppose K is λ-categorical and λ is regular. Suppose further
that K is (χ, λ)-weakly tame for some χ with LS(K) ≤ χ < λ. Every nonalge-
braic type p over a saturated model M with λ ≥ |M | > LS(K) has a nonalgebraic
extension to any extension N of M with |N | ≤ λ.

Proof. Without loss of generality N is a saturated model and |N | = λ. If
|M | = λ, the result is given by Lemma 12.16. If |M | < λ, apply Lemma 12.14
to obtain a p̂ ∈ S(N) which does not |Np|-split over Np. Using the ‘in partic-
ular’ from Lemma 12.16, p is realized at least twice in N . Now, the p̂ ∈ S(N)
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from Lemma 12.14 is nonalgebraic. As, if p̂ is realized by some a ∈ N , then, by
Exercise 12.18, p̂ splits over M . �12.19

Definition 12.20. A type p ∈ S(M) is big (|M |-big) if p is realized at least
|M |+ times in M.

Now we introduce the notion of a minimal type and show that such types exist.
Note that the definition deals only with types of the same cardinality; we will use
tameness to establish the uniqueness of nonalgebraic extensions of minimal types
over saturated models to models of larger cardinality.

Definition 12.21. A type p ∈ S(M) is minimal if p is big and there is exactly
one big extension of p to any model of the same cardinality as M .

Minimality is sometimes [Les05b, GV06a] (and perhaps better) called quasi-
minimality. Note that if p ∈ S(N) and p′ ∈ S(M) is a non-algebraic extension of
p and |N | = |M |, then p′ is minimal. But this is no longer obvious if |M | > |N |.
Lemma 12.22 is immediate. But note that it depends on our defining minimality
for big types rather than just non-algebraic types. Example 12.15 shows that there
are non-algebraic types that cannot be properly extended to non-algebraic types.

Lemma 12.22. If M is saturated, p ∈ S(M) is minimal, and M ≺
K

N with
|N | = |M |, then p has a unique big extension to S(N).

We rely on several observations to construct non-algebraic extensions in the
following proof. If p ∈ S(M) is big and M ≺

K
N with |M | = |N |, then p has a

nonalgebraic extension to N . If 〈pi : i < α〉 is a coherent sequence of non-algebraic
types over a strictly increasing sequence of models 〈Mi : i < α〉 the limit type pα
guaranteed by Lemma 11.3 is also nonalgebraic.

Theorem 12.23. If K is categorical in some regular λ > µ > LS(K) then for
some (any) saturated M with cardinality µ, there is a minimal type over M .

Proof. Of course, K is stable in µ. The proof proceeds by attempting to
construct a tree of models of height κ for the least κ such that 2κ ≥ µ. Each
model will have cardinality µ. Stability guarantees that this construction fails and
gives us a minimal type over a saturated model. Construct this tree along with
functions and realizations witnessing that each path is a coherent chain (in the
sense of Definition 11.2) of nonalgebraic Galois types. At successor ordinals this is
easy (as in Lemma 11.5). At limit ordinals we use a construction as in Lemma 11.3
to find the union of the chain of types constructed at that point and to define
functions preserving the coherence of the system. More precisely, as in 9.7 part 5
of [She99], we construct the tree as follows. Let M = M∅ and p = p∅. For each
α < κ and for each η ∈ 2α we choose Mη, aη and hη,η ↾ β for β ≤ α such that the
Mη ↾ β for β ≤ α are a continuous increasing ≺K -chain of models of cardinality µ
satisfying:

(1) Mη ↾(β+1) is a limit model over Mη ↾ β ;
(2) tp(aη/Mη) is big;
(3) hη,η ↾ β maps aη ↾ β to aη while fixing Mη ↾ β ;
(4) if γ ≤ β ≤ α and η ∈ 2α,

hη,η ↾ γ = hη,η ↾ β ◦ hη ↾ β,η ↾ γ ;

(5) and for each η, Mη̂0 = Mη̂1, but tp(aη̂0/Mη̂0) 6= tp(aη̂1/Mη̂0).
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Suppose we have completed the construction to stage α. So we have aη,Mη, and
hη,η ↾ γ for γ < α. If pη = tp(aη,Mη) is not minimal there is an N = Mη̂0 = Mη̂1
and tp(aη̂0/Mη̂0) 6= tp(aη̂1/Mη̂0). For i = 0, 1, let fi fix N and map aη̂i to aη.
Now, for each γ < α,let hη̂i,η ↾ γ = fi◦hη,η ↾ γ . It is easy to check the coherence. The
coherence guarantees that for limit ordinals δ, the type

⋃
γ<δ pη ↾ γ is an element

S(
⋃
γ<δMη ↾ γ).

The first observation before this Theorem guarantees condition 1). Each model
in the construction is a limit model; by Theorem 10.17, since M∅ is saturated, each
Mη is saturated. The types at limits are non-algebraic by the second observation
and big as every non-algebraic type over a saturated model is big by Lemma 12.17.
Since K is stable the construction must cease and there is a minimal type over some
Mη. We need the categoricity to invoke Lemma 10.17 and Lemma 12.17. �12.23

If K is categorical in λ, the use of limit models is unnecessary and one can
obtain the following result just noting that under the categoricity hypothesis all
models in the construction of Lemma 12.23 are saturated.

Corollary 12.24. If K is categorical in λ and stable in λ then there is a
minimal type p̂ ∈ S(M) where |M | = λ.

Corollary 12.25. Suppose K is λ-categorical and λ is regular. Suppose that
K is (χ,≤ λ)-weakly tame. Every minimal type p over a saturated model M with
λ ≥ |M | > LS(K) (and |M | ≥ χ) has a nonalgebraic extension, which is minimal,
to any saturated extension N of M with |N | ≤ λ.

Proof. If |M | = λ, the result is given by Lemma 12.16. If |M | < λ, apply
Theorem 12.19 to extend p to a non-algebraic type p̂ over N . If p̂ is not minimal,
this is witnessed by extensions q1, q2 in some S(N1) where N ≺K N1. By weak
tameness q1 and q2 differ on a submodel N ′

1 of size χ. By saturation we can choose
N ′

1 ⊂ N to contradict the minimality of p. �12.25

Using the observation that an increasing chain of extensions of a minimal type
is coherent, Lessmann [Les05b] provides the following extension.

Exercise 12.26. Assume K is (χ, λ)-tame for some χ < λ and categorical for
all κ with λ+ ≤ κ ≤ µ and M is a saturated model of cardinality λ. If p ∈ S(M) is
minimal then p has a unique nonalgebraic extension to any model of size µ.

Our organization of the argument in Chapter 13 avoids the necessity of con-
structing rooted minimal types as in [GV06c].

Remark 12.27. We are particularly grateful to David Kueker for his careful
reading of this chapter. He not only corrected some arguments and filled some gaps
but contributed significantly to organizing the argument more clearly.

The arguments in this chapter are applied below a categoricity cardinal and
need the categoricity assumption. At several points we have had to invoke the
embedding of models in an Ehrenfeucht-Mostowski model, which is guaranteed by
categoricity. It would be useful to see if the arguments could be reorganized to
depend only on µ-stability and the condition that κ(K, µ) = ω, which is derived
from categoricity in Chapter 13 (and tameness for changing cardinalities).



CHAPTER 13

Upward Categoricity Transfer

In this chapter we assume K has the amalgamation property, joint embedding
and arbitrarily large models. Under the additional hypothesis that K is (χ,∞)-
tame for some χ < λ, and λ > LS(K) we show that if K is λ and λ+-categorical
then it is categorical in all larger cardinalities. This result is due to Grossberg and
VanDieren [GV06c] although many elements are from Shelah [She99]. We further
prepare for the same result but weakening the hypothesis to just categoricity in λ+

(Chapter 15) and to use these techniques for proving categoricity in a large enough
λ+ yields categoricity on an interval below λ+ (Chapter 14).

Much of this chapter requires a tameness hypothesis. We are careful to use
only weak tameness so the results apply in Chapter 14, where we work only from
categoricity and apply Theorem 11.15.

Remark 13.1 (Shelah’s Categoricity Conjecture). We would like to prove She-
lah’s conjecture that for every AEC K, there is a cardinal κ such that categoricity
in κ implies categoricity in all cardinalities greater than κ. In this monograph we
restrict our ambition and further assume that K has the amalgamation property
and arbitrarily large models. (As explained in the introduction to Part 3 and after
Lemma 16.14 without significant loss of generality, we further assume K has the
joint embedding property.) Under these hypotheses we prove some cases of the
conjecture. The first result in this context is Shelah’s proof1 in [She99] that cat-
egoricity in λ+ with λ ≥ H2 (see introduction to Chapter 14) implies categoricity
on the interval [H2, λ

+]. We see this argument as taking place in two steps. 1)
If K is λ+ categorical then K is H2-categorical. 2) If K is µ-categorical with
µ > LS(K) and (χ, µ)-weakly tame for some χ < µ then K is µ+-categorical.
Following [She99], we establish 1) in Chapter 14. But first we follow the lead of
Grossberg and VanDieren [GV06c], prove 2) and use 2) and induction on cardinal-
ity to obtain upward categoricity transfer. It is crucial for this argument to show
that there is no (p, λ)-Vaughtian pair (Definition 13.2) with p a minimal type over
a model of size λ. Using weak tameness and categoricity in λ as well as λ+, this is
not too difficult (Lemma 13.12). The nonexistence of (even true) (p, λ)-Vaughtian
pairs is also fairly straightforward if we replace the categoricity in λ assumption
by: the union of less than λ+ saturated models of cardinality λ is saturated. And
we proved this union theorem for singular λ in Lemma 10.22. Thus we are able to
conclude this chapter by deducing upward categoricity transfer from categoricity
in two successive cardinals or in the successor of a singular. The more difficult
case of the successor of a regular λ > LS(K) is postponed to Chapter 15 where by
two more applications of Ehrenfeucht-Mostowski models we are able to obtain the
unions of chains of saturated models hypothesis.

1Shelah asserted a marginally stronger result; see Remark 14.15.
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A crucial tool here, and the reason that we must assume categoricity in a
successor cardinal is the notion of a Vaughtian pair. I write p(N) for the set of
solutions of p in N .

Definition 13.2. (1) A (p, λ)-Vaughtian pair is a pair of models M ≺K
N and a p ∈ S(M0) for a submodel M0 of M such that p has a nonalgebraic
extension to S(M) while p(M) = p(N), M 6= N , and |M | = |N | = λ.

(2) A true (p, λ)-Vaughtian pair is one where both M and N are saturated.

When we have categoricity in successive cardinals the saturation of M and N is
free; we have to make it explicit to handle categoricity from a single cardinal. The
term ‘true’ Vaughtian pair was introduced in [GV06a]; we follow the argument
of [Les05b] in moving between arbitrary and true Vaughtian pairs. We need to
transfer the existence of a Vaughtian pair between cardinalities; downwards with
the same base type p is very easy. But to get a true Vaughtian pair in the lower
cardinality requires a further assumption.

Definition 13.3. K admits λ-saturated unions if the union of less than λ+

saturated models of cardinality λ is saturated.

To admit λ-saturated unions is an approximation to superstability. We will
show in Theorem 15.8 that in the context of Part III, if K is categorical in a
regular λ then K admits µ-saturated unions for LS(K) < µ < λ. We will flag our
use of this hypothesis in Chapters 13 and 14.

Fact 13.4. Let K be ≤ λ-stable. Suppose there is a (p, λ)-Vaughtian pair.

(1) For any µ with | dom p| ≤ µ ≤ λ there is a (p, µ)-Vaughtian pair.
(2) If the (p, λ) pair is true and K admits µ-saturated unions then the (p, µ)-

Vaughtian pair can be chosen true.

Proof. i) If (M,N) is a (p, λ)-Vaughtian pair, alternately choose Mi ≺K
M

and Ni ≺K N with |Ni| = µ, dom p ⊆M0, N0−M 6= ∅, and with p(Mi+1) ⊃ p(Ni)
for µ steps. Then (Mµ, Nµ) is a (p, µ)-Vaughtian pair.

ii) Repeat the same proof guaranteeing that each Mi is µ-saturated; p has a
non-algebraic extension to Mµ by Lemma 12.14. �13.4

With somewhat more difficulty we transfer the existence of a Vaughtian pair of
a non-splitting extension p̂ of a minimal type p to the existence of a Vaughtian pair
for p. Recall from Chapter 12 that a type p ∈ S(M) is minimal if there is at most
one big extension of p to any model of the same cardinality. If K is (χ, λ)-weakly
tame for some χ < λ+ and λ+-categorical, Corollary 12.19 implies any minimal type
over a saturated model M of cardinality ≤ λ has a minimal nonsplitting extension
to any larger model with cardinality at most λ. The following result evolved from
a lemma of VanDieren.

Lemma 13.5. Let K be κ′-categorical for some regular κ′ ≥ κ. Suppose M is
a saturated model of cardinality µ > LS(K), M ≺K N and |N | = κ with κ ≥ µ.
Suppose K is (χ, [µ, κ′])-weakly tame for some χ < µ. Let p ∈ S(M) be minimal
and p̂ ∈ S(N) be an extension of p which does not µ-split over M . If there is a
(p̂, κ′) Vaughtian pair then

(1) there is a (p, κ′) Vaughtian pair and
(2) there is a (p, µ) Vaughtian pair.
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Proof. Suppose N ≺K N1 ≺K N2 are models of cardinality κ′ and N is
saturated. By Lemma 12.25, and the categoricity of K in κ′, there is a nonsplitting
and nonalgebraic extension q of p̂ to N1. If some b ∈ N2 −N1 realizes p but not p̂,
then p̂ and tp(b/N) violate the minimality of p. We have met the first condition,
non-algebraicity, in Definition 13.4.1. So if (N1, N2) witness the existence of a
(p̂, κ)-Vaughtian pair, p is omitted in N2 −N1. But then Fact 13.4 yields a (p, µ)-
Vaughtian pair and we finish. �13.5

Lemma 13.6. Suppose λ > LS(K), K is categorical in λ+, K is (χ, λ)-weakly
tame for some χ < λ, and K admits λ-saturated unions. Then for any saturated
M ∈ K with cardinality λ, and for any minimal p ∈ S(M), there is no true (p, λ)-
Vaughtian pair.

Proof. For contradiction, let M ≺K N0 ≺K N1, N0 and N1 saturated models
of size λ, and p0 ∈ S(N0) be a nonalgebraic extension of p which is not realized in
N1. Then p0 is also minimal.

Choose N,N ′ of size χ with N ≺K N ′ ≺K N0 such that p0 does not |N |-
split over N and N ′ is universal over N . (N exists by Lemma 12.5, N ′ by stability,
Lemma 10.3, and Lemma 10.5; we can assumeN ′ ≺K N0 by saturation ofN0, since
λ > |N ′|). We now construct an increasing and continuous sequence of saturated
models 〈Ni :: i < λ+〉 of size λ and types pi ∈ S(Ni) such that pi is an N ′-
automorphic image of p0 which is not realised in Ni+1.

This is possible: Having constructed Ni, choose fi ∈ Aut(M/N ′) such that
fi(N0) = Ni (this is possible since λ > LS(K)). Let pi = fi(p0) andNi+1 = fi(N1).
At limits, let Ni be the union of the Nj for j < i, which is saturated by the
hypothesis on unions of chains of saturated models.

Notice that since each pi is an N ′-automorphic image of p0, each pi does not
split over N and pi ↾N

′ = p0 ↾N ′. Thus, by uniqueness of nonsplitting extensions
(Lemma 12.7), pi ↾N0 = p0. Thus, each pi is the unique nonalgebraic extension of
p0 in S(Ni).

This contradicts λ+-categoricity: Let M∗ =
⋃
i<λ+ Ni. Then M∗ does not

realise p0: Otherwise, there is a ∈ M∗ realising p0. Since a 6∈ N0, there is i < λ+

such that a ∈ Ni+1 \Ni. Then tp(a/Ni) is a nonalgebraic extension of the minimal
type p0. Hence tp(a/Ni) = pi which is a contradiction, since pi is not realised in
Ni+1. �13.6

Of course the ‘union of chains’ hypothesis of Lemma 13.6 is immediate if K is
λ-categorical so there is no need to introduce ‘true’ to study transfer of categoricity
from two successive cardinals. The weaker hypothesis stated for Lemma 13.6 plays
a crucial role in extending the argument here to obtain categoricity transfer from
a single successor cardinal after we establish that K admits λ-saturated unions in
Chapter 15. The argument here uses closure under unions of chains of saturated
models rather than just uniqueness of limit models because N1 is an arbitrary
saturated extension of N0. Indeed N1 cannot be universal over N0 since they are a
Vaughtian pair; so the saturation of the limit models in the Ni sequence cannot be
deduced from uniqueness of limit models (which are the limit of a chain of universal
extensions). Lessmann’s argument [Les05b] depends heavily on countability to
guarantee uniqueness of limit models (over M); there is further reliance on all limit
ordinals having the same cofinality.
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Lemma 13.7. Suppose K is (χ, λ)-weakly tame for some χ < λ. Let p ∈ S(M),
|M | = λ where p is minimal and M is saturated and suppose there is no (p, λ)-
Vaughtian pair. Then any N with |N | = λ+ and M ≺

K
N has λ+ realizations of

p. Moreover, if K admits λ-saturated unions, ‘no true (p, λ)-Vaughtian pair’ is a
sufficient hypothesis.

Proof. Since M is saturated there is a non-algebraic extension of p to any
extension of cardinality λ (Theorem 12.19). If N has fewer than λ+ realizations
of p there is a (p, λ+) Vaughtian pair and thus, by Fact 13.4.1, a (p, λ) Vaughtian
pair. For the moreover, use Fact 13.4.2. �13.7

The previous result shows that if we have categoricity up to κ then all minimal
types over a model of cardinality κ are realized in any extension of cardinality κ+.
The crucial step, due to Grossberg and VanDieren, (Theorem 4.1 of [GV06c]),
extends this result to all types. They introduce the following notion.

Definition 13.8. N admits a (p, λ, α)-resolution over M if |N | = |M | = λ
and there is a continuous increasing sequence of models Mi with M0 = M , Mα = N
and a realization of p in Mi+1 −Mi for every i.

Lemma 13.9. Assume p ∈ S(M) is minimal and K does not admit a (p, λ)-
Vaughtian pair. If N admits a (p, λ, α)-resolution over M , with α = λ · α then N
realizes every q ∈ S(M).

Proof. Fix a (p, λ, α)-resolution 〈Ni : i ≤ α〉 of N . We construct an increasing
continuous chain of models Mi and M ′

i for i ≤ α such that M ′
0 realizes q and we

show N is isomorphic to Mα by constructing isomorphisms fi from Ni into M ′
i . We

denote the image of fi by Mi. In fact, by a Vaughtian pair argument we will get
Mα ≈M ′

α. Let M0 = N0 = M and f0 be the identity on M . Take unions at limits.
Let M ′

0 be any extension of M0 which contains realizations of both p and q;
amalgamation guarantees the existence of M ′

0.
The following coding trick allows us to catch up. We can write α as the union

of disjoint sets 〈Si : i < α〉 such that |Si| = λ and min(Si) > i (except at 0), i.e.

0 ∈ S0 and minSi > i for 0 < i < α. At stage i, let Ŝi = 〈bζ : ζ ∈ Si〉 enumerate
p(M ′

i), (possibly with repetitions). We will guarantee that each bζ is realized in an
M ′
j for some j > i.

At successor stages, i+ 1, we guarantee bi is in the range of fi+1. We have an
isomorphism fi taking Ni onto Mi ≺K

M ′
i . We have defined {bj :j ∈ Sk} for k ≤ i.

Since minSt ≥ t for all t, bi ∈
⋃
t≤i Ŝt. By the amalgamation property there exists

a model M∗ which contains M ′
i and f extending fi and mapping Ni+1 into M∗.

Now if bi ∈ Mi, our goal is met. Just let M ′
i+1 be M∗ and take fi+1 to be f

and Mi+1 its image.
Suppose bi 6∈Mi. By assumption there is a c ∈ Ni+1 −Ni that realizes p. Note

that tp(f(c)/Mi) = f(tp(c/Ni)) is a non-algebraic extension of p. We know bi ∈
M ′
i−Mi realizes another nonalgebraic extension of p. So tp(f(c)/Mi) = tp(bi,Mi).

By the definition of Galois type we can choose M ′
i+1 is an extension of M ′

i and g
mapping M∗ into M ′

i+1 with g(f(c)) = bi. Then fi+1 = g ◦ f as an embedding of
Ni+1 into M ′

i+1 with fi+1(c) = bi, as required.
Now, we claim fα maps N onto M ′

α. By the construction the image Mα of
fα satisfies p(Mα) = p(M ′

α) and Mα ≺K M ′
α by A3.3 But then Mα = M ′

α lest
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(Mα,M
′
α) be a (p, λ) Vaughtian pair. Since fα fixes M , q is realized in N , as

required. �13.9

From this result we easily deduce the less technical statement in Theorem 13.11.
The assumption that there is a saturated model in µ is needed when µ is singular. In
the proof of categoricity on [H2, λ

+], we will guarantee the saturation by induction
and ground the induction with Theorem 14.12.

Exercise 13.10. Suppose M ≺K N and p ∈ S(M) is realized µ+ times in
N . Show there is N ′ with M ′ ≺

K
N ′ ≺

K
N such that N ′ admits a (p, µ, α)-

decomposition.

Theorem 13.11. Assume K is (χ, µ)-weakly tame for some χ < µ. Suppose
K is µ-categorical and there is a saturated model M in cardinality µ such that there
is p ∈ S(M) that is minimal, and there is no (p, µ)-Vaughtian pair. Then every
model of cardinality µ+ is saturated.

Proof. LetN ∈ K have cardinality µ+. Choose anyM ′ ≺K N with cardinality
µ. By categoricity in µ, M ′ is saturated. We will show every type overM ′ is realized
in N . Fix α with α · µ = µ. By Lemma 13.7, p is realized µ+ times in N . By
Exercise 13.10, there is an N ′ with M ′ ≺K N ′ ≺K N such that N ′ admits a
(p, µ, α)-decomposition. By Lemma 13.9, N ′ and a fortiori N realize every type
over M ′ and we finish. �13.11

We next show the hypothesis of Theorem 13.11 easily transfers to larger cate-
goricity cardinals; this fact will fuel the induction step of Theorem 13.13.

Lemma 13.12. Suppose there is a saturated model M in cardinality µ such that
there is p ∈ S(M) that is minimal, and there is no (p, µ)-Vaughtian pair. Now fix
κ ≥ µ+ such that all models of K with cardinality κ are saturated and K is (χ, κ)-
weakly tame for some χ < µ. For any N ∈ Kκ, there is a minimal non-algebraic
type p̂ ∈ S(N) such that there is no (p̂, κ)-Vaughtian pair.

Proof. By Lemma 12.25, which applies by weak tameness, there is a non-
splitting nonalgebraic extension p̂ of p to S(N) that is minimal. Applying the
contrapositive of Lemma 13.5, there is no (p̂, κ)-Vaughtian pair. This is a crucial
application of tameness. �13.12

We now conclude by induction the result (Theorem 13.13.ii) of Grossberg and
VanDieren. Our formulation of Theorem 13.13.i) prepares for the proof from cate-
goricity in a single successor.

Theorem 13.13. Suppose LS(K) < λ, and that K has arbitrarily large models,
the amalgamation property, and joint embedding.

(1) Suppose K is λ+-categorical, (χ, κ′)-tame for some χ < λ, and K admits
λ-saturated unions. Further, suppose there is a saturated model M in
cardinality λ such that there is p ∈ S(M) that is minimal, and there is no
(p, λ)-Vaughtian pair. Then every model of cardinality κ with κ′ ≥ κ ≥ λ+

is saturated and so K is categorical in all such cardinals κ.
(2) In particular, if K is (χ,∞)-tame for some χ < λ, and K is both λ and

λ+-categorical then K is categorical in all cardinals κ ≥ λ.

Proof. For i) we prove by induction on κ with κ′ ≥ κ ≥ λ+ that every model
in K of cardinality κ is saturated. Suppose the result is true below κ.
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If κ is a limit cardinal, we show an arbitrary M ∈ K with |M | = κ is Galois
saturated. Let N ≺K M with |N | < |M |. By Löwenheim-Skolem and hypothesis
choose N ′ with N ≺K N ′ ≺K M , |N | < |N ′| < |M |, |N ′| ≥ λ+, and with |N ′| is
regular, By induction K is |N ′|-categorical and so N ′ is saturated. So every type
over N is realized in M . I.e., M is saturated as required.

If κ is a successor cardinal, say κ = µ+, by Lemma 13.12 and the induction
hypothesis, the hypotheses of Theorem 13.11 hold at µ. So, we finish by applying
Theorem 13.11 to conclude κ-categoricity.

For ii) we show that the categoricity in λ and λ+ implies the hypotheses of i)
hold in λ+. Let M0 be the saturated model of cardinality λ. By Theorem 12.23
and categoricity, there is a minimal type p ∈ S(M0). By Lemma 13.6, there is
no (p, λ)-Vaughtian pair. Now apply Lemma 13.12 to get this condition in λ+.
�13.13

The tameness requirement imposes the limit of κ′ on this induction. In Chap-
ter 14 we follow [She99] and deduce categoricity on [H2, λ

+] from categoricity
in λ+. Theorem 11.15 establishes the tameness that is essential for applying the
current argument in that situation.

Using Lemma 10.22, we have:

Corollary 13.14. Suppose LS(K) < λ, K is (χ,∞)-weakly tame for some
χ < λ, and that K has arbitrarily large models, the amalgamation property, and
joint embedding. If K is λ+-categorical and λ is singular then K is categorical in
all cardinals µ > λ.

Proof. Choose a saturated M0 of cardinality λ by Lemma 10.17. Lemma 12.23
implies there is a minimal type in S(M0). By Lemma 12.25, this minimal type
is extendible. Finally, we show there is no Vaughtian pair, by adapting the proof
of Lemma 13.6, replacing the use of categoricity in λ by the closure of saturated
models under unions of chains. �13.14

We will improve this result to categoricity in one successor cardinal in Chap-
ter 15.

Remark 13.15. These arguments were refined by the author and others from
Shelah [She99] and Grossberg-Vandieren [GV06c]. In particular, the idea that
assuming tameness would allow the proof of upwards categoricity and the proof
of Lemma 13.9 is due to Grossberg and VanDieren. The current argument for
Lemma 13.6 is due to Lessmann. Lessmann [Les05b] (see also [BL06]) has also
extended the result to the case λ = LS(K) = ℵ0. This is a crucial extension
since, as noted in Chapters 2 and 3, there are actual mathematical situations in
countable languages where ℵ1-categoricity is easier to establish than categoricity in
2ℵ0 ; however, the tameness remains open in these interesting cases. The notation
(p, λ)-Vaughtian pair was introduced in early versions of this book. This is the first
explicit statement of Theorem 13.14 although it is implicit in [She99].



CHAPTER 14

Omitting types and Downward Categoricity

Our goal is to show that if an AEC is categorical in a sufficiently large suc-
cessor cardinal, it is in fact categorical for all sufficiently large cardinals. (See
Conclusion 15.13.) In view of Theorem 4.21, the key to this is to prove a down-
wards categoricity theorem. For this we need to make precise some notation. In
Notation 4.24 we introduced the function H(κ) = i(2κ)+ . We noted in Corol-
lary 4.25 that the Hanf number for omitting types in a PCΓ-class with vocabulary
τ is bounded by H(|τ |). We showed in Corollary 4.26 the Hanf number for the
existence of models in an AEC with fixed κK is bounded by H1 = H(κK). We
write H2 for H(H(κK)). The significance of H2 is a major technical point of this
chapter that we expound in Remark 14.7.

In this chapter we prove that if an AEC K satisfies AP and JEP and is cat-
egorical in λ and λ+ for some λ ≥ H2 then it is categorical in all µ ∈ [H2, λ

+].
Assuming K is (χ,∞)-tame for some χ < H1 allows one to extend this conclusion
to categoricity in all µ ≥ H2. (We discuss the relation to the somewhat stronger
result asserted by Shelah in Remark 14.15.) The argument for downward trans-
fer proceeds in several steps. We showed in Theorem 11.15 that for each κ with
H1 ≤ κ < λ+, there is a χκ such that K is (χκ, κ)-weakly tame for some χκ < H1.
The fundamental fact in Chapter 13 is that if for some µ greater than the tameness
cardinal χ (e.g. if K is (χ,∞)-tame) K is µ-categorical and has a model of M
with |M | = µ and a minimal type p ∈ S(M) such that there is no (p, µ)-Vaughtian
pair then K is categorical in all larger cardinals. The content of this chapter is to
move from categoricity in λ and λ+ with λ > H2 to getting the conditions of the
preceding sentence with µ = H2.

Theorem A.3 is a general statement of ‘Morley’s omitting types theorem. We
make several applications of that result in this chapter. The first (Lemma 14.2) uses
Theorem A.3.1 and allows us to conclude: each model in K of cardinality at leastH1

is LS(K)-saturated and each model of cardinality at least H2 is H1-saturated; the
second (Theorem 14.9, which depends on Theorem 14.8), using Theorem A.3.2b,
with the tameness, extends this to: each model in K of cardinality H2 is H2-
saturated. Thus we have transferred λ+-categoricity down to H2-categoricity; now
we work our way back up. As in Chapter 13, we are able to find a minimal type p
based on a model M∗ of cardinality H2. A third variant, Theorem A.3.2a, on the
omitting types theorem shows (Theorem 14.12) that if there is a (p,H2)-Vaughtian
pair then there is a (p, λ)-Vaughtian pair. We showed there was no (p, λ)-Vaughtian
pair in Lemma 13.6. Finally applying the induction from Lemma 13.13 beginning
at H2 we conclude that K is categorical up to λ+ and, assuming full tameness, in
all larger cardinals.

In the next chapter we will use a far more sophisticated investigation of non-
splitting to show that if K is λ+-categorical (with no categoricity hypothesis in
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λ), there is still no (p, λ)-Vaughtian pair. Thus we obtain the full strength of both
[She99] and [GV06c].

Notation 14.1. We fix this notation for the chapter. K is an AEC in a
vocabulary τ and |τ | = LS(K). τ1 is the expansion of τ given by the presentation
theorem. µ = (2|τ |)+.

We extend Morley’s omitting types theorem, Theorem A.3.1, to Galois types.

Lemma 14.2. [II.1.5 of 394] Let K be an AEC in a vocabulary τ of cardinality
κ. If M0 ≺K M and |M | ≥ H(|M0| + κ), we can find an EM-set Φ such that the
following hold.

(1) The τ-reduct of the Skolem closure of the empty set is M0.
(2) For every I, M0 ≺

K
EMτ (I,Φ).

(3) If I is finite, EMτ (I,Φ) can be embedded in M over M0 as a τ ′1-structure.
(4) EMτ (I,Φ) omits every galois type over M0 which is omitted in M .

Proof. Let τ1 be the Skolem language given by the presentation theorem and
consider M as the reduct of a τ1-structure M1. Add constants for M0 to form τ ′1.
Extend T1 from the presentation theorem to a Skolemized T ′

1 by fixing the values
of the functions on M0. Now apply Lemma 6.2.3 to find an EM-diagram Φ (in τ ′1)
with all τ -types of finite subsets of the indiscernible sequence realized in M . Now
1) and 2) are immediate. 3) is easy since we chose Φ so all finite subsets of the
indiscernible set (and so their Skolem closures) are realized in M .

The omission of Galois types is more tricky. Consider both M and N =
EMτ (I,Φ) embedded in M. Let N1 denote the τ ′1-structure EM(I,Φ). We need
to show that if a ∈ N , p = tp(a/M0) is realized in M . For some e ∈ I, a is in
the τ1-Skolem hull Ne of e. By 3) there is an embedding α of Ne into M1 over
M0. α is also an isomorphism of Ne ↾ τ into M . Now, by the model homogeneity,
α extends to an automorphism of M fixing M0 and α(a) ∈M realizes p. �14.2

Now we can rephrase this result as

Corollary 14.3. The Hanf number for omitting Galois types over a model
in any AEC with a vocabulary and Löwenheim-Skolem number bounded by κ is at
most H(κ).

This result has immediate applications in the direction of transferring cate-
goricity.

Theorem 14.4. If K is categorical in a regular cardinal λ ≥ H(|M0|) then
every M ∈ K with |M | ≥ H(|M0|) is |M0|-saturated. Thus, if |M | ≥ H1, M is
LS(K)+-saturated and if |M | ≥ H2, M is H1-saturated.

Proof. By the last lemma, if M omits a type p over a model of size |M0|, there
is a model N ∈ K with cardinality λ which omits p. But, the unique model of
power λ is saturated. �14.4

But we need to show that the model in H2 is saturated. We must use the
‘two cardinal’ aspect laid out in part 2 of Theorem A.3. The argument depends
essentially on the fact that H2 is a µ-collection cardinal in the following sense.

Definition 14.5. For any µ, κ, κ is a µ-collection cardinal if for every χ < κ,
iµ(χ) ≤ κ.

Thus in our case where µ is fixed as (2LS(K))+; for any non-zero α, cardinals
of the form H2 × α are µ-collection cardinals.
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We need the following lemma because we are only able to deduce weak-tameness,
as opposed to tameness, from categoricity. The proof is patterned on that of
Lemma 10.22.

Lemma 14.6. Suppose K is λ-categorical, M ∈ K, |M | < cf(λ) and M is
µ-saturated for some µ with LS(K) < µ < |M|. Then if N ≺

K
M with |N | = µ,

there is an N ′ with N ≺K N ′ ≺K M , |N ′| = µ and N ′ is saturated.

Proof. Write N =
⋃
i<cf(µ)Ni where |Ni| = µi < µ.

If µ is regular the result is easy to see. Construct a continuous increasing chain
N ′
i with |N ′

i | = µi for i < µ with Ni ≺K N ′
i and each N ′

i+1 realizes all types over
N ′
i . Using regularity it is easy to see that N ′ =

⋃
i<µN

′
i is saturated.

For singular µ the argument is more complicated; we work by induction on
µ. So let µ be the least cardinal where the conclusion fails. Now applying the
induction hypothesis, construct a continuous increasing chain N ′

i with |Ni| = µi
for i < µ with Ni ≺K

N ′
i and each N ′

i is µi-saturated. To see that N ′ =
⋃
i<µN

′
i

is saturated, choose N∗ ≺
K

N ′; say, with |N∗| = κ < µ. If κ < cf(µ), the
usual argument for the regular case shows every type over N∗ is realized in N ′. If
cf(µ) ≤ κ, we will construct N̂ with N∗ ≺K N̂ ≺K N so that N̂ is κ+-saturated.
Let X = {i < µ : (N ′

i+1 ∩ N∗) − N ′
i 6= ∅}. Enumerate X as 〈xi : i < δ〉 where

δ < κ+. Now choose a continuous increasing chain N̂γ so that for sufficiently large

γ, (N∗ ∩ N ′
xγ

) ⊆ N̂γ ⊂ N ′
xγ

and N̂γ+1 is κ+-universal over N̂γ . This is possible

by the κ++-saturation of N ′
i for sufficiently large i. Now, 〈N̂γ :γ < δ〉 is a (κ+, δ)-

tower. So by Lemma 10.16.3 and Corollary 10.14.2 N̂δ ≺K
N ′ is κ+-saturated and

is the required N̂ . �14.6

Remark 14.7. The following proof revolves around three cardinals: κ, κ1, χ;
a fourth cardinal θ appears in the statement to help calibrate the others. We will
start with a model M of cardinality κ that is not saturated. We say N1 ≺

K
M

witnesses the non-saturation if some type q over N1 is omitted in M . We choose
κ1 < κ so there is a model of N1 of size κ1 witnessing non-saturation. We will
also need that K is (χ, κ1)-weakly tame and χ < κ1. To apply weak tameness, we
need that N1 is itself saturated; to guarantee this, we assume M is θ-saturated.
We describe the value of θ in a moment. We will expand M to a τ+-structure in an
extended language τ+ with |τ+| = χ. The properties of the expansion are described
in the first displayed list in the following proof. Then we apply Theorem A.3.2b
to construct an EM-diagram Φ in a language extending τ+ by an additional unary
predicate P such that for any M∗ = EM(I,Φ), there a sequence of submodels
Ni for i < ω (which are isomorphic to submodels of the original N1) so that q
induces a type over N =

⋃
Ni that is ‘strongly omitted’. The ‘strong omitting’

guarantees that in any cardinality > χ there is a model that is not χ+-saturated.
This contradicts categoricity.

We apply Theorem 14.8 in Theorem 14.9 with θ = H1. To guarantee that M
is H1-saturated, we need |M | ≥ H2. And κ1 ≥ θ had to be at least H1 so that we
could assert that K is (χ, κ1)-weakly tame for some χ < H1.

The following argument uses both first order types and Galois types. The
notation tp refers to Galois types and we use English for first order types. Recall
our conventions in Notation 14.1. Below we discuss the structures EM(ω,Φ) and
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EM(n,Φ); note that this structure is given by Φ and ω or n; it does not depend
on embedding into a larger index set.

The following Lemma showing the transfer of non-saturation will be used by
contraposition to show the transfer of categoricity.

Theorem 14.8. [II.1.6 of 394] Suppose K is λ-categorical and |M | = κ where κ
is a µ-collection cardinal. Suppose further that for some θ, K is weakly (< χ, [θ, κ])-
tame. If M is not saturated but is θ-saturated then there is a τ+ with |τ+| = χ < θ
and a τ+-diagram Φ such that for every ordered set I: there is a Galois-type q′ over
a model N ′ ≺

K
M with |N ′| = χ that is omitted in EMτ (I,Φ). In particular, for

every λ′, there is a model of cardinality λ′ that is not χ-saturated.

Proof. If M is not saturated, there is an N1 ≺K M with |N1| < κ and

q ∈ S(N1) which is omitted in M . We have M is θ-saturated, so by Lemma 14.6,
by choosing the cardinality κ1 of N1 to be minimal with N1 witnessing the non-
saturation, we may assume that N1 is itself saturated. Since κ1 ∈ [θ, κ], by (χ, κ1)
weak-tameness, for every c ∈ M , there is an Mc ≺K N1 with |Mc| = χ such that
tp(c/Mc) 6= q ↾Mc.

We first expand τ1 to a language τ+ by adding a unary predicate P and χ
additional functions of each finite arity. Then we expand M to a τ+-structure with
the following properties. Fix a model N0 ≺

K
N1 with |N0| = χ.

(1) P (M) = N1;
(2) clτ+(∅) ↾ τ = N0;
(3) For every a ∈M ,

(a) clτ+(a) ↾ τ ≺K M ;

(b) (clτ+(a) ∩N1) ↾ τ ≺
K

N1;
(c) if a ⊂ b then clτ+a ↾ τ ≺K clτ+b ↾ τ ;

(d) q ↾(clτ+(a) ∩N1) ↾ τ is omitted in clτ+(a) ↾ τ .

To make this expansion we mimic the proof of the presentation theorem writing
N1 and M as direct unions of finitely generated models in the expanded vocabulary
τ+ and meeting certain additional requirements. We interpret the symbols of τ+

in stages. On the first pass define by induction on the length of a for each finite
a ∈ M , partial τ+-structures M0

a such that M0
a = clτ1(a), |M0

a ∩ N1| = χ such
that if a ∈ N1 then (M0

a ∩N1) ↾ τ ≺
K

N1 ↾ τ ; of course we require that if a ⊂ b

then Ma ↾ τ ≺K Mb ↾ τ and for a ∈ N1, M0
a ≺K N1.

On a second pass, we interpret, again in stages, the remaining symbols from
τ+ to guarantee that for Ma = clτ+(a), q ↾(Ma ∩N1) is not realized in Ma. We
can guarantee this in countably many steps. We view τ+ as having χ×ω functions
beyond τ1 and P ; at each step χ of them are interpreted andM i

a denotes the closure
of a under the first χ× i functions. For each c ∈M i

a form M i+1
a by adding points

to Ma ∩N1 to guarantee c doesn’t realize q ↾M i+1
a . By tameness we need add at

most χ points; we interpret the next χ functions in τ+ so that when evaluated at a

they enumerate these points. Again we require that M i
a ↾ τ ≺K M i

b ↾ τ , for a ⊆ b,

M i
a ↾ τ ≺

K
M i

b ↾ τ , and that for a ∈ N1, M i
a =≺

K
N1. Further, demand in the

construction that if a ∈ N1, clτ+(a) ⊆ N1.
Now we construct a τ+-diagram Φ so that for any M∗ = EM(I,Φ), we can

find Nj ≺K M∗ for j ≤ ω so that if N =
⋃
j Nj and q′ = q ↾N :

(1) EMτ (n,Φ) is isomorphic to a submodel of M , so EMτ (I,Φ) ∈ K.
(2) P (M∗) ↾ τ ≺K M∗ ↾ τ .
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(3) N0 ≺K P (M∗) has cardinality χ; N0 ≈ N0 ≺K N1.
(4) Nj for j ≤ ω is a continuous chain of τ -structures with cardinality χ,

beginning with N0 and all strong in P (M∗).
(5) The τ -reduct of the Skolem closure of the empty set is N0.
(6) Nn ≺K EMτ (n,Φ).
(7) For every I, EMτ (I,Φ) omits q′ in the strong sense that if c ∈ EMτ (I,Φ),

then for some j < ω,

q′ ↾Nj 6= (tp(c/Nj), EMτ (I,Φ)).

If we can establish these claims, EMτ (I,Φ) satisfies the conclusions of the
Theorem. Namely, EMτ (ω,Φ) ≺

K
EMτ (I,Φ), |EMτ (ω,Φ)| = χ and the copy

of q′ over EMτ (ω,Φ) is omitted in EMτ (I,Φ). To establish the seven conditions,
we apply Theorem A.3.2b and for this we need i(2|τ|)+(|N1|) < κ. This is exactly
what it means for κ to be a µ-collection cardinal.

Apply Theorem A.3.2b, taking M for all the Mα and P (M) as N1 to satisfy
the first two conditions. With the resulting Φ, in any M∗ = EM(I,Φ) there is
a countable set J of τ+-indiscernibles over P (M∗). (The cardinality of Q(M∗) is
not important here.) So for any pair of increasing n-tuples, a,b from J , clτ+(a) ∩
P (M∗) = clτ+(b) ∩ P (M∗); we call this common intersection Nn. Note that N0 =
clτ+(∅) ≺

K
P (M∗) and N0 ≈ N0. Each Nn has cardinality χ. By definition,

each Nn is a τ+-substructure of P (M∗). Since P (M∗) is a τ+-substructure of
M∗ and the moreover clause of the presentation theorem, Nn ≺K EM(I,Φ).
Note that Nn ⊂ EM(n,Φ). So Nn ≺

K
EMτ (n,Φ) by the coherence axiom. For

condition 7), let c ∈ EM(I,Φ). Say c ∈ clτ+(a) for a ∈ I and |a| = n. Then
EM(a,Φ) ≈P (M∗) EM(n,Φ). So if c realizes q′, there is a c′ ∈ EM(n,Φ) realizing

q′. But this directly contradicts clause 3d) describing the τ+-closure. �14.8

Our application of the following result will be when λ is a successor cardinal.
We state a slightly more general form.

Theorem 14.9. If K is categorical in some λ, with cf(λ) > H2 then K is
categorical in H2 and indeed in any µ-collection cardinal κ between H2 and λ.

Proof. By Theorem 11.15, K is (χ, κ)-weakly tame for some χ < H1. Let M
be a model of cardinality κ. Since κ > H2, Lemma 14.4 implies M is H1-saturated.
If M is not saturated, applying Theorem 14.8 with θ = H1 shows that there is a
model in cardinality λ that is not χ-saturated. But we know (Lemma 10.3) the
model in λ is special and thus ρ-saturated for any ρ < cf(λ). �14.9

Remark 14.10. Keisler [Kei71] deals with PCδ-classes; classes defined as the
reducts of a theory in a countable expansion of a first order language. He proves
that if a PCδ-class has a model in an ω1-collection cardinal then it has a non-ω1-
saturated model (in the classical first order sense) in every cardinal λ. And for
PCδ classes he establishes that a categoricity model is saturated. So categoricity
in any cardinal implies categoricity on all ω1-collection cardinals. The difficulty
in applying this result to categoricity transfer in our context is that for abstract
elementary classes and more generally for PCΓ-classes, in interesting cases the
categoricity model is not saturated in the classical sense. Keisler’s answer to this
difficulty [Kei71], which was extended in [She70], was to require homogeneity in
the categoricity cardinal. We saw in Chapter 3 that this was insufficiently general.
Shelah’s solution for abstract elementary classes is to deal with Galois-types and
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prove that if K is categorical in λ then the model is cf(λ)-Galois-saturated. The
fly in the ointment is that now the transfer of non-saturation must be reproved
to show that a Galois type can be omitted. This requires an additional tameness
hypothesis and so we no longer have an easy way to get categoricity on a class of
cardinals from categoricity in a single cardinal.

This completes the proof that categoricity transfers from λ down to H2. To
ground the induction carrying categoricity through the interval [H2, λ

+], we show
how to transfer the existence of a Vaughtian pair of Galois types from λ to H2.
Beyond the notational conventions of this chapter chapter, we need the notion of
transitive closure to find a small universe of sets that contains all the objects that
we need in our construction.

Notation 14.11. Let trcl(x) be the transitive closure of x [Kun80]. For any
cardinal θ, the sets of hereditary cardinality < θ are:

H(θ) = {x : |trcl(x)| < θ}.

Theorem 14.12. If p ∈ S(M∗) with |M∗| = χ < H1 ≤ θ < λ+, K is λ+-
categorical and there is a true (p, θ)-Vaughtian pair then for any cardinal ρ ≥ θ,
there is a true (p, ρ) Vaughtian pair.

Proof. Let us state the claim more precisely. Suppose p ∈ S(M∗), M∗ ≺
K

M0 ≺K N0 with θ = |M0| = |N0| > iµ(|M∗|), M0 and N0 are θ-Galois saturated,
and p is omitted in N0 −M0. Say |M∗| = χ. We will show that for any ρ ≥ θ there
are a pair of models M1, N1 of cardinality ρ with M∗ ≺K M1 ≺K N1, M1 and N1

are ρ-Galois saturated, and such that p is omitted in N1 −M1.
By the presentation theorem, there is a vocabulary τ ′ such that N0 is the

reduct to τ of a τ ′-structure omitting a designated family of types. Without loss
of generality the universe of the structure N0 is a subset with cardinality θ of H(θ)
that contains the elements we now describe. Enrich the structure 〈H(θ), ǫ〉 to a
τ ′′ ⊇ τ ′ ∪ {∈}-structure by adding predicates P0 for M0, P1 for N0, naming the
elements in M∗ by the odd ordinals in χ, and including names for χ and each of its
elements; call the resulting structure B. To express that M0 and N0 are θ-Galois
saturated, recall from Lemma 11.10 a model (with |M | < λ+) is Galois-saturated
if and only if it can be represented in the form EM(I,Φ) for a linear order with
|I| = θ such that for any cardinal κ < |I|, there is an order embedding of κ+ into
I. To apply this result in this situation, let τ ′′ also include predicates I0, I1, <0, <1

naming the ordered sets generating each of M0 and N0.
In constructing the expansion to B, we require that P0(B) ↾ τ ≺K P1(B) ↾ τ ≺K

B ↾ τ . Apply Theorem A2.21 to find for any ρ > θ an elementary extension B′ of B
which realizes no τ ′′-types over the empty set not realized in B and with |I1(B′)| =
|P1(B

′)| = |I1(B′)| = |P0(B
′)| = |B′| = ρ. Moreover, P0(B

′) = EM(I0(B
′),Φ) and

P1(B
′) = EM(I1(B

′),Φ).
For i = 0, 1, this implies that the cardinality of |Ii(B′)| in the sense of B′,

|Ii(B′)|B′

, is at least ρ. So for each cardinal κ < ρ there is an embedding of κ+

into |Ii(B′)|. As an elementary extension of B,

B′ |= (∀κ)κ < |Ii|, κ+ is order embeddable in Ii.
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Composing the injections given by the last two sentences, we see that in V :

(∀κ)κ < |Ii|, κ+ is order embeddable in Ii.

By the characterization of Galois saturation, each of |P1(B
′)|, |P0(B

′)| are ρ-
Galois saturated. Suppose for contradiction that some c ∈ P1(B

′)−P0(B
′) realizes

p ∈ S(M∗). By the Löwenheim-Skolem property there is a d ∈ B′ such that B′

satisfies, ‘d ≺τ ′′ B′’ and each element of M∗ is in d and c ∈ d −M0 and d has
cardinality χ (witnessed by a function f from χ to d which fixes M∗)’. As each
element m of M∗ has a name m′ ∈ τ ′′, {f(α) 6= x : α ∈ M∗} is contained in the
first order type of c over M∗. Further by the Löwenheim-Skolem property in K,
we can require ‘d ≺

K
P1(B

′)’. Since no first order type, which is omitted in B,
is realized in B′ there are elements c−, d−, f− ∈ B satisfying the same first order
type as cdf over the empty set. In particular, {f−(α) 6= c− :α ∈M∗} and c− 6∈M0.
Although neither f nor f− respects τ ′-structure, since e−f− and ef realize the
same type for e ∈ χ, the map h from d− to d defined by h(x) = y if and only if
for some e ∈ χ, B |= f−(e) = x and B′ |= f(e) = y is a τ ′′ and in particular a
τ -isomorphism, taking c to c− and fixing M∗ pointwise. Therefore, c and c− realize
the same Galois type over M∗. This contradicts that p is omitted in B. So, we
have constructed a true (p, ρ)-Vaughtian pair. �14.12

Remark 14.13. Many omitting types theorems can be proved by this ‘expan-
sion of set theory’ technique (e.g. Lemma VII.5.2 of [She78]). We have avoided the
technique elsewhere as it seemed to only add complication; here there are important
reasons for using it.

(1) The element d of the model B′ is set of cardinality χ; we could not deal
with its elements without set theory because we would be omitting a χ
type. d is chosen in the extended model and a copy is found below. But
we can’t just add a predicate for d in advance to B because we have to
cover every choice.

(2) For the proof of categoricity transfer from one cardinal we can only show
the non-existence of true Vaughtian pairs so we must guarantee in the
construction for Theorem 14.12 that the larger pair of models is saturated;
we are able to write this in set theory. We would not have to appeal to
Lemma 11.10 if we assumed categoricity in both λ and λ+

(3) Lemma 11.10 provided an absolute characterization of saturation in terms
of Ehrenfeucht-Mostowski models, which we used to justify the transfer
of saturation between models of set theory in various cardinalities. This
characterization holds only below the categoricity cardinal and I know of
no similar characterization without the categoricity hypothesis – even in
first order logic.

(4) In [She99], Shelah states this result (2.6 (∗)7) and finishes by saying ‘the
least trivial point is preserving the saturation’; he suggests the result re-
ported in Lemma 11.10 is the key. I thank Alf Dolich, Christian Rosendal,
Andres Villaveces, and especially Alexei Kolesnikov for valuable conver-
sations in interpreting this hint.

Finally, the proof outlined in the second paragraph of this chapter yields the
following result which includes both a weaker version (categoricity assumed in two
cardinals instead of one) of the main result of [She99] and the extension to upward
categoricity of Grossberg and VanDieren [GV06c]. In the next chapter we recover
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Shelah’s full assertion (modulo fine points about the lower bound) by deducing K

admits λ-saturated unions from categoricity in λ+.

Theorem 14.14. Suppose K is categorical in cardinal λ+ with λ ≥ H2 and
either

(1) K is λ-categorical, or
(2) K admits λ-saturated unions,

then

(1) K is categorical in every θ with H2 ≤ θ ≤ λ+;
(2) If K is also (H2,∞)-weakly tame K is categorical in every θ with H2 ≤ θ.

Proof. By Theorem 11.15, there is a χ < H1 such that K is (χ,≤ λ)-tame.
Theorem 14.9 tells us K is categorical in H2 and the model M0 with cardinality H2

is saturated. Since H2 is a limit of limit cardinals, without loss of generality, χ is
a limit cardinal. By Lemma 10.22, < χ+ unions of saturated models of cardinality
χ are saturated. By Lemma 12.23, there is a minimal type p over a saturated
model M∗ of cardinality χ. Take a non-splitting extension of it to get a minimal
type p̂ over M0. By Lemma 13.5.1, if there is a (p̂, H2)-Vaughtian pair, there is a
(p,H2)-Vaughtian pair, which is a true Vaughtian pair since we have established
categoricity in H2. But then Theorem 14.12 gives us a true (p, λ)-Vaughtian pair
over some M1 with |M1| = λ. But since M∗ is saturated we can extend p to a non-
splitting extension p′ ∈ S(M1) which is also minimal. The same N1 constructed in
Theorem 14.12 witnesses a true (p′, λ)-Vaughtian pair. But by Theorem 13.6 there
is no true (p′, λ)-Vaughtian pair. Now use Lemmas 13.11 and 13.12 as in the proof
of Theorem 13.13 to get categoricity on the interval [H2, λ]. Of course, if we assume
(χ,∞)-tameness the induction continues through all cardinals. �14.14

Note that iω1 is the best possible lower bound for when an arbitrary infinitary
sentence (hence an AEC) can become categorical. For any α < ℵ1 there is a
sentence ψα of Lω1,ω with no models in cardinals greater than iα and with many
models in each cardinal below iα (e.g. page 69 [Kei71], [Mor65b]). If ψ asserts
the language has only equality, then ψα ∨ ψ is categorical on (iα,∞). But this
class clearly fails the amalgamation and joint embedding properties.

Remark 14.15. In the abstract of [She99], Shelah announces the result of
Theorem 14.14 with lower bound, ‘a suitable Hanf number’. He appears to as-
sert in the paper, using our language, that there is a χ < H1 such that K is
(χ, [H1, λ])-tame; this is a more uniform result than we have obtained. In Claim
II.1.6 and Theorem II.2.7 of [She99], Shelah identifies the suitable Hanf number
as H(χ) = i(2χ)+ . (He writes χ(Φ).) The cardinal χ does depend on K (not
the cardinality of the language of K). We have weakened Shelah’s stated result
since H1 = i

(2LS(K ))+
< i(2χ)+ < H2 unless one is in a case when LS(K) = χ;

this result seems to be all that Shelah’s methods actually yield as we explain in
Remark 14.7. It remains open to determine the best lower bound on categoricity;
e.g. whether H2 can be reduced to Shelah’s claim, or to H1, or even lower. We
thank Chris Laskowski for several very useful conversations on this topic and for
contributing the apt term ‘collection cardinal’.



CHAPTER 15

Unions of Saturated Models

In this chapter we show that if K is λ-categorical and µ < λ then any union
of less than µ+ µ-saturated models (of cardinality µ) is µ-saturated. We begin by
providing a ‘superstablity’ condition and show it follows from λ-categoricity. Then
we invoke our detailed connections between limit models and EM-models to show
that if the main theorem fails K is not stable in µ. We conclude by deducing
transfer of categoricity from an arbitrary successor cardinal.

To extend Theorem 10.22 (on unions of saturated models) to regular λ re-
quires an interweaving of splitting arguments with the construction of Ehrenfeucht-
Mostowski models. This chapter is based on some material in Sections 5 and 6 of
[She99]. Theorem 15.3 is a kind of superstability condition; it is analogous to say-
ing κ(T ) is finite in the first order case. But while the first order assertion is proved
by compactness and counting types, we need here to really exploit the properties
of EM-models over well-chosen linear orders. Recall I denotes µ<ω. We studied
(µ, δ)-chains and limit models in Chapter 10. The following notion is patterned on
κ(T ) (e.g. [Bal88]) in the first order case.

Definition 15.1. κ(K, µ) is the least β such that there is no (µ, β)-chain,
〈Mi : i < β〉, over a saturated model M0 with a pω ∈ Mω that µ-splits over Mi for
every i < β.

Exercise 15.2. Use the trick of Theorem 10.17 to show that it would not
change the value of κ(K, µ) if we strengthened the requirements on the chain by
requiring Mi+1 to be a limit model over Mi rather than merely universal.

In the following argument we take products of I with various ordinals; for
consistency with the usual conventions for ordinal multiplication, the order on the
product is inverse lexicographic.

Theorem 15.3. Assume K is λ-categorical (λ regular) and LS(K) < µ < λ.
Then κ(K, µ) = ω

Proof. Represent eachMi as EM(I×i,Φ) by Lemma 10.16.3. Extend the chain
to one of length µ+; this is possible by stability in µ. For γ ≤ µ+, let Mγ denote
EM(I × γ,Φ) and write L for I × µ+. By Corollary 10.14.1 and Lemma 10.16.2,
Mω is saturated. By Lemma 12.14, pω has an extension to q ∈ S(Mµ+) which does
not split over some N ≺K Mω with |N | < µ (and so does not split over Mω).

Lemma 10.11 implies EM(J,Φ) is saturated for J = I × (µ+ + µ+). So we
can embed Mµ+ into EM(J,Φ) over Mω and realize q by a term σ(a,b, c) where
a ∈ I × ω, b ∈ L − (I × ω) and c ∈ J − L. Let J1 = I × (µ+ + µ+ + µ+). Now
replace each bi = 〈ti, γi〉 (where ti ∈ I and γi < µ+) by b′i = 〈ti, µ+ + γi〉 and each
ci = 〈ti, γi〉 (where ti ∈ I and µ+ ≤ γi < µ+ + µ+) by c′i = 〈ti, µ+ + µ+ + γi〉 .
Then m = σ(a,b′, c′) also realizes pω since bc and b′c′ are order isomorphic over
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Iω. Now we assume q′ = tp(m/Mµ+) µ-splits over each Mi for i < ω and derive a
contradiction. Fix n so that q′ = tp(m/Mµ+) µ-splits over Mn and a ∈ Mn. We
will show a more precise version of: for any α with κ ≤ α < µ+:

(∗) tp(m/Mµ+) splits over Mα;

this result contradicts Lemma 12.2.
Suppose that N0, N1 are submodels of Mµ+ which witness the splitting of q′

over Mn. Choose v ⊂ µ+ with |v| = µ such that both N0 and N1 are contained in
EM(I × v,Φ). Fix γ with sup(v) < γ < µ+ and let γ′ = γ + ω. Now let

M− = EM(I × (ω ∪ v ∪ [γ′, µ+)),Φ).

Then N0, N1 also witness that tp(m/M−) µ-splits over Mn. Abbreviate I × n as
In.

Claim 15.4. There is an automorphism of I × (µ+ + µ+ + µ+) such that i) f
fixes In, ii) f fixes I × [γ′, µ+ + µ+ + µ+) and iii) f maps I × v into In+1 − In.
Thus, tp(m/EM(In+1,Φ) splits over EM(In,Φ)

Proof. Since I × v has cardinality µ, it can be mapped (see Claim 10.5) into
In+1 − In while fixing In. Then by going back and forth ω times this map can be
extended to an automorphism of I × γ′ and then just fix the rest. �15.4

Note this is not quite the argument given in 6.3 in [She99]. Now we need
another claim about the ordering I from Section 6 of [She99] (although Shelah
doesn’t specify the order). Think of I = µ<ω as a tree. Observe that you could
think of I as I × µ by for i < µ taking the ith component of I × µ to be all
the extensions of 〈i〉 in µ<ω. Keeping that picture in mind, one can think of
I ≈ I × (γ+1) by keeping the first γ components the same and identifying the last
one with right hand side of the picture. We formalize these arguments as part of
the following proof.

Claim 15.5. Fix I = µ<ω. For any ordinal γ < µ+, I ≈ I × (γ + 1).

Proof. We showed I ≈ I × µ in the proof of Lemma 10.16. We first show that
for any γ < µ, I × (γ + 1) ≈ I. For this, let i = 〈i0, . . . in〉 ∈ I × (γ + 1) with
i0 ∈ γ + 1 and 〈. . . in〉 ∈ I. Map i to i′ = 〈i′0, . . . i′n〉 ∈ I as follows. If i0 < γ, i′ = i.
Map those sequences with i0 = γ isomorphically to the i′ ∈ I with i′0 ≥ γ using the
second paragraph of the proof of Lemma 10.16. (In the notation of that argument
we have Iγ ≈ I ≈ I × µ ≈ I × [γ, µ).)

Now for µ < γ < µ+. Let α be the least counterexample. The first paragraph
shows α ≥ µ so by division of ordinals there exist ξ < µ and δ so that α = µ×δ+ξ;
moreover δ + ξ < α. Then

I × (α+ 1) = I × ((µ× δ + ξ) + 1).

Since the arithmetic of ordinals satisfies left distributivity and associativity of
multiplication and addition, invoking I ≈ I × µ and then induction, we have:

I×(µ×δ+ξ+1) = I×(µ×δ)+I×(ξ+1) = I×δ+I×(ξ+1) = I×((δ+ξ)+1) = I.

�15.5

On the basis of Claim 15.5, we finish the proof of Theorem 15.3. Choose
an increasing sequence αi, for i < µ+, of successor ordinals with ω < αi < µ+.
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With the claim we can easily construct, for each i < µ+ an automorphism fi of
I × (µ+ + µ+ + µ+) such that

(1) fi fixes I × (n− 1),
(2) fi fixes I × [αi + 2, µ+ + µ+ + µ+),
(3) fi maps I × n onto I × [n, αi), and
(4) fi maps I × n+ 1 into I × (αi + 1).

Then tp(m/Mαi+1) µ-splits over Mαi
.

By Lemma 12.2, using Lemma 12.13 if κ is least such that 2κ > µ+, q does not
µ-split over Mκ. We have a contradiction when αi > κ. �15.3

Corollary 15.6. Assume K is λ-categorical (λ regular) and LS(K) < µ ≤ λ.
Suppose 〈Mi : i < δ〉 is a (µ, δ)-chain. If pδ ∈Mδ then pδ does not µ-split over Mα

for some α < δ.

Proof. If there is a counterexample to the Corollary, there is a counterexample
to the theorem. �15.3

We have established that categoricity implies a kind of superstability related to
the finiteness of κ(T ). But unlike the first order case, our results apply only below
the categoricity cardinal. The next result is easy.

Exercise 15.7. Suppose 〈Mi : i < δ〉 is a K-increasing chain of µ-saturated
models and δ > cf(µ). Show M =

⋃
i<δMi is δ-saturated.

Now we give a self-contained argument for Theorem 6.7 in [She99]:

Theorem 15.8. Suppose K has joint embedding, the amalgamation property
and arbitrarily large models. If K is λ-categorical for the regular cardinal λ and
LS(K) < µ < λ then K admits µ-saturated unions (Definition 13.3).

Proof. Let N =
⋃
i<δNi where each Ni is µ-saturated and δ < µ+. Let

M ≺K N have cardinality χ < µ and fix p ∈ S(M). We must show p is realized in
N . If not, fix p̂ as a non-algebraic extension of p to S(N) and let d ∈ M realize p̂. By
Exercise 15.7, we can assume δ < cf(µ). Without loss of generality χ ≥ δ,LS(K).

Possibly enlarging M slightly we can construct a (χ, δ)-chain, 〈Mi : i < δ〉, such
that p̂ does not χ-split over some Mi. For this we construct Mi as follows. Choose
an increasing continuous chain

⋃
i<δMi, Mi ≺K Ni, M ∩Ni ⊆ Mi, each Mi+1 is

χ-universal over Mi, and each Mi is χ-saturated of cardinality χ. Further choose
for each i a model M+

i such that M+
i ≺K N and if p̂ χ-splits over Mi, p̂ ↾M+

i

χ-splits over Mi and if j < i, Ni ∩M+
j ⊆Mi+1. By Corollary 15.6 for some i0 < δ,

p̂ ↾Mδ does not χ-split over Mi0 . But now the choice of M+
i0

guarantees p̂ itself does
not χ-split over Mi0 . For simplicity of notation below, we fix this i0 as i. Since the
models are saturated, by Lemma 10.14 and the uniqueness of saturated models, we
can represent Ni as EM(µ,Φ) and Mi as EM(χ,Φ). Let c enumerate the universe
of Mδ −Mi; |c| = χ.

For some γ < χ+, there are c′, b′ ∈ EM(µ + γ,Φ) which realize tp(c, Ni) and
tp(d,Ni) respectively. Without loss of generality c′ = σ′(z0, z1) where z0 ⊆ χ
and z1 ⊆ [µ, µ + γ), |z0z1| = χ, and σ′ is a sequence of terms in the expanded
language and b′ = σ′′(w0,w1) (where wi are finite sequences with w0 ⊆ χ and
w1 ⊆ [µ, µ+γ)). Note that for each β < χ+ there is a canonical order isomorphism
fixing β from β ∪ [µ, µ+ γ) onto β+ γ. Now define by induction on α < δ, ordinals
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γα and maps gα; g0 maps χ∪ [µ, µ+ γ) to χ+ γ = γ0. If gα and γα are defined, let
gα+1 map γα ∪ [µ, µ+ γ) to γα + γ = γα+1 taking [µ, µ+ γ) to [γα, γα+1). Let cα
denote σ′(z0, gα(z1)) and bα denote σ′′(w0, gα(w1)). Note that for each α, Micα ≈
Mic ∈ Kχ. Extend gα to ĝα with domain Mδ by ĝα(σ′(z0, z1)) = σ′(z0, gα(z1)).
We have constructed for α < δ, Mi,α, gα, bα such that each Mi,α = EM(γα,Φ),
has cardinality χ, Mi ≺K

Mi,α ≺
K

Ni and ĝα is an isomorphism from Mδ to a
submodel of Mi,α+1 over Mi,α. By the choice of σ′′, for each α, bα realizes p̂ ↾Mi,α.

If some bα realizes p, we finish (since Mi,α ≺
K

Ni ≺K
N). If not, recall d ∈ M

realizes p̂. Now,

(*) If α < β < δ, cβbα does not realize the same type over Mi as cd. For this,
note that since bα not realize p and M ⊂ Mic = Mδ, it certainly does not realize
p̂ ↾Mic. But d realizes p̂ ↾Mic. Using Exercise 12.8,

(**) if β < α < δ, cβbα does realize the same type over Mi as cd since neither
tp(bα/cβ) nor tp(d/c) split over Mi.

Fix a linear order J such that |J | < λ and there are 2|J| cuts in J . Let

Ĵ be an extension of J of cardinality 2|J| which realizes those cuts. Let IJ , IĴ
be extensions of J, Ĵ respectively, which are χ+-homogeneous. We will work in
EM(χ+ γ × IĴ ) where γ × IĴ has the inverse lexicographic order. For i ∈ IĴ , let
hi be the canonical map from [µ, µ+ γ) onto γ × {i}. Let c′i denote σ′(z0, hi(z1))
and b′i denote σ′′(w0, hi(w1)).

Now in γ × IĴ for any i < j, i′ < j′ there is an automorphism fixing χ and
taking γ × {i} to γ × {i′} and γ × {j} to γ × {j′}. Thus, in EM(IĴ ,Φ), all tuples
c′i, b

′
j with i < j realize the same Galois type over EM(χ,Φ). So conditions (*)

and (**) hold for the sequence c′i, b
′
i for i ∈ Ĵ . In particular, if bc, b′c′ are given by

σ′, σ′′ from distinct cuts in J

tp(bc/EM(χ+ γ × J,Φ)) 6= tp(b′c′/EM(χ+ γ × J,Φ)).

Thus K is not |J |-stable and we finish. �15.8

This completes the proof. Here is a little more context. The argument above
combines the idea of the proof of Lemma 6.7 of [She99] with a revised finish.
Shelah refers to 4.8.1 , which, as we now outline, gives the result modulo a black
box. The last four paragraphs of our proof of Theorem 15.8 give a special case of
4.8.2 of [She99]; Shelah’s proof is, ‘straight’.

We now deduce from (*) and (**), that K satisfies the (χ, 1, χ)-order property,
where, following Definition 4.3.2 of [She99],

Definition 15.9. K has the (χ, 1, χ)-order property if for every ordinal α
there are a set A of cardinality χ and tuples cα of length χ and singletons bi such
that: i0 < j0 < α, i1 < j1 < α implies there is no automorphism of M fixing A with
f(ci0) = cj1 and f(bj0) = bi1 . If A is empty, we just say χ-order property.

Lemma 15.10. If the hypothesis of Theorem 15.8 holds but the conclusion fails,
then K has the (χ, 1, χ)-order property.

Proof. Now for any cardinal θ ≥ χ, form first I ′θ = χ + ǫ × θ and let Iθ be
a linear order (possibly long) which extends θ and is χ+-homogeneous. Then for
i < θ, let c′i = σ′(χ+ ǫ× i, χ+ ǫ× i+ ǫ0) and b′i = σ′(ǫ× i+ ǫ0, χ+ ǫ× (i+ 1))

Now in Iµ for any i < j, i′ < j′ there is an automorphism fixing χ and taking
[χ+ ǫ× i, χ+ ǫ× i+ ǫ0) to [χ+ ǫ× i′, χ+ ǫ× i′+ ǫ0) and [ǫ× j+ ǫ0, χ+ ǫ× (j+1)) to
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[ǫ× j′ + ǫ0, χ+ ǫ× (j′ + 1)). Thus, in EM(Iµ,Φ), all tuples c′i, b
′
j with i < j realize

the same Galois type over EM(χ,Φ). Thus in particular, conditions (*) and (**)
hold for the sequence c′i, b

′
i for i < θ. �15.10

Finally we can finish Shelah’s version based on Claim 4.8.1 of [She99]: If an
AEC has the χ-order property then it has the maximal number of models in all
sufficiently large cardinalities. For this one must first note that by adding constants
one can pass from the (χ, 1, χ)-order property to the χ-order property. Let me just
note two points about Claim 4.8.1. The order property is for χ-types not finite
tuples; it is defined in terms of automorphisms, not syntactically. Both of these
extensions to the methods of [She78, She87b] are plausible, but they are not in
print.

We return to the main line. Since we can deduce the nonexistence of Vaughtian
pairs from the union of chains of saturated models lemma (see Lemma 13.6), we
can apply Theorem 14.14.i) to deduce:

Theorem 15.11 (Shelah, Grossberg-VanDieren). Suppose LS(K) < λ, and
that K has arbitrarily large models, the amalgamation property, and joint embed-
ding. Suppose K is λ+-categorical.

(1) K is categorical in all cardinals H2 ≤ µ ≤ λ+.
(2) If K is (χ,∞)-tame for some χ < λ+, then K is µ-categorical for all

µ ≥ λ+.

Remark 15.12. Our proof of Theorem 15.11 is based on [She99]; part 2)
was first stated and proved by Grossberg and VanDieren [GV06a] with a different
proof. Lessmann [Les05b] proved an analogous result to Theorem 15.11.2 for the
case where λ is LS(K), provided LS(K) = ℵ0.

The following result is implicit in [She99].

Conclusion 15.13. There is a cardinal µ depending on κ such that if K is an
AEC with κ

K
= κ, and K is categorical in some successor cardinal λ+ > µ, then

K is categorical in all cardinals greater than µ.

Proof. There are only a set of AEC K with κ
K

= κ. Let

µK = sup{λ+ :K is λ+-categorical}
if such a supremum exists. Then let µ be the maximum of H2 (= H2(κ)) and
sup{µ

K
: κ

K
= κ}. Now if κ

K
= κ and K is categorical in some successor

cardinal greater than µ, K is categorical in arbitrarily large successor cardinals
and therefore by Theorem 15.11 in all cardinals greater than H2. Note that while
we can calculate H2, there is only an existence claim for µ.

There remains the possibility that as with Silver’s Example 4.29, there is an
AEC that is categorical only on a class of limit cardinals. Shelah claims to rule this
possibility out in [She00a], but I have not checked the argument.





CHAPTER 16

Life without Amalgamation

One general approach to proving Shelah’s conjecture for abstract elementary
classes (expressed for example in Conjecture 2.3 of [Gro02] and Remark 13.1) is to
deduce amalgamation from categoricity and then apply the results for AEC with the
amalgamation property. Another approach is to work by induction, interweaving
results about categoricity and amalgamation; this is somewhat closer to [She00d].
Still another is to work under a variant of amalgamation and joint embedding such
as ‘no maximal models’. Note that the example (Example 4.14) of well-orderings
of ordinality at most ω1 has ap, jep and a maximal model. Under any of these
approaches it is necessary to establish some notion of Galois type without assuming
amalgamation and develop some its properties.

In Chapter 8, we assumed the amalgamation property and developed the notion
of Galois type. Here, we show these notions make sense without any amalgamation
hypotheses. Of course the notions defined here yield the previous concepts when
amalgamation holds. The main technical goal of this chapter is to establish ‘model-
homogeneity = saturation’ without assuming amalgamation. In the process, we
obtain one embedding property, Lemma 16.4, which we needed even when assuming
amalgamation.

Then we discuss two approaches to working in classes without amalgamation.
First we outline the situation when amalgamation holds only up to (or at) a certain
cardinal. This situation is further developed in, for example, [She00d]. Then,
we describe some of the results that have been obtained when the amalgamation
property is replaced by the hypothesis: K has no maximal models ([Van06] and
[SV99]).

Surprisingly the proof that model homogeneity is equivalent to saturation has
a formulation whose truth does not depend on the amalgamation property. In this
chapter we only assume:

Assumption 16.1. K is an abstract elementary class.

The goal is to derive properties on embedding models from the realization of
Galois types. We want to show that if M1 realizes ‘enough’ types over M then
any small extension N of M can be embedded into M1. The idea is first published
as ‘saturation = model-homogeneity’ in 3.10 of [She87a] (Theorem 16.5 below),
where the proof is incomplete. Successive expositions in [She01, Gro02], and by
Baldwin led to this version, where the key lemma was isolated by Kolesnikov. In
contrast to various of the expositions and like Shelah, we make no amalgamation
hypothesis.

Whether we really gain anything concerning the ‘model-homogeneity = satu-
ration’ theorem by not assuming amalgamation is unclear. I know of no example
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where either λ-saturated or λ-model homogeneous structures are proved to exist
without using amalgamation, at least in λ.

The key idea of the construction is that to embed N into M2, we construct
a M1 ≺K M2 and a K-isomorphism f from an N1 ∈ K onto M1 with N ⊆
N2. Then the coherence axiom tells us restricting f−1 to N , gives the required
embedding. We isolate the induction step of the construction of f in Lemma 16.4.
We will apply the lemma in two settings. In one case M has the same cardinality

as M and is presented with a filtration Mi. Then M̂ will be one of the Mi. In
the second, M is a larger saturated model and M̂ will be chosen as a small model
witnessing the realization of a type.

In this chapter we do not assume amalgamation and we work with Definition 8.7
of a Galois type. As before, we denote the set of Galois types over M by S(M).

Definition 16.2. (1) We say the Galois type of a over M in N1 is strongly
realized in N with M ≺K N if for some b ∈ N , (M,a,N1) ∼AT (M, b,N).

(2) We say the Galois type of a over M in N1 is realized in N with M ≺
K

N
if for some b ∈ N , (M,a,N1) ∼ (M, b,N).

Now we need a crucial form of the definition of saturated from [She01].

Definition 16.3. The model M is µ-Galois saturated if for every N ≺
K

M
with |N | < µ and every Galois type p over N , p is strongly realized in M .

Under amalgamation we define saturation using realization rather than strong
realization and we have an equivalent notion. Without amalgamation, the notion
here is obviously more restricted. Shelah writes in Definition 22 of [She01] that in
all ‘interesting situations’ we can use the strong form of saturation.

We use in this construction without further comment two basic observations.
If f is a K-isomorphism from M onto N and N ≺K N1 there is an M1 with
M ≺

K
M1 and an isomorphism f1 (extending f) fromM1 ontoN1. (The dual holds

with extensions of M .) Secondly, whenever f1 ◦ f2 :N 7→ M and g1 ◦ g2 :N 7→ M
are maps in a commutative diagram, there is no loss of generality in assuming
N ≺K M and f1 ◦ f2 is the identity.

Of course, under amalgamation of models of size |M |, we can delete the strongly
in the hypothesis of the following lemma.

Lemma 16.4 (Kolesnikov). Suppose M ≺K M and M strongly realizes all

Galois-types over M . Let f be a K-isomorphism from M onto N and suppose Ñ

is a K-extension of N . For any a ∈ Ñ −N there is a b ∈M such that for any M̂

with Mb ⊆ M̂ ≺
K

M and |M | = |M̂ | = λ, there is an N∗ with Ñ ≺
K

N∗ and an

isomorphism f̂ extending f and mapping M̂ onto N̂ ≺K N∗ with f̂(b) = a.

Proof. Choose M̃ with M ≺K M̃ and extend f to an isomorphism f̃ of M̃

and Ñ . Let ã denote f̃−1(a). Choose b ∈ M to strongly realize the Galois type of

ã over M in M̃ . Fix any M̂ with Mb ⊆ M̂ ≺K M and |M | = |M̂ | = λ. By the

definition of strongly realize, we can choose an extension M∗ of M̃ and h :M̂ 7→M∗

with h(b) = ã. Lift f̃ to an isomorphism f∗ from M∗ to an extension N∗ of Ñ .

Then f̂ = (f∗ ◦ h) ↾ M̂ and N̂ is the image of f̂ . �16.4

A key point in both of the following arguments is that while the Ni eventually
exhaust N , they are not required to be submodels (or even subsets) of N .
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Theorem 16.5. Assume λ > LS(K). A model M2 is λ-Galois saturated if and
only if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois saturated.
Let M2 be λ-saturated. We want to show M2 is λ-model homogeneous. So fix
M0 ≺K M2 and N with M0 ≺K N . Say, |N | = µ < λ. We will construct

M1 with M0 ≺K M1 ≺K M2, N1 with M0 ≺K N1 and N0 ⊂ N1, and an

isomorphism f between N1 and M1. The restriction of f to N is the required map.
We construct M1 as a union of strong submodels Mi of M2. At the same time we
construct N1 as the union of Ni with |Ni| < λ, which are strong extensions of N ,
and fi mapping Mi onto Ni. As an auxiliary we will also construct a increasing
chain of N ′

i with Ni ≺K N ′
i . Enumerate N −M0 as 〈ai : i < µ〉. Let N0 = M0,

N ′
0 = N and f0 be the identity. At stage i, fi, Ni, Mi, N

′
i , are defined; we will

construct N ′
i+1, fi+1, Ni+1, Mi+1. Apply Lemma 16.4 with aj as a for the least j

with aj 6∈ Ni; take Mi for M ; Mi+1 is any submodel of M2 with cardinality µ that

realizes tp(fi(aj))/Mi) in M2 by some bj and plays the role of M̂ in the lemma;

N ′
i is Ñ and Ni is N . The role of M is taken by M2 at all stages of the induction.

We obtain fi+1 as f̂ , Ni+1 as N̂ and N ′
i+1 as N∗. Finally f is the union of the fi

and N1 is the union of the Ni. �16.5

Just how general is Theorem 16.5? It asserts the equivalence of ‘M is λ-
model homogeneous’ with ‘M is λ-saturated’ and we claim to have proved this
without assuming amalgamation. But the existence of either kind of model is near
to implying amalgamation on K<λ. But it is only close. Let ψ be a sentence of
Lω1,ω which has saturated models of all cardinalities and φ be a sentence of Lω1,ω

which does not have the amalgamation property over models. Now let K be the
AEC defined by ψ∨φ (where we insist that on each model either the τ(ψ)-relations
or the τ(φ)-relations are trivial but not both). Then K has λ-model homogeneous
models of every cardinality (which are saturated) but does not have either the joint
embedding or the amalgamation property (or any restriction thereof). However,
with some mild restrictions we see the intuition is correct. First an easy back and
forth gives us:

Lemma 16.6. If K has the joint embedding property and λ > LS(K) then any
two λ-model homogeneous models M1, M2 of power λ are isomorphic.

Proof. It suffices to find a common strong elementary submodel of M1 and M2

with cardinality < λ but this is guaranteed by joint embedding and λ > LS(K).
�16.6

Definition 16.7. For any AEC K, and M ∈ K let K
M be the AEC consisting

of all direct limits of strong substructures of M .

Lemma 16.8. Suppose M is a λ-model homogeneous member of K.

(1) K
M
<λ has the amalgamation property.

(2) If K has the joint embedding property K<λ has the amalgamation prop-
erty.

Proof. The first statement is immediate and the second follows since then by
Lemma 16.6 we have K

M
<λ = K<λ. �16.8

Now by Lemma 16.8 and Theorem 16.5 we have:
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Corollary 16.9. If K has a λ-saturated model and has the joint embedding
property then K<λ has the amalgamation property.

The corollary, which is Remark 30 of [She01], confirms formally the intu-
ition that under mild hypotheses we need amalgamation on K<λ to get saturated
models of cardinality λ. But we rely on the basic equivalence, proved without amal-
gamation to establish this result. The formulation of these results and arguments
followed extensive discussions with Rami Grossberg, Alexei Kolesnikov and Monica
VanDieren; Kolesnikov singled out Lemma 16.4.

Now we turn to two ways of studying AEC without assuming the amalgamation
property. Restricting an AEC to models of bounded cardinality or even to a single
cardinal provides an important tool for studying the entire class. We introduce
here two notions of this sort. In [She0x], the notion of λ-frame is a strengthening
of what we call here a weak AEC by introducing an abstract notion of dependence
on the class of models of a fixed cardinality λ. See also [GK].

Definition 16.10. (1) For any AEC, K we write, e.g. K≤µ for the
associated class of structures in K of cardinality at most µ.

(2) Note that if µ ≥ LS(K), (K<µ) and K≤µ have all properties of an AEC
except the union of chain axioms apply only to chains of length ≤ cf(µ)
(< cf(µ)).

(3) We call such a class of structures and embeddings a weak AEC.

Exercise 16.11. If (K,≺K) is an abstract elementary class then the restric-
tion of K and ≺

K
to models of cardinality λ gives a weak abstract elementary

class.

The next two exercises are worked out in detail in [She0x].

Exercise 16.12. If Kλ is a weak abstract elementary class, show (K,≺
K

) is
an AEC with Löwenheim number λ if K taken as the collection of all direct limits
of Kλ and for directed partial orders I ⊂ J , M =

⋃
i∈IMi and N =

⋃
j∈J MJ with

the Mi,Mj ∈ Kλ, define M ≺K N if Ms ≺Kλ
N if s ∈ I, t ∈ J and s ≤ t in the

sense of J .

Exercise 16.13. Show that if the AEC’s K1 and K2 have Löwenheim number
λ and the same restriction to models of size λ they are identical above λ.

The amalgamation property is a major assumption; if it has been made, the
next Lemma shows that the joint embedding property is largely a convenience. We
noted some specific applications of this technique in Remark 4.13.

Lemma 16.14. If K<κ has the amalgamation property, then K<κ is partitioned
into a family of weak-AEC’s that each have the joint embedding property.

Proof. Define M ≃ N if they have a common strong extension. Since K<κ has
the amalgamation property, ≃ is an equivalence relation. It is not hard to check
that each class is closed under short unions and so is a weak-AEC. �16.14

If K is AEC with arbitrarily large models and amalgamation, then only one
of the equivalence classes determined by Lemma 16.14, can have arbitrarily large
members and we can restrict attention to that class.

In the context considered in this chapter it is desirable to introduce some further
notation.
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Definition 16.15. (1) M is κ-amalgamation base if |M | = κ and any
two strong extensions of M of cardinality κ can be amalgamated over M .

(2) M is an amalgamation base if any two strong extensions of M can be
amalgamated over M .

In contrast to the general model theoretic and universal algebra literature, in
the AEC literature the term amalgamation base is often applied to the local notion
and the κ is just suppressed. As we’ll see below this is a natural notation when
studying classes where only some models M are |M |-amalgamation bases. But
if they all are, the two notions coalesce as can be seen by the following exercise,
which is proved by induction on λ. (The trick is to amalgamate two extensions
of cardinality λ+ by fixing one and amalgamating it with every extension of the
‘heart’ by a model of size λ.)

Exercise 16.16. If every M ∈ K<λ is a |M |-amalgamation base, then K<λ

has the amalgamation property. In particular, if every model M in K is |M |-
amalgamation base, then K has the amalgamation property.

Definition 16.17. A model M ∈ K is maximal if there is no N ∈ K which
is a proper ≺K -extension of M .

The investigation of AEC’s with no maximal models began in [SV99]. This
work was more fully developed in [Van06] which both expands and corrects some
arguments and extends the results.

Assumption 16.18. For the remainder of this section we assume GCH and the
Devlin-Shelah weak diamond. (See Appendix C and [Van06].)

In this context the notion of stability in µ is amended to count Galois types
over µ-amalgamation bases. Shelah-Villaveces and VanDieren have achieved the
following results in studying AEC without maximal models.

Theorem 16.19. Let K be categorical in λ > H1 and let µ < λ.

(1) For every M ∈ Kµ, there exists a µ-amalgamation base N with M ≺K N .
(2) K is µ-stable.

We discussed limit models in Chapter 10; recall:

Definition 16.20. For σ ≤ µ+, N ∈ Kµ is a (µ, σ) limit over M ∈ Kµ if
N is the union of a continuous chain of amalgamation bases Mi such that Mi+1 is
µ-universal (Definition 10.4) over Mi.

While it is straightforward that if σ1 and σ2 have the same cofinality any
N1 which is a (µ, σ1)-limit over M and N2 which is a (µ, σ2)-limit over M are
isomorphic; such a conclusion for differing cofinalities is extremely difficult. Under
a serious additional model theoretic hypothesis, VanDieren [Van06] attains this
result.

Theorem 16.21. Suppose the class of µ-amalgamation bases is closed under
increasing ≺K -chains of length less than µ+. Then for any σ1, σ2 < µ+, if N1 is
a (µ, σ1)-limit over M and N2 is a (µ, σ2)-limit over M , N1 is isomorphic to N2

over M .

This is a complex argument involving such additional tools as splitting, various
kinds of towers, and several notions of extensions of towers. One might hope to
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combine these ideas with the work on categoricity in classes with amalgamation to
obtain a categoricity transfer for AEC with no maximal models. See [GVV] for
further progress.



CHAPTER 17

Amalgamation and Few Models

In this section we prove that if K is an AEC which is categorical in λ and does

not have the amalgamation property in λ then there are 2λ
+

models in λ+.

The argument fails in ZFC; it uses the hypothesis that 2λ < 2λ
+

. We begin by
expounding (through Theorem 17.7) the counterexample; the basic idea appears in
[She87a]. This example builds on an earlier argument of Baumgartner [Bau73]
that we discuss in Example 18.17. There is a clearer version in [Sheb]; with Cop-
pola we have made some further simplifications. In particular, we give a different
definition of the notion of strong submodel.

Theorem 17.1 (Martin’s Axiom). There is a sentence ψ in L(Q) with the joint
embedding property that is κ-categorical for every κ < 2ℵ0 . In ZFC one can prove
ψ is ℵ0-categorical but the associated AEC has neither the amalgamation property
in ℵ0 nor is ω-stable.

We consider the class K of models in a vocabulary with two unary relations
P , Q and two binary relations E, R which satisfy the following conditions. (For
any relation symbol and model M we write PM for the interpretation of P in M .
However, abusing notation, when only one model is being considered (as in the next
definition) we omit the subscript.)

For any model M ∈ K,

(1) P and Q partition M .
(2) E is an equivalence relation on Q.
(3) P and each equivalence class of E is denumerably infinite.
(4) R is a relation on P ×Q that is extensional on P . That is, thinking of R

as the ‘element’ relation, each member of Q denotes a subset of P .
(5) For every set X of n elements X from P and every subset X0 of X and

each equivalence class in Q, there is an element of that equivalence class
that is R-related to every element of X0 and not to any element of X−X0.

(6) Similarly, for every set of n elements Y from Q and every subset Y0 of Y ,
there is an element of P that is R-related to every element of Y0 and not
to any element of Y − Y0.

Note that every member of K has cardinality at most the continuum. For
each y ∈ Q, let Ay denote the set of x that are R-related to y. Then, the last two
properties imply that the Ay form an independent family of sets (any finite Boolean
combination of them is infinite) and, since each E-equivalence class is infinite, for
any two finite disjoint subsets u, v of P , there are |M | elements of Q that each
‘contain’ every element of u and no element of v.

We will work in a model of set theory that satisfies MA [Kun80, Jec87] and
2ℵ0 = ℵω+1 using the following special case of Martin’s axiom that is tailored for
our applications.

125
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Definition 17.2. Martin’s Axiom

(1) MAκ is the assertion: If F is a collection of partial isomorphisms, par-
tially ordered by extension, between two structures M and N of the same
cardinality less than 2ℵ0 that satisfies the countable chain condition then
for any set of κ < 2ℵ0 dense subsets of F , Ca, there is a filter G on F
which intersects all the Ca.

(2) F satisfies the countable chain condition if there is no uncountable subset
of pairwise incompatible members of F .

(3) Martin’s axiom is: (∀κ < 2ℵ0)(MAκ).

Definition 17.3. Fix the class K as above and for M,N ∈ K, define M ≺K

N if PM = PN and for each m ∈ QM , {n ∈ N : mEn} = {n ∈ M : mEn}
(equivalence classes don’t expand).

Lemma 17.4. [Sheb] Martin’s axiom implies that the class K is ℵ1-categorical.

Proof. We first define the forcing conditions.

Definition 17.5. Fix continuous filtrations 〈Mi : i < κ〉 of M and 〈Ni : i < κ〉
of N by ≺K -submodels such that Mi+1 −Mi (Ni+1 −Ni) is countable.

(1) F is the set of finite partial isomorphisms f such that for each i < κ, and
each x ∈ dom f , x ∈Mi if and only if f(x) ∈ Ni.

(2) we order the conditions by f ≤ g if f ⊆ g.

Let us prove that these forcing conditions have the ccc.

Lemma 17.6. F satisfies the countable chain condition.

Proof. Let 〈fα : α < ℵ1〉 be a sequence of elements of F . Without loss of
generality, fix m and k so that the domain of each fα contains m elements of P
and k of Q. Applying the ∆-system lemma to the domain and the range, we can
find Y (Y ′) contained in M (N) so that for an uncountable subset S, if α, β ∈ S,
dom fα ∩ dom fβ ∩M = Y (rg fα ∩ rg fβ ∩ N = Y ′). Note that, in fact we may
restrict to an uncountable S1 so that all the fα for α ∈ S1 intersect in a single
bijection f . For if there were some b ∈ Y and some α with fα(b) 6∈ Y ′, then (as
Y ′ is the root for the range), the {fα(b) :α ∈ S} give uncountably many distinct
images for b contrary to the choice of the filtration. (A similar argument for the
domains and the fact that there are only finitely many maps from Y onto Y ′ yield
the bijection f .)

The requirement that conditions preserve the filtration yields, when |Y | = ℓ,
that for some 〈ij :j < ℓ〉 , Y ⊂ ⋃

j<ℓ(Mij+1 −Mij ) and Y ′ ⊂ ⋃
j<ℓ(Nij+1 −Nij ).

Applying the condition on filtrations, each element in the domain (range) has
only countably many possible images (preimages); so we can demand that in re-
stricting to S1 we guarantee that no element of Mi (Ni) occurs in dom fα − Y
(rg fα − Y ′) for more than one α. But then for any α, β ∈ S1, fα ∪ fβ is the
required extension. �17.6

If for a ∈M , we let Da be the set of conditions with a ∈ dom f and define Rb
analogously for the range, it is easy to see that all the Da and Rb are dense. Thus
by Martin’s axiom there is an isomorphism between M and N . �17.4

It is now trivial to verify:
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Theorem 17.7. (K,≺K) is an AEC which is categorical in ℵ0 and does not
satisfy amalgamation in ℵ0. Martin’s Axiom implies (K,≺K) is categorical in all

κ < 2ℵ0 as well.

Proof. The extensionality guarantees the failure of amalgamation. Extend a
countable structure in two ways by adding a name for a subset of P and for its
complement. �17.7

Since, consistently, 2ℵ0 = ℵω+1, this shows that categoricity up to ℵω does not
imply in ZFC that ω-stability and amalgamation in ℵ0 hold for AEC. Now we turn
to show that under appropriate set theoretic hypotheses categoricity in λ and few
models in λ+ does imply amalgamation.

Notation 17.8. In this chapter κ always denotes λ+. We assume throughout

that 2λ < 2λ
+

.

For the next result we need the WGCH, specifically proposition θλ+ , Defini-
tion C.9. The following simple argument due to [She87a] and nicely explained in
[Gro02] shows:

Lemma 17.9 (WGCH). Suppose λ ≥ LS(K), 2λ < 2λ
+

, and K is λ-categorical.
If amalgamation fails in λ there are models in K of cardinality λ+ but no universal
model of cardinality λ+.

Proof. Let N0 ≺K N1, N2 witness the failure of amalgamation. Then both N1

and N2 are proper extensions of N0. For ρ ∈ λ<κ, we write ℓ(ρ) for the domain of
ρ. For each such ρ we define a model Mρ with universe λ(1 + ℓ(ρ)) so if ρ is an
initial segment of η, Mρ ≺K

Mη, and if ℓ(ρ) is a limit ordinal Mρ =
⋃
δ<ℓ(ρ)Mρ ↾ δ.

Finally, the key point is that for each ρ, Mρ̂ 0 and Mρ̂ 1 cannot be amalgamated
over Mρ.

This construction is immediate by λ-categoricity; just copy over N0, N1, N2.
For η ∈ 2κ, Mη =

⋃
δ<κMη ↾ δ; clearly, |Mη| = κ. Suppose for contradiction that

there is a model M of cardinality κ which is universal. Let fη be the embedding of
Mη into M . The set C of δ < κ of the form: δ = λ(1+ δ) contains a cub. Applying
Θλ+ , which holds by Theorem C.11, we find δ ∈ C and distinct η, ν ∈ 2κ which
agree only up to δ. Say, η(δ) = 0 and ν(δ) = 1. Denoting η ∧ ν by ρ = η ↾ δ, we
have that fη and fν map Mρ̂ 0 and Mρ̂ 1 into M over Mρ. By the Löwenheim-
Skolem theorem we have amalgamated an isomorphic copy of N0, N1, N2 in Kλ.
This contradiction yields the theorem. �17.9

We do not rely Lemma 17.9, but prove directly that the failure of amalgamation
in λ and categoricity in λ imply the existence of 2κ models in κ. This requires the
variant Θ̂λ from Definition C.4 on the Devlin-Shelah weak diamond that replaces
subsets of λ by subsets of λk for a finite integer k. This variant is deduced from
WGCH as Lemma C.5. We repeat the definition for convenience.

Definition C.4 The principle Θ̂λ+(S) holds if (letting κ denote λ+):
For every function

F :κ<κ × κ<κ × κ<κ → 2

there is an oracle g :κ→ 2 such for every η, ν, σ :κ→ κ the set

{δ ∈ S :F (η ↾ δ, ν ↾ δ, σ ↾ δ) = g(δ)}
is stationary in λ+.
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By applying Theorem C.7 and relativizing Theorem C.5 we can conclude:

Fact 17.10. 2λ < 2λ
+

implies there is a family of λ+ disjoint stationary subsets
Si of λ+ such that for each i, Θ̂λ+(Si) holds.

We will use this set theoretic principle to prove the main result of this chapter.
Note that Fact 17.10 does not assert Θ̂λ+(S) for all stationary S but only for many.

Theorem 17.11. [WGCH] Suppose λ ≥ LS(K) and K is λ-categorical. If

amalgamation fails in λ there are 2λ
+

models in K of cardinality κ = λ+.

Proof. Let N0 ≺K N1, N2 witness the failure of amalgamation. Then both
N1 and N2 are proper extensions of N0, so, as in Lemma 7.2, K has models of
cardinality κ.

For ρ ∈ λ<κ, we write ℓ(ρ) for the domain of ρ. For each such ρ we define a
model Mρ with universe λ(1 + ℓ(ρ)) so if ρ is an initial segment of η, Mρ ≺K

Mη,
and if ℓ(ρ) is a limit ordinal Mρ =

⋃
δ<ℓ(ρ)Mρ ↾ δ. Finally, the key point is that:

for each ρ, Mρ̂ 0 and Mρ̂ 1 cannot be amalgamated over Mρ. For η ∈ 2κ, let
Mη =

⋃
δ<κMη ↾ δ; clearly, |Mη| = κ. We will prove that 2κ of the Mη are pairwise

non-isomorphic.
We divide the proof into two cases; in the first the failure of amalgamation is

even stronger and the second is the negation of the first.
Case A. There exists N,M ∈ Kλ with N ≺

K
M such that for every M ′

extending M of cardinality λ there are M0 and M1 extending M ′ which cannot be
amalgamated even over N .

In this case we strengthen the construction by fixing M0 as N and demanding
that for every η,

Mη̂0 and Mη̂1 cannot be amalgamated over M0.

Now if η 6= ν ∈ 2κ,

〈Mη, a〉a∈N 6≈ 〈Mν , a〉a∈N .
If there is an isomorphism between 〈Mη, a〉a∈N and 〈Mν , a〉a∈N , then, denoting

η∧ν by ρ, Mν contains an amalgam of cardinality λ ofMρ̂ 0 and Mρ̂ 1 overM0 = N ,

contradiction. But since 2λ < 2λ
+

, if there are 2λ
+

models after naming λ constants

there are 2λ
+

models, period. We finish case A.
Case B. For all N,M with N ≺K M ∈ Kλ, there is an M ′ extending M such

that any M0 and M1 extending M ′ can be amalgamated over N .
We construct models Mη for η ∈ 2ρ by induction on ρ ≤ κ. At limit ordinals we

take unions. In the successor stage, we know by categoricity that Mη is isomorphic
to the given N0. So we can choose M∗ and M∗∗ isomorphic to N1 and N2, which
cannot be amalgamated over Mη. Using the fact that we are in Case B twice,
choose Mη̂0 extending M∗ (Mη̂1 extending M∗∗) so that

(17.1) any extensions of Mη̂0 (Mη̂1) can be amalgamated over Mη.

Now for each η ∈ 2κ, we have a model Mη by taking a union of the path. For
each X ⊂ κ, we are going to choose a path ηX such that if X 6= Y , MηX

6≈ MηY
.

For this choice we use our set theoretic principle.
Since C = {δ < λ+ : δ = λ(1 + δ)} is a cub, we can apply Fact 17.10 to C to

get a family of disjoint stationary sets 〈Si : i < κ〉, each Si ⊂ C, satisfying Θ̂λ+(Si)
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for each i. We define the function F as follows. For each δ ∈ C and each function
h :δ → δ and functions η, ν ∈ 2δ,

(1) F (η, ν, h) = 1 if Mη and Mν have universe δ, h is an isomorphism between
them and the embeddings id : Mη → Mη̂0 and h : Mη → Mν̂0 can be
amalgamated.

(2) F (η, ν, h) = 0 otherwise.

For each i, apply Θ̂λ+(Si), to choose gi :κ → 2 so that for every ĥ :κ → κ, the
set of δ ∈ Si such that

F (η ↾ δ, η ↾ δ, ĥ ↾ δ) = gi(δ)

is stationary.
Now for X ⊂ κ, define ηX :κ→ 2 by

(1) ηX(δ) = gi(δ) if δ ∈ Si and i ∈ X
(2) and 0 otherwise.

Each δ is in at most one Si so this is well-defined.

Claim 17.12. If X 6= Y , MηX
6≈MηY

.

Proof of Claim: Suppose for contradiction that X 6= Y and there is an isomor-
phism hXY between MηX

and MηY
. Now our choice of gi by Θ̂λ+(Si) gives for each

ηX , ηY a stationary subset S′
i of Si, which depends on (X,Y, hXY ) such that:

S′
i = {δ :F (ηX ↾ δ, ηY ↾ δ, hXY ↾ δ) = gi(δ)}.

Note that the set of δ mapped to itself by hXY is a cub D and let S′′
i = S′

i ∩D.
Without loss of generality there is an i ∈ X−Y . Now fix such an i and δ ∈ S′′

i .
For ease of notation below, we write η for ηX ↾ δ, ν for ηY ↾ δ, and h for hXY ↾ δ.

Since δ ∈ D then h is an isomorphism between Mη and Mν . Since i 6∈ Y , the
definition of ηY implies ηY (δ) = 0; thus, ν ⊳ ν 0̂ ⊳ ηY . (Here we write ⊳ for ‘initial
segment’). There are now two subcases depending on the value of ηX(δ).

Subcase 1: ηX(δ) = 1. By the definition of ηX , ηX(δ) = gi(δ); since δ ∈ S′
i,

F (η, ν, h) = 1. Thus, invoking the definition of F , we see the identity map from Mη

into Mη̂0 and h :Mη →Mν̂0 can be amalgamated over Mη by a model M1 ∈ Kλ.
On the other hand, the identity maps Mη into Mη̂1 and η̂ 1 ⊳ ηX ; h maps

Mη into Mν̂0 and ν 0̂ ⊳ ηY ; and we have the isomorphism hXY between MηX
and

MηY
. Since hXY ↾ δ = h, Mη̂1 and Mν̂0 can be amalgamated over Mη by a model

M2 ∈ Kλ (since λ is above the Löwenheim number).
In the first paragraph of the subcase we constructed a map from Mη̂0 into M1;

in the second we constructed a map from Mη̂1 into M2. Both of these maps were
over Mη. Applying condition 17.1 (displayed in Case B) to ν 0̂, we can amalgamate
M1 and M2 overMν̂0 in some M3 of cardinality λ. But then we have amalgamated
Mη̂0 and Mη̂1 over Mη. This contradicts the construction of the Mη-sequence and
finishes Subcase 1.

Subcase 2: ηX(δ) = 0. In this situation, η̂ 0⊳ ηX . Since h is an isomorphism
between MηX

and MηY
, we see that MηY

is an amalgam of Mη̂0 and Mν̂0 over
Mη. By the definition of F , F (η, ν, h) = 1. Since δ ∈ S′′

i , gi(δ) = 1 and by the
definition of ηX , we conclude ηX(δ) = 1. This contradicts the choice of the case
and concludes the proof of Claim 17.12. �17.12

We also have proved the theorem. �17.11
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Recall from Exercise 5.1.3 that if τ is countable vocabulary, then if K is the class
of models of a sentence in Lω1,ω(Q), (K,≺∗) is an AEC with Löwenheim number ℵ1.
Thus by the results of this section (under weak diamond) if(K,≺∗) is ℵ1-categorical
and has few models in ℵ2, it has amalgamation in ℵ1. The situation concerning a
sentence in Lω1,ω(Q) that has few models in ℵ1 is slightly more complicated, since
there is no naturally occurring AEC with Löwenheim number ℵ0. By applying the
analysis from Chapter 7, one can show:

Lemma 17.13 (Devlin-Shelah diamond). Let K be the class of models of a
sentence of Lω1,ω(Q). If K has fewer than 2ℵ1 models of cardinality ℵ1 then there
is an associated class (K∗,≺∗∗) which has the amalgamation property in ℵ0.

Remark 17.14. Theorem 17.11 is from [She87a] but our exposition depends
very heavily on [Gro02].

Theorem 17.11 yields (under WGCH) that if an AEC K is categorical in all
cardinals above LS(K) then it satisfies the amalgamation property. One might
hope to improve this to conclude that if K is eventually categorical then it has the
amalgamation property. But amalgamation in different cardinalities can behave
differently.

Definition 17.15. K has the λ-amalgamation property if for every triple of
models M0,M1,M2 with M0 ≺

K
M1,M0 ≺

K
M1 and with |Mi| = λ for i < 3,

there is an amalgam M2.

Example 17.16. There is an AEC that for all κ ≥ ℵ1 is categorical in κ, satisfies
κ-amalgamation, the joint embedding property, and is (ℵ0,∞)-tame (Galois types
equal syntactic types) but fails ℵ0-amalgamation and so has no model-homogeneous
models.

The example is in fact a finite diagram. Let the vocabulary contain unary
predicates Pi for i < ω and one binary relation E. Let the axioms of T assert
that E is an equivalence relation with two classes, that Pi+1 ⊂ Pi and that each
equivalence class contains exactly one element in Pi and not in Pi+1. Define K to
be the class of models of T that omit the 2-type of a pair of elements that are each
in all the Pi but inequivalent. We write ≺K for first order elementary submodel.

It is easy to check that all the conditions are satisfied. Let pω be the type
of an element satisfying all the pi. There is a model M0 omitting pω. There are
then two incompatible (over M0) choices for realizing pω. Thus amalgamation
over M0 is impossible. But once a model realizes pω, the amalgamation class is
determined. Moreover, each model is determined exactly by the cardinality of the
set of realizations of pω.

In contrast we can modify this example to get an atomic class that is categorical
in all powers and satisfies amalgamation. Namely, add a predicate Pω which implies
all the Pi and add axioms to T asserting that Pω is realized by infinitely many
elements and any two elements of Pω are E-equivalent. Now the atomic models of
T form a class K that is categorical in all powers and satisfies amalgamation over
models.

Note that in either variant the uncountable modelM is not (D,ℵ1)-homogeneous
in the sense of [She70]. Choose an a ∈ M0 such that a is not equivalent to a re-
alization in M of pω. Then pω(x) ∪ {E(x, a)} is in SD({a}) but is not realized in
M . Nevertheless, M is LA-homogeneous in the sense of Keisler [Kei71] where LA
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is the minimal fragment of Lω1,ω containing
∧
pω. The difference is that Shelah’s

notion allows the type to be realized in another member of K while Keisler’s is
restricted to truth in M .

Remark 17.17. Amalgamation is not a panacea. As we noted in Example 4.14,
there is an aec that is ℵ1 categorical and has the amalgamation property in ℵ0 but
is not ω-stable.





Part 4

Categoricity in Lω1,ω



This Part brings the book full-circle. We began with the study of categoricity
transfer for quasiminimal excellent classes. This gave us a very concrete notion of
excellence. In this Part we solve the proportion: strongly minimal sets is to first
order categoricity as quasiminimal excellence is to what. The answer is: Shelah’s
theory of excellent atomic classes.

This Part differs from Part 3 in two crucial ways. It is more concrete: we
study categoricity transfer for sentences in Lω1,ω rather than arbitrary abstract
elementary classes. The general model theoretic hypotheses are much weaker; we
do not assume the sentence has arbitrarily large models, nor that the class of models
has the amalgamation property. Rather, working from the assumption that there
are a small number of models in a small cardinality we develop these hypotheses
step by step. But, we extend ZFC by assuming weak diamond (see Appendix C).

The remainder of the book is devoted to the study of atomic models of a first
order theory. The following assertion is Theorem 6.1.12.

Let ψ be a complete sentence in Lω1,ω in a countable language L. Then there
is a countable language L′ extending L and a first order L′-theory T such that
reduct is a 1-1 map from the atomic models of T onto the models of ψ. So in
particular, any complete sentence of Lω1,ω can be replaced (for spectrum purposes)
by considering the atomic models of a first order theory.

The careful reader will recall from Chapter 6, that for Lω1,ω it is by no means
trivial to replace an arbitrary sentence by a complete sentence. At the end of
Chapter 25, we will use the full strength of the analysis of the spectrum problem
for complete sentences to extend the categoricity result to arbitrary sentences in
Lω1,ω.

Our exposition here requires more familiarity with first order stability theory
than the first three parts. The fact that in [She75a, She83a, She83b] Shelah was
introducing a sophisticated stability theoretic analysis of infinitary logic, before the
notions of first order stability theory had been absorbed partially explains the great
difficulty the logic community has had in understanding these results.

This part centers on a notion of generalized amalgamation called ‘excellence’.
We try here to give a feel for the notion before beginning the formal development.
One key contribution of excellence is to construct arbitrarily large models. We are
able to reduce the existence of models in large cardinals to certain n-dimensional
amalgamation properties of countable models. They generalize the notion in Chap-
ter 2 by replacing the closure defined there by a notion of dependence based on
splitting.
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Why does this require n-dimensional

amalgamation? If K is an AEC and

every M ∈ K with cardinality ℵ0 has

a proper strong extension, it is easy to

construct a model of cardinality ℵ1. But

how would we get a model of power ℵ2?

It would certainly suffice to know ev-

ery model M of ℵ1 has a proper strong

extension. To show this, fix a filtra-

tion 〈Mi : i < ℵ1〉 of M by countable

models. Now if every countable model

has a proper extension there exists N0

with M0 ≺K N0. We use a notion of

independence to guarantee that N0 is

not contained in M . And then amal-

gamation allows us to construct N1 as

an amalgam of M1 and N0 over M0.

We can continue by induction. Higher

dimensional amalgamation arises when

we try to build a model of power ℵ3.
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We just used amalgamation of pairs in

ℵ0 to get proper extensions in ℵ1 and

a model in ℵ2. The same argument

shows that amalgamation of pairs in

ℵ1 gives a model in ℵ3. So given a

model M of power ℵ1 and two exten-

sions M ′, M ′′ also of cardinality ℵ1, we

want to amalgamate them. Build filtra-

tions 〈Mi, M
′

i , M
′′

i : i < ℵ1〉 of each of

the three models. Amalgamating M ′

0

and M ′′

0 over M0 gives us an N0 to

start the construction of the amalgam.

But at the next stage we need that N1

extend not just M ′

1 and M ′′

1 but also

N0. The existence of such an N1 is 3-

amalgamation.

But excellence is not merely the existence of an n-amalgam but the existence
of one that is closely connected (constructible over) its constituents. In Chapters
18 and 19, we lay out the key properties of atomic classes, define the notion of
splitting, and develop non-splitting as the relevant notion of independence for this
context. Chapter 20 is perhaps the most technical in the book; it concerns the
basic properties of independent systems. The notion of excellence is finally formally
defined in Chapter 21. Roughly, excellence asserts for each n, that there are primary
models over independent systems of 2n−1 countable structures. We show that this
n-amalgamation for all n on countable structures propagates to arbitrary cardinals.
In Chapters 22 and 23 we show, assuming weak diamond, that ‘few’ models in
each ℵn (for n < ω) implies excellence. The precise meaning of few is explored in
Chapter 23 and Appendix C. We introduce the notion of ∗-excellence in Chapter 24;
these are some simpler consequences of excellence which suffice to prove (in ZFC)
the main result: If K is *-excellent and categorical in some uncountable power
then it is categorical in all uncountable powers. This argument is carried out in
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Chapters 24 and 25. We complete our circle by describing the exact relationship
of Part I with the categoricity result. In Chapter 26, we describe a variation on
the example of [HS90] showing that categoricity up to ℵω was needed for the main
result.

We provide a complete proof for sentences of Lω1,ω; Shelah intimated in the
introduction to [She83a] that similar methods would suffice for Lω1,ω(Q). This
seems to be overly optimistic unless one gives a very expansive meaning to ‘similar’.
However, he has developed an extensive theory to deal with this situation. See e.g.
[She0x, She00d, She00c]. We will also see that Zilber’s approach treats some
cases in Lω1,ω(Q).

The bulk of this Part originally appeared in [She83a, She83b]. However,
our exposition depends heavily on the work of Grossberg and Hart [GH89] for
Chapter 20; the fact that what we have dubbed *-excellence are the actual working
hypotheses for the categoricity transfer proof is due to Lessmann [Les05a]. The
counterexamples in Chapter 26 rely on analysis by Baldwin-Kolesnikov [BK]. We
thank Kolesnikov for the diagrams used in this introduction.



CHAPTER 18

Atomic AEC

As expounded in Chapter 6 and summarized in the introduction to Part 4,
our study of categoricity for Lω1,ω reduces to the study of the atomic models of a
complete first order theory. In this chapter we develop the basics of this approach.
Unlike earlier sections of the book, this development is very closely analogous to
first order stability theory and we have to develop a lot of technical background.
This chapter is indirectly based on [She75a, She83a, She83b], where most of the
results were originally proved. But our exposition owes much to [Les05a, Les03,

Kol05, GH89].

Definition 18.1. Let T be a countable first order theory. A set A contained
in a model M of T is atomic if every finite sequence in A realizes a principal (first
order) type over the empty set.

Thus if T is ℵ0-categorical every model of T is atomic.

Notation 18.2. We say an AEC, (K,≺
K

), is atomic if K is the class of
atomic models of a countable complete first order theory and ≺K is first order
elementary submodel.

Part 4 proceeds entirely in the following context. Of course the situation is
only interesting when there are atomic models, but because we are starting with a
complete sentence in Lω1,ω, this is automatic.

Assumption 18.3. K is the class of atomic models of a complete first order
theory T in a countable vocabulary. Note that with ≺

K
as ≺, first order elementary

submodel, this is an abstract elementary class with Löwenheim number ℵ0. More-
over, K is ℵ0-categorical and every member of K is ℵ0-homogeneous. We write
M for the monster model of T ; in interesting cases M is not in K. To stress this,
we will write M′

for the monster model of K – if we succeed in proving one exists.
By the monster model for K, we mean a model that is sufficiently homogeneous-
universal for embeddings over submodels, not over arbitrary substructures.

Note that the really interesting cases of this context have very complicated
languages that arise by reduction from Lω1,ω-sentences in natural languages. Some
of our examples are in very simple languages. They illustrate some particular points
but are not representative of interesting atomic classes.

Unlike Part 3, the default notion of type here is a first order type; but of a
restricted sort. We will connect this development with Galois types in Lemma 24.13.
There are several relevant notions of Stone space in this situation. Recall that S(A)
denotes the normal Stone space, all complete first order types overA consistent with
T (A), i.e., those realized in M, the monster model of the ambient theory T . We
write S(A) with various sub(super)-scripts to mean certain subsets of the space of
first order n-types. We will usually take the particular n to be clear from context.

137
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Definition 18.4. (1) Let A be an atomic set; Sat(A) is the collection of
p ∈ S(A) such that if a ∈ M realizes p, Aa is atomic.

(2) Let A be an atomic set; S∗(A) is the collection of p ∈ S(A) such that p is
realized in some M ∈ K with A ⊆M .

In speech, it is natural to refer to a p ∈ Sat(A) as an ‘atomic type’. Note
that this does not imply that p is isolated but only that p ↾ a is isolated for each
a ∈ A. A key point is two types in S∗(A) may not be simultaneously realizable in
a member of K.

Exercise 18.5. If C is atomic and ac ∈ C then tp(a; c) is principal. Give an
example of p ∈ Sat(M) where p is not principal.

Any atomic model of T is ω-homogeneous and so the unique countable atomic
model is universal for countable atomic sets; thus, the following result is straight-
forward.

Lemma 18.6. Any countable atomic subset of M can be embedded in a member
of K.

Exercise 18.7. Find an example of an atomic AEC and M ∈ K which is not
strongly ω-homogenous. (Recall that a structure is strongly ω-homogenous if any
two finite sequences that realize the same type can be mapped to one another by an
automorphism of the structure.)

The first sentence of the next lemma is immediate. The second follows from
Lemma 18.6.

Lemma 18.8. Let A be atomic; S∗(A) ⊆ Sat(A). If, in addition, A is countable,
S∗(A) = Sat(A).

But these identifications may fail for uncountable A; indeed unless K is ho-
mogeneous (Definition 4.34), there will be some atomic A and p ∈ Sat(A) which is
not realized in a model in K ([Les02]). In such a case, even if K has amalgama-
tion over models so there is a monster model M′

for the atomic models there will
be types in S∗(A), even for countable A, that are not realized in some choices of
M′

. See Example 18.28. When one has amalgamation over models but not over
arbitrary subsets, monsters are unique only up to automorphisms over models.

Now we turn to a pair of serious examples that, because they are not homoge-
nous, illustrate the real problems that confront us in Part 4. We listed the properties
of these examples in Fact 3.14 and showed that they gave rise to an ℵ1-categorical
sentence of Lω1,ω which had an inhomogeneous model. We now give more details
of the construction [Mar72]; we will call on them below to illustrate some of the
subtleties of this chapter. A simpler version of Julia Knight is described first.

Example 18.9. There is a first order theory T with a prime model M such
that M has no proper elementary submodel but M contains an infinite set of
indiscernibles.

(1) We begin with the simpler (and later) example of Julia Knight [Kni78].
The vocabulary contains three unary predicates, W,F, I which partition
the universe. Let W and I be countably infinite sets and fix an iso-
morphism f0 between them. F is the collection of all bijections between
W and I that differ from f0 on only finitely many points. Add also a
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successor function on W so that (W,S) is isomorphic to ω under suc-
cessor and the evaluation predicate E(n, f, i) which holds if and only if
n ∈W, f ∈ F, i ∈ I and f(n) = i.

The resulting structure M is atomic and minimal. Since every per-
mutation of I with finite support extends to an automorphism of M , I is
a set of indiscernibles. But it is not ω-stable.

(2) Now we expound the more complicated example of Marcus. We construct
a family of countable sets Bi, languages Li and groups Hi. The Bi are
disjoint;

Bj = ∪i≤jBi.
Each groupHi will be a group of Li-automorphisms ofBi with ‘almost

finite’ support: Each f i ∈ Hi is determined by its restriction f to B0 and
that restriction moves only finitely many elements of B0. So in fact each
group Hi is a representation of a fixed group H as permutations of Bi.
(a) B0 is an infinite set; L0 is the single unary predicate P0 (and equal-

ity); P0 holds of all elements of B0.
(b) H is the collection of permutations of B0 with finite support. We

define Hi by induction so that each f ∈ H has a unique extension to
f i in Hi. Suppose we have defined Hi and Bi. Bi+1 is the collection
of elements {bif :f ∈ H}. For each g, f ∈ H , we define gi by gi(bif) =

bigf . Then, we set Hi+1 to be {gi :g ∈ H}.
(c) For i > 0, Li contains symbols θic(u, v) for c ∈ Bi such that for

the distinguished element bi1 = biid ∈ Bi+1, indexed by the identity

permutation, and for each c ∈ Bi, θ
i
c(b

i+1
1 , v) if and only if v = c.

For other bf , θ
i
c = {〈bi+1

f , f(c)〉 : f ∈ Hi}. Further, the symbol Pj
is interpreted as Bj . Add a further predicate to Li for each of the
finitely many automorphism k-types realized in

⋃
j≤iBj .

(d) M is the L =
⋃
i Li-structure with universe

⋃
iBi.

Now a couple of observations: θif−1(c)(b
i+1
f , x) iff x = c. Thus this

formula θi defines c ∈ Bi from bf ∈ Bi+1. So M is minimal. But for
each i and k, the automorphism group of M restricted to the group of Li-
automorphisms of

⋃
j<iBi has only finitely many orbits on k-tuples. Thus

M is atomic. And each permutation g of B0 which moves only finitely
many elements extends to an automorphism of M (taking bi1 to big) so B0

is a set of indiscernibles.

Exercise 18.10. Show that M has only countably many automorphisms; con-
clude not every permutation of B0 extends to an automorphism of M .

Example 18.11. There is an atomic class K and an uncountable setX which is
atomic but is not contained in any member of K. Let T be the first order theory of
Example 18.9.2 and let M be its monster model. Embed the unique atomic model
of T in M as M . Now by compactness add an uncountable set Y ⊆ P0(M) such
that each n-tuple from B0Y realizes a type realized in B0. Then B0Y is atomic
but there is no atomic model of T which contains B0Y . If Y is countable there is
an atomic model containing B0Y but it can not be embedded in M over B0. Note
S∗(Y ) 6= Sat(Y ).
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Definition 18.12. The atomic class K is λ-stable if for every M ∈ K of
cardinality λ, |Sat(M)| = λ.

To say K is ω-stable in this sense is strictly weaker than requiring |Sat(A)| = ℵ0

for arbitrary countable atomic A ([Les02]). See Example 18.27. The following
example illustrates some further complexities.

Example 18.13. Consider two structures (Q, <) and (Q,+, <). If K1 is the
class of atomic models of the theory of dense linear order without endpoints, then
K1 is not ω-stable; tp(

√
2; Q) ∈ Sat(Q). If K2 is the class of atomic models of the

theory of the ordered Abelian group of rationals, then K2 is ω-stable; tp(
√

2; Q) 6∈
Sat(Q).

Note that these notions are sensitive to naming constants. K1 is unstable; but
if we name all the rationals (as the definable closure of a finite set), we get a class
with exactly one model that is trivially ω-stable. By passing to an atomic class, we
are coding Lω1,ω and the infinite disjunctions mean that by being able to refer to
countably many individuals we are essentially quantifying over a countable set.

Exercise 18.14. Prove that if K is ω-stable then for every M ∈ K and every
countable A ⊆ M , only countably many types over A are realized in M . Note that
S∗(A) may still be uncountable. (Again, we have not assumed amalgamation.)

We apply on the following version of Theorem 5.2.5.

Fact 18.15 (Keisler). Let T be a consistent theory in Lω1,ω(Q). If uncountably
many types (in a countable fragment containing T ) over the empty set are realized
in some uncountable model of T , then T has 2ω1 models of cardinality ℵ1. (In
particular, this applies to the class of atomic models of a first order theory).

We use the weak continuum hypothesis, 2ℵ0 < 2ℵ1 , twice in the following
argument; the first time is by the reference to Chapter 17. We state the result for
atomic classes but it extends to complete sentences of Lω1,ω(Q).

Theorem 18.16. Assume 2ℵ0 < 2ℵ1 . If K is an atomic class with fewer than
the maximal number of models in ℵ1, then K is ω-stable.

Proof. To apply Fact 18.15, fix a fragment L′ of Lω1,ω in which K is axiom-
atized. By Theorem 17.11, K has the amalgamation property in ℵ0. So, if there
is a countable model over which there are uncountably many L′-types, there is an
uncountable model which realizes uncountably many types over a countable sub-
model M . But then if we expand the language by adding names for M we obtain
by Fact 18.15, that the theory in the expanded language has 2ℵ1 models. Since
2ℵ0 < 2ℵ1 , the original theory does. This proves that for each countable M , S∗(M)
is countable and we finish by Lemma 18.8. �18.16

The assumption that 2ℵ0 < 2ℵ1 is essential in Theorem 18.16. Note, however,
that If K has arbitrarily large models then the methods of Section 6.2 show (in
ZFC) that categoricity in ℵ1 and ℵ0 implies ω-stability. Whether, 2ℵ0 < 2ℵ1 is
essential in Theorem 18.16 depends on the choice of the logic. We sketch two
examples and raise an open question.

Example 18.17. Let L contain a unary predicate P and a binary relation <.
Let K be the models of an Lω1,ω(Q)-sentence asserting that M is an ℵ1-dense linear
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order and P is a countable dense and co-dense subset. Define M ≺K N if and only
if P (M) = P (N) and M is a first order elementary submodel of N . Baumgartner
[Bau73] proved that it is consistent with ZFC and 2ℵ0 = 2ℵ1 = ℵ2 that K is
ℵ1-categorical. But clearly it is not ω-stable. Abraham and Shelah [AS81] showed
that Martin’s axiom does not suffice for this argument.

Example 18.17 is neither an AEC (not closed under some unions) nor does it
have countable Löwenheim number. Example 17.7, which we adduced in Chapter 17
to show the necessity of extending ZFC to prove failure of amalgamation in an
AEC, also shows that ‘ℵ1-categoricity implies ω-stability’ requires such additional
set theoretic axioms. That example, formulated in L(Q) provided a two sorted
universe so that one sortQ codes subsets of the other P . Clearly, over any countable
model (which necessarily contains all of P ), there are uncountably many types (even
syntactic types) of elements of Q which code distinct subsets of P . We would like
to actually have a counterexample in Lω1,ω. However, although such an example
was announced in [Sheb], Laskowski (unpublished) proved that the example had
2ℵ0 models of cardinality ℵ1. Thus the problem remains open.

We write diag(A) for the collection of first order formulas φ(a) which are true
of sequences a from A. In other words, diag(A) = tp(A/∅).

Definition 18.18. We say B is atomic over A if for every b ∈ B, there is
a formula φ(x,a) such that diag(A) |= φ(x,a) → ψ(x,a′) for every ψ(x,a′) with
a
′ ∈ A such that ψ(b,a′). That is, for every b ∈ B, tp(b/A) is isolated.

When A is atomic, we can further assume for any a
′ ∈ A, if θ(w,y) generates

tp(a′
a/∅) then

[θ(w,y) ∧ φ(x,y)] → ψ(x,y).

The following result is proved by the standard combination of generating for-
mulas.

Exercise 18.19. If C is atomic over B and B is atomic over A then C is
atomic over A.

The notion of primary is sometimes called strictly prime or constructible.

Definition 18.20. Given any sequence 〈ei : i < λ〉, we write E<j for 〈ei : i < j〉.
If M can be written as A ∪ 〈ei : i < λ〉 such that tp(ej/AE<j) is isolated for each j
we say M is primary over A.

Definition 18.21. M ∈ K is prime over A if every elementary map from A
into N ∈ K extends to an elementary map from M into N .

Now it is an easy induction to show:

Exercise 18.22. If M is primary over A, then M is atomic over A and prime
over A.

We want to identify those atomic sets (not even all countable ones) over which
one can construct a primary model: in Lemma 18.26 we see the following condition
suffices for countable A.

Definition 18.23. The atomic set A ⊂ M is good if the isolated complete
types over A are dense in Sat(A).
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Lemma 18.24. If A and Sat(A) are countable, then A is good.

Proof. Suppose A is not good. Then there is a satisfiable φ(x,a) with a ∈ A,
but no isolated type in Sat(A) contains φ(x,a). That is, for each ψ(x,b) with
b ∈ A, such that |= (∀x)ψ(x,b) → φ(x,a), there is a b′ such that ψ(x,b) has at
least two extensions in Sat(abb′). We will use this to contradict the countability
of Sat(A).

Enumerate A as {ai : i < ω}. For η ∈ 2<ω, it is straightforward to define
by induction ψη(x,bη) so that ψ∅(x,b∅) is φ(x,a), if η ⊳ ν then ψη(x,bη) →
ψν(x,bν), bη ⊇ ai if lg(η) > i, and each ψη(x,bη) isolates a complete type over
bη. Our non-density assumption allows us to guarantee that ψη̂0(x,bη̂0) and
ψη̂1(x,bη̂1) are inconsistent. This gives uncountably many members of Sat(A).
�18.24

Moreover, if Aa is atomic, |Snat(Aa)| ≤ |Sn+m
at (A)| where lg(a) = m and the

superscript denotes the arity of the type. (Mapping tp(d/Aa) to tp(ad/A) is an
injection.) So we have:

Lemma 18.25. If A and Sat(A) are countable, then for any p ∈ Sat(A), and a

realizing p, Aa is good.

Lemma 18.25 was almost immediate; after developing considerable machinery
of ω-stable atomic classes in Chapter 19, we prove the converse in Lemma 24.5.

If A is good the isolated types are dense in the Stone space of types over the
empty set in the theory obtained by naming the elements of A. Any prime model
of a countable first order theory is primary over the empty set. Thus, we have the
following result.

Lemma 18.26. If A is countable and good (hence atomic), there is a primary
model over A.

Several authors [Kni78, Kue78, LS93] have constructed examples of good
atomic sets A over which there is no atomic model; results of the same authors
show such an A must have cardinality at least ℵ2.

Example 18.27. Let B0 be the set of indiscernibles in Example 18.9. Then
B0 is a countable atomic set that is not good, as the possible conjunctions of the
formulas θc(x, d) ∧ P1(x) (as d ranges through B0) give rise to 2ℵ0 non-isolated
types (of elements in B1) in Sat(B0). By Corollary 24.5, B0 is not good.

Example 18.28. Let M be unique countable model of Example 18.9 and B0

as in that example. Note that every p ∈ Sat(M) is realized in M . (Otherwise M
would have a proper extension.) Similarly every stationary type over a finite subset
of M is algebraic. But there are p ∈ Sat(B0) that are not realized in M .



CHAPTER 19

Independence in ω-stable Classes

We work in an atomic K which is ω-stable. We do not assume K has amal-
gamation; we will soon prove (Corollary 19.14) that it does have amalgamation
for countable models. We define a notion of independence and in this Chapter we
describe the basic properties of this relation. The most difficult of these is symme-
try. As in Chapter II of [Bal88], we can use these basic facts as properties of an
abstract dependence relation to demonstrate other technical conditions.

We begin by defining an appropriate rank function. Condition 3b) is the crucial
innovation to deal with atomic classes.

Definition 19.1. Let N ∈ K and φ(x) be a formula with parameters from N .
We define RN (φ) ≥ α by induction on α.

(1) RN (φ) ≥ 0 if φ is realized in N .
(2) For a limit ordinal δ, RN (φ) ≥ δ, if RN (φ) ≥ α for each α < δ.
(3) RN (φ) ≥ α+ 1 if

(a) There is an a ∈ N and a formula ψ(x,y) such that both φ(x)∧ψ(x,a)
and φ(x) ∧ ¬ψ(x,a) have rank at least α;

(b) for each c ∈ N there is a formula χ(x, c) isolating a complete type
over c and φ(x) ∧ χ(x, c) has rank at least α.

We write RN (φ) is −1 if φ is not realized in N . As usual the rank of a formula
is the least α such that RN (φ) 6≥ α + 1, and RN (φ) = ∞ if it is greater than or
equal every ordinal. And we let the rank of a type be the minimum of the ranks of
(finite conjunctions of) formulas in the type. For every type p, there is a formula
φ in p with R(p) = R(φ).

Note that the rank of a formula φ(x,b) in N depends only on the formula
φ(x,y) and the type of b over the empty set in the sense of N . We write ‘in N’
because there is no assumption that the amalgamation property holds; see Exam-
ple 19.2. We will drop the subscript N when the context is clear. One can easily
prove by induction that if p ⊂ q, R(p) ≥ R(q) and that there is a countable ordinal
α such that if R(p) > α then R(p) = ∞.

Example 19.2. Let L contain a binary relation symbol E and three unary
predicates for ‘black’, ‘green’ and ‘red’ . Let K be the class of structures such that
E is an equivalence relation; each class has at most three elements; every point is
colored by one of the three colors. Three elements in the same equivalence class
must have distinct colors. (Note that there may be two element classes containing
elements of the same color.) This is a universal first order theory. Let ≺K be
substructure, ⊆. Then amalgamation fails. It is easy to check that (K,⊆) is an
aec and in any reasonable sense of the word it is ω-stable. But it is not an atomic
class; nor is it ℵ0-categorical.

143
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Theorem 19.3. If K is ω-stable, then for any M ∈ K and any p ∈ Sat(M),
R(p) <∞.

Proof. Suppose not; i.e. there is a type p ∈ Sat(M) with M atomic and
R(p) = ∞. Since the rank of a type is determined by a formula we can assume
M is countable. Then for any finite subset C of M and any c ∈ M there are
finite C′ containing cC and p′ ∈ Sat(C

′) such that p ↾C = p′ ↾C, but p ↾C′ and
p′ ↾C′ are contradictory and principal. (For this, note that if φ(x) generates p ↾C,
R(φ) = ∞ ≥ ω1 + 2. Thus there is a and ψ witnessing 3a) of the definition of
rank so both φ(x) ∧ψ(x,a) and φ(x) ∧¬ψ(x,a) have rank at least ω1 + 1. Letting
C′ = Cac and applying 3b) we find a complete extension p′ 6= p over C′ with rank
at least ω1 and so with infinite rank.)

Thus, we can choose by induction finite sets Cs and formulas φs for s ∈ 2<ω

such that:

(1) If s ⊂ t, Cs ⊂ Ct and φt → φs.
(2) For each σ ∈ 2ω,

⋃
s⊂σ Cs = M .

(3) φs0(x) and φs1(x) are over Cs and each generates a complete type over
Cs.

(4) φs0 and φs1 are contradictory.

In this construction the fact that we choose C′ above to include an arbitrary
c ∈M allows us to do 2) and the φs0 and φs1 generate appropriate choices of p ↾Cs,
p′ ↾Cs. Now, each pσ generated by 〈φs : s ⊂ σ〉 is in Sat(M) by conditions 2) and
3) so we contradict ω-stability. �19.3

Definition 19.4. A complete type p over A splits over B ⊂ A if there are
b, c ∈ A which realize the same type over B and a formula φ(x,y) with φ(x,b) ∈ p
and ¬φ(x, c) ∈ p.

We will want to work with extensions of sets that behave much like elementary
extension.

Definition 19.5. Let A ⊂ B ⊆ M. We say A is Tarski-Vaught in B and write
A ≤TV B if for every formula φ(x,y) and any a ∈ A, b ∈ B, if M |= φ(a,b) there
is a b′ ∈ A such that M |= φ(a,b′).

Note that every atomic extension of a model is a Tarski-Vaught extension:

Exercise 19.6. If M ∈ K and MB is atomic then M ≤TV MB.

The next two lemmas allow us to find nonsplitting extensions of types over
models and in certain cases over good sets.

Lemma 19.7 (Weak Extension). For any p ∈ Sat(A); if A ≤TV B, B is atomic
and p does not split over some finite subset C of A, there is a unique extension of
p to p̂ ∈ Sat(B) which does not split over C.

Proof. Put φ(x,b) ∈ p̂ if and only if for some b′ in A, which realizes the
same type as b over C, φ(x,b′) ∈ p. It is easy to check that p̂ is well-defined,
consistent, and doesn’t split over C, let alone A. By the Tarski-Vaught property, p̂
is complete. Suppose for contradiction that p̂ 6∈ Sat(B). Then for some e realizing
p̂ and some b ∈ B, Cbe is not an atomic set. By Tarski-Vaught again let b′ ∈ A
realize tp(b/C); since e realizes p̂ ↾A = p ∈ Sat(A), there is a formula θ(x,y, z)
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that implies tp(cb′e/∅). By the definition of p̂, θ(cb,x) ∈ p̂). Thus, θ(cbe) holds
and Cbe is an atomic set after all.

For the uniqueness, suppose p1, p2 are distinct extensions of p to Sat(B) which
do not split over C, but there is a sequence b ∈ B and a φ(x,y) with φ(x,b) ∈ p1

but ¬φ(x,b) ∈ p2. Since A ≤TV B and B is atomic, there is a b′ ∈ A with b′ ≡C b.
Now p1 a non-splitting extension of p implies φ(x,b′) ∈ p, while p2 a non-splitting
extension of p implies ¬φ(x,b′) ∈ p. This contradiction yields the theorem. �19.7

Lemma 19.8 (Existence). Let K be ω-stable. Suppose p ∈ Sat(M) for some
M ∈ K. Then there is a finite C ⊂M such that p does not split over C.

Proof. Choose finite c ∈ M and φ(x, c) with RM (p) = RM (φ(x, c)) = α. If
p splits over c, it is easy to construct two contradictory formulas over M which
have rank α. Moreover, for any e ∈M , since p ↾ ce is principal, we can satisfy 2b)
of Definition 19.1 and contradict RM (φ(x, c)) = α. Thus, p does not split over c.
�19.8

Theorem 19.9 (Unique Extension). If p ∈ Sat(M) (so p does not split over
some finite subset C of M) and M ⊆ B, where B is atomic, then there is a unique
extension of p to p̂ ∈ Sat(B) which does not split over C.

Proof. By Lemma 19.8, there is a finite C ⊂M such that p does not split over
C. Since M is a model M ≤TV B. By Lemma 19.7, p has a unique extension to
Sat(B) which does not split over C. �19.9

Example 19.10. The assumption that the base in Theorem 19.9 is a model is
essential. Consider the theory of expanding equivalence relations. That is, fix a
language with infinitely many binary relations En(x, y). Let T state that each En
is an equivalence relation with infinitely many classes, all of which are infinite and
with En finer than En+1. T is ω-stable with elimination of quantifiers. Let K be
class of models of T which omit the type p(x, y) = {¬En(x, y) :n < ω}). Then K is
excellent and even homogenous. But no type over the empty set has a non-splitting
extension to a model.

Thus, even in ω-stable atomic classes, splitting may not be well behaved over
arbitrary subsets. In particular, Example 19.10 is not simple in the sense of [HL06].

We now introduce a notion of independence, modelled on the notion of non-
forking is stable first order theories. While we enumerate major properties of the
relation, we have not systematically investigated the independence ‘axioms’ that it
satisfies.

Definition 19.11. Let ABC be atomic. We write A⌣
C
B and say A is free or

independent from B over C if for any finite sequence a from A, tp(a/B) does not
split over some finite subset of C.

Shelah [She83a] defines stable amalgamation only when the base C is good.
Under his hypothesis, the types over the base are stationary.

The independence notion defined in Definition 19.11 satisfies many of the same
properties as non-forking on an ω-stable first order theory but with certain restric-
tions on the domains of types. In some ways, the current setting is actually simpler
that the first order setting. Every model is ‘ω-saturated’ in the sense that if A is a
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finite subset of M ∈ K and p ∈ Sat(A) then p is realized in M . In particular note
that monotonicity and transitivity are immediate.

Fact 19.12.

• [Monotonicity]
(1) A⌣

C
B implies A⌣

C′
B if C ⊆ C′ ⊆ B

(2) A⌣
C
B implies A⌣

C
B′ if C ⊆ B′ ⊆ B

• [Transitivity] If B ⊆ C ≤TV D, A⌣
C
D and A⌣

B
C implies A⌣

B
D.

Defining a well-behaved independence relation from splitting is bit subtle.

Exercise 19.13. Consider the theory T of an equivalence relation with in-
finitely many classes, which are all infinite. Then T is atomic. Show that while
the notion of independence defined in Definition 19.11 behaves well the property
tp(a/B) does not split over C fails to satisfy transitivity – even if all the sets in-
volved are models. (Let D be a model of T ; let C add one new class and B add
another class. Then let a be a new element of the last class.)

Note that there is no difficulty in applying Theorem 19.9 when p is not the
type of a finite sequence but the type of an infinite set A, provided AM is atomic.
We formalize this observation using the independence notation. Recall again that
there is a global hypothesis of ω-stability in this chapter.

Corollary 19.14. Suppose M ⊆ B, M ⊂ A and that both A and B are
atomic.

(1) There exists A′ ⊃M , A′ ≈M A and A′
⌣
M
B.

(2) IfA⌣
M
B, A′ ≈M A, and A′

⌣
M
B then A′ ≈B A.

(3) In particular, amalgamation holds in ℵ0.

Proof. 1) and 2) Both existence and uniqueness are from Lemma 19.9; existence
is evident and the uniqueness follows because the type of each finite subsequence
of A does not split over some finite subset of M and so has a unique non-splitting
extension over B.

2) Suppose M1,M2 ∈ K are each countable extensions of M0. By extension,
Theorem 19.9 there exist M ′

1,M
′
2 ∈ K with M ′

1 ⌣
M0

M ′
2. But then M ′

1M
′
2 is atomic

and so, by Lemma 18.6, is contained in a countable model as required. �19.14

However, if A′ realizes the extension type as in Corollary 19.14, we know only
thatNBA′ is atomic; we have not guaranteed that it is good or (except for countable
sets) even embeddible in a member of K. Moreover, A′ ≈B A means the identity
map on B extends to an isomorphism from AB onto A′B. But Example 26.2.15
shows this isomorphism may not extend to an automorphism of M (even when K is
ℵ1-categorical). We will obtain the stronger result as a corollary to (λ, 2)-uniqueness
(Definition 22.5).

Apply Lemma 19.8, the monotonicity property, and the finite character of split-
ting to show:
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Exercise 19.15. Suppose M1 ⌣
M0

M2. For any a, b ∈M1,M2, there exist count-

able Ma with a ∈Ma ≺K M1, countable M b with b ∈M b ≺K M2, and countable

M ′
0 ≺K M0 such that Ma

⌣
M ′

0

M b.

Lemma 19.16 (Coextension). If M is countable and M ≺ N ∈ K then for any
finite a with tp(a/M) ∈ Sat(M), if N ⌣

M
a, then tp(a/N) ∈ Sat(N).

Proof. Since M is countable there is an M ′ in K with M ≺K M ′ and
Ma ⊂M ′. By the extension property for splitting choose a copy N ′ of N such that
N ′

⌣
M
M ′. The extension property, Lemma 19.9, guarantees N ′M ′ and a fortiori

N ′
a is atomic and tp(a/N ′) ∈ Sat(N

′). Since both N ′
⌣
M
a and N ⌣

M
a, Corol-

lary 19.14 guarantees N ≡Ma N
′ so tp(a/N) ∈ Sat(N) as required. �19.16

Definition 19.17. (1) p ∈ Sat(A) is stationary if there is a finite se-
quence a ∈ A and a formula φ(x,a) ∈ p and M containing A with
q ∈ Sat(M) that extends p such that φ(x,a) ∈ q and R(φ(x,a)) = R(p) =
R(q).

(2) If p ∈ Sat(B) does not split over A ⊆ B and p ↾A is stationary then we
say p is based on A.

The following equivalent property will be our working definition of stationary.

Lemma 19.18. Suppose A is finite. If p ∈ Sat(A) is stationary then for any
atomic B containing A, there is a unique non-splitting over A extension of p to
p̂ ∈ Sat(B).

Proof. Fix M ∈ K containing A let q ∈ Sat(M) be as guaranteed in Def-
inition 19.17.1. By the arguments in Lemmas 19.8 q does not split over A; by
19.7 (taking M as B) q is the unique non-splitting extension of p to Sat(M). Put
φ(x,b) ∈ p̂ if and only if for some b′ in M , which realizes the same type as b over
A, φ(x,b′) ∈ q. Since M is ω-saturated, it is easy to check that p̂ is well-defined,
consistent, and doesn’t split over A. Suppose for contradiction that p̂ 6∈ Sat(B).
Then for some e realizing p̂ and some b ∈ B, Abe is not an atomic set. Let
b′ ∈M realize tp(b/A). By definition, for any θ(x,y, z), θ(x,b,a) ∈ p̂ if and only
if θ(x,b′,a) ∈ q. But q ↾ab′ is principal so p̂ ↾ba is principal as required. To see
p̂ is unique, apply Lemma 19.7 again. �19.18

Note this does not imply for arbitrary atomic classes and large B that p̂ is
realized in a model. We have justified the following notation.

Notation 19.19. If p ∈ Sat(A) is based on a, for any B ⊇ a we denote by p|B
the unique nonsplitting extension of p ↾a to Sat(B).

Lemma 19.20. (1) If p ∈ Sat(M), then
(a) p is stationary
(b) there is a finite C ⊂ M such that p does not split over C and p ↾C

is stationary.
(2) If K is ω-stable, K is stable in every cardinality.
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Proof. 1a) is immediate from Theorem 19.8; for 1b) choose a formula over a
finite subset with the same rank. 2) is now easy since each type is based on a finite
set. �19.20

Theorem 19.21. Suppose K is ω-stable then b⌣
M

a implies a⌣
M

b.

Proof. Suppose for contradiction that b⌣
M

a and a /⌣
M

b. By stationarity of

types over models, if a
′ ≡M a, b′ ≡M b, and a

′ ∈ N with b′
⌣
M
N , then ba ≡M

b′
a
′; thus a

′
/⌣
M

b′. Construct by induction a continuous increasing chain of count-

able models Mi and elements ai for i < ℵ1 such that M0 = M , a0 = a, ai ≡M a,
Mi+1 is a countable model containing Miai and ai⌣

M
Mi. Let N =

⋃
i<ℵ1

Mi.

Without loss of generality, the universe of N is ℵ1. Let J be an initial segment of
ℵ1. Note that if i 6∈ J , ai ⌣

M0

⋃
i∈JMi. Expand N by adding a name < for the

order on ℵ1, names for the elements of M , and a relation symbol R(x, y) such that
R(a, α) holds if and only a ∈ Mα. The properties of the construction described
above (including ai⌣

M
Mi) can now all be formalized in Lω1,ω, in the expanded

language. By the Lopez-Escobar theorem (Theorem 5.1.6, we can choose a count-
able model MQ =

⋃
i∈Q Mi with a new sequence of elements ai for i ∈ Q such that

for each i, ai ≡M a, and if i < j, Mj is a countable model containing Miai with
ai ⌣
M0

Mi. For each initial segment J of Q, let MJ denote
⋃
j∈JMj . Since it holds

in the well-ordered case, if i 6∈ J , ai ⌣
M0

MJ .

Claim 19.22. There is an element bJ such that if i 6∈ J , ai ⌣
M0

bJ , bJ ≡M b

and bJ ⌣
M
MJ . This implies that ai ⌣

M0

bJ if and only if i 6∈ J .

Proof. First apply Lemma 19.9 to choose b̂J realizing tp(b/M) with b̂J ⌣
M
MJ

and tp(b̂J/MJ) ∈ Sat(MJ). By the second sentence of the proof of Theorem 19.21,

we have ai /⌣
M

b̂J if i ∈ J . By Lemmas 18.24, 18.25, and 18.26 we can choose

M̂J ∈ K containing MJ b̂J and then by Lemma 19.9 choose MJ
Q to realize the same

type as MQ over MJ but so that MJ
Q ⌣
MJ

M̂J . For i 6∈ J , denote by a
J
i the natural

image of ai in MJ
Q . Since M ≤TV MJ ≤TV M̂J and a

J
i ⌣
M
MJ if i 6∈ J , transitivity

of non-splitting yields a
J
i ⌣
M

b̂J . Now map MJ
Q onto MQ, fixing MJ and taking aJi

to ai for all i 6∈ J . The image of b̂J under this map is the required bJ . Since

ai ∈MJ for i ∈ J and bJ ≡MJ
b̂J , ai /⌣

M

bJ if i ∈ J . �19.22

We have found 2ℵ0 types over MQ (the tp(bJ/MQ) for J an initial segment
of Q). We must verify that they are in Sat(MQ). We have constructed the
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b̂J ∈ M̂J so that for each initial segment J of Q, tp(b̂J/MJ) is in Sat(MJ)

and MJ
Q ⌣
MJ

M̂J . Then by the coextension lemma, Lemma 19.16, tp(b̂J/M
J
Q ) ∈

Sat(M
J
Q ). So tp(bJ/MQ) ∈ Sat(MQ); the result is proved. �19.21

We can extend symmetry to stationary types as follows. Note that the station-
arity conditions are immediate if A is good.

Lemma 19.23. Let A be a countable atomic set and suppose p = tp(a/A), q =
tp(b/A), r = tp(ab/A) ∈ Sat(A) are each based on finite subsets of A. Then a⌣

A
b

if and only b⌣
A
a.

Proof. Suppose a⌣
A
b. Let M ′′ ⊂ A be a model. By stationarity we can

choose b′ realizing p with b′⌣
A
M ′′. Mapping b′ back to b over A yields an M ′ with

b⌣
A
M ′. Since a⌣

A
b, stationarity allows us to assume with a⌣

A
M ′b. By symmetry

over models, we have b⌣
A
M ′a. Since M ′ is Tarski-Vaught in M ′a, we can conclude

by transitivity that b⌣
A
M ′a and by monotonicity b⌣

A
a′. �19.23

Question 19.24. Does the ‘pairs lemma’ hold in this context (for stationary
types)?

Exercise 19.25. If a⌣
M
N then a ∩N ⊂M .

In the next theorem, whose proof follows that of Conclusion 2.13 in [She83a],
we weaken the hypothesis of ℵ1-categoricity in Theorem 7.11 to ω-stability; we are
still working in ZFC.

Theorem 19.26. If an atomic class is ω-stable and has a model of power ℵ1

then it has a model of power ℵ2.

Proof. As in Chapter 7, it suffices to show every model N in K of cardinality
ℵ1 has a proper elementary extension M in K. Write N as a continuous increasing
chain:
〈Ni : i < ℵ1〉. Now define an increasing sequence 〈Mi : i < ℵ1〉 such that

(1) M0 is a proper ≺K -extension of N0;
(2) Mi⌣

Ni
N

N0 has a proper extension M ′
0 and by Lemma 19.9 we may choose a copy M0

of M ′
0 that is independent from N over N0. At successor stages take a proper

extension M ′
α+1 of MαNα+1 (such an extension exists since MαNα+1 is countable

and atomic) and by Lemma 19.9 there is a copy M ′
α+1 which is independent of

N over Nα+1. By Lemma 19.14.2, we can choose Mα+1 to contain Mα and with
Mα+1 ⌣

Nα+1

N . Take unions at limits to complete the construction. Mω1 is the

required proper extension of N . �19.26

The hypothesis that there be a model with cardinality ℵ1 is essential. The
Marcus example, Example 3.14, is ω-stable as an atomic class and has exactly one
model.
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Now we can strengthen Theorem 7.11, replacing categoricity in ℵ1 by few mod-
els in ℵ1 at the cost of assuming 2ℵ0 < 2ℵ1 . The following corollary is immedi-
ate since with this set-theoretic hypothesis, few models in ℵ1 implies ω-stability
(Lemma 18.16).

Corollary 19.27 (2ℵ0 < 2ℵ1). If the atomic class K has at least one but
fewer than 2ℵ1 models of cardinality ℵ1 then it has a model of power ℵ2.

Question 19.28. Does Lemma 19.26 extend to Lω1,ω(Q)? I think Shelah claims
only the analog of Lemma 19.27 in [She75a].



CHAPTER 20

Good Systems

In this chapter we introduce the notion of P -systems, systems of models indexed
by partial orderings. This rather technical chapter will establish crucial tools for
our later study of excellent classes. In particular, the generalized symmetry lemma,
Theorem 20.21, will be quoted at crucial points in ensuing chapters. We will pri-
marily be interested in systems indexed by the subsets of n, for arbitrary finite
n. These systems generalize the independent n-dimensional systems of Chapter 2.
They will enable us to analyze categorical structures where no geometry can be de-
fined on the entire universe (i.e. has ‘rank’ greater than one). We work throughout
in an ω-stable atomic class K.

We describe the indexing of system of models by a partial order. Since in most
of our specific applications, the partial order will be subset on P(n) for a finite set
n, we will just use ⊆ for the reflexive partial order.

Definition 20.1. If (P,⊆) is a partial order and S = 〈Ms : s ∈ P 〉 is a
collection of models from K then we say S is a P -system if

(1) Ms ≺K Mt whenever s ⊆ t;
(2) if s ⊂ t then Ms 6= Mt;
(3) If P admits a meet ∧ then Ms∧t = Ms ∩Mt

S is a (λ, P )-system if each |Ms| = λ.

Note that the distinction between subsets ⊆ and proper subsets ⊂ is crucial in
the following definition. We will use the notations As and Bs repeatedly.

Notation 20.2. (1) S is an independent P -system if for each s ∈ P ,
(a) As =

⋃
t⊂sMt is atomic;

(b) Ms ⌣
As

Bs where Bs =
⋃
t6⊇sMt.

(2) An independent P -system is called good if in addition
(a) each As is good and
(b) As ≤TV Bs for each s ∈ P .

(3) We write (λ, n)-system (or (λ,P−(n))-system, for emphasis) for a P -
system where

P = P−(n) = {s :s ⊂ n}.
In order to deal with good P -systems, it is necessary to study an apparently

weaker condition. Before describing it we need a generalization of the notion of
Tarski-Vaught extension.

Definition 20.3. Let A = 〈A1, . . . An〉 and B = 〈B1 . . . Bn〉 satisfy that each
Ai ⊆ Bi. We say A is Tarski-Vaught in B and write A ≤TV B if for every formula
φ(x,y) and any a ∈ ⋃

Ai, b ∈ ⋃
Bi, if M |= φ(a,b) there is a b′ ∈ A such that

M |= φ(a,b′) and if bs ∈ Bj then b′s ∈ Aj.

151
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Note that if 〈A1, . . . , An−1〉 ≤TV 〈B1, . . . , Bn−1〉, the same holds for any sub-
sequence. Definition 20.3 is much stronger than the assertion:

⋃
Ai ≤TV

⋃
Bi;

consider the following exercise.

Exercise 20.4. Show: if 〈A1, A2〉 ≤TV 〈B1, A2〉 then B1 ⌣
A1

A2.

Definition 20.5. 〈si : i < α〉 is an enumeration (or linearization) of P if it is
a non-repeating list of the elements of P such that si ⊂ sj implies i < j.

Our next goal is to show that a P -system is good if it is good under some
enumeration (Definition 20.12). But we require some preliminary lemmas.

Lemma 20.6. If A⌣
C
B and C ≤TV B then

(1) 〈C,A〉 ≤TV 〈B,A〉
(2) and AC ≤TV AB.

Proof. We show 1) and 2) follows immediately. Since A⌣
C
B , there is a c′ ∈ C

such that tp(a/B) does not split over c′. Suppose φ(a,b, c) with a ∈ A, b ∈ B,
c ∈ C and without loss c′ ⊆ c. Since C ≤TV B, there is a b′ ∈ C that realizes the
same type over c as b. Then φ(a,b′, c) or else tp(a/B) splits over c. �20.6

The same argument shows:

Exercise 20.7. If 〈C0, . . . Cn−1〉 ≤TV 〈B0, . . . Bn−1〉 and A ⌣⋃
i<n Ci

⋃
i<nBi,

then 〈C0, . . . Cn−1, A〉 ≤TV 〈B0, . . . Bn−1, A〉.
Exercise 20.8. Show that if A ≤TV B and tp(c/A) is isolated then Ac ≤TV Bc

The following partial Skolemization enables us to move goodness between car-
dinals.

Lemma 20.9. There is a countable expansion L∗ of L such that every atomic
A can be expanded to an L∗-structure A∗ so that if B∗ is an L∗-substructure of A∗

then letting B = B∗ ↾L:

(1) B ≤TV A
(2) A is good if and only if B is good.

Proof. For every formula φ(x,y) add a function Gφ from lg(y) tuples to lg(x)
tuples. Expand A so that φ(Gφ(a),a) if (∃x)φ(x,a) and define Gφ arbitrarily
otherwise. This guarantees the Tarski-Vaught condition.

Add also functions Fφ,ψ for each pair of formulas φ(x,y), ψ(x,v). The domain
of Fφ,ψ should be tuples of lg(y) + lg(v) tuples, and the range is finite sequences.
(Technically, this is incorrect; by adding one more integer parameter to the name
of the function we could fix the range properly; but the notation becomes too
cumbersome.)

Expand A so that:

(1) Suppose (∃x)φ(x,a):
(a) if ψ(x,b) isolates a complete type over A implying φ(x,a), then

Fφ,ψ(a) = b. (In this case, Fφ,ψ does not depend on the lg(v)
argument).
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(b) if no ψ(x,b) isolates a complete type over A implying φ(x,a), then
for each ψ, there is a formula χ(x, z) so that for any a with lg(y)
and any b with lg(v), if ψ(x,b) → φ(x,a) then

(∃x)ψ(x,b) ∧ χ(x, Fφ,ψ(a,b))

and
(∃x)ψ(x,b) ∧ ¬χ(x, Fφ,ψ(a,b)).

(2) If ¬(∃x)φ(x,a), the choice of Fφ,ψ(a) is arbitrary.

It is routine to check that these functions accomplish their goals. �20.9

We find bases for types over good sets A as Lemma 19.20 found bases for types
over models. Ideally, we would find a subset of A on which the type is based. But
this is impossible:

Example 20.10. Consider a vocabulary with a binary function +, and a pro-
jection π and an equivalence relation E. There are two sorts X and G. π maps X
onto an ω-stable, ℵ0-categorical group (G,+), for definiteness Zω2 , such that each
element of G is the image of infinitely many points. E splits π−1(g) into two infi-
nite classes for each g. Suppose M1 and M2 are freely amalgamated over M0 (i.e.
M1 ⌣

M0

M2). Then, by counting types |Sat(M1M2)| = ℵ0 and so M1M2 is a good

set. But the type of an element in the fiber over g1 + g2 where gi ∈ Mi, can only
be made stationary by naming an element e of the fiber. Thus, when the following
lemma is applied to this situation, g1, g2 is the b and g1 + g2, e are the c.

A key to the following argument is the observation that θ(x; c) ⊢ tp(a/A)
means for any a ∈ A, {θ(x,b)} ∪ tp(a/b) ⊢ tp(ac/b).

Lemma 20.11. Suppose p ∈ Sat(A), and A is good.

(1) There are c,a such that:
(a) p = tp(a/A);
(b) tp(a/Ac) ∈ Sat(Ac) is based on c;
(c) and tp(c/A) is isolated.

(2) There is a b ∈ A such that p does not split over b.

Proof. First assume that A is countable. Let a realize p with Aa atomic. Since
Aa is countable there is a model M ∈ K with Aa ⊂ M . Lemma 18.25 implies
Aa is good. By Lemma 18.26, there is a primary model M ′ over A, which imbeds
in M . Choose c ∈ M ′ with tp(a/M ′), a fortiori tp(a/Ac), based on c. Since
M ′ is primary over A, tp(c/A) is isolated. For 2), let b ∈ A be such that some
θ(b,x) ⊢ tp(c/A). Now if a,a′ ∈ A satisfy a ≡b a

′ then a ≡c a
′ and the result

follows from part 1).
Now, we extend the result to A of arbitrary cardinality by applying Lemma 20.9.

Let L∗ be the expansion of L introduced in that Lemma and expand A to an L∗-
structure A∗. If there is no such pair b, c, we can choose by induction bα, cα, Aα
such that:

(1) Aα is a countable L∗-substructure of A∗.
(2) bα ∈ Aα; cα ∈ Aα+1; bα ⊆ cα.
(3) tp(a/Aαcα) is based on Aαcα.
(4) tp(a/Aα) does not split over bα.
(5) tp(a/Aα+1) splits over bα
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Let A0 be any countable L∗-substructure of A∗. Then choose b0 and c0 by
the first paragraph of the proof to satisfy conditions 2)-4). By the hypothesis for
contradiction there exist a pair of sequences d0

0,d
1
0 witnessing that tp(a/A) splits

over b0. Let A1 be the L∗-closure of A0d
0
0d

1
0c0. Continue by induction taking

unions at limits. Without loss of generality, we always insist that bα ⊆ cα. Now
define f on the limit ordinals less than ω1 by f(α) is the least γ such that bα ∈ Aγ .
Then f presses down on the limit ordinals so by Fodor’s Lemma, there is a γ0 and
a stationary set S of limit ordinal such that if α ∈ S, then f(α) = γ. Now there
are only countably many choices for bα ∈ Aγ so for cofinally many α, bα = b for
a fixed b ∈ Aγ . But then for cofinally many α we have tp(a/Aα) does not split
over b. But this contradicts clause 5) in construction. Thus the construction fails
at some β and bβ, cβ are as required. �20.11

Now we formalize the notion of being good for an enumeration and show that
the choice of enumeration does not matter.

Definition 20.12. Let S = 〈Ms : s ∈ P 〉 be a P -system for the finite partial
order P . The system S is said to be good with respect to the enumeration 〈si : i < α〉
if

(1) As is good for each s ∈ P , and
(2) for each i < α, 〈Msi∧sj

:j ≤ i〉 ≤TV 〈Msj
:j ≤ i〉.

By ‘complication of notation’ we can prove a more general version of Lemma 20.9.

Corollary 20.13. There is a countable expansion L∗ of L such that every
atomic A can be expanded to an L∗-structure A∗ so that if C is a sequence of
atomic subsets of A (named by L∗-predicates Pi) and B∗ is an L∗-substructure of

A∗ then letting B = B∗ ↾L and C′
i = Pi(B): C

′ ≤TV C. Moreover, if C = S is an
independent P -system then S′ is good with respect to the given enumeration if and
only if S is.

Proof. As in the proof of Lemma 20.9 define functions on tuples from
⋃
i Ci into

Ci to reflect goodness and to ‘Skolemize’. To deal with the system, Skolemize the
smallest models first and then extend. Then an L∗-substructure is Tarski-Vaught
for the sequence. �20.13

Ostensibly, the notion of a good enumeration says nothing about independence;
but it does imply some configurations are independent.

Lemma 20.14. Let S = 〈Ms : s ∈ P 〉 be a P -system for the finite partial order
P , which is enumerated 〈si : i < α〉. If S is good with respect to this enumeration
then for any 1 ≤ i < α,

(1)

Asi
≤TV

⋃

j<i

Msj

and
(2)

Msi
↓
Asi

⋃

j<i

Msj

Proof. The first conclusion is immediate from the definition of good with
respect to the enumeration. For the second, fix i < α and choose a ∈Msi

. As Asi

is good, by Lemma 20.11.2, there is a b ∈ Asi
so that tp(a/Asi

) does not split over
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b. Now suppose for contradiction that there are c, c′ ∈ ⋃
j<iMsj

such that c ≡b c′
but c 6≡a c′. Since ab ∈Msi

= Msi∧si
and

〈Msi∧sj
:j ≤ i〉 ≤TV 〈Msj

:j ≤ i〉,
there are d, d′ ∈ Asi

so that dd′ ≡ab cc′. (Note that for j > i, the definition of
enumeration implies that for some k, sj ∧ si = sk with sk ⊂ si.) This contradicts
that tp(a/Asi

) does not split over b. �20.14

Our goal, Theorem 20.21, is show to that goodness of a system indexed by a
finite partial order is independent of the enumeration. We do this in two steps.

Theorem 20.15. If P is a finite partial order and S is a P -system, the following
are equivalent:

(1) S is good.
(2) S is good with respect to each enumeration.

Proof. To show 2) implies 1) we need to show that for each s, As is good,
As ≤TV Bs, andMs ⌣

As
Bs. The first is clear regardless of the choice of enumeration.

For the second, choose for each s an enumeration 〈si : i < α〉 (depending on s) so
that if s = si then {sj : j < i} = {t : t 6⊇ si}. Lemma 20.14 shows that if S is
good with respect to this enumeration then the remaining two conditions hold for
s. Since we can apply this construction to any s, S is good.

For 1) implies 2) choose an arbitrary enumeration and suppose for induction
that Sj = 〈Msj

:j < i〉 is good. By Definition 20.17,

〈Msj∧si
:j < i〉 ≤TV 〈Msj

:j < i〉.
As S is good (and therefore independent)

Msi ⌣⋃
t<si

Mt

⋃

j<i

Msj
.

Thus by Lemma 20.6, we have

〈Msj∧si
:j ≤ i〉 ≤TV 〈Msj

:j ≤ i〉
as required. �20.15

We now need a variant of the argument for Lemma 19.7.

Lemma 20.16. Suppose p ∈ Sat(A) is isolated by φ(x,a).

(1) p does not split over a.
(2) If A ≤TV B, where B is atomic and q ∈ Sat(B) extends p then q is isolated

by φ(x,a). Thus, q does not split over a.

Proof. If p splits there exist b,b′ ∈ A that realize the same type over a and
a formula ψ(x,y) with ψ(x,b) ∈ p and ¬ψ(x,b′) ∈ p. But then (∃x)φ(x,a) ∧
¬ψ(x,b) holds and φ(x,a) does not generate p.

For part 2, if φ(x,a) does not isolate q there are a b ∈ B and a formula, ψ(x,b)
such that

(∃x)φ(x,a) ∧ ψ(x,b) ∧ (∃x)φ(x,a) ∧ ¬ψ(x,b).

By Tarski-Vaught, there is a b′ ∈ A which realizes the same type over a as b. But
then φ(x,a) does not generate p. Now to verify ‘thus’, apply part 1) to q. �20.16
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Here is the most important lemma. The argument may appear unduly compli-
cated. The difficulty is to find a base for the type of as over As. For this we need
to use the description in Lemma 20.11.1. The existence of a point over which the
type does not split would suffice for Case 1 in the argument below but we need a
stationary type for Case 2.

Lemma 20.17. Let S = 〈Ms : s ∈ P 〉 be a (λ, P )-system for the finite partial
order P , which is enumerated 〈si : i < α〉. If S is good for this enumeration, then
for any m < α,

〈Ms∧sm
:s ∈ P 〉 ≤TV 〈Ms :s ∈ P 〉.

Proof. Fix m and fix as ∈Ms for s ∈ P . We want to find a
′
s ∈Ms∧sm

so that
a
′
s = as if s = si with i < m and 〈as : s ∈ P 〉 ≡ 〈a′

s : s ∈ P 〉. To carry out the
induction we expand the a

′s by choosing bs and cs as follows:

Claim 20.18. (1) bs ∈ As and cs ∈Ms;
(2) tp(as/Ascs) is based on cs;
(3) tp(cs/As) is isolated over bs;
(4) bs ⊆

⋃
t⊂s at.

Proof of Claim 20.18. Except for condition 4) this is straightforward from
goodness using Lemma 20.11 for 3). In order to guarantee condition 4) we have to
systematically construct the at, bt and ct. For simplicity of notation in this proof,
we write am for asm

etc. For each m < α and j ≤ α, we construct bjm and cjm and
an auxiliary djm. We do this by a downward induction on j ≤ α.

For each m < α and j = α, let cαm = a
α
m be the original am. Let bαm = dαm be

the empty sequence. Suppose we have defined for j + 1; there are two cases for j.
Case 1: si 6⊆ sj : Then, nothing changes: for m < α, cjm = cj+1

m , bjm = bj+1
m ,

djm = dj+1
m .

Case 2: si ⊆ sj : Note Asj
⊂ Msj

and cj+1
m d̂j+1

m ∈ Msj
. Apply Lemma 20.11

to choose c∗j , b∗
j and d∗

j so that tp(c∗j d̂∗
j/Asj

) = tp(cj+1
m d̂j+1

m /Asj
), tp(d∗

j/Asj
c∗j )

is based on c∗j and tp(c∗j/Asj
) is isolated over b∗

j . Then for m < α, set cjm = c∗j ,

bjm = b∗
j , djm = djm ∪ (Msm

∩ b∗
j ).

This completes the construction and it is routine to see we obtain the claim by
taking for m < α, asm

as d0
m, bsm

as b0
m, and csm

as c0
m. �20.18

Now, we define by induction on i < α, a
′
si
, c′si

∈Msi∧sm
so that for k ≤ α,

〈asi
csi

: i < α〉 ≡ 〈a′
si
c′si

: i < α〉

and as = a
′
s, cs = c′s if s ∈ I. Moreover, we will require

bs ⊆
⋃

t⊂s

a
′
t.(20.1)

Suppose we have succeeded for k < i.
Let

d = 〈at :t < si〉, e = 〈asj
, csj

:j < i〉
and

d′ = 〈a′
t :t < si〉, e′ = 〈a′

sj
, c′sj

:j < i〉.
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Case 1. si ∈ I. We will show that e ≡csi
asi

e′. Since

bsi
⊂

⋃

t⊂si

at =
⋃

t⊂si

a
′
t ⊂

⋃

j<i

asj
,

e ≡bsi
e′. The last containment holds since t ⊂ si if and only if t = sj for some

j < i.
By Lemma 20.14.1, Asi

≤TV

⋃
j<iMsj

; we chose csi
so that tp(csi

/bsi
) ⊢

tp(csi
/Asi

). Lemma 20.16.2 yields that the formula generating tp(csi
/bsi

) also
generates tp(csi

/
⋃
j<iMsj

) and so e ≡csi
e′.

Using again that Asi
≤TV

⋃
j<iMsj

, from Lemma 20.14.1, Exercise 20.8 gives

Asi
csi

≤TV

⋃

j<i

Msj
csi
.

And tp(asi
/Asi

csi
) is based on csi

so, since e ≡csi
e′, we have the final conclusion:

e ≡csi
asi

e′.

Case 2. si 6∈ I. Since d′ ∈ Msj∧sm
, we can choose c′si

∈ MhI(si) with c′si
d′ ≡

csi
d′. In particular, since bsi

⊂ d′ by eE quation 20.1, c′si
bsi

≡ csi
bsi

. As
tp(csi

/bsi
) ⊢ tp(csi

/Asi
) and as Asi

≤TV

⋃
j<iMsj

, Lemma 20.16.2 yields that

the formula generating tp(csi
/bsi

) also generates tp(csi
/
⋃
j<iMsj

). In particular,

tp(csi
/bsi

) ⊢ tp(csi
/e).

By induction ed ≡ e′d′ so csi
e ≡ c′si

e′.
Choose f with c′si

⊆ f ⊆ Msj∧sm
and tp(e′/Msj∧sm

) based on f . Conjugate
p = tp(asi

/csi
) to p′ over c′si

; p and thus p′ are both stationary. (It is to get this
stationarity that we have to introduce the cs.) Now choose a

′
si

∈Msj∧sm
to realize

p′|f (the nonsplitting extension of p to f).
By the choice of f , e′ |= tp(e′/f)|fa′

si
, so by the symmetry of stationary types

(Lemma 19.23), a
′
si

|= p′|fe′ and so a
′
si

|= p′|c′si
e′. We chose c′si

so that asi
|=

p|csi
e and we verified c′si

e′ ≡ csi
e so

a
′
si
c′si

e′ ≡ asi
csi

e

as required. �20.17

We need one further technical lemma.

Lemma 20.19. If S = 〈si : i < n〉 and T = 〈ti : i < n〉 are two enumerations of
the partial order (P,⊂), then it is possible to pass from S to T by a succession of
transpositions so that each intervening step is also a enumeration

Proof. We prove the result by induction on n. Consider a P with cardinality
n+ 1. So sn = tj for some j < n. Now successively move tj up in the linear order
by a sequence of transpositions. Each of them is permissible because sn = tj is
(P,⊂)-maximal. We then have two enumerations with last element sn and tj . By
induction we can transform the first n elements and we finish. �20.19

Lemma 20.20. If P is a finite partial order and S is a P -system, such that
S is good with respect to some enumeration then S is good with respect to any
enumeration.
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Proof. It suffices by means of transpositions to show that if S is good with
respect to 〈si : i < α〉, then it is good with respect to 〈s′i : i < α〉 where si = s′i
unless i = j or j + 1 while s′j+1 = sj and s′j = sj+1. (We know by Lemma 20.19

that we use transpositions which preserve the property of being an enumeration.)
Then

〈Msj+1∧sk
:k ≤ j + 1〉 ≤TV 〈Msk

:k ≤ j + 1〉
by Lemma 20.17 (noting that the conclusion of Lemma 20.17 is preserved under
subsequence). But this exactly what we need. �20.20

The following result is called Generalized symmetry for two reasons: it extends
symmetry for independence of pairs to systems and the proof in a rough sense is
iterating that independence.

Theorem 20.21 (Generalized Symmetry). If P is a finite partial order and S
is a P -system, the following are equivalent:

(1) S is good.
(2) S is good with respect to some enumeration.
(3) S is good with respect to any enumeration.

Proof. The equivalence of 1) and 3) is Lemma 20.15; 3 implies 2) is trivial and
2) implies 3) is Lemma 20.20. �20.21

Remark 20.22. This material comes primarily from [She83a, She83b] and
[GH89] but with considerable rearrangement and adding of details. I thank Alf
Dolich for a very careful critique of this chapter that found many errors. In partic-
ular, he pointed out the need for Lemma 20.19; Alice Medvedev pointed towards
the simple argument for Lemma 20.19.



CHAPTER 21

Excellence Goes Up

In this chapter we introduce the formal notion of excellence for an atomic
class. This is a collection of requirements on (ℵ0, n)-systems. We show that if
these condition hold for all (ℵ0, n) (the class is excellent) then in fact the analogous
properties hold for all (λ, n). We prove these result here for ‘full’-systems; the
arguments in this chapter just add a little complication to proving the result without
‘full’. However, fullness plays an essential role in the next chapter showing that
categoricity in enough small cardinals implies excellence.

There are two aspects of this analysis. The first is rather empty. All the
conditions are defined conditionally: if there is a (λ, n)-independent system then
something happens. We show how to move these conditional properties between
cardinals. We then show that if there is an uncountable model the conditional
properties have teeth since there are (λ, n)-independent systems and conclude that
excellent classes have arbitrarily large models.

Definition 21.1. (1) The model M ∈ K is λ-full over the proper subset
A of M if for every finite B ⊂ M , all stationary p ∈ Sat(B), and any
C ⊂M with |C| < λ, p|ABC is realized in M .

(2) M is λ-full if M is λ-full over the empty set.
(3) M is full if it is |M |-full.
(4) The (λ, P )-system S is full if for each s ∈ P , Ms is λ-full over As.

Observe that if M is full over some A with |A| ≥ λ, then M is λ-full.

Definition 21.2. K satisfies the (λ, n)-completeness property if for any full
(λ,P−(n))-diagram S, there is a model Mn which completes S to a full (λ,P(n))-
diagram. That is, Mn is λ-full over An =

⋃
t⊂nMt.

Remark 21.3. (1) It is tempting to call this notion (λ, n)-amalgamation.
But completion is a stronger requirement; even (µ, 2)-completion is stronger
than amalgamation in µ, because the imbedding into the amalgam is the
identity on both models.

(2) (λ, 0)-completeness just abbreviates ‘there is a full model of cardinality
λ’.

(3) Similarly (λ, 1)-completeness is an abbreviation for ‘every full model of
cardinality λ has a proper extension that is full over it. We have ex-
plicitly required the extension to be proper (Definition 20.1). So the
Marcus-Shelah example, by Remark 18.28 satisfies (ℵ0, 0) but not (ℵ0, 1)-
completeness. Shelah [She83b] does not make this requirement but that
leads to some technical inaccuracies. Note that this means some assump-
tion (namely the existence of a model in ℵ1) is necessary to obtain (ℵ0, 1)-
completeness. See Lemma 21.11.

159
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(4) Our (λ, n)-completeness plays the role of Shelah’s (λ, n)-existence. We
called it completeness rather than existence because the property itself
does not imply existence. That is, for n ≥ 2 it is possible that K is
(λ, n)-complete but has no (λ, n)-independent system. We show that this
cannot happen in the presence of (ℵ0,≤ n)-goodness in Lemma 21.11.
We removed Shelah’s requirement that the system being completed is
good.This emphasizes that goodness is guaranteed by induction, when we
actually apply completeness.

Now we define the most important notion of this part of the book. In discussing
independent systems, we introduced the notations An =

⋃
s⊂nMs; we now allow

the independent system to vary and so naturally write AS
n for a particular S.

Definition 21.4. (1) If for any full independent (λ,P−(n))-system S,
AS
n is good, then we say K is (λ, n)-good

(2) K is excellent if it is (ℵ0, n)-good for every n < ω.

Note that (ℵ0, 1)-goodness implies ω-stability so we effectively have ω-stability
in this chapter.

For countable models, this represents the idea described in the introduction to
Part 4. If AS

n is good, Lemma 18.26 yields a primary model over AS
n and this is

the amalgam which is tightly connected to the original diagram. We will see much
later in Lemma 24.8 that the same conclusion follows for uncountable systems.
The crucial tool for analyzing an uncountable model M of size λ is to construct a
filtration 〈Mi : i < λ〉; then to construct a filtration of each Mi as 〈Mi,j : j < |Mi|〉
and to iterate. But one must guarantee independence of these filtrations. We do
this by describing filtrations of independent systems.

Definition 21.5. Suppose S = 〈Ms :s ∈ P−(n)〉 is a (λ, n)-system. A filtration
of S is a system Sα = 〈Mα

s :s ∈ P−(n), α < δ〉 such that:

(1) each |Mα
s | = α∗ = |α| + ℵ0;

(2) for each s in P−(n), {Mα
s :α < λ} is a filtration of Ms;

(3) for each α, Sα is an (α∗, n)-system.

The filtration is full or independent if each Sα is a full good system.

Shelah introduced an important tool for the analysis of models of size λ: work
in a model of set theory of size λ, expanded by the vocabulary of our AEC (and
the extra functions defined in Lemma 20.9). In applying the Lowenheim-Skolem
theorem in this expanded language, we take advantage of the fact that our entire
model theoretic analysis takes place in set theory.

Lemma 21.6. Let λ be infinite and n < ω. Suppose K is (ℵ0, n)-good. Then,
K is (λ, n)-good for every n.

Proof. Suppose S = 〈Ms : s ∈ P−(n)〉 is a (λ, n)-full independent system. Let
An =

⋃
s⊂nMs. Fix a model V of a sufficiently large fragment of set theory with

S ∈ V and |V | = λ. Let V ′ be an expansion of (V, ǫ) by naming the 〈Ms :s ∈ P−(n)〉
and add the predicates of L∗ from Lemma 20.9 and from Lemma 20.13 to obtain a
language L′. Then build a filtration 〈V ′

α :α < λ〉 of V ′ by L′-elementary submodels
with |V ′

α| = |α| + ℵ0. To get the filtration of S, let Sα be the interpretation of
the Ms in V ′

α. Since independence and |M |-fullness are expressible in set theory,
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each Sα is |Vα|-full and independent. Then A0
n is good since K is (ℵ0, n)-good.

And each Aαn is then good by Lemma 20.9 and the choice of L∗. Moreover each
Sα ≤TV Sβ if α ≤ β by Lemma 20.13. �21.6

We have attained the first aim of the chapter; we have moved from (ℵ0, n)-good
to (λ, n)-good. But our goal of constructing models of larger cardinality still needs
work. Neither the hypothesis nor the conclusion of Lemma 21.6 actually asserts
the existence of (λ, n)-independent systems; all is conditional. We first require one
technical result. We show how to combine systems indexed by two copies of P(n)
by using the lexicographical order on P(n) × {0, 1}.

Corollary 21.7. Suppose K is (λ,≤ n)-good. If S1 = 〈M1
s : s ⊆ n} and

S2 = 〈M2
s : s ⊆ n} are full-independent systems, S1 is good, and S1 ≤TV S2 then

S = S1 ∪ S2 is a good full-independent system indexed by P = P(n) × {0, 1}.
Proof. Enumerate S so that S1 is an initial segment of the enumeration. To

show that S is good for this enumeration (Definition 20.12) and therefore good and
independent by Theorem 20.21, we need only show that Asi

is good for each i and
that

〈Msi∧sj
:j ≤ i〉 ≤TV 〈Msj

:j ≤ i〉.(21.1)

For i < 2n the first requirement is immediate since S1 is good. To see Asi
is good if

si has the form (x, 1) (i.e. i > 2n), note that each such Asi
is the union of a family

indexed by a subset of P−(n). So the goodness of Asi
follows from the hypothesis

that K is (λ, n)-good. Now 21.1 is immediate from S1 ≤TV S2, (interpolating a
sequence from S1 between the two sides of 21.1). �21.7

Using this lemma, we are able to transfer completeness to larger cardinalities.
But crucially the number of models that we can amalgamate drops.

Lemma 21.8. Let λ be infinite and regular and n < ω. Suppose K is (< λ,≤
n+ 1)-complete and (ℵ0, n)-good. Then K is (λ, n)-complete.

Proof. Note that (< λ,≤ 1)-completeness implies the existence of a model M
in λ. Suppose S is a (λ, n)-full independent system. Choose a full-filtration Sα
(with respect to L∗) as in Lemma 21.6. We can further choose Nα for α < λ such
that:

(1) |Nα| = |α| + ℵ0.
(2) Nα

⌣
Aαn

An

(3) Nα is full over Aαn .
(4) Every stationary type over a finite subset C of Nα has a realization in

Nα+1 whose type over NαAα+1
n does not split over C.

For the initial step we are givenN0 satisfying 1, 3, and 4) by (ℵ0, n)-completeness
and Condition 2) is obtained by the extension property for non-splitting (Corol-
lary 19.14). For the induction step, note that using the (ℵ0, n)-goodness, Lemma 21.6,
and Lemma 21.7, the system 〈Mα

s ,M
α+1
s , Nα : s ⊆ n〉 is an (|α| + ℵ0,P−(n + 1))

independent system. So we can find Nα+1 satisfying 1,3, and 4) by (|α|+ℵ0, n+1)-
completeness and Condition 2) is again obtained by the extension property for non-
splitting. Take unions at limits. Then N =

⋃
α<λNα is the required completion

of S. Conditions 2 and 4 and the regularity of λ guarantee that N is full over An.
�21.8



162 21. EXCELLENCE GOES UP

We use the regularity of λ in Lemma 21.9 only to show the limit model is
full. Knowing the result for regular λ it easily extends to singular λ by applying
Lemma 22.3, which could as easily have been proved at this point. (Note that if
we drop full and do this chapter for arbitrary models, this difficulty with unions
completely disappears.)

Corollary 21.9. Let λ be infinite and n < ω. Suppose K is (< λ,≤ n+ 1)-
complete and (ℵ0, n)-good. Then K is (λ, n)-complete.

Now we want to prove that there actually are (λ, n)-independent systems. Note
that the first sentence of the proof of Lemma 21.8 does yield the existence of a (λ, 0)-
independent system. (ℵ0, 0) is not hard. However, if the A in Lemma 21.10 is a
model, the constructed M may be A; so (ℵ0, 1)-completion may fail. The subtlety
is that we have required the models in P -systems to be proper extensions. The
only requirements we must add for larger n are the existence of a model in ℵ1 and
enough goodness.

Lemma 21.10. Let K be ω-stable. If A is a countable atomic set, there is an
M with A ⊆M that is full over A.

Proof. Note first that any countable atomic set can be embedded in a model
(Lemma 18.6). Now construct Mi for i < ω so that every p ∈ Sat(Mi) is realized in
Mi+1 and let M =

⋃
iMi. Then if p ∈ S(b) is stationary and b is finite, Ab ⊂Mi

for some i and the nonsplitting extension of p to Ab is realized in Mi+1. �21.10

We can’t demand that M is proper over A, as Example 18.28 provides an ℵ0-
full model with no proper extension. With goodness and the generalized symmetry
lemma in hand we get more.

Lemma 21.11. If K has a (λ, 1) independent system and K satisfies (λ,m)-
goodness for m < n. then K satisfies (λ, n)-completeness and there is a (λ, n)-
independent system.

Proof. We prove the claim by induction on n ≥ 2. Suppose there is an inde-
pendent (λ,P(n − 1)) system S = 〈Msi

: i < 2n−1〉. For 2n−1 < i < 2n, choose
full Msj

so that if j = 2n−1 + i, sj = si ∪ {n− 1} and Msj
↓Asj

⋃
t<jMst

to create

the sequence S′. For t < 2n, Ast
is the union of a (λ,m) system for some m < n

so by the hypothesis of (λ,m) goodness, it is good. Now inductively applying
Lemma 20.17 each initial segment of S′ is a good sequence and so S′ is a good
sequence with respect to the given enumeration. So by Lemma 20.21, S′ is a good
(λ,P−(n))-independent system. �21.11

Note that for (ℵ0, 2)-completeness, the (ℵ0, 1)-goodness hypothesis is free.

We do not know that AS′

n =
⋃
j<2n Msj

is good. We will derive that from
assuming few models in ℵn+2 in the next two chapters. Even worse, in general
there may be (uncountable) good sets over which there is no prime model [LS93,

Kni78, Kue78]. The requirement that there be an uncountable model is essential
since the Marcus example (Example 3.14, 18.28) is ω-stable and has no (ℵ0, k)-
independent systems for k ≥ 1.

To construct models of arbitrarily large cardinality, we first move excellence up
to ℵω.

Theorem 21.12. If K is (ℵ0,≤ n+1)-good and K has an uncountable model,
then there exists a full model in cardinality ℵn.
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Proof. We will prove by induction on m that if m + k ≤ n + 1, there is an
(ℵm, k)-independent system and K is (ℵm, k)-complete.

First consider m = 0. By ℵ0-categoricity, the countable model M0 is full. Since
K has an uncountable model M0 has a proper extension M1. Apply Lemma 21.10
to get a full extension of M1 (and so of M0); so K is (ℵ0, 1)-complete. By
Lemma 21.11, for every k ≤ n + 1, we have an (ℵ0, k)-independent system. Since
any countable atomic set is contained in a countable atomic model, for each k ≤ n,
(ℵ0, k)-completeness follows by extending an (ℵ0, k)-independent system to a model
then applying Lemma 21.10 again.

Now to move from m to m + 1. As long as m ≤ n − 1, by induction we have
(ℵm, 2)-independent systems and (ℵm, 2)-completeness holds. By Lemma 21.8, K

is (ℵm+1, 1)-complete. Lemma 21.11, the goodness assumption and Lemma 21.6
give us (ℵm+1, k)-independent systems for k ≤ n+1. And Lemma 21.8 allows us to
complete them if m+1+ k ≤ n+1. When m = n and k = 0, we have the theorem.
�21.12

Now, an easy cardinal induction yields that excellence (in ℵ0) and an uncount-
able model implies (λ, n)-completeness for all λ and all n.

Corollary 21.13. If K is excellent and has an uncountable model then K

satisfies (λ, n)-completeness for every λ and so has full models in every cardinality.

Proof. For the sake of contradiction, let λ be least such that K has (< λ,< ω)-
completeness but not (λ,< ω)-completeness. By Lemma 21.11, λ ≥ ℵ1 and by
Lemma 21.8, we see in fact that K has (λ,< ω)-completeness. �21.13





CHAPTER 22

Very Few Models Implies Excellence

Our goal is:

Theorem 22.1 (Shelah). (For n < ω, 2ℵn < 2ℵn+1 .) An atomic class K that
has at least one uncountable model and that has very few models in ℵn for each
n < ω is excellent.

Usually, one says that K has few models in λ if the number of models is less

than 2λ. However, exactly what can be proved in ZFC + 2λ < 2λ
+

, depends on
exactly what we mean by ‘few’. We define for n < ω what it means to have ‘very
few models in ℵn’; this will be the actual hypothesis for the main results.

Definition 22.2. We say

(1) K has few models in power λ if I(K, λ) < 2λ.
(2) K has very few models in power ℵn if I(K,ℵn) ≤ 2ℵn−1 .

So Theorem 22.1 is weaker than one might hope. The set theoretic hypothesis
and various putative strengthenings (e.g. replacing very few by few) are discussed
in Appendix C and in Chapter 23. In this chapter we reduce the theorem to
one combinatorial/model theoretic result (Theorem 22.15), which asserts that un-
der appropriate hypotheses, very few models in ℵn implies (ℵn−2, 2)-systems are
amalgamation bases. We defer the proof of Theorem 22.15 to Chapter 23.

The next lemma and its corollary provide a crucial amalgamation hypothesis.

Lemma 22.3. Let δ be an infinite ordinal. If 〈Mi : i < δ〉 is a continuous
increasing chain of λ-full models with Mi+1 λ-full over Mi then M =

⋃
iMi is

λ-full.

Proof. Without loss of generality δ is a regular cardinal. The result is easy
except when δ = cf(λ) < λ, so we deal with that case. Fix p stationary over a finite
set B and let C ⊂ M with |C| < λ. Again without loss of generality, B ⊂ M0.
Moreover, we may assume each finite sequence c ∈ C realizes a stationary type
based in M0. Let Cj = C −Mj . Define Dj so that Mj ⊃ Dj ⊇ C ∩Mj, |Dj| < λ
and Cj ↓Dj

Mj .
Now, using Mj+1 is λ-full over Mj , construct a set X such that for each ordinal

j < δ, X ∩ (Mj+1 −Mj) is a set of λ realizations of p ↾MjDj+1. We claim any
element x ∈ X − C realizes p ↾C. For some i, x ∈ Mi+1. Let c be any finite
sequence from C. Then c = c1c2 where c1 ∈ Mi+1 and c2 ∈ M −Mi+1. By the
choice of X , we have x ↓B MiDi+1. By the choice of Di+1, c2 ↓Dj+1

MiDi+1x,
whence x ↓MiDi+1

c2. Now by transitivity we get c1c2 ↓B x as required. �22.3

There is an immediate intriguing corollary to Lemma 22.3. It establishes one of
the hypotheses in the main induction Lemma 22.14. The existence and uniqueness
of full models at the appropriate λ will follow from the global induction.

165
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Corollary 22.4. Let (Kλ,≺K) be the class of λ-full models of the atomic
class K under first order elementary submodel.

(1) For each λ, Kλ satisfies all axioms (Definition 4.1) for an AEC with
Löwenheim number λ except A.3.3 and coherence A4.

(2) Suppose there is a unique λ-full model in K of cardinality λ and less than

2λ
+

of cardinality λ+, then Kλ has the amalgamation property in λ.

Proof. Item 1) is Lemma 22.3; item 2) is Theorem 17.11, noting that the two
missing axioms are not used in the proof. �22.4

The crucial reason that we study full models is because they have uniqueness
properties that do not hold for arbitrary models. Even in an ℵ0-categorical situation
(all models are isomorphic), we are looking for ℵ0-categoricity of systems which does
not hold without some condition like ‘full over’.

Definition 22.5. K has (λ, n)-uniqueness if any two models which are full
over a good full (λ, n)-independent system S are isomorphic over AS

n .

The following interpretation of (λ, 2)-uniqueness will be used repeatedly. We
have the existence of an isomorphism fixing M2 mapping M1 isomorphically onto
M ′

1 from Corollary 19.14. But (Example 26.2.15), this isomorphism may not extend
to an automorphism (even when K is ℵ1-categorical). Note, however, the following
easy fact.

Lemma 22.6. If K satisfies (ℵ0, 2)-uniqueness for any independent good triple
(M0,M1,M2), of countable full models we have: if M ′

1 ≈M0 M1 and M ′
1 ⌣
M0

M2

then there exists α ∈ autM2M mapping M1 isomorphically onto M ′
1.

Proof. Apply Lemma 21.11 to get N a full extension of M1M2 and N ′ a full
extension of M ′

1M2. By Corollary 19.14, there is an isomorphism f from M1M2

onto M ′
1M2 fixing M2. Extending f−1 naturally gives an isomorphism from N ′ to a

second full extension N ′′ of M1M2. By (ℵ0, 2)-uniqueness there is an isomorphism
g from N onto N ′′ that fixes M1M2. So fg is an isomorphism from N onto N ′.
Now by model homogeneity there is an extension of fg to an automorphism of M.
�22.6

We could extend this result to (λ, 2)-uniqueness provided we establish (λ, 2)-
completeness. We want to show (ℵ0, n) uniqueness for all n. For n = 1, a somewhat
stronger result holds.

Lemma 22.7. Suppose that A is countable and good. If M and N are countable
and full over A, then they are isomorphic over A.

Proof. Write M as A ∪ {ai : i < ω} and N as A ∪ {bi : i < ω}. We construct
an increasing sequence of partial elementary maps fi such that dom(fi) = Ai and
rg(fi) = Bi, where Ai, Bi add finitely many elements to A and such that ai ∈ A2i

and bi ∈ B2i+1.
We first construct f0 and f1. Since A is good, there is model M ′ that is

primary over A. Without loss of generality M ′ ≺K M . Let f map M ′ into N over
A. The stationary type p = tp(a0/M

′) is the unique non-splitting extension of the
stationary type tp(a0/Ac) for some c ∈M ′ (by Lemma 20.11.1). By the fullness of
N , f(p) is realized by some b ∈ N and tp(b/A) = tp(a0/A). Let f0 = 1A ∪ 〈a0, b〉.
By Lemma 18.24, Ab is good so there is a primary model M ′′ over Ab. So there is
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g mapping M ′′ into M and extending the inverse of f0. As before, the stationary
type tp(b0/M

′′) is the unique nonsplitting extension of some q ∈ Sat(Abd) with
d ∈M ′′. So we set f1 = f0 ∪ 〈c, b0〉 for some c realizing g(q).

The induction step is the same argument noting that the domain or range of
each fi extends A by only finitely many points. �22.7

This yields a stronger version of uniqueness for countable full systems. We say
two systems S,S′ are isomorphic if there is an isomorphism from AS

n to AS′

n that

maps MS
s to MS′

s for each s.

Corollary 22.8. Suppose K is (ℵ0, n− 1)-good.

(1) K satisfies (ℵ0, n− 1)-uniqueness.
(2) Moreover, any two countable full (ℵ0,P−(n))-independent systems are iso-

morphic.

Proof. The first claim is immediate from Lemma 22.7; the second follows
by induction using that each Ms is full over As. Namely, let 〈Ms : s ⊂ n〉 and
〈Ns : s ⊂ n〉 be two full (λ,P−(n))-systems. By induction there is an fn mapping
the system 〈Ms :s ⊂ n−1〉 with union AM isomorphically onto 〈Ns :s ⊂ n−1〉 with
union AN . Now M{n} ↓M0

M{0,1,...n−1} and N{n} ↓N0
N{0,1,...n−1} so fn extends to

f̂n mapping M{n}A
MM{0,1,...n−1} onto N{n}A

NN{0,1,...n−1}. Now by (ℵ0, n − 1)-
uniqueness this map further extends by induction to each Ms∪{n} for s ⊂ n−1 and
|s| = n− 2. �22.8

We now want to show Theorem 22.1. We need three more technical lemmas.
We inductively show (λ, n)-uniqueness.

Lemma 22.9. Let λ be infinite and n < ω. Suppose K is (ℵ0, n)-good and
satisfies (< λ,≤ n+ 1)-uniqueness; then K satisfies (λ, n)-uniqueness.

Proof. Suppose S = 〈Ms ::s ∈ P−(n)〉 is a good full-(λ, n)-independent system
with two completions S1,S2 obtained by adding M = Mn and N = Nn that are
each full over An =

⋃
s⊂nMs. We construct a filtration Sα of S and Mα, Nα

completing it to Sα1 and Sα2 for α < λ such that;

(1) Sα1 = 〈Mα
s : s ∈ P−(n)〉 ∪ {Mα} (Sα2 = 〈Mα

s : s ∈ P−(n)〉 ∪ {Nα}) is a
good (|α| + ℵ0|,P(n))-full-independent system.

(2) For s ⊆ n, Mα
s is a full-filtration of Ms and |Mα

s | = |α| + ℵ0.
(3) Mα and Nα are filtrations of M and N , respectively.
(4) Each of Mα, Nα is full over Aαn and

(a) Mα
⌣
Aαn

An

(b) Nα
⌣
Aαn

An

(5) For i = 1, 2, Sαi ∪ Sα+1
i is a good independent system indexed by P =

P(n) × {1, 2}.
Conditions 1) and 2) are routine: just choose enough witnesses. Condition 3) is the
extension axiom for splitting. Condition 4) is from Lemma 21.7.

Now by (< λ, n) uniqueness there is an isomorphism f0 fromM0 to N0 over A0
n.

Suppose fα is an isomorphism from Mα to Nα over Aαn . Then, Sα ∪Sα+1 ∪ {Mα}
and Sα ∪ Sα+1 ∪ {Nα} are P−(n+ 1)-full-independent systems which extend to a
P(n+1)-full-independent system by Mα+1 and Nα+1. By (< λ, n+1)-uniqueness,
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fα extends to an isomorphism fα+1 of Mα+1 of Nα+1. Take unions at limits.
�22.9

We introduce some new terminology here; the concept of a P -system S being
an amalgamation base. We will see that this is equivalent to goodness of S but our
combinatorial methods are able to deal directly with finding amalgamation bases.

Definition 22.10. Let S = 〈Ms : s ⊂ n〉 be an independent (λ, n)-system.
We say AS

n or S is an amalgamation base if for every M1,M2 and embeddings
f1, f2 of AS

n =
⋃
s⊂nMs into M1,M2, there exist g1, g2 and N with g1 :M1 → N ,

g2 :M2 → N , and g1f1 ↾AS
n = g2f2 ↾AS

n .

We establish a crucial link between goodness and amalgamation.

Corollary 22.11 (2ℵ0 < 2ℵ1). Suppose K has less than 2ℵ1 models of power
ℵ1. Let S be an (ℵ0, n)-independent system. S is an amalgamation base if and only
if AS

n is good.

Proof. If An = AS
n is good, there is a primary model M ′ over An that can be

embedded into M1,M2. Then amalgamating M1 and M2 over M ′ we see that S
is an amalgamation base. For the converse, we adapt the argument for ω-stability
of Lemma 18.16. S∗(An) = Sat(An), because An is countable. As in the proof
of Fact 18.15, since S is an amalgamation base, we can iteratively realize each
element of S∗(An), so if S∗(An) is uncountable there is a single model realizing
uncountably many elements of S∗(An). Thus, S∗(An) is countable by Fact 18.15
(applying 2ℵ0 < 2ℵ1 to name the elements of An). We finish the converse using
Lemma 18.24. �22.11

We are proving by induction on n that if there are very few full models in each
power up to ℵn then K is (ℵ0, n)-good. This induction must interweave goodness,
uniqueness, and completeness. We now have the following information.

Remark 22.12. Suppose K is (ℵ0,≤ n− 1)-good.

(1) In ℵ0:
(a) It has (ℵ0,≤ n− 1)-uniqueness by Lemma 22.8.
(b) It has (ℵ0, n)-completeness by Lemma 21.11.

(2) completeness above ℵ0: By Lemma 21.8 it is (ℵn−k,≤ k)-complete, i.e.
(a) (≤ ℵn−2,≤ 2)-complete,
(b) (≤ ℵn−1,≤ 1)-complete, and
(c) (≤ ℵn, 0)-complete.

(3) uniqueness above ℵ0: By Lemma 22.9, it is (ℵn−k,≤ k − 1)-unique, i.e.
(a) (≤ ℵn−2,≤ 1)-unique,
(b) and (≤ ℵn−1, 0)-unique

The crucial point is that we have uniqueness at one lower level than complete-
ness. We now state two important lemmas for finding amalgamation bases. Using
these lemmas we complete the proof of excellence. We then prove the first of the
lemmas; proving the other comprises Chapter 23.

Lemma 22.13. Let µ be a regular cardinal with 2µ < 2µ
+

. Suppose further that
(µ,≤ n+ 1)-completeness and (µ,≤ n)-uniqueness hold. If

(1) no full (µ, n+ 1)-system S is an amalgamation base,
(2) K satisfies (µ+, 1)-uniqueness,
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then no full (µ+, n)-system S is an amalgamation base.

We now sketch the idea of the global induction; our initial outline is simpler, but
defective. So we note the additional step needed. Suppose we have very few models
in κ for κ ≤ ℵn and that from this we have deduced K is (ℵ0,≤ n − 1)-good. By
Lemma 22.9 we have categoricity of full models in ℵn−1 ((ℵn−1, 0)-uniqueness) and
by and Theorem 17.11 we have amalgamation in ℵn−1. In Remark 22.12 we have
compiled the conclusions we can draw below ℵn from (ℵ0, n− 1)-goodness. This is
the information available to us at the induction step. For k < n, we have (ℵn−k,≤
k)-completeness and (ℵn−k,≤ k − 1)-uniqueness. Suppose, by some miracle, we
knew a bit more: that K was (≤ ℵn−1, 1)-unique. Then repeated application of
Lemma 22.13 would yield every (ℵ0, n)-system is an amalgamation base and we
could finish by Lemma 22.11. But the results summarized in Remark 22.12 do not
include (ℵn−1, 1)-uniqueness. By a much more technical argument, Theorem 22.15
tells us every (ℵn−2, 2) system is an amalgamation base. This theorem uses the
hypothesis of very few rather than just few models. Then we can apply the argument
we just outlined, starting with n− 2 instead of n− 1; we do so now.

Lemma 22.14 (Induction Step). Let n ≥ 2. Suppose K is (ℵ0, n− 1)-good, has
an uncountable model, and has very few models in ℵn. Then K is (ℵ0, n)-good.

Proof. First, K is (ℵ0, n− 1)-complete by Lemma 21.11. By Lemmas 22.9 and
21.8, Hypothesis 1 of Theorem 22.15 is true for λ = ℵn−2. Hypothesis 2) holds by
Theorem 22.4. Since there are few models in ℵn, Theorem 22.15 implies there is
an (ℵn−2, 2)-amalgamation base. As noted, Lemma 22.9 guarantees that we have
(λ, 1)-uniqueness, so can apply Lemma 22.13 for λ ≤ ℵn−2. Repeatedly applying
the contrapositive of Lemma 22.13, we conclude that there is an (ℵn−(k+2), k + 2)
amalgamation base for each k ≤ n − 2. At k = n − 2, we have an (ℵ0, n)-full
independent system that is an amalgamation base. Thus it is good by Lemma 22.11.
But since all (ℵ0, n)-full independent systems are isomorphic by Lemma 22.8 and
(ℵ0, n− 1)-goodness, we have proved that they are all good. �22.14

Theorem 22.15. (For n < ω, 2ℵn < 2ℵn+1.) Suppose K satisfies the following
hypotheses.

(1) completeness and uniqueness conditions:
(a) completeness:

(i) K is (λ, 0), (λ, 1), (λ, 2)-complete;
(ii) K is (λ+, 0), (λ+, 1)-complete;

(b) uniqueness conditions:
(i) K is (λ, 0), (λ, 1)-unique;
(ii) K is (λ+, 0)-unique;

(2) Amalgamation of full extensions in λ+;
(3) K has very few models in λ++;

then some (λ, 2)-full system is an amalgamation base.

In Corollary 22.4.2, we showed condition 1b) and 3 implies Condition 2). We
prove Theorem 22.15 in Chapter 23. To understand the following argument plug
n = 2 into the proof of Lemma 22.14 and use Remark 22.12.

Proof of Main Theorem 22.1. K is (ℵ0, 1)-good. The result follows by induc-
tion; Lemma 22.14 is the induction step. �22.1
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It remains to prove Lemma 22.13. We want to show ‘failure of amalgamation’
in µ implies ‘failure of amalgamation’ in µ+. In the first step we move from failure
of certain amalgamations in µ to the non-existence of universal models in λ = µ+.
The second step takes place at λ and moves from non-existence of universal models
to failure of amalgamation.

Lemma 22.16. Let µ be a regular cardinal with 2µ < 2µ
+

. Suppose further that
(µ,≤ n+ 1)-existence and (µ,≤ n)-uniqueness hold. If no full (µ, n+ 1)-system S
is an amalgamation base, then if S is a full (µ+, n)-system of cardinality µ+, there
is no universal model of cardinality µ+ over A = AS

n .

Proof. Let S be a (µ+,P−(n))-full independent system. Construct Sα for
α < µ+ so that:

(1) Each Sα is a (µ, n)-full-independent system.
(2) Mα

s is a filtration of Ms.

Without loss of generality we may assume the universe of Aα =
⋃
sM

α
s is the

set of odd ordinals less than µ× (1 +α). Let A =
⋃
αA

α. Now define by induction
for each α < µ+ and each η ∈ 2α, and each s ∈ P−(n) models Mη such that:

(1) For ν ∈ 2µ
+

, the sequence 〈Mν ↾α
s ;α < µ+〉 is continuous and increasing.

(2) For η ∈ 2α, and α = β + 1.
(a) Mη is full over Aα.
(b) the universe of Mη is µ× (1 + α).
(c) Mη

⌣
Aα

A.

(d) Every stationary type over a finite subset C of Mη ↾ β is realized by
an a ∈Mη with a⌣

C
Mη ↾ β .

(3) For β < µ+ there is no model M such that for i = 0, 1, there exist fi
which fix Mβ and fi maps Mη̂i into M .

The existence of Mη follows from (µ, n+1) completion; we satisfy condition 3)
because no (µ, n+ 1)-system is an amalgamation base.

We now conclude from the construction that there is no universal model over
A. If N is universal over A then every Mη, for η ∈ 2µ

+

can be embedded by some
fη into N over M . By the Devlin-Shelah weak diamond (Appendix C), there are

η, ν ∈ 2µ
+

and α < µ+ such that η ↾α = ν ↾α, α = µ×α and fη ↾Aη ↾α = fν ↾Aν ↾α.
This contradicts condition 3. �22.16

Remark 22.17. The next Lemma is a reformulation of 5.3 of [She83b]. A
crucial point is that (λ, 1)-uniqueness is enough to show that if a (λ, n)-system is
an amalgamation base, it has a universal extension for every n. At first glance
it appears that Lemma 22.13 suffices to carry through the induction. We need
Theorem 22.15 because at the key step in the induction we don’t have (ℵn−1, 1)-
uniqueness.

Lemma 22.18. Suppose K has (λ, 1)-uniqueness (for every M with |M | =
λ, there is unique M ′ full over M) and (λ, n)-completeness. Then if An is an
amalgamation base there is a universal model over An.

Proof. Let S be a (λ,P−(n))-full independent system and suppose that An is
an amalgamation base. By (λ, n)-completeness there is at least one model N of
cardinality λ that is full over An and so over the empty set. By (λ, 1)-completion
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there is an N ′ that is full over N with cardinality λ. We show N ′ is universal over
An.

Suppose An ⊂M with |M | = λ. By (λ, 1)-completeness there is an M ′ that is
full over M and a fortiori full over An. Since An is an amalgamation base, M ′ and
N can be embedded in some M∗. Without loss of generality, by(λ, 1)-completion,
M∗ is full over N . But then N ′ and M∗ are isomorphic over N by (λ, 1)-uniqueness
and the isomorphism imbeds M into N ′ as required. �22.18

Now putting together Lemmas 22.18 and 22.16, we have completed the proof
of Lemma 22.13 and thus of the main theorem. �22.13





CHAPTER 23

Very Few Models Implies Amalgamation over

Pairs

We write ‘amalgamation over pairs’ as shorthand for ‘some (λ, 2)-full system is
an amalgamation base’. Our overall goal is to prove:

Theorem 22.1 [Shelah] (For n < ω, 2ℵn < 2ℵn+1.) An atomic class K that
has at least one uncountable model and that has very few models in ℵn (I(K, λ) ≤
2ℵn−1) for each n < ω is excellent.

Our goal in this chapter is to show that if there are ‘very few’ models (i.e.

< 2λ
+

) in λ++ for λ < ℵω then one can amalgamate over at least one independent
pair in λ:

Theorem 22.15 (For n < ω, 2ℵn < 2ℵn+1.) Suppose K satisfies the following
hypotheses.

(1) completeness and uniqueness conditions:
(a) completeness:

(i) K is (λ, 0), (λ, 1), (λ, 2)-complete;
(ii) K is (λ+, 0), (λ+, 1)-complete;

(b) uniqueness:
(i) K is (λ, 0), (λ, 1)-unique;
(ii) K is (λ+, 0)-unique;

(2) Amalgamation of full extensions in λ+.
(3) K has very few models in λ++

then some (λ, 2)-full system is an amalgamation base.

In Chapter 22, we reduced the proof of Theorem 22.1 to Theorem 22.15. We
will discuss in Remark 23.13 the role of set theory in fixing the correct meaning
of ‘few’ in this context. The form in Theorem 22.1 depends only on the WGCH
holding below ℵω. Appendix C contains the required set theoretic notations and
deduces the necessary combinatorial results from 2ℵn < 2ℵn+1 for n < ω.

Ambiguously, we may write |M | for the universe of a model (rather than our
usual M) when we want to emphasize that we are considering the domain without
structure or as usual |M | may denote the cardinality of the model.

We will build a tree of models indexed by η, ν ∈ 2≤λ
++

with

|Mη| = λ+ × (1 + lg(η))

and η⊳ ν implies Mη ≺K Mν . We will aim to ensure that if η̂ 1 ⊳ ν, Mη̂0 cannot
be embedded in Mν . In fact, we only obtain that result for η of size λ+ and this
leads to the weakening of the hypothesis to ‘very few’.

Now we begin the actual argument. We will construct many (more than very
few) non-isomorphic models of power λ++ from the hypothesis that there is no
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2-amalgamation base in λ. Lemma 23.1 strengthens the conditions on models of
cardinality λ. Notation 23.4 through Lemma 23.10 provide a tree of models in λ+

so that if Mη̂0 imbeds in Mν with η ⊳ ν then η̂ 0 ⊳ ν. Then Construction 23.11
and an application of the Devlin-Shelah weak diamond yield the final result.

The following Lemma uses many of the inductive model theoretic hypotheses
of Theorem 22.15. We show in Lemma 23.1 that if we cannot amalgamate over
any independent pair then a certain stronger non-amalgamation result holds. This
condition is applied in Construction 23.9.

Lemma 23.1. Assume the hypotheses of Theorem 22.15 and λ < ℵω. Further
assume that no (λ, 2)-independent pair is an amalgamation base. Suppose that
M0,M1,M

′
1,M2 with M0 ≺

K
M1 ≺

K
M ′

1 and M0 ≺
K

M2 are models of size λ
such that

(1) M0 is full, M1,M2 are full over M0, M
′
1 is full over M1

(2) M2 ↓M0
M ′

1

Then for every N ∈ K of power λ that is an elementary extension of M1 and of
M2 with N ↓M1

M ′
1, there are N1, N2 of power λ, which extend M ′

1N but cannot be
amalgamated over M ′

1M2.

Proof. Suppose not and that N is a counterexample; without loss of generality,
N is full over M1M2. By (λ, 1)-uniqueness and stationarity, N is a counterexample
for all possible M ′

1. It is straightforward to make the following construction.

Construction 23.2. We define by induction on α < λ+, M0
α,M

1
α so that

(1) M0
0 = M0, M

1
0 = M1;

(2) for i = 0, 1, |M i
α| = λ, M i

α is full over M0
α;

(3) the sequences are continuous at limits;
(4) the quadruples (M0

α,M
1
α,M

0
α+1,M

1
α+1) and (M0,M1,M2, N) are isomor-

phic.

For i = 0, 1, let M i
∗ =

⋃
α<λ+ M i

α and without loss of generality fix the universe

of M0
α as {3i : i < λ(1 + α)} and |M0

α|
⋃{3i + 1 : i < λ(1 + α)} as the universe of

M1
α. Clearly M0

∗ is full, M1
∗ is full over M0

∗ , and M0
α ↓M0

∗
M1
α.

Now using the assumption that no (λ, 2)-independent pair is an amalgamation
base, we define by induction on α < λ+, for each η ∈ 2α, a model Mη with universe
{3i, 3i+ 2: i < λ(1 + α)} such that:

Claim 23.3. (1) for β < lg(η), Mη ↾ β ≺K Mη;

(2) Mη is full over M0
lg(η) and Mη ↓M0

lg(η)
M0
i ;

(3) Mη̂0 and Mη̂1 cannot be amalgamated over MηM
0
lg(η)+1.

Having defined for ν ∈ 2<λ
+

, we extend to η ∈ 2λ
+

; let Mη =
⋃
α<λ+ Mη ↾α.

We have assumed amalgamation of full models in λ+. So, for each η, M1
∗ and Mη

can be amalgamated over M0
∗ . So there are models Nη with universe λ+ and an

elementary embedding fη of Mη into Nη over M0
∗ .

Now by the Devlin-Shelah weak diamond, Θλ+ , (Definition C.9) for some α =
λ× α < λ+, η, ν and Nα =df Nη ↾α = Nν ↾α, we have:

(1) η ↾α = ν ↾α, η(α) = 0, ν(α) = 1;
(2) Nα ≺ Nη and M1

∗ ↓M1
α
Nα;

(3) fη ↾Mη ↾α = fν ↾Mη ↾α is into Nα.
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We can choose β = λ× β so that Nα ∪M1
α+1 is contained in both Nη ↾β ≺ Nη

and Nν ↾β ≺ Nν ; fη ↾Mη ↾(α+1) is into Nη ↾ β and fν ↾Mν ↾(α+1) is into Nν ↾β.
Now by 23.2.3 and the choice of M0,M1,M2 and N , the models Nη ↾β and Nν ↾β
can be jointly embedded over Nα ∪M0

α+1 by say gη, gν . But then gηfη and gνfν
amalgamateMη ↾(α+1) and Mν ↾(α+1) over Mη ↾α∪M0

α+1 contradicting 23.3.3. Thus
we have contradicted the existence of the counterexample N . �23.1

We now consider pairs (M, f) consisting of a sequence of models of cardinality
λ and with universe a subset of λ+ and a function f from λ+ to itself. We will
define a partial ordering on these pairs with respect to a function F which assigns
a specific amalgamating model to an independent pair. We are able to find F with
the following properties because of (λ, 2)-completeness and (λ, 1)-uniqueness.

Notation 23.4. Fix a function F defined on tuples (M0,M1,M2, A) where
each Mi is a full model of cardinality λ, M1 ∩M2 = M0, and A ⊇ M1M2 with
|A−M1M2| = λ so that:

(1) F (M0,M1,M2, A) is a model M with universe A such that M1 and M2

are freely amalgamated over M0 inside M .
(2) If (M0

0 ,M
0
1 ,M

0
2 , A

0) and (M1
0 ,M

1
1 ,M

1
2 , A

1) are as in part 1) and f is 1-1
map from M0

1M
0
2 to M1

1M
1
2 , which is an isomorphism when restricted to

each of M0
1 and M0

2 then f can be extended to an isomorphism between
F (M0

0 ,M
0
1 ,M

0
2 , A

0) and F (M1
0 ,M

1
1 ,M

1
2 , A

1).

We now define a partial ordering of pairs (M, f), which depends on our choice
of F .

Definition 23.5.

(1) (M, f) is a pair where M = 〈Mi : i < λ+〉 is a continuous increasing
sequence of models of size λ with |Mi| ⊂ λ+ such that Mi+1 is full over
Mi and f :λ+ → λ+.
(a) Let Mλ+ denote the union of 〈Mi : i < λ+〉.
(b) Note that we may associate with any such f a closed unbounded set

Cf ⊂ λ+ such that Cf ∩ (α, α+ f(α)] = ∅ for any α ∈ Cf .

(2) Define a relation ≤ on pairs (M, f) by (M
1
, f1) ≤ (M

2
, f2) if the follow-

ing hold.
(a) For i ≤ λ+, M1

i ≺K M2
i .

(b) {i < λ+ :f1(i) ≤ f2(i)} ∈ cub(λ+).
(c) For some C ∈ cub(λ+) and all α ∈ C, if i ∈ [α, α + f1(α)] then

M2
i ∩M1

λ+ = M1
i

and
M2
i ↓
M1

i

M1
λ+ .

(3) Now define ≤F by (M
1
, g1) ≤F (M

2
, g2) if (M

1
, g1) ≤ (M

2
, g2) and for

some ζ < λ++, there is a sequence 〈(M ξ
, f ξ) : ξ ≤ ζ〉 which is continuous

and ≤-increasing with (M, g1) = (M
0
, f0) and (M

2
, g2) = (M

ζ
, f ζ) such

that for every ξ < ζ there is a closed unbounded set Cξ of α such that for
each β with α ≤ β < α+ f ξ(α):

M ξ+1
β+1 = F (M ξ

β ,M
ξ+1
β ,M ξ

β+1,M
ξ+1
β+1).
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The notion of ≤F extension will provide an equivalence relation on models

which are the limits of pairs (M
′
, f ′) that extend a fixed pair (M, f). We thank

Rami Grossberg for pointing out the key to the next series of Claims: apply the
idea of the proof (e.g. [Gro02] or Lemma 17.9) that failure of amalgamation in µ
implies there is no universal model in µ+ with one of the equivalence classes playing
the role of the universal model.

Claim 23.6. We have:

(1) ≤F is transitive and reflexive on pairs (M, f);

(2) Any ≤F increasing sequence of strictly less than λ++ pairs (M
i
, f i) has

a least upper bound.

Proof. The first claim is immediate. For the second, suppose the sequence is

(M
ξ
, f ξ) for ξ less than (without loss of generality) a regular cardinal µ ≤ λ+. For

ξ < ζ < µ let Cξ,ζ be a cub of λ+ which witnesses 2b) and 2c) of Definition 23.5.
Suppose first that µ ≤ λ. Then certainly

⋂
ξ<ζ<µ Cξ,ζ contains a cub C such

that if α ∈ C, ξ < µ and β ∈ [α, α + f ξ(α], then β 6∈ C. When µ = λ+, let C be
the diagonal intersection: C = {γ :∀α < γ(γ ∈ Cξ,α)}.

Let 〈αi : i < λ+〉 be an increasing enumeration of C. Now define by induction on
i, a strictly increasing sequence of βi by β0 = α0, take unions at limits, and βi+1 is
either βi+supξ<µ f

ξ(αi) if it is bigger than βi or βi+1 if not. Now we define a new

(M, f) by letting Mβi
=

⋃
ξ<µM

ξ
αi

and for j with 0 < j < supξ<µ f
ξ(αi), Mβi+j =

⋃
ξ0<ξ<µ

M ξ
αi+j

where ξ0 is chosen so that ξ0 < ξ < µ implies j < f ξ(αi). Now let

M = 〈Mβ :β < λ+〉 and define f by f(βi) = supξ<µ f
ξ(αi) while f(βi + j) = 0 for

0 < j < f(βi); (M, f) is as required, using a similar diagonal intersection to check
condition 2d). �23.6

Notation 23.7. Write f + 1 for the function defined by (f + 1)(i) = f(i) + 1.

Claim 23.8. Suppose (M, f + 1) ≤F (M i, gi) for i = 1, 2. Then there is a cub
C such that if δ ∈ C and β ∈ [δ, δ + f(δ)], M1

β ≈Mδ
M2
β .

Proof. Let C be the diagonal intersection of cubs witnessing each of the three
components of the definition ≤F (including each of the Cξ in Definition 23.5.3) for
each pair. Then for each δ ∈ C and each β ∈ [δ, δ + f(δ)], we have

M1
β+1 = F (Mβ ,M

1
β ,Mβ+1, |M1

β+1|)
and

M2
β+1 = F (Mβ,M

2
β ,Mβ+1, |M2

β+1|).
But M1

β ≈Mβ
M2
β since both are full extensions of Mβ and this isomorphism

extends over Mβ+1 by stationarity and condition 2) of Notation 23.4 so M1
β+1 ≈Mδ

M2
β+1. By induction we have the result (using continuity at limits). �23.8

Now we construct for any pair (M, f) a family of extensions Mη of Mλ+ (for

η ∈ 2≤λ
+

) such that: there is an ν ∈ 2λ
+

such that for any (M
′
, f ′) with (M, f +

1) ≤F (M
′
, f ′), Mν can not be embedded into M ′

λ+ over Mλ+ .

Construction 23.9 (Construction in λ+). Fix (M, f) and Cf = {αi : i < λ+}
a cub as in Definition 23.5.1. We define by induction on β ≤ λ+, for each η ∈ 2β

a model Mη such that:
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(1) Mη ∩Mλ+ = Mβ; Mη ↓Mβ
Mβ+1;

(2) For γ < β, 〈Mη ↾ γ :γ < α〉 is an increasing continuous sequence;
(3) For each α ∈ Cf ,

(a) For β ∈ [α, α+ f(α)), and η ∈ 2β+1,

Mη = F (Mβ,Mη ↾ β ,Mβ+1, |Mη|);
(b) For β ∈ [α, α+ f(α)], η, ν ∈ 2β, if η ↾α = ν ↾α then Mη = Mν ;
(c) |Mη| = λ+ × (1 + β);
(d) For β = α + f(α) + 1, η, ν ∈ 2β, β < λ+, with η ↾α = ν ↾α, if

η(α) = ν(α) then Mη = Mν but if η(α) 6= ν(α) then Mη and Mν

cannot be amalgamated over Mη ↾αMβ.

(e) For η ∈ 2λ
+

, Mη = Mη
λ+ .

The construction is routine applying Lemma 23.1 to guarantee 3d).

Claim 23.10. For any pair (M, f) there is an η ∈ 2λ
+

such that for any (M
′
, f ′)

with (M, f + 1) ≤F (M
′
, f ′), the Mη from Construction 23.9 can not be embedded

into M ′
λ+ over Mλ+.

Proof. Suppose for contradiction that for each η ∈ 2λ
+

, there is a sequence
(N

η
, fη) with (M, f) ≤F (N

η
, fη) and a function gη mapping Mη = Mη

λ+ into
Nη = Nη

λ+ , fixing Mλ+ . By weak diamond, there is a δ ∈ Cf (Cf from Defini-

tion 23.5.1) and η, ν ∈ 2λ
+

such that η ↾ δ = ν ↾ δ, η(δ) 6= ν(δ) but gη ↾ δ = gν ↾ δ.
Let C be the intersection of the cubs witnessing the ≤F with {α :α = |Mη ↾α|}

and with C1. Choose any δ ∈ C and let γ = δ + f(δ) + 1. By Claim 23.8, gη
and gν witness that Mη ↾ γ and Mν ↾ γ can be amalgamated over Mη ↾ δMγ but this
contradicts condition 3d) of Construction 23.9. �23.10

In the next step we build a tree (M
ν
, fν) of length λ++ where Construction 23.9

provides the successor stage. Each M
ν

is a λ+-sequence of models of cardinality λ.
Mν
λ+ is the union for β < λ+ of the sequence M

ν
.

Construction 23.11. [Construction in λ++] For every α < λ++ and ν ∈ 2α

there is a pair (M
ν
, fν) such that the following hold.

(1) 〈(Mν ↾ γ
, fν ↾ γ) :γ < α〉 is continuous and increasing. Indeed ν⊳ η implies

(M
ν
, fν) ≤F (M

η
, fη).

(2) |Mν
λ+ | = λ+(1 + lg(ν)).

(3) If (Mη̂0, fη̂0) ≤F (N, f) then Mη̂1
λ+ cannot be elementarily embedded in

Nλ+ over Mλ+ . In particular, if Nλ+ = Mν
λ+ then η 0̂ ⊳ ν.

(4) For η ∈ 2λ
++

, let Mη denote
⋃
α<λ++ M

η ↾α
λ+ .

Proof. Define the (M
ν
, fν) by induction on α = lg(ν) < λ++. For α = 0, fix

M
〈〉
λ+ as any full model of cardinality λ+. Let M

〈〉
= M

〈〉
i for i < λ+ be a filtration

of M
〈〉
λ+ . And let f 〈〉 be the constantly 0 function with domain λ+. For α a limit

apply Lemma 23.6.
For α = β + 1, a successor, apply Claim 23.10 to the pair (M

ν
, fν) for each

ν ∈ 2β. M
ν̂1

is the resulting Mη; f
ν̂1 = fν . We choose M

ν̂0
as an immediate

F -successor of (M
ν
, fν + 1) while fν̂0 = fν + 1. �23.11.
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Θχ,λ++ is defined as Definition C.9 in Appendix C. We now prove the key
lemma that forces us to make very few rather than just few the hypothesis of the
main result.

Lemma 23.12. If Θχ,λ++ and no (λ, 2)-full system is an amalgamation base
then I(K, λ++) > χ.

Proof. Fix representatives 〈Ni : i < χ〉 on λ++ of the isomorphism types of

models in K of cardinality λ++. For each η ∈ 2λ
++

fix f ′
η that is an isomorphism

between Mη from Construction 23.11.4 and the appropriate Ni. Now let fη be
the same as f ′

η except fη(0) = i if and only if the image of fη is Ni and for
1 < i < ω, fη(i) = f ′

η(i − 1). Now apply Θχ,λ++ using the cub C of α such

that α = λ × α (so |Mη ↾α
λ+ | = |Mν ↾α

λ+ | = α). We find δ ∈ C and η, ν ∈ 2λ
++

so that η ↾ δ = ν ↾ δ, η(δ) 6= ν(δ), fη ↾ δ = fν ↾ δ. In particular fη(0) = fν(0) so
fη and fν have isomorphic images. Without loss, η(δ) = 0 and ν(δ) = 1. Then

f−1
η (fν ↾M

ν ↾(δ+1)
λ+ ) is an elementary embedding of M

ν ↾(δ+1)
λ+ = M

(ν ↾ δ)̂ 1
λ+ into Mη

that is the identity on Mν ↾ δ
λ+ = Mη ↾ δ

λ+ . Since M
ν ↾(δ+1)
λ+ has cardinality λ+ this

map must be into Mρ for some ρ with η ↾(δ + 1) ⊳ ρ ⊳ η and lg(ρ) < λ++. This
contradicts Claim 23.11.3. �23.12

Proof of Theorem 22.15 and Theorem 22.1. By Chapter 22, we need only

prove Theorem 22.15. Theorem C.11 yields Θχ,λ++ , for χ = 2λ
+

. We want to show
that some (λ, 2)-full system is an amalgamation base if I(K, λ++) ≤ λ++ If not,
Lemma 23.12 yields that I(K, λ++) > λ++ ≥ I(K, λ++). With this contradiction
we finish. �22.15

Remark 23.13.

(1) It is erroneously asserted in Theorem 6.4 and the footnote on page 265

of [She83b] that χℵ0 < 2λ
++

is sufficient to obtain I(K, λ++) > χ;
this error was known at the time of publication but these instances of
the earlier claim slipped through the editing process. The question of

whether 2λ
+

< 2λ
++

and χℵ0 < 2λ
++

implies Θχ,λ++ remains open. See
Remark C.17 for more details.

(2) Shelah has provided more model theoretic approaches to get around the
set theoretic difficulties in [She01] and later works which are not yet
published.

(3) Either GCH or ¬O# imply that ‘very few ’ can be replaced by ‘few’. See
the last two pages of [She83b] or [She01]. The connection with large
cardinals is via noting that the model theoretic result holds if the ideal J
(Definition C.6) is not λ+-saturated.

I particularly want to thank Rami Grossberg and Saharon Shelah for back-
ground on this section and Alexei Kolesnikov for his careful reading of this argu-
ment; the errors which remain are mine.



CHAPTER 24

Excellence and ∗-Excellence

In this chapter we adapt the ideas of [Les05a] to derive from Shelah’s notion
of excellence several consequences, which we call ∗-excellence. The proof of cate-
goricity transfer will actually assume only ∗-excellence. We show that if the atomic
class K is excellent (i.e. all countable independent full diagrams are good) then
they same holds without the assumption that the models are full. We use without
further remark the fact that Chapter 21 did not require that the models are full
(although the full case was proved there).

Definition 24.1. The atomic class K is *-excellent if

(1) K has arbitrarily large models;
(2) K is ω-stable;
(3) K satisfies the amalgamation property;
(4) Let p be a complete type over a model M ∈ K such that p ↾C is realized in

M for each finite C ⊂ M , then there is a model N ∈ K with N primary
over Ma such that p is realized by a in N .

Remark 24.2 (Excellence for first order theories). Since ω-stable first order
theories have primary models over arbitrary sets, and since the primary model over
an atomic set is atomic if (K,≺) is the collection of the atomic models of an ω-
stable first order theory with elementary submodel as ≺K then K is excellent.
And in the specific way we have defined excellence (as an ω-stable class of atomic
models), these are the only first order examples. If all models of T are atomic, then
T is ℵ0-categorical.

However, there is a more general sense in which excellence is used; fix a class K

of models along with notions of independent, strong submodel, and primary. Drop
the ω-stability requirement and call the class excellent just if this class admits
primary models (which must stay in the class) over independent P−(n)-system
of models. Since these three notions must each be specified there is no simple
response to the question, ‘what does excellence mean in the first order context?’
In all the following examples of classes of models of countable first order theories,
nonforking is the notion of independence; the others concepts vary. A unifying
theme is that, unlike the infinitary case, if the class admits ‘primary’ models over
independent pairs then n-amalgamation follows for all n < ω. See [She91, Har87]
for definitions, specifications of the notion of strong submodel, and for proofs of
these claims. The class of a-models of a superstable first order theory is excellent
if and only if T has ndop. To discuss arbitrary models of a superstable first order
theory one must distinguish a particular notion of strong submodel and restrict
to theories with ndop and notop. If we consider all models of an ω-stable theory,
then since ω-stable theories admit prime models over sets, any ω-stable theory is
excellent. But the models will not be sufficiently rich to support the development of
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the rest of the theory. Laskowski [Las07] and later unpublished work has observed
that, if we take the notion of primary in the standard first order sense, the class of
ω-saturated models of a countable ω-stable theory T is excellent if and only T has
the eni-ndop. But, if we modify the language in our usual way by making each first
order type over a finite set atomic, then by Theorem 4.18 of [She78], then each
class associated with ω-saturated models of an ω-stable theory is excellent.

Excellence is this generalized sense is a main contributor to defining the main
gap. It is those classes which are excellent (and in addition) shallow that have a few
models. And these models can all be realized as constructible (in an appropriate
sense depending on the context) over independent trees of height ω. A more general
study of excellent atomic classes appears in [GH89].

We return to our analysis of categoricity in atomic classes and take the following
argument from [Les05a]. Note the similarity to Lemma 22.7.

Lemma 24.3. If M is a countable member of an ω-stable atomic class K, there
is a countable N ∈ K which is ℵ0-universal over M (Definition 10.4).

Proof. Let 〈pi : i < ω〉 enumerate Sat(M). Define an increasing chain of models
〈Ni : i < ω〉 with N0 = M and so that Ni+1 is primary over Nici where ci ⌣

N0

Ni and

ci realizes pi. Let N =
⋃
iNi. Now let M ′ be an arbitrary countable member of K

with M ≺K M ′; enumerate M ′−M as 〈ai : i < ω〉. We will construct an increasing
sequence of partial elementary maps fi that are the identity onM and the domain of
fi is M

⋃〈aj :j < i〉. Let Mi ≺K
M ′ be primary over M

⋃〈aj :j < i〉. Given fi, let
k be least such that the range of fi is contained in Nk. By the definition of primary
extend fi to an elementary embedding f ′

i of Mi into Nk. Let q = tp(ai+1/Mi).
Then f ′

i(q) ∈ Sat(f
′
i(Mk)) has a nonsplitting extension q′ ∈ Sat(Nk), since the

domain of fi is good by Lemma 18.25. By construction, q′ is realized by some
b ∈ Nk+1. Let fi+1 = fi ∪ 〈ai+1, b〉. This suffices. �24.3

If A is a countable good set, we can first take a primary model M over A and
then a universal model over M to prove:

Corollary 24.4. If A is a countable good set then there is a countable N ∈ K

which is ℵ0-universal over M

Corollary 24.5. The countable atomic set A is good if and only if Sat(A) is
countable.

Proof. If A is good, there is a primary model M over A (Lemma 18.26). By
Lemma 24.3, there is a countable N which is universal over M and therefore over
A. So each p ∈ Sat(A) is realized in N and Sat(A) is countable. The converse is
Lemma 18.24.1. �24.5

In Chapter 22 we deduced excellence for full countable models for an atomic
class with few models in each power up to ℵω. We need to know arbitrary countable
independent systems are good. So we now show: If every full independent system
of countable models is good then every countable independent system of models is
good.

We first show the strengthened form of stationarity in Lemma 22.6 holds for
all countable models, not just full ones.
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Lemma 24.6. If K satisfies (ℵ0, 2)-uniqueness for any independent triple of
models (M0,M1,M2), we have: if M ′

1 ≈M0 M1 and M ′
1 ⌣
M0

M2 then there exists

α ∈ autM2M mapping M1 isomorphically onto M ′
1.

Proof. By ℵ0-categoricity M0 is full. By (ℵ0, 1) extension, we can extend

M1,M
′
1 and M2 to full models M̂1, M̂

′
1 and M̂2 with M̂1 ≈M0 M̂

′
1 by some f . By

Lemma 22.6, there is an automorphism of M extending f and fixing M̂2. This map
suffices. �24.6

Before beginning the formal argument, we first consider the case of an inde-
pendent pair. Let M1 and M2 be countable and independent over M0. We would
like to show that M1M2 is good (i.e. there are only countably many atomic types
with domain M1M2).

We assume the conclusion holds if each Mi is full over M0. The key observation
(by Shelah of course) is that we prove the result in two steps.

Suppose first that M1 is full over M0 while M2 may not be. M0 is full by
ℵ0-categoricity. We want to show that there is a good countable set A ⊇M1M2 so
that for each p ∈ Sat(M1M2), p extends to p̂ ∈ Sat(A). Since Sat(A) is countable
this shows Sat(M1M2) is countable and establishes the theorem.

Choose N2 extending M2 that is countable, full over M0 and independent from
M1M2 over M2. By transitivity, M1 is independent from N2 over M0. Then by
hypothesis, A = M1N2 is good. Let N ′ be countable and universal over M0.

Since there is a free amalgam of M1 and N2 over M0, we may assume M1N2 ⊂
N ′. Now choose N ′′ that is universal over M2 and finally (by amalgamating N ′

and N ′′ over M2) choose N with N ′ ⊂ N and there is an embedding of N ′′ into N
over M2.

Now if p ∈ Sat(M1M2) is realized by some a, we can, sinceM1M2a is countable,
chooseMa ∈ K containingM1M2a. By universality overM2, there is an α mapping
Ma into N over M2 and taking M1 to some M ′

1 ≈M2 M1. By Lemma 24.6 and
universality over M2 there is a β, fixing N2, taking M ′

1 to M1 and mapping a into
N , so βα(a) realizes p. Since N is atomic, p̂ = tp(βα(a)/M1N2) is the required
extension of p.

Now we know that M1M2 is good if M2 is full over M0 and M1 is arbitrary;
we want it for both M1,M2 arbitrary. Choose N1 full over M1 and independent
from M2 over M1. We have just shown that N1M2 is good. Repeat the preceding
argument, to conclude that M1M2 is good.

We pass to the general induction. Recall that in an (ℵ0, n)-independent system
S, AS

s =
⋃
t⊂sMt and in particular AS

n is the union of all members of a P−(n)-
system.

Lemma 24.7. If every full independent system of countable models is good then
every countable independent system of models is good.

Proof. We prove by induction on n:
(∗n) if each full P−(n) countable independent system is good, an arbitrary

countable P−(n) independent system is good.
For each n there is a sub-induction on the invariant k(S) that we now define.

If S is an independent P−(n)-system, k(S) is the number of i < n such that for
some s ∈ P−(n), M{i} ≺K Ms (i.e. i ∈ s) and Ms is not full over As.
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If k(S) = 0, the result holds by the hypothesis of the theorem. We will show
that if (∗n) holds for each S with k(S) < m then it holds for each S with k(S) = m.
So fix S = {Ms : s ⊂ n} with k(S) = m. To show S is good we must show every
p ∈ Sat(A

S
n) extends to a type over a fixed good set. Since k(S) > 0 there is an

i such that for some s, M{i} ≺K Ms (i.e. i ∈ s) and Ms is not full over As.
Without loss of generality, say i = n − 1. Let X = {s ⊂ n : n − 1 ∈ s}; then,
|X | = 2n−1 − 1. This is a P−(n− 1)-independent system so by the main induction
hypothesis

⋃ {Ms :s ∈ X} is good so by Lemma 24.4 there is a countable universal
model N ′ over

⋃ {Ms :s ∈ X}. Now for each s with n−1 6∈ s, we let M ′
s = Ms and

for each s ∈ X we define a new M ′
s so that

(1) {M ′
s :s ∈ X} is a full independent system indexed by X ;

(2)
⋃
s∈XM

′
s ↓⋃

s∈X Ms
AS
n ;

(3) S′ = {M ′
s :s ⊂ n} is a P−(n)-independent system with k(S) < m.

If we have completed the construction we see that AS
n ∪ ⋃

s∈XM
′
s = AS′

n is an
atomic set by 2), Lemma 19.7, Lemma 20.14.1, and Lemma 20.11.2. By induction

on k(S), AS′

n is good. Moreover, we can imbed AS′

n in N ′ over {Ms :s ∈ X}. By 2)
this embedding is over AS

n (applying now Lemma 24.6 and again Lemma 20.14.1)

and N ′ realizes any p ∈ Sat(A
S
n) and so p extends to a p̂ ∈ Sat(A

S′

n ) as required.
For the construction fix an enumeration r of S which has {Ms :n − 1 6∈ s} as

an initial segment. For j < 2n−1, let M ′
r(j) = Mr(j). Then continue to define M ′

r(j)

for 2n−1 < j < 2n − 1 to build an enumeration of S′. At each stage demand that
M ′
r(j) is full over AS′

r(j) =
⋃
t⊂r(j)M

′
t and using Lemma 19.7, Lemma 20.14.1, and

Lemma 20.11.2, that

M ′
r(j) ↓

Mr(j)A
S′

r(j)

⋃

i<j

M ′
s(i).

The independence calculus yields
⋃
s∈XM

′
s ↓{Ms:s∈X} A

S
n and thus Conditions

1), 2) and the first part of 3) are verified by the properties of independence; to see

that k(S′) < m, note that if m− 1 ∈ s, M ′
s is full over AS′

s . �24.7

The following lemma is the remaining crucial step in showing ∗-excellence. We
show that excellence implies that, like their countable counterparts, if a (λ, n)-
system is good, there is a primary model over it.

Lemma 24.8. Let λ be an infinite cardinal n < ω. If K has primary models
over An for (µ, n+ 1)-independent systems for each µ < λ, then there is a primary
model over any (λ, n)-independent system.

Proof. We know by Lemma 24.7 and Lemma 18.26 there are primary models
over (ℵ0,m)-independent systems for any m. Suppose S is a (λ, n)-independent
system.

Choose a filtration Sα (with respect to L∗) as in Lemma 21.6. We can further
choose Nα for α < λ such that:

(1) |Nα| = |α| + ℵ0.
(2) An ⌣

Aαn

Nα

(3) Nα is primary over Aαn;
(4) Ni =

⋃
j<iNj for limit i.
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For the initial step we are givenN0 satisfying 1) and 3); Condition 2) is obtained
by the extension property for non-splitting. For the induction step, note that using
the (ℵ0, n)-goodness, Lemma 21.6, and Lemma 20.4, the system 〈Mα

s ,M
α+1
s , Nα

s ⊆
n〉 is an (|α|+ℵ0,P−(n+1)) independent system. So we can find Nα+1 satisfying 1)
and 3) by the hypothesis of the theorem and Condition 2) is again obtained by the
extension property for non-splitting. Take unions at limits. Then N =

⋃
α<λNα

is the required completion of S. Conditions 2 and 4 guarantee that N is full over
An. Since |An| = λ, N is full. �24.8

Lemma 24.9 (Dominance). Suppose A⌣
M
B where M ∈ K and ABM is an

atomic set. If M ′ is primary over MA then M ′
⌣
M
B

Proof. By Lemma 20.6 (with M as C, MA as A and MAB as B, MA ≤tv
MAB. By Lemma 20.16.2, for any c ∈ M ′, c ↓Ma MAB where some θ(x,a)
generates tp(c/MA). But now transitivity of independence yields for each b ∈ B,
b ↓M MAc. By the finite character of independence we finish. �24.9

Lemma 24.10. If for all µ < λ, there is a primary model over any independent
pair of models of size µ, then for any model M of cardinality λ and any a such that
Ma is atomic, there is a primary model N over Ma.

Proof. Write M as an increasing continuous chain of Mi with |Mi| = |i| + ℵ0.
Without loss of generality a↓M0

M . Since M0 is countable, there is a primary model
N0 over M0a. By the extension Theorem 19.9 and stationarity, we may assume
N0 ⌣

M0

M . Suppose we have constructed an increasing continuous elementary chain

Ni for i < j with Ni ⌣
Mi

M . If j is a limit take
⋃
i<j Ni as Nj and note that by

finite character Nj ⌣
Mj

M . If j = i + 1, note that by induction (Mi, Ni,Mj) is

an (|i| + ℵ0, 2) system. Choose Nj primary over Ni ∪Mj with Nj ⌣
Mj

M by the

(|i| + ℵ0, 2)-existence property and Lemma 24.9. This completes the construction;
it only remains to note that N =

⋃
i<λNi is primary over Ma. But this follows by

induction using Exercise 24.11. �24.10

The following exercise completes the proof of Lemma 24.10.

Exercise 24.11. Verify that Nδ is primary over Mδa for limit δ.

Theorem 24.12. If K is excellent then K is *-excellent.

Proof. By definition K is ω-stable. We proved K has arbitrarily large models
and amalgamation in Corollary 21.13. For the last condition, note first that if p
is a complete type over a model M ∈ K such that p ↾C is realized in M for each
finite C ⊂M then for any a realizing p, Ma is atomic. Then apply Lemma 24.10.
�24.12

We now show that *-excellence implies that Galois-types are syntactic types in
this context. This implies that K is (ℵ0,∞)-tame. This is straightforward from
∗-excellence but ∗-excellence was a non-immediate consequence of excellence.
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In any atomic class types over sets make syntactic sense as in first order logic,
but we have to be careful about whether they are realized. The definition of Galois
type depended on the choice of a monster model. Since we have amalgamation over
models, for any M and any p ∈ Sat(M), p is realized in our monster. But if M were
an arbitrary subset A of M, this might not be true; it depends on the embedding
of A into M.

Lemma 24.13. If K is *-excellent then Galois types over a model M are the
same as syntactic types in Sat(M).

Proof. Equality of Galois types over models is always finer than equality of
syntactic types. But if a, b realize the same p ∈ Sat(M), by 2) of Definition 24.1,
we can map Ma into any model containing Mb and take a to b so the Galois types
are the same. �24.13

Note however, we have more resources here than in a general AEC. The types
in Sat(A) for A atomic played a crucial role in the analysis for Lω1,ω. I know of no
use of Galois types over arbitrary subsets of models of K in Shelah’s work. How-
ever, Hyttinen and Kesälä use this concept in their insightful attempts to extend
geometric stability theory to AEC [Hyt04, HK06]. They introduce the notion of
a finitary AEC. In Kueker’s formulation,

Definition 24.14. (1) An AEC K has finite character if for M ⊆ N
with M,N ∈ K: if for every finite a ∈ M there is a K-embedding of M
into N fixing a, then M ≺K N .

(2) An AEC is finitary if K has arbitrarily large models, the amalgamation
property, the joint embedding property, and has finite character.

Hyttinen and Kesälä develop an extensive theory of finitary aec in [HK06,

HK00, HK07]. They develop such tools as weak types and U-rank in this context.
They prove strong categoricity transfer results (even for limit cardinals) for tame,
simple, finitary AEC. For the class of omega-saturated models, they get the full
Morley categoricity transfer theorem. The notion of simple here has a very different
connotation from first order logic because the independence notion is defined to
imply the existence of free extensions. Thus, it is possible to have stable and even
(Example 26.1.2) totally categorial classes that are not simple in their sense.

Finitary AEC are much closer to Lω1,ω than the general notion. But, in contrast
to Part 4, they also include incomplete sentences of Lω1,ω so study of countable
models is possible. In addition to the work of Hyttinen and Kesälä, see Kueker,
[Kue08], who clarifies the connection with specific infinitary logics and Trlifaj [Trl]
who explores classes of modules that are finitary AECs.



CHAPTER 25

Quasiminimal Sets and Categoricity Transfer

We work in an atomic class K. That is, K is the class of atomic models of
a first order theory T , which was obtained from a complete sentence in Lω1,ω by
adding predicates for all formulas in a countable fragment L∗ of Lω1,ω.

In this chapter we first construct quasiminimal formulas in a *-excellent class,
then we prove categoricity transfer in excellent classes. Finally we conclude cat-
egoricity transfer for arbitrary sentences of Lω1,ω. The notion of quasiminimality
here will generalize Zilber’s notion in the sense that his models are ones where the
universe is quasiminimal This assertion is formalized in Proposition 25.20. This
chapter is indirectly based on [She75a, She83a, She83b], where most of the re-
sults were originally proved. But our exposition owes a great deal to [Les05a,

Les03, Kol05, GH89].
We begin by introducing the notion of a big type. This is formally a different

notion than a big Galois type introduced in Definition 12.20. But the intent is the
same and eventually this can be seen to be specialization of the earlier notion to
this context.

Definition 25.1. The type p ∈ Sat(A) that is contained in a model in K, is
big if for any M ′ ⊇ A with M ′ ∈ K there exists an N ′ with M ′ ≺

K
N ′ and with

a realization of p in N ′ −M ′.

Lemma 25.2. Let A ⊆M and p ∈ Sat(A). The following are equivalent.

(1) There is an N with M ≺ N and c ∈ N −M realizing p; i.e. p extends to
a type in Sat(M).

(2) For all M ′ with M ≺M ′ there is an N ′, M ′ ≺ N ′ and some d ∈ N ′−M ′

realizing p.

Proof. 2) implies 1) is immediate. For the converse, assume 1) holds. With-
out loss of generality, by amalgamation, M ′ contains N . Let q = tp(c/M). By
Theorem 19.9, there is a nonsplitting extension q̂ of q to Sat(M

′); q̂ is realized in
N ′ ∈ K with M ′ ≺K N ′. Moreover, it is not realized in M ′ because q̂ does not
split over M . �25.2

For countable M ′, we will see below how to get N ′ via the omitting types
theorem. But the existence of N ′ for uncountable cardinalities requires the use of
n-dimensional cubes in ℵ0. By iteratively applying Lemma 25.2, we can show:

Corollary 25.3. Let A ⊆ M and p ∈ Sat(A). If there is an N with M ≺ N
and c ∈ N −M realizing p then

(1) p is big and
(2) K has arbitrarily large models.

185
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Thus every nonalgebraic type over a model and every type with uncountably
many realizations (check the hypothesis via Lowenheim-Skolem) is big. But if we
consider a K with only one model: two copies of (Z, S), we see a type over a finite
set can have infinitely many realizations without being big.

We introduce a notion of quasiminimal set; we will that the universe of an
Lω1,ω-definable quasiminimal excellent class as in Chapter 2 is quasiminimal in the
current sense. And the current notion specializes the notion of minimal type in
Definition 12.21.

Definition 25.4. The type p ∈ Sat(A) is quasiminimal if p is big and for any
M containing A, p has a unique extension to a type over M which is not realized
in M . We say φ(xc) is a quasiminimal formula if there is a unique p ∈ Sat(c) with
φ(xc) ∈ p that is big. We then write that φ(xc) determines p.

Note that whether q(x,a) is big or quasiminimal is a property of tp(a/∅). Since
every model is ω-saturated the minimal vrs strongly minimal difficulty of first order
logic does not arise. Now almost as one constructs a minimal set in the first order
context, we find a quasiminimal type; more details are in [Les03]

Lemma 25.5. Let K be *-excellent. For any M ∈ K, there is a c ∈ M and a
formula φ(x, c) which is quasiminimal.

Proof. It suffices to show the countable model has a quasiminimal formula
φ(x, c) (since quasiminimality of depends on the type of c over the empty set). As
in the first order case, construct a tree of formulas which are contradictory at each
stage and are big. But as in the proof of Lemma 19.3 make sure the parameters in
each infinite path exhaust M . Then, if we can construct the entire tree ω-stability
is contradicted as in Lemma 19.3. So there is a quasiminimal formula. �25.5

Definition 25.6. Let c ∈M ∈ K and suppose φ(x, c) determines a quasimin-
imal type over M . For any elementary extension N of M define cl on the set of
realizations of φ(x, c) in N by a ∈ cl(A) if tp(a/Ac) is not big.

Equivalently, we could say a ∈ cl(A) if every realization of tp(a/Ac) is contained
in each M ′ ∈ K which contains Ac.

Lemma 25.7. Let c ∈M ∈ K and suppose φ(x, c) determines a quasiminimal
type over M . If the elementary extension N of M is full with |N | > |M |, then cl
defines a pre-geometry on the realizations of φ(x, c) in N .

Proof. Clearly for any a and A, a ∈ A implies a ∈ cl(A). To see that cl has
finite character note that if tp(a/Ac) is not big, then it differs from the unique
big type over Ac and this is witnessed by a formula so a is in the closure of the
parameters of that formula.

For idempotence, suppose a ∈ cl(B) and B ⊆ cl(A). Use the comment after
Definition 25.6. Every M ∈ K which contains A contains B and every M ∈ K

which contains B contains a; the result follows.
It is only to verify exchange that we need the fullness of N . Suppose a, b |=

φ(x, c), each realizes a big type over A ⊆ φ(N) and r = tp(b/Aac) is big. Since r =
tp(a/Ac) is big and N is full we can choose λ realizations ai of r in N . Let M ′ ≺ N
contain the ai and let b′ realize the unique big type over M ′ containing φ(x, c).
Since tp(b/Aac) is big, the uniqueness yields all pairs (ai, b

′) realize the same type
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p(x, y) ∈ S(Ac) as (a, b). But then the ai are uncountably many realization of
tp(a/Abc) so this type is big as well; this yields exchange by contraposition. �25.7

Exercise 25.8. Show that closure relation defined in Lemma 25.7 satisfies the
countable closure condition.

So the dimension of the quasiminimal set is well-defined. To conclude categoric-
ity, we must show that dimension determines the isomorphism type of the model;
this is the topic of the next chapter.

The hypothesis that K is *-excellent is not needed for the definability of types
that we discuss next.

Definition 25.9. The type p(x) ∈ Sat(M) is definable over the finite set c if
for each formula φ(x,y) there is a formula (dpx)φ(x,y)[y, c] with free variable y

such that (dpx)φ(x,y)[m, c] holds for exactly those m ∈M such that φ(x,m) ∈ p.
This is a defining schema for p.

The following result is asserted without proof (or even explicit mention) in the
proof of Lemma 4.2 of [She75a]. In the proof we expand the language but in a
way that does no harm.

Lemma 25.10. There is an atomic class K1 in a vocabulary τ1, whose models
are in 1-1 correspondence with those of K such that: for each τ1-formula φ(x,y)
and countable ordinal α, there is a τ1-formula Pφ,α(y) such that in any model M
in K1, Pφ,α(m) holds if and only if RM (φ(x,m)) ≥ α.

Proof. Define a sequence of classes and vocabularies τ i,Ki by adjoining predi-
cates in τ i+1 which define rank for τ i-formulas. Note that reduct is a 1-1 map from
τω structures to τ -structures. Then τω,Kω are the required τ1,K1. �25.10

Henceforth, we assume K satisfies the conclusion of Lemma 25.10.

Lemma 25.11. Let K be ω-stable. Every type over a model is definable.

Proof. LetN be an atomic model of T and let p ∈ Sat(N); choose φ(x, c) so that
R(p) = R(φ(x, c)) = α. Now for any ψ(x,d), ψ(x,d) ∈ p if and only if R(φ(x, c) ∧
ψ(x,d)) = α. And, the collection of such d is defined by Pφ(x,c)∧ψ(x,y),α(y, c).
�25.11

Note that if p doesn’t split over C with C ⊂ M ≺ N and p̂ ∈ Sat(M) is a
nonsplitting extension of p, p̂ is defined by the same schema as p.

We adapt standard notation from e.g. [Las87] in our context. Note that
we restrict our attention to big formulas. This will give us two cardinal transfer
theorems that read exactly as those for first order but actually have different content
because the first order versions refer to arbitrary infinite definable sets.

Definition 25.12. (1) A triple (M,N, φ) where M ≺ N ∈ K with M 6=
N , φ is defined over M , φ big, and φ(M) = φ(N) is called a Vaughtian
triple.

(2) We say K admits (κ, λ), witnessed by φ, if there is a model N ∈ K with
|N | = κ and |φ(N)| = λ and φ is big.

Of course, it is easy in this context to have definable sets which are countable
in all models. But we’ll show that this is really the only sense in which excellent
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classes differ from first order stable theories as far as two cardinal theorems are
concerned.

The overall structure of the proof of the next result is based on Proposition
2.21 of [Les05a]; but in the crucial type-omitting step we expand the argument of
Theorem IX.5.13 in [Bal88] rather than introducing nonorthogonality arguments
at this stage.

Lemma 25.13. Suppose K is *-excellent.

(1) If K admits (κ, λ) for some κ > λ then K has a Vaughtian triple.
(2) If K has a Vaughtian triple, for any (κ′, λ′) with κ′ > λ′, K admits

(κ′, λ′).

Proof. 1) Suppose N ∈ K with |N | = κ and |φ(N)| = λ. For notational
simplicity we add the parameters of φ to the language. By Löwenheim-Skolem, we
can embed φ(N) in a proper elementary submodel M and get a Vaughtian triple.
2) We may assume that M and N are countable. To see this, build within the
given M,N countable increasing sequences of countable models Mi, Ni, fixing one
element b ∈ N −M to be in N0 and choosing Mi ≺ M , Ni ≺ N , Mi ≺ Ni and
φ(Ni) ⊂ φ(Mi+1). Then Mω, Nω are as required.

Now for any κ′, we will construct a (κ′, ω) model. Say b ∈ N −M and let
q = tp(b/M). Now repeatedly apply Lemma 24.10 to construct Ni for i < κ′ so
that Ni+1 is primary over the Nibi where bi realizes the non-splitting extension of
q to Sat(Ni). Fix finite C contained in M so that q does not split over C. We
prove by induction that each φ(Ni) = φ(M). Suppose this holds for i, but there is
an e ∈ φ(Ni+1) − φ(M). Using Exercise 18.22, fix m ∈ Ni and θ(x, z, y) such that
θ(bi,m, y) isolates tp(e/Nibi). We will obtain a contradiction.

For every n ∈ Ni, if Ni |= (∃y)(θ(bi,n, y) ∧ φ(y)) then for some d ∈ M ,
θ(bi,n, d) ∧ φ(d) holds, since φ(M) = φ(Ni). Thus,

(∀z)[(dqx)((∃y)θ(x, z, y) ∧ φ(y))[z, c] → (∃y)φ(y) ∧ (dqx)θ(x, z, y)[z, y, c]].

We have θ(bi,m, e), so Ni |= (dqx)((∃y)θ(x, z, y) ∧ φ(y))[m, c]. Thus by the
displayed formula, Ni |= (∃y)φ(y)∧(dqx)θ(x, z, y)[m, y, c]. That is, for some d ∈M ,
Ni |= (dqx)(θ(x, z, y))[m, d, c]. Since tp(bi/Ni) is defined by dq, we have θ(bi,m, d).
But this contradicts the fact that θ(bi,m, y) isolates tp(e/Nibi)m, as tp(e/Nibi) |=
y 6= d.

Thus, we have constructed a model Nκ′ of power κ′ where φ is satisfied only
countably many times. To construct a (κ′, λ′) model, iteratively realize the non-
splitting extension of φ, λ′ times. �25.13

We need one further corollary of Theorem 24.10. The details of the argument
require several technical remarks. a /⌣

M

b

Lemma 25.14. Suppose N is prime over Ma and d ∈ N −M . Then a /⌣
M

Md

Proof. For some c ∈ M , there is a formula φ(c,a,x), satisfied by d, which
implies tp(d/Ma). In particular, φ(c,a,x) → x 6= m for any m ∈ M . Now let
C be any finite subset of M , which contains c. We show tp(a/Md) splits over C.
Namely, choose d′ ∈M with d ≡C d′. Then, we must have ¬φ(c,a,d′) as required.
�25.14
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Lemma 25.15. If p ∈ S(M0) is quasiminimal and X is an independent set of
realizations of p, there is a primary model over MX.

Proof. Let X = {xi : i < λ}. By Theorem 24.10 define Mi+1 to be primary
over Mixi, taking unions at limits. �25.15

Exercise 25.16. Use the independence of X, Lemma 24.11, and Exercise 20.6
to verify that for limit δ, Mδ is in fact primary over Xδ.

Now we conclude that categoricity transfers among uncountable powers for
excellent classes. This applies also to sentences of Lω1,ω that are categorical up to
ℵω. They can be considered as atomic classes by Theorem 6.1.12 and are excellent
by Theorem 22.1.

Theorem 25.17. Suppose K is *-excellent. The following are equivalent.

(1) K is categorical in some uncountable cardinality.
(2) K has no Vaughtian triples.
(3) K is categorical in every uncountable cardinal.

Proof. We first show 1) implies 2). Suppose for contradiction that there is a
two-cardinal model (M,N, φ) even though K is κ-categorical for some uncountable
κ. By Theorem 25.13 K has a (κ,ℵ0)-model. But by Theorem 21.13, if it is
categorical there is a full model in the categoricity cardinal and every big definable
subset of a full model has the same cardinality as the model.

3) implies 1) is obvious; it remains to show 2) implies 3). Let M0 be the unique
countable model. By Lemma 25.5, there is a quasiminimal formula φ(x, c) with
parameters from M0. For any λ, by Theorem 21.13, there is a full model N of K

extending M0 with cardinality λ. By Lemma 25.7, cl is a pregeometry on φ(N).
Note that φ(M) is closed since by definition any element a of cl(φ(M)) both satisfies
φ and is in every model containing φ(M), including M . Thus we can choose a basis
X for φ(M). By Theorem 25.15, there is a prime model M|X| over MX . But
X ⊂ φ(M|X|) ⊂ φ(M) so φ(M|X|) = φ(M); whence since we assume there are no
two cardinal models, M|X| = M and M is prime and minimal over MX .

Now we show categoricity in any uncountable cardinality. If M , N are models
of power λ, they are each prime and minimal over X , a basis for φ(M) and Y , a
basis for φ(N), respectively. Now any bijection between X and Y is elementary
by the moreover clause in Lemma 25.7. It extends to a map from M into N by
primeness and it must be onto; otherwise there is a two cardinal model. �25.17

As in the first order case, we have the following easy corollary.

Corollary 25.18. Suppose K is *-excellent. If K is not ℵ1-categorical, then
K has at least n+ 1 models of cardinality ℵn for each n < ω.

Proof. There is a two-cardinal formula φ by Theorem 25.17. By Lemma 25.13
there is a model Mk of cardinality ℵn, such that φ(Mk) has cardinality ℵk for each
k < n. �25.18

We have completed the proof of ‘the Morley theorem’ for a complete sentence
of Lω1,ω. But we want to extend the result to arbitrary sentences and prove:

Theorem 25.19. (For n < ω, 2ℵn < 2ℵn+1.)

(1) If φ ∈ Lω1,ω is categorical in ℵn for all n < ω, then φ is categorical in all
uncountable cardinalities.
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(2) If φ has very few models in ℵn for all n < ω, then
(a) φ has arbitrarily large models and
(b) If φ is categorical in some uncountable κ, it is categorical in all un-

countable κ

Proof. In each case, φ has very few models in ℵn for each n < ω. By
Lemma 6.3.2, choose a small model of φ with cardinality ℵ1, say with Scott sen-
tence ψ. Let K be the class of models of ψ. By Theorem 6.1.12, without loss of
generality, we can view K as an atomic class. Theorem 22.1 implies K is excellent.
By Theorem 24.12, K and thus ψ have arbitrarily large models. Since ψ → φ, this
proves 2a). But it also gives 1) since the hypothesis of 1) implies ψ is categorical
in all powers and if there is a model of φ and ¬ψ, by Löwenheim-Skolem there is
one in ℵ1 contradicting the categoricity of φ is ℵ1.

For 2b) suppose φ is categorical in κ > ℵ0. Then so is ψ whence, by The-
orem 25.17, ψ is categorical in all uncountable powers. To show φ is categorical
above κ note that by downward Löwenheim-Skolem all models of φ with cardinality
at least κ satisfy ψ; the result follows by the categoricity of ψ. If φ is not cate-
gorical in some uncountable cardinal µ < κ, there must be a sentence θ which is
inconsistent with ψ but consistent with φ. Applying the entire analysis to φ∧θ, we
find a complete sentence ψ′ which has arbitrarily large models, is consistent with φ
and contradicts ψ. But this is forbidden by categoricity in κ. �25.19

We conclude by connecting to Part I, showing that for sentences of Lω1,ω,
Zilber’s notion of quasiminimal excellence is the ‘rank one’ case of Shelah’s theory
excellence.

Proposition 25.20. Suppose (K, clM ) is a class of L-structures with a closure
relation clM satisfying the definition of a quasiminimal excellent class (Chapter 2)
and the countable closure condition such that the class K and the closure relation
is definable in Lω1,ω. Then K is an excellent atomic class and the formula x = x
is quasiminimal.

Proof. Since K is Lω1,ω-definable and by Lemma 2.12.2 ℵ0-categorical, the
models of K are an atomic class (in some extended language). It is ω-stable by
Corollary 2.10. So to show quasiminimal excellence specializes excellence it suffices
to show that a ∈ cl(M) in the sense of Chapter 2 if and only if a /⌣M in sense of

Chapter 19. If a ∈ cl(M) then p = tp(a/M) is realized by only countably many
points. But if p does not split over some finite subset of M , it follows easily from
Lemma 19.9 that p is realized by arbitrarily many points. But if a 6∈ cl(M), then
tp(a/M) is realized uncountably many times; by quasiminimality there is a unique
such type and it must be the non-splitting extension. �25.20

Thus, for sentences of Lω1,ω, the argument in Chapter 2 specializes the ar-
gument in this chapter. Assuming excellence, the first shows a certain geometri-
cal condition (quasiminimality) implies categoricity in all cardinalities; the second
shows categoricity in one cardinality implies the models are controlled by a set
satisfying the geometric condition and thus categoricity in all powers. But there is
another sense in which the argument of Part I is stronger than what is proved in
Part IV. Part IV is formulated explicitly for atomic (Lω1,ω) classes. The argument
in Part I applies to certain classes that are formulated in Lω1,ω(Q) (most obviously,
just say the closure is countable). Shelah’s argument undoubtedly can be extended
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in a similar direction but the precise formulation of what can be obtained by these
arguments has not been spelled out. Shelah’s work on good frames (e.g. [She00d])
aims to obtain categoricity transfer for Lω1,ω(Q) but by more complicated methods
than here.





CHAPTER 26

Demystifying Non-excellence

We have shown (under weak GCH) that categoricity up to ℵω of a sentence in
Lω1,ω implies categoricity in all uncountable cardinalities. Hart and Shelah [HS90]
showed the necessity of the assumption by constructing sentences φk which were
categorical up to some ℵn but not eventually categorical. Since (ℵ0,∞)-tame classes
with amalgamation are eventually categorical if they are categorical in one power,
these examples are a natural location to look for classes that are categorical but
not tame. Relying on [BK], we present Kolesnikov’s simplification of the example,
correct some minor inaccuracies in [HS90], and provide examples of non-tameness.
In particular, [BK] answered a question posed by Shelah in [She00] by specifying
that categoricity fails exactly at ℵk−1; the proof is easy by combining the analysis
in Parts III and IV of this monograph. We outline here the proof of the following
theorem, referring to [BK] for many of the technical arguments.

Theorem 26.1. For each 2 ≤ k < ω there is an Lω1,ω-sentence φk such that:

(1) φk is categorical in µ if µ ≤ ℵk−2;
(2) φk is not ℵk−2-Galois stable;
(3) φk is not categorical in any µ with µ > ℵk−2;
(4) φk has the disjoint amalgamation property;
(5) For k > 2,

(a) φk is (ℵ0,ℵk−3)-tame; indeed, syntactic first-order types determine
Galois types over models of cardinality at most ℵk−3;

(b) φk is ℵm-Galois stable for m ≤ k − 3;
(c) φk is not (ℵk−3,ℵk−2)-tame.

In Section 26.1 we describe the example and define the sentences φk. In Sec-
tion 26.2 we introduce the notion of a solution and prove lemmas about the amal-
gamation of solutions. From these we deduce in Section 26.4 positive results about
tameness. In some sense, the key insight of [BK] is that the amalgamation property
holds in all cardinalities (Section 26.3) while the amalgamation of solutions is very
cardinal dependent. We show in Section 26.5 that φk is not Galois stable in ℵk−2,
hence not categorical above ℵk−2, and deduce the non-tameness.

26.1. The basic structure

This example is a descendent of the example in [BL71] of an ℵ1-categorical
theory which is not almost strongly minimal. That is, the universe is not in the
algebraic closure of a strongly minimal set. Here is a simple way to describe such
a model.

Example 26.1.1. Let G be a strongly minimal group and let π map X onto G.
Add to the language a binary function t :G×X → X for the fixed-point free action

193
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of G on π−1(g) for each g ∈ G. That is, represent π−1(g) as {ga :g ∈ G} for some
a with π(a) = g. This action of G is strictly 1-transitive. This guarantees that
each fiber has the same cardinality as G and π guarantees the number of fibers is
the same as |G|. Since there is no interaction among the fibers, categoricity in all
uncountable powers is easy to check.

The next step in complexity combines the ‘affine’ idea of Example 26.1.1 with
the ability, introduced in Example 2.30, to encode ‘finite support’ by using Lω1,ω.

Example 26.1.2. Let G be the group of functions from I into Z2 (with evalu-
ation) as in Example 2.30. Let G∗ be an affine copy of G. That is, G∗ is a copy of
G but there is no addition on G∗. Rather, there is a function tG mapping G×G∗

to G∗ by tG(g, h) = j, just if j is the coordinate-wise sum of g and h. We will just
write h + g = j. Now, as we work out in detail in a more complicated situation
below, we have an example of totally categorical sentence in Lω1,ω. The current
example is both excellent and homogeneous. (After naming a constant, each model
is in the algebraic closure of a quasiminal excellent homogeneous set.) However, the
notion of splitting does not behave well over arbitrary sets. we will show that for
any a ∈ G∗, and any model M , tp(a/M) splits over ∅. Indeed, choose c, d ∈M ∩G∗

that realize the same type over the ∅. For any g, we write Sg for the support of
g. Since tG codes a regular action, for any a, b ∈ G∗, there is a unique g ∈ G with
a+ g = b.

Now choose

(1) g ∈ G such that a = c+ g;
(2) h ∈ G ∩M such that c = d+ h;
(3) h0 ∈ G ∩M such that Sg ∩ Sh = Sh0 .

Now let F fix G ∪ I ∪ Z2 and define F on G∗ by F (x) = x + h0. It is easy to
check that F is an automorphism of the monster that fixes M setwise. If tp(a/M)
does not split over ∅ then also tp(F (a)/M) does not split over ∅. But from the
choices above, we see F (a) = c + (g + h0) and also F (a) = d + (g + h0 + h). A
short computation shows g + h0 and h have disjoint support. Thus, since h is not
identically 0, the supports of g + h0 and g + h0 + h have different cardinalities. As
F fixes M , the formula θ(a, c) which specifies the cardinality of the support of the
element x with a = c+ x does not hold of a and d.

This particular version of the example is due to Kolesnikov, simplifying ideas
of Hyttinen and Kesala. In [HK00], Hyttinen and Kesala show that there is no
good notion of independence over arbitrary sets for this example.

Now if we combine Examples 26.1.1 and 26.1.2, we will get the main exam-
ple of the chapter. In particular, it is not almost quasiminimal in the sense of
Definition 2.28.

Notation 26.1.3. The formal language for the current example contains unary
predicates I,K,G,G∗, H,H∗; a binary function eG taking G×K to H ; a function
πG mapping G∗ to K, a function πH mapping H∗ to K, a 4-ary relation tG on
K×G×G∗×G∗, a 4-ary relation tH on K×H×H∗×H∗. Certain other projection
functions are in the language but not expressly described. These symbols form a
vocabulary L′; we form the vocabulary L by adding a k + 1-ary relation Q on
(G∗)k ×H∗, which will be explained in due course.
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We start by describing the L′-structure M(I) constructed from any set I with
at least k elements. We will see that the L′-structure is completely determined by
the cardinality of I. So we need to work harder to get failure of categoricity, and
this will be the role of the predicate Q.

The structure M(I) is a disjoint union of sets I,K,H,G,G∗ and H∗. Let

K = [I]
k

be the set of k-element subsets of I. H is a single copy of Z2. Let G be
the direct sum of K copies of Z2. So G, K, and I have the same cardinality. We
include K, G, and Z2 as sorts of the structure with the evaluation function eG: for
γ ∈ G and k ∈ K, eG(γ, k) = γ(k) ∈ Z2. So in L′

ω1,ω we can say that the predicate

G denotes exactly the set of elements with finite support of KZ2.
Now, we introduce the sets G∗ and H∗. We have a projection function πG

from G∗ onto K. Thus, for u ∈ K, we can represent the elements of π−1
G (u) in

the form (u, x) ∈ G∗; or alternatively, as x ∈ G∗
u. We refer to the set π−1

G (u) as
the G∗-stalk, or fiber over u. Then we encode the affine action by the relation
tG(u, γ, x, y) ⊂ K ×G×G∗ ×G∗ which is the graph of a regular transitive action
of G on G∗

u. (Of course, this can be expressed in L′
ω,ω). That is, for all x = (u, x′),

y = (u, y′) there is a unique γ ∈ G such that tG(u, γ, x, y) holds.
As a set, H∗ = K × Z2. As before if πH(x) = v holds x has the form (v, x′),

and we denote by H∗
v the preimage π−1

H (v). Finally, for each v ∈ K, tH(v, δ, x, y) ⊂
K×Z2×H∗×H∗ is the graph of a regular transitive action of Z2 on the stalk H∗

v .
(∗): Use additive notation for the action of G (of H) on the stalks of G∗ (H∗).

(1) For γ ∈ G, denote the action by y = x+ γ whenever it is clear that x and
y come from the same G∗-stalk. It is also convenient to denote by y − x
the unique element γ ∈ G such that y = γ + x.

(2) For δ ∈ H , denote the action by y = x+ δ, whenever it is clear that x and
y come from the same H∗-stalk. Say that δ = y − x.

Let ψ1
k be the Scott sentence for the L′-structure that we have described so

far. This much of the structure is clearly categorical (and homogeneous). Indeed,
suppose two such models have been built on I and I ′ of the same cardinality.
Take any bijection between I and I ′. To extend the map to G∗ and H∗, fix one
element in each partition class (stalk) in each model. The natural correspondence
(linking those selected in corresponding classes) extends to an isomorphism. Thus
we may work with a canonical L′-model; namely with the model that has copies of
G (without the group structure) as the stalks G∗

u and copies of Z2 (also without
the group structure) as the stalks H∗

v . The functions tG and tH impose an affine
structure on the stalks.

Notation 26.1.4. The L-structure is imposed by a (k + 1)-ary relation Q on
(G∗)k × H∗, which has a local character. We will use only the following list of
properties of Q, which are easily axiomatized in Lω1,ω:

(1) Q is symmetric, with respect to all permutations, for the k elements from
G∗;

(2) Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1)) implies that u1, . . . , uk+1 form all
the k element subsets of a k+1 element subset of I. We call u1, . . . , uk+1

a compatible (k + 1)-tuple;
(3) using the notation introduced at (*), Q is related to the actions tG and tH

as follows:
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(a) for all γ ∈ G, δ ∈ H

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ ¬Q((u1, x1 + γ), . . . , (uk, xk), (uk+1, xk+1))

if and only if γ(uk+1) = 1;
(b)

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ ¬Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1 + δ))

if and only if δ = 1.

Let ψ2
k be the conjunction of sentences expressing (1)–(3) above, and we let

φk := ψ1
k ∧ ψ2

k.
It remains to show that such an expansion to L = L′ ∪ {Q} exists. We do this

by explicitly showing how to define Q on the canonical L′-structure. In fact, we
describe 2|I| such structures parameterized by functions ℓ.

Fact 26.1.5. Let M be an L′-structure satisfying ψ1
k. Let I := I(M) and

K := K(M). Let ℓ :I ×K → 2 be an arbitrary function.
For each compatible k+ 1 tuple u1, . . . , uk+1, such that u1 ∪ · · · ∪ uk+1 = {a}∪

uk+1 for some a ∈ I and uk+1 ∈ K, define an expansion of M to L by

M |= Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

if and only if x1(uk+1) + · · ·+ xk(uk+1) + xk+1 = ℓ(a, uk+1) mod 2. Then M is a
model of φk.

Indeed, it is straightforward to check that the expanded structure M satisfies
ψ2
k. We describe the interaction of G and Q a bit more fully. Using symmetry in

the first k components, we obtain the following.

Fact 26.1.6. For all γ1, . . . , γk ∈ G and all δ ∈ H we have

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ Q((u1, x1 + γ1), . . . , (uk, xk + γk), (uk+1, xk+1 + δ))

if and only if γ1(uk+1) + · · · + γk(uk+1) + δ = 0 mod 2.

In the next section, we show that φk is categorical in ℵ0, . . . ,ℵk−2. So in
particular φk is a complete sentence for all k.

Now we obtain abstract elementary classes (Kk,≺K
) where Kk is the class of

models of φk and for M,N |= φk, M ≺K N if M is a substructure of N . This is a
stronger requirement than it seems; see Section 4 of [BK]. Note that if M ≺K N
and g ∈ G(M), since G is a group, the support of g in M equals the support of g
in N . This allows us to verify that (Kk,≺K) is closed under unions of chains and
satisfies the axioms for an AEC. In fact, a rather more detailed analysis in [BK]
shows that if M ⊂ N , where M,N |= φk, then M ≺Lω1,ω

N .

26.2. Solutions and categoricity

As we saw at the end of the previous section, the predicate Q can be defined
in somewhat arbitrary way. Showing categoricity of the L-structure amounts to
showing that any model M , of an appropriate cardinality, is isomorphic to the
model where all the values of ℓ are chosen to be zero; we call such a model a
standard model. This motivates the following definition:



26.2. SOLUTIONS AND CATEGORICITY 197

Definition 26.2.1. Fix a model M . A solution for M is a selector f that
chooses (in a compatible way) one element of the fiber in G∗ above each element of
K and one element of the fiber in H∗ above each element of K. Formally, f is a pair
of functions (g, h), where g :K(M) → G∗(M) and h :K(M) → H∗(M) such that
πGg and πHh are the identity and for each compatible (k + 1) tuple u1, . . . , uk+1:

Q(g(u1), . . . , g(uk), h(uk+1)).

Notation 26.2.2. As usual k = {0, 1, . . . k − 1} and we write [A]k for the set
of k-element subsets of A.

We will show momentarily that if M and N have the same cardinality and
have solutions fM and fN then M ∼= N . Thus, in order to establish categoricity of
φk in ℵ0, . . . ,ℵk−2, it suffices to find a solutions of each cardinality up to ℵk−2 in
an arbitrary model of φk. Our approach is to build up the solutions in stages, for
which we need to describe selectors over subsets of I(M) (or of K(M)) rather than
all of I(M).

Definition 26.2.3. We say that (g, h) is a solution for the subset W of K(M)
if for each u ∈ W there are g(u) ∈ G∗

u and h(u) ∈ H∗
u such that if u1, . . . , uk, uk+1

are a compatible k + 1 tuple from W , then

Q(g(u1), . . . , g(uk), h(uk+1)).

If (g, h) is a solution for the set W , where W = [A]k for some A ⊂ I(M), we say
that (g, h) is a solution over A.

Definition 26.2.4. The models of φk have the extension property for solutions
over sets of size λ if for every M |= φk, any solution (g, h) over a set A with |A| = λ,
and every a ∈ I(M) \A there is a solution (g′, h′) over A ∪ {a}, extending (g, h).

One can treat the element g(u) as the image of the element (u, 0) under the
isomorphism between the standard model and M , where 0 represents the constantly
zero function in the stalk G∗

u. Not surprisingly, we have the following:

Lemma 26.2.5. If M and N have the same cardinality and have solutions fM
and fN then M ∼= N .

Moreover, suppose K has solutions and has extension of solutions for models
of cardinality less than |M |; if g is an isomorphism between L-substructures M ′, N ′

of M and N , then the isomorphism ĝ between M and N can be chosen to extend
g. Finally, if fM ′ is a solution on M ′ which extends to a solution fM on M , then
ĝ maps them to a similar extending pair on N ′ and N .

Proof. We prove the ‘moreover’ clause; the first statement is a special case
when g is empty and the ‘finally’ is included in the proof. Say, g maps M ′ to N ′.
Without loss of generality, M ↾L′ = M(I), N ↾L′ = M(I ′). Let α be a bijection
between I and I ′ which extends g ↾ I. Extend naturally to a map from K(M) to
K(N) and from G(M) to G(N), which extends g on M ′. By assumption there
is a solution fM ′ on M ′. It is clear that g maps fM ′ to a solution fN ′ on N ′;
by assumption fN ′ extends to a solution on N . (Note that if we do not have to
worry about g, we let α be an arbitrary bijection from I to I ′ and let α(fM (u))
be fN (α(u)).) For x ∈ G∗(M −M ′) such that M |= πG(x) = u, there is a unique
a ∈ G(M) with a = x − fM (u) (the operation makes sense because a and fM (u)
are in the same stalk).
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Let α(x) be the unique y ∈ N −N ′ such that

N |= t(α(u), α(a), fN (α(u)), y)

i.e., y = α(a) + fN (α(u)) in the stalk G∗
α(u)(N).

Do a similar construction for H∗ and observe that Q is preserved. �26.2.5

We prove the case k = 2.

Claim 26.2.6. The models of φ2 have the extension property for solutions over
finite sets.

Proof. Let A := {a0, . . . , an−1} and (g, h) be a solution over A. For each
v = {a, ai}, let yv be an arbitrary element of H∗

v . Now extend h to the function h′

with domain [A ∪ {a}]2 by defining h′(v) := yv.
It remains to define the function g′ on each {a, ai}, and we do it by induction

on i. For i = 0, pick an arbitrary element x ∈ G∗
a,a0

. Let γ0 ∈ G be such that for
j = 1, . . . , n− 1

γ0(a, aj) = 1 if and only if M |= ¬Q(({a, a0}, x), g(a0, aj), h
′(a, aj)).

It is clear that letting g′({a, a0}) := ({a, a0}, x+ γ0), we have a partial solution.
Suppose that g′({a, aj}), j < i, have been defined. Pick an arbitrary element

x ∈ G∗
a,ai

. Let γi ∈ G be such that for j ∈ {0, . . . , n− 1} \ {i}
γi(a, aj) = 1 if and only if M |= ¬Q(({a, ai}, x), g(ai, aj), h′(a, aj)).

Also let γ′i ∈ G be such that for j < i

γ′i(ai, aj) = 1 if and only if M |= ¬Q(({a, aj}, x), g′(a, aj), h(ai, aj)).
Now letting g′({a, ai}) := ({a, ai}, x+γi+γ

′
i) yields a solution on A∪{a}. �26.2.6

Corollary 26.2.7. The sentence φ2 is ℵ0-categorical, and hence is a complete
sentence.

Proof. Let M be a countable model. Enumerate I(M) as {ai : i < ω}. It is clear
that a solution exists over the set {a0, a1} (any elements in stalks G∗

a0,a1
and H∗

a0,a1

work). By the extension property for solutions over finite sets we get a solution
defined over the entire I(M). Hence φ2 is countably categorical by Lemma 26.2.5.
�26.2.7

We see that extension for solutions over finite sets translates into existence of
solutions over countable sets. This is part of a general phenomenon that we describe
below. For the general case k ≥ 2; we state a couple of definitions and the main
result but refer to [BK] for the proofs.

Definition 26.2.8. Let A be a subset of I of size λ, and consider an arbitrary
n-element set {b0, . . . , bn−1} ⊂ I. Suppose that, for each (n− 1)-element subset w
of n = {0, . . . , n − 1}, we have a solution (gw, hw) over A ∪ {bl : l ∈ w} such that
the solutions are compatible (i.e., (

⋃
w gw,

⋃
w hw) is a function).

We say that M has n-amalgamation for solutions over sets of size λ if for every
such set A, there is a solution (g, h) over A ∪ {b0, . . . , bn−1} that simultaneously
extends all the given solutions {(gw, hw) :w ∈ [n]n−1}.

For n = 0 the given system of solutions is empty, thus 0-amalgamation over sets
of size λ is existence for solutions over sets of size λ. For n = 1, the initial system
of solutions degenerates to just (g∅, h∅), a solution on A; so the 1-amalgamation
property corresponds to the extension property for solutions.
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Remark 26.2.9. Immediately from the definition we see that n-amalgamation
for solutions over sets of a certain size implies m-amalgamation for solutions over
sets of the same size for any m < n. Indeed, we can obtain m-amalgamation by
putting n−m elements of the set {b0, . . . , bn−1} inside A.

Again, the long argument for the next Lemma appears in Section 2 of [BK].

Lemma 26.2.10. The models of φk have the (k− 1)-amalgamation property for
solutions over finite sets.

The next result is a rather simpler induction [BK].

Lemma 26.2.11. Let M |= φk for some k ≥ 2 and let n ≤ k − 2. If M
has (n + 1)-amalgamation for solutions over sets of size less than λ, then M has
n-amalgamation for solutions over sets of size λ.

Corollary 26.2.12. Every model of φk of cardinality at most ℵk−2 admits a
solution. Thus, the sentence φk is categorical in ℵ0, . . . , ℵk−2.

Proof. Let M |= φk. By Lemma 26.2.10, M has (k−1)-amalgamation for solu-
tions over finite sets. So M has (k − 2)-amalgamation for solutions over countable
sets, (k − 3)-amalgamation for solutions over sets of size ℵ1, and so on until we
reach 0-amalgamation for solutions over sets of size ℵk−2 Since for m < n and any
λ, the n-amalgamation property for solutions over sets of cardinality λ implies m-
amalgamation solutions over sets of cardinality λ, we have 0-amalgamation, that is,
existence of solutions for sets of size up to and including ℵk−2. Now Lemma 26.2.5
gives categoricity in ℵ0, . . . , ℵk−2. �26.2.12

Corollary 26.2.13. For all k ≥ 2, the sentence φk is complete.

The following further corollary is used to establish tameness.

Corollary 26.2.14. Let M |= φk for some k ≥ 2 and n ≤ k − 2. Suppose M
has 2-amalgamation for solutions over sets of cardinality λ . If A0 ⊂ A1, A2 ⊂ M
have cardinality λ and (g1, h1), (g2, h2) are solutions of A1, A2 respectively that agree
on A, there is a solution (g, h) on A1 ∪A2 extending both of them.

Kolesnikov has provided the following example illustrating the difference be-
tween models being isomorphic and automorphic.

Example 26.2.15. We show an example of two triple of models, 〈M0,M1,M2〉
and 〈M0, ĝ(M

s
1 ),M2, 〉 such that M1 and ĝ(M s

1 ) are isomorphic over M2 but this
isomorphism does not extend to an automorphism of the monster model.

φ3 is ℵ0 and ℵ1-categorical but not ℵ2-categorical so as in Lemma 26.2.12, it
does not have 2-amalgamation of solutions over countable models (there are no
0-solutions in ℵ2).

There is then an independent triple M0,M1,M2 of countable models such that
M1 and M2 each have solutions extending a solution for M0 but the solutions over
M1,M2 cannot be amalgamated. Now choose M s

0 ,M
s
1 ,M

s
2 isomorphic individually

by maps gi to the Mi but each of the M s
i is standard. By Corollary 19.14 there is

an isomorphism ĝ extending g2 and taking M s
1 to M1. But the triples M0,M1,M2

and ĝ(M s
1 ,M2,M0) are not automorphic because the solutions for the M s

i can be
amalgamated but those for the Mi cannot.
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26.3. Disjoint amalgamation for models of φk

In contrast to the previous section, where we studied amalgamation properties
of solutions, this section is about (the usual) amalgamation property for the class
of models of φk. The amalgamation property is a significant assumption for the be-
havior and even the precise definition of Galois types, so it is important to establish
that the class of models of our φk has it.

We claim that the class has the disjoint amalgamation property (Definition 4.10)
in every cardinality.

Theorem 26.3.1 (Kolesnikov). Fix k ≥ 2. The class of models of φk has the
disjoint amalgamation property.

Proof. Let Mi = Mi(Ii), i = 0, 1, 2, where of course I0 ⊂ I1, I2; K0,K1,K2 are
the associated sets of k-tuples. We may assume that I1 ∩ I2 = I0. Otherwise take
a copy I ′2 of I2 \ I0 disjoint from I1, and build a structure M ′

2 isomorphic to M2 on
I0 ∪ I ′2.

We are building a model M |= φk on the set I1 ∪ I2 making sure that it is a
model of φk and that it embeds M1 and M2, where the embeddings agree over M0.
We start by building the L′-structure on I1 ∪ I2. So let I = I(M) := I0 ∪ I2; the
set K = [I]k can be thought of as K1 ∪K2 ∪ ∂K, where ∂K consists of the new
k-tuples.

Let G be the direct sum of K copies of Z2, notice that it embeds G(M1) and
G(M2) in the natural way over G(M0). We will assume that the embeddings are
identity embeddings.

Let G∗ be the set of K many affine copies of G, with the action by G and
projection to K defined in the natural way. Let H∗ be the set of K many affine
copies of Z2, again with the action by Z2 and the projection onto K naturally
defined.

For i = 1, 2, we now describe the embeddings fi of G∗(Mi) and H∗(Mi) into
G∗ and H∗. Later, we will define the predicate Q on M in such a way that fi
become embeddings of L-structures.

For each u ∈ K0, choose arbitrarily an element xu ∈ G∗
u(M0). Now for each

x′ ∈ G∗
u(M1), let γ be the unique element in G(M1) with x′ = xu + γ. Let

f1(x
′) := (u, γ). Similarly, for each x′ ∈ G∗

u(M2), let δ ∈ G(M2) be the element
with x′ = xu + δ. Define f2(x

′) := (u, δ). Note that the functions agree over
G∗
u(M0): if x′ ∈ G∗

u(M0), then the element γ = x′ − xu is in G(M0). In particular,
f1(xu) = f2(xu) = 0, the constantly zero function.

For each u ∈ Ki \K0, i = 1, 2, choose an arbitrary xu ∈ G∗
u(Mi), and for each

x′ ∈ G∗
u(Mi) define fi(x

′) := (u, y−xu). This defines the embeddings fi :G
∗(Mi) →

G∗(M).
Embedding H∗(Mi) into H∗(M) is even easier: for each v ∈ K1, pick an

arbitrary yv ∈ H∗
v (M1), and let f1(yv) := (v, 0), f1(yv + 1) := (v, 1). For each

v ∈ K2, if v ∈ K1, define f2 to agree with f1. Otherwise choose an arbitrary
yv ∈ H∗

v (M2), and let f2(yv) := (v, 0), f2(yv + 1) := (v, 1).
This completes the construction of the disjoint amalgam for L′-structures. Now

we define Q on the structure M so that fi, i = 1, 2 become L-embeddings. The
expansion is described in terms of the function ℓ that we discussed in Fact 26.1.5.

Let u1, . . . , uk, v be a compatible k+1 tuple of elements of K; u1∪· · ·∪uk∪v =
{a} ∪ v for some a ∈ I.
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Case 1. u1, . . . , uk, v ∈ K1 (or all in K2). This is the most restrictive case.
Each of the stalks G∗

ui
(M1) contains an element xui

defined at the previous stage;
and the stalk H∗

v has the element yv ∈M1. Define

ℓ(a, v) := 0 if M1 |= Q((u1, xu1), . . . , (uk, xuk
), (v, yv)),

and ℓ(a, v) := 1 otherwise.
Case 2. At least one of the u1, . . . , uk, v is in ∂K. Then the predicate Q has

not been defined on these k+ 1 stalks, and we have the freedom to define it in any
way. So choose ℓ(a, v) := 0 for all such compatible k + 1 tuples.

Now define Q on M from the function ℓ as in Fact 26.1.5.
It is straightforward to check that f1 and f2 become L-embeddings into the

L-structure M that we have built. �26.3.1

26.4. Tameness

Here we study the tameness properties for models of φk. We know that φk is
categorical up to ℵk−2; so without loss of generality we may deal with the standard
models of φk in powers ℵ0, . . . , ℵk−2.

In Section 26.5 we establish that φ2 has continuum Galois types over a countable
model; and that φ3 is not (ℵ0,ℵ1)-tame. The first index where some tameness
appears is k = 4.

Notation 26.4.1. Let M0 ⊂M |= φk. If a ∈M−M0 by a submodel generated
by M0 ∪a, denoted Ma

0 , we mean a structure constructed as follows. First take the
definable closure of M0 ∪a to obtain a set X. Then form X ′ by for any u ∈ K(X)
such that G∗

u(M)∩X is empty adding a single element from the fiber. Finally, take
the definable closure of X ′.

In [BK], this construction is refined to define ‘full’ submodels and minimal full
submodels. That allows us to show the syntactic type described below is in fact
existential and the example in ‘model complete’ in a precise generalization of the
classical notion.

Lemma 26.4.2. Suppose M0 ⊂ M |= φk and |M0| ≤ ℵk−3. If a, b ∈ M −M0

realize the same first order syntactic type over M0 then there is an isomorphism f
between Ma

0 and M b
0 , fixing M0 and mapping a to b.

Proof. Since a and b realize the same syntactic type the L-structures with
universe dcl(M0a) and dcl(M0b) are isomorphic over M0. Since |M0| ≤ ℵk−3,
extension of solutions holds for models of cardinality |M0|. We finish by applying
the moreover clause of Lemma 26.2.5 to M0, M

a
0 and M b

0 . �26.4.2

It follows immediately that we can strengthen the hypothesis of the last lemma
to a and b realize the same Galois type. We cannot go higher than ℵk−3 in
Lemma 26.4.4 because we need the extension property for solutions, which we can
only establish for models of size up to ℵk−3, to prove Lemma 26.4.2.

Lemma 26.4.3. Let k ≥ 4 and ℵ0 ≤ λ ≤ ℵk−4. Then the class of models of φk
is (λ, λ+)-tame.

Proof. Let M be a model of cardinality λ+; and let a, b have the same Galois
types over all submodels of M of cardinality λ. By the disjoint amalgamation
property, we may assume that M , a, and b are inside some model N . Let M0 ≺M
be of power λ; and let {Mi : i < λ+} be an increasing continuous chain of models
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beginning with M0 and with union M . By Lemma 26.4.2 there is an isomorphism
f0 between Ma

0 and M b
0 , fixing M0 and mapping a to b.

Let 〈g0, h0〉 be a solution for M0, and let 〈ga0 , ha0〉 be a solution extending
〈g0, h0〉 to the model Ma

0 . As noted in the finally clause of Lemma 26.2.5, the
induced solution 〈gb0, hb0〉 := 〈ga0 , ha0〉f0 for M b

0 extends the solution 〈g0, h0〉 as well.
Now the extension property for solutions yields a chain {〈gi, hi〉 : i < λ+} of

solutions for the modelsMi, with 〈gi, hi〉 ⊂ 〈gj , hj〉 for i < j. Using 2-amalgamation
for solutions (which holds for λ ≤ ℵk−4) and Corollary 26.2.14, we get increasing
chains of solutions 〈gai , hai 〉 and 〈gbi , hbi〉, i < λ+, where 〈gai+1, h

a
i+1〉 has domainMa

i+1

and is gotten by extension of solutions from the 2-amalgam of solutions 〈gai , hai 〉 and
〈gi+1, hi+1〉 that has domain Ma

i ∪Mi+1. Further by repeated application of the
strong form of Lemma 26.2.5 we get an increasing sequence isomorphisms fi from
Ma
i onto M b

i which fix Mi and map a to b and preserve the solutions. The union
of the fi is the needed isomorphism between Ma and M b that fixes M and sends
a to b. �26.4.3

We can establish an even better behavior for Galois types when k ≥ 3;

Corollary 26.4.4. Let k ≥ 3. Then the class of models of φk is (ℵ0,ℵk−3)-
tame. Moreover, the Galois types of finite tuples over a model of size up to ℵk−3

are determined by the syntactic types over that model.

Proof. The first statement is an easy induction from the last lemma. We
concentrate on the second, where it is enough to prove the claim for models of size
ℵ0. The proof will mimic the construction in the last lemma.

Fix k ≥ 3 and suppose that M |= φk is a countable model and a, b are finite
tuples that have the same syntactic type over M . Find minimal (finite) X and Y
such that a belongs to an L-structure generated by X , b to a structure generated
by Y . Again, we let X0 := X ∩ I(M). Let M0 ⊂M be a finite L-substructure con-
taining X0; and let {Mi : i < ω} be an increasing chain of substructures converging
to M .

Since a and b realize the same syntactic type over M0 by Lemma 26.4.2, there
is an isomorphism f between Ma

0 and M b
0 over M0.

The rest is a familiar argument: conjugate a solution on Ma
0 by f to a solution

on M b
0 ; and use 2-amalgamation property on solutions (holds over finite sets for all

k ≤ 3 to extend the solutions to Ma and M b. This gives the needed isomorphism
fixing M and mapping a to b. �26.4.4

26.5. Instability and Non-tameness

In this section we show that φk is not Galois stable in ℵk−2. We give details for
the case: k = 2, showing there are continuum Galois types over a countable model
of φ2. The argument [BK] for larger k involves a family of equivalence relations
instead of just one and considerably more descriptive set theory.

Since for any u, the stalk Gu is affine (L′)-isomorphic to the finite support
functions fromK to Z2, without loss of generality we may assume each stalk has this
form. We are working with models of cardinality ≤ ℵk−2 so they admit solutions;
thus, if we establish L′-isomorphisms they extend to L-isomorphisms. For any G∗-
stalk Gu, the 0 in (u, 0) denotes the identically 0-function in that stalk. But for a
stalk in H∗, the 0 in (u, 0) denotes the constant 0.
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Claim 26.5.1. Let M be the standard countable model of φ2. There are 2ℵ0

Galois types over M .

Proof. Let E0 be the equivalence relation of eventual equality on ω2; there are
of course 2ℵ0 equivalence classes.

Let I(M) = {a0, . . . , ai, . . . }. Pick a function s ∈ ω2, and define a model
Ms ≻M as follows. The L′-structure is determined by the set I(Ms) = I(M)∪{bs}.
For the new compatible triples of the form {a0, ai}, {a0, bs}, {ai, bs}, define

Ms |= Q(({a0, ai}, 0), ({a0, bs}, 0), ({ai, bs}, 0))

if and only if s(i) = 0. The values of Q for any u1, u2, u3 among the remaining new
compatible triples is defined as:

Ms |= Q((u0, 0), (u1, 0), (u2, 0)).

Note that 0 in the first two components of the predicateQ refer to the constantly
zero functions in the appropriate G∗-stalks, and in the third component, 0 is a
member of Z2. A compact way of defining the predicate Q is:

(∗) Ms |= Q(({a0, ai}, 0), ({a0, bs}, 0), ({ai, bs}, s(i))).
Note that by Notation 26.1.4, the definition of Q is determined on all of M .
Note that all the bs realize the same syntactic type over M . Now we show that

the E0-class of s can be recovered from the structure of Ms over M ; so the Galois
types are distinct. Take two models Ms and Mt and suppose that the Galois types
tp(bs/M) and tp(bt/M) are equal. Then there is an extension N of the model Mt

and an embedding f :Ms → N that sends bs to bt. We work to show that in this
case s and t are E0-equivalent.

First, let us look at the stalks G∗
a1,ai

, G∗
a1,bt

, H∗
ai,bt

for i > 1. Since f fixes M ,
the constantly zero function 0 ∈ G∗

a0,ai
is fixed by f . Let x ∈ G∗

a1,bt
be the image

of 0 ∈ G∗
a1,bs

under f . Then we have

Mt |= Q(({a1, ai}, 0), ({a1, bt}, x), ({ai, bt}, f(0))).

Since x is a finite support function, and we have defined

Mt |= Q(({a1, ai}, 0), ({a1, bt}, 0), ({ai, bt}, 0)),

for co-finitely many i > 1 we must have f(0) = 0 in the stalks H∗
ai,bt

. In other

words, f preserves all but finitely many zeros in H∗
ai,bt

. In particular, by (∗) for

any s :ω → 2 the functions s and f(s) are E0-equivalent.
We focus now on the stalks of the form G∗

a0,ai
, G∗

a0,bt
, H∗

ai,bt
, i ≥ 1. Again,

since f fixes M , the constantly zero function 0 ∈ G∗
a0,ai

is fixed by f . Letting
y ∈ G∗

a0,bt
be the image of 0 ∈ G∗

a0,bs
under f , we get

Mt |= Q(({a0, ai}, 0), ({a0, bt}, y), ({ai, bt}, f [s(i)])).

Since y is a finite support function, there is a natural number n such that y(ai, bt) =
0 for all i > n. Since we have defined

Mt |= Q(({a0, ai}, 0), ({a0, bt}, 0), ({ai, bt}, t(i))),
we get t(i) = f(s(i)) for all i > n, or f(s) and t are E0-equivalent. Combining
this with the previous paragraph, we get that s is E0-equivalent to t, as desired.
�26.5.1
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We refer the reader to [BK] for the rather more complicated argument (it has
a distinctive flavor of descriptive set theory) that many Galois types exist for a
general k:

Theorem 26.5.2. Let M be the standard model of φk+2 of size ℵk. There are a
family of elements bs for s ∈ 2ℵk such the Galois types (bs/M ;Ms) and (bt/M ;Mt)
are distinct. That is, bs and bt are in distinct orbits under automorpisms of the
monster fixing M .

We can now conclude, working with φk rather φk+2:

Proposition 26.5.3. The class of models of φk is not (ℵk−3,ℵk−2)-tame.

Proof. Let s, t be sequences in ωk−22 with ¬Ek−2(s, t). By Corollary 26.5.2, the
Galois types of bs, bt over the standard model M of size ℵk−2 are different. But, by
Corollary 26.4.4, the Galois type of bs is the same as the Galois type of bt over any
submodel N ≺M , ‖N‖ ≤ ℵk−3, as bs and bt have the same syntactic type over N .
�26.5.3

This analysis shows the exact point that tameness fails. Grossberg pointed out
that after establishing amalgamation in Section 26.3, non-tameness at some (µ, κ)
could have been deduced from eventual failure of categoricity of the example and
the known upward categoricity results [GV06a, Les05b]. However, one could not
actually compute the value of κ without the same technical work we used to show
tameness directly. In addition, failure of categoricity is itself established using the
Galois types constructed in Proposition 26.5.2.

In fact, the proof of Proposition 26.5.2 also yields:

Corollary 26.5.4. Let χ0, . . . χk be a strictly increasing sequence of infinite
cardinals. Then there is a model of φk+2 of cardinality χk over which there are 2χk

Galois types. In particular, φk+2 is unstable in every cardinal greater than ℵk.
We showed in Section 26.5 that φk is not Galois-stable in ℵk−2 and above; so

φk is certainly not excellent. We have shown that the models of φk have disjoint
amalgamation and it easy to see that φk has arbitrarily large models. Theorem 8.21
shows any Abstract Elementary class satisfying these conditions, that is categorical
in λ, is Galois stable in µ for LS(K) ≤ µ < λ. Thus we can immediately deduce:

Theorem 26.5.5. Let k ≥ 2; φk is not ℵk−1-categorical.

More refined arguments in [BK], directly about the example, show that K has
the maximal number of models in arbitrarily large cardinals.



APPENDIX A

Morley’s Omitting Types Theorem

In this appendix, we give a general statement and proof of Morley’s theorem
for omitting types and finding two cardinal models. For the meaning of the ‘arrow
notation’ below and the proof of the Erdos-Rado theorem see any model theory text.
Marker [Mar02] is particularly accessible and we have modelled this argument off
his treatment of the countable case. However, it is crucial that we formulate the
result for uncountable languages and omitting a large number of types. Shelah
proves these general statements in Chapter VII.5 of [She78] by distinctly different
and in some ways more informative arguments. In particular, he explains the
connection between the Hanf and well-ordering numbers.

Definition A.1 (Beth numbers). i0(κ) = κ. iα+1(κ) = 2iα(κ). iδ(κ) =
Σα<δiα(κ). If κ = ℵ0, it is omitted.

We need the Erdos-Rado theorem in a particular form.

Fact A.2 (Erdos-Rado). (1) in(κ)
+ → (κ+)nκ.

(2) iα+n(κ) → (iα(κ)+)niα(κ)

Proof. The first statement is exactly the Erdos-Rado theorem; the second
follows by simple substitution and the identity iα+n(κ) = in(iα(κ)). �A.2

We work in a vocabulary τ and in a theory T which without loss of generality
has Skolem functions. We write µ for (2|τ |)+ and H1 for iµ. We introduced
the notation used below in Chapter 4 and discussed it further in Chapter 6.2 and
Chapter 8. We are sometimes cavalier in switching between constants and variables
in the following two formulations. A τ -diagram is essentially a type in infinitely
many variables; by increasing the number of variables while fixing the finite types
realized, we are able to stretch a sequence of indiscernibles. To construct such
a diagram we may, as in the following proof, pass to a theory in an inessential
expansion τ∗ of τ by replacing the variables by constants. Recall that we call a
model M for vocabulary with a distinguished unary predicate P a (λ, κ)-model
if |M | = λ and |P (M)| = κ. The following theorem collects Morley’s results
on omitting types (part 1) with several variants on his two cardinal theorem for
cardinals far apart (part 2). Note that both the hypothesis and conclusion those of
2a) are weaker than of 2b).

Theorem A.3. Let T be a τ-theory, Γ a set of partial τ-types (in finitely many
variables) over ∅ and µ = (2|τ |)+, H1 = iµ.

(1) Suppose Mα for α < µ are a sequence of τ-structures such that |Mα| > iα
and Mα omits Γ.

Then, there is a countable sequence I of order indiscernibles such that
the diagram of I is realized in each Mα and an extension Φ of T such that
for every linear order J , EMτ (J,Φ) |= T and omits Γ.

205
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In particular, for every λ ≥ |τ |, there is a model N with |N | = λ of
T such that N omits Γ (i.e. omits each p ∈ Γ).

(2) Suppose P is a one-place τ-predicate. In addition to requiring that N
omits Γ, we can demand.
(a) Moreover, if for every α < µ, |P (Mα)| ≥ iα, then the indiscernibles

in item 1) can be chosen inside P . Then, we can insure |P (N)| = λ.
(b) Suppose for some κ and for every α < µ, |Mα| > iα(κ), |P (Mα)| =

κ ≥ |τ |, and Mα omits Γ.
Then, for every λ ≥ |τ | + κ, and any χ with κ ≤ χ ≤ λ there is a
model N with |N | = λ of T such that:

(i) |P (N)| = χ;
(ii) There is an infinite set I ⊆ N of indiscernibles over P (N).

(c) If for each α < µ both P (|Mα|) ≥ H1 and |Mα| > iα(|P (Mα)|) then
for any χ with |τ | ≤ χ ≤ λ, we can choose N with P (N) = χ.

Proof. We will construct a sequence of theories Φi for i < µ such that their
union Φ is an EM-template with certain specified properties. We first derive the
results from the existence of Φ and then proceed to the much longer construction
of Φ. Note that statement 1) is a special case of any of the formulations of the
second. We prove only 2b) and then note the minor modifications needed for 2a)
and 2c).

Clause ii) below guarantees the type is omitted; clause iii) asserts the new
constants add no new elements to P ; clause iv) asserts the new constants are
indiscernible over P .

Let C = 〈ci : i < ω〉 be a sequence of new constant symbols and τ∗ = τ ∪ C.
The τ∗-theory Φ will have the following properties:

i) ci 6= cj if i 6= j;
ii) if t(v) is a term then for each p ∈ Γ, there is a φp ∈ p such that if i1, . . . in

are strictly increasing:

¬φp(t(ci1 , . . . cin)) ∈ Φ;

iii) if t(v1, . . . , vn, w1, . . . wk) is a term and if i1, . . . in and j1, . . . jn are strictly
increasing,

(∀w)((
∧

1≤i≤k

P (wi) ∧ [P (t(ci1 , . . . cin),w)

→ (t(ci1 , . . . cin ,w) = t(cj1 , . . . cjn ,w))](A.1)

is in Φ;
iv) for any ψ(w,v) if i1, . . . in and j1, . . . jn are strictly increasing:

(∀w)
∧
P (wi) → [ψ(w, ci1 , . . . cin) ↔ ψ(w, cj1 , . . . cjn)] ∈ Φ.

If we have such a Φ the result 2b) is clear. Form Φ′ by adding χ distinct
constants for members of P . By condition iv), the ci remain indiscernible over the
new constants. Let N0 = EM(J,Φ′) where |J | = χ. The new constants guarantee
that |P (EM(J,Φ))| = κ = |N0|. Extend J to an ordering I of cardinality λ and let
N = EM(I,Φ′). Then ii) guarantees that N omits Γ. and iv) shows the elements
of I are actually indiscernible over P (N). By iii), P (EM(J,Φ′)) = P (EM(I,Φ′))
and so has cardinality χ.
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2a) is even easier; we just choose set κ = |τ | and choose I inside P . Clause iii)
and iv) are not needed. For 2c) under the additional hypothesis of 3) that P (Mα) ≥
iα we can build a second sequence of indiscernibles inside P by the technique of
Claim A.7. First take the Skolem hull Mµ of a sequence of indiscernibles in P
of cardinality µ; Mµ contains a countable sequence J0 outside of P (Mµ) that is
indiscernible over P . Now add constants for P (Mµ) and then take the Skolem hull
of a sequence of the same type as J0 but with length λ; this model is as required.

We now prove a series of claims which will then support the induction step in
the construction of Φ. We carry the following notation throughout.

Notation A.4. Let (Mα, P (Mα)) be a sequence of pairs satisfying the hy-
potheses of the theorem and let Xα be a subset of Mα with |Xα| > iα(κ). Fix
a linear ordering of each Mα (we’ll denote them all by <). In each of the follow-
ing claims we construct from such a sequence a new sequence (M ′

α, Yα) meeting
a specific condition, and which is a subsequence of the original sequence in the
strong way that each M ′

α = Mβ for some β ≥ α. We guarantee that Yα ⊆ Xβ and
|Yα| > iα(κ).

Claim A.5 (Omit Γ). Fix a term t(x) The sequence (M ′
α, Yα) can be chosen

to have the property:
For each p ∈ Γ, there is a φp ∈ p such that if i1, . . . in are strictly increasing

and the yij are in Yα:

M ′
α |= ¬φp(t(yi1 , . . . yin)).

Proof of Claim. Note |Γ| ≤ 2|τ |. Let Nα = Mα+n. Define Fα : [Xα+n]n → |τ ||Γ|
by Fα(x) is the function f from Γ to the collection of 1-ary τ -formulas defined by
f(p){(t(x1, . . . xn)} = φi is the least i (for some fixed enumeration of the 1-ary
formulas) such that φi ∈ p and ¬φi(t(x1, . . . xn)).

Now |Xα+n| > iα+n(κ). By Fact A.2.2, noting that for α ≥ 3, iα(κ) ≥ |τ ||Γ|:

iα+n(κ) → (iα(κ)+)n|τ ||Γ|

which is all we need to choose an appropriate Yα ⊆ Xα+n. Let φα,p denote the
formula witnessing the omission of p on each tuple from [Yα]k and Zα = rg fα.
As α varies through (2|τ |)+, there are only 2|τ | choices for Zα so we can choose
a subsequence of the Nα as M ′

α to obtain a fixed Z for the entire sequence. Let
φp = φi ∈ Z where i is least so that ¬φi(t(x1, . . . xn)) holds for all x ∈ Yα (for
sufficiently large α). �A.5

Claim A.6 (Keep P small). Fix a term t(v1, . . . , vn, w1, . . . , wk). The sequence
(M ′

α, Yα) has the property:
If a = 〈a1, . . . ak〉 ∈ P (M ′

α), and i1, . . . in and j1, . . . jn are strictly increasing
and the yij ∈ Yα:

(P (t(yi1 , . . . yin ,a)) → (t(yi1 , . . . yin ,a) = t(yj1 , . . . yjn ,a))).

Proof of Claim. Let M ′
α = Mα+n. Fix η 6∈ P (Nα). For x1, . . . xn ∈ Xα+n,

define Fx : [P (Nα)]k → P (Nα) ∪ {η} by Fx(a) = t(x,a) if t(x,a) ∈ P (Nα) and
η otherwise. Since |P (Nα)| = κ, there are only 2κ+|τ | functions that can be Fx.
Thus, the map x → Fx partitions [Xα+n]

n into 2κ+|τ | pieces. Just as in Claim A.5,
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we obtain Yα by Erdos-Rado; this time there is no need to refine the sequence.
�A.6

Claim A.7 (Indiscernibility). Fix a formula φ(v1, . . . , vn, w1, . . . , wk). The se-
quence (M ′

α, Yα) has the property for each α:
If a = 〈a1, . . . ak〉 ∈ P (M ′

α), and i1, . . . in and j1, . . . jn are strictly increasing
and the yij ∈ Yα:

φ(yi1 , . . . yin ,a) ↔ φ(yj1 , . . . yjn ,a))).

Proof of Claim. Let Nα = Mα+n. For x1, . . . xn ∈ Xα+n, define Fx : [Xα+n]
k →

{0, 1} by Fx(a) = 0 if Nα |= φ(x,a) and 1 otherwise. Again, x → Fx partitions
[Xα+n]

n into 2τ pieces. We obtain Yα by Erdos-Rado; we refine the sequence to
M ′
α to make the same choice of φ for each α since 2 is not cofinal with (2|τ |)+.

�A.7

Now we turn to the main construction and build Φ by induction. For i <
(2|τ |)+, at each stage i of the construction we will have a collection of τ -sentences
Φi and models 〈(Mi,α, Xi,α) :α < (2|τ |)+〉, each linearly ordered by < and |Xi,α| >
iα(κ) so that if we interpret the ci as an increasing sequence in Xi,α, for each α:

Mi,α |= Φi.

Stage 0: Let Φ0 be T along with the assertion that the ci are distinct. For
α < (2|τ |)+ let M0,α omit Γ and satisfies |P (M0,α)| = κ. Let X0,α = M0,α. Clearly
we can interpret the ci to satisfy Φ0.

Stage i ≡ 1 mod 3: [omit Γ] Let ti = t(v). By Claim A.5, we can choose
〈(Mi+1,α, Xi+1,α) : α < (2|τ |)+〉 with |Xi+1,α| > iα(κ), with Mi+1,α = Mi,β for
some β ≥ α and Xi+1,α ⊆ Xi,β and satisfying:

For all strictly increasing sequences x from Xi+1,α and all p,

Mi+1,α |= ¬φp(t(x)).

If i1, . . . in are strictly increasing, for each p add: ¬φp(t(ci1 , . . . cin)) to Φi to
form Φi+1.

Stage i ≡ 2 mod 3: [keep P small] Let ti = t(v1, . . . , vn). By Claim A.6, we
can choose 〈(Mi+1,α, Xi+1,α) :α < (2|τ |)+〉 with |Xi+1,α| > iα(κ), with Mi+1,α =
Mi,β for some β ≥ α and Xi+1,α ⊆ Xi,β and satisfying the conclusion of Claim A.6.

If a1, . . . ak ∈ P (Mi+1,α), and i1, . . . in and j1, . . . jn are strictly increasing and
the cij ∈ Xi+1,α, add the following to Φi to form Φi+1.

(∀w)((
∧

1≤i≤k

P (wi) ∧ [P (t(ci1 , . . . cin),w) → (t(ci1 , . . . cin ,w) = t(cj1 , . . . cjn ,w))].

Stage i ≡ 3 mod 3: [Indiscernible over P ] Let φi be φ(v1, . . . , vn, w1, . . . , wk).
By Claim A.7, we can choose 〈(Mi+1,α, Xi+1,α) : α < (2|τ |)+〉 with |Xi+1,α| >
iα(κ), with Mi+1,α = Mi,β for some β ≥ α and Xi+1,α ⊆ Xi,β and satisfying the
conclusion of Claim A.7. If (*) holds for a put φ(ci1 , . . . cik ,a) ∈ Φi; otherwise
¬φ(ci1 , . . . cik ,a) ∈ Φi.

If a1, . . . ak ∈ P (Mi+1,α), and i1, . . . in and j1, . . . jn are strictly increasing and
the xij ∈ Xi+1,α, put
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(∀w)
∧

1≤i≤k

P (wi) → [φ(ci1 , . . . cik ,w) ↔ φ(cj1 , . . . cjk ,w)] ∈ Φi+1.

Letting Φ be the union of the Φi, we have a consistent theory. To find a
(λ, κ) model, first take a model M0 of cardinality κ. There is a countable set I of
indiscernibles over P (M0). Now we can stretch them to a set J size λ in a model
M1. Condition iii) guarantees that if M2 = EM(J,Φ), |P (M2)| = κ. �A.3

Note that as constructed we have not completely specified the diagram of the
ci. We can easily extend Φ to do so.

Remark A.8 (Morley’s Method). I believe that the phrase ‘Morley’s method’
applies to the following observation (probably by Shelah). Suppose that in Theo-
rem A.3.1 we fix a single set X (not necessarily a model) from which the approx-
imations to the indiscernible set I are chosen. Then the finite types realized in I
are those realized in X . A common application is to make X a long independent
set; then to observe that I is also an independent set (e.g. [Kim98].





APPENDIX B

Omitting Types in Uncountable Models

In this appendix, we prove the key lemma for Keisler’s argument that if a
sentence φ of Lω1,ω has few models in ℵ1 then every model of φ realizes only
countably many complete LA-types over ∅, where LA is the smallest fragment
including φ. This result, Theorem B.6, asserts that for any LA-type p over the
∅, there is a sentence θp such that a countable model A |= θp if and only A has
an uncountable LA-elementary end extension omitting p. We rely on the omitting
types theorem and a theorem on extendible models that are proved in [Kei71].
We state Theorem B.6 rather differently than Keisler and rework the proof but
the argument is really his. The sentence θp is not in LA, nor is it preserved under
LA-elementary extension, but it is preserved by unions of LA-elementary chains.

The omitting types theorem for Lω1,ω is proved in Chapter 11 of [Kei71].
We will rely below on Keisler’s version of consistency property, which appears in
Chapters 3 and 4 of [Kei71]. We defined the notion of a countable fragment of
Lω1,ω in Definition 1.2.2.

Theorem B.1 (Omitting types theorem). Let LA be a countable fragment of
Lω1,ω and T a set of LA-sentences. Further, for each m, let pm be a set of LA-
formulas. Suppose

(1) T has a model
(2) and for each m < ω and any φ(x1, . . . xkn

) ∈ LA, if T ∪ (∃x)φ(x) has a
model then so does T ∪ (∃x)(φ(x) ∧ ¬σm) for some σm ∈ pm.

Then there is a model of T omitting all the pm.

To formulate the next definition and theorem, we assume that there is a symbol
< in the vocabulary and that the theory T makes < a linear order. In any linearly
ordered structure we have the quantifier

(∃ arbitrarily large u)χ(u) : (∀x)(∃u)u > x ∧ χ(u).

We extend the notion of fragment to require that if φ,
∨

Θ ∈ ∆ then
∨

({for arb large x)θ :θ ∈ Θ}.
Now we describe the notion of an extendible structure.

Definition B.2. Let (A,< . . .) be a countable linearly ordered structure and
LA be a countable fragment of Lω1,ω. (A,< . . .) is LA-extendible if

(1) < has no last element;
(2) (∃ arbitrarily large x)

∨
n φn → ∨

n (∃ arbitrarily large x) φn;
(3) (∃ arbitrarily large x) (∃y)φ(x, y) →

(∃y) (∃ arbitrarily large x) φ(x, y) ∨
(∃ arbitrarily large y)(∃x)φ(x, y);

211
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where
∨
n φn and (∃y)φ are in LA.

Note that there is an LA-sentence over the empty set, θext, such that for any
countable (B,<), B |= θext if and only if (B,<) is extendible.

Exercise B.3. Verify that the conditions for extendibility are true in a model
of power ω1 that is ordered by ω1.

We use the next theorem in several places; it is proved as Theorem 28 of [Kei71]
and in [Bal07a]. So, we don’t reproduce the proof.

Theorem B.4 (Keisler). Let (A,< . . .) be a countable linearly ordered structure
and LA be a countable fragment of Lω1,ω. The following are equivalent:

(1) (A,<) has an LA-end-elementary extension;
(2) (A,<) has an LA-end-elementary extension with cardinality ω1;
(3) (A,<) is LA-extendible;
(4) (A,<) |= θext.

Here are two notions that are used in the proof of B.4 that are essential for our
proof of Theorem B.6.

Notation B.5. We will write A′ for the structure (A, a)a∈A. Let TA be the
collection of all LA(A)-sentences true in A′ along with all sentences θ(d) such that
θ(x) ∈ LA and

A |= (∃y)(∀x)[x > y → θ(x)].

We call an LA(A) sentence φ an end extension sentence, if it expresses that
each type of a new element that is not above all members of A is omitted. Formally,

φ :=
∧

a∈A

(∀y)
∨

b∈A

(y = b ∨ a < y).

The gist of the proof of Theorem B.4 uses the omitting types theorem to show
TA ∪ {φ} is consistent for the end extension sentence φ. It is clear that

B |= TA ∪ {φ}
implies B is a proper LA-elementary (by TA), end (by φ) extension of A.

Now we come to the main result of this appendix, which restates Chapter 30
of [Kei71].

Theorem B.6. Fix a countable fragment LA of Lω1,ω(τ), a sentence ψ in
LA such that < is a linear order of each model of ψ. For each p(x) an LA-type
(possibly incomplete) over the empty set, there is a sentence θp ∈ Lω1,ω satisfying
the following conditions.

(1) If p is omitted in an uncountable model (B,<) of ψ then for any countable
(A,<) such that (B,<) is an end LA-elementary extension of (A,<),
(A,<) |= θp.

(2) θp satisfies:
(a) If B |= θp then B omits p.
(b) θp is preserved under unions of chains of LA-elementary end exten-

sions;
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(c) for any family X of LA-types 〈pm :m < ω〉 over ∅ and any count-
able A, if A |= θpm

for each m then A has a proper LA-elementary
extension that satisfies each θpm

.
(3) Let X be a collection of complete LA′(τ ′)-types (for some A′ ⊆ A and

τ ′ ⊆ τ) over the empty set that are realized in every uncountable model of
ψ. Then, X is countable.

Proof. We must first define the sentence θp. Let Γ be the set of all pairs
〈γ, S〉 where γ is a formula in LA with all free variables displayed as γ(x,u,y) and
S = (Su) is a finite sequence of (∃ui) and ‘for arbitrarily large uj’. We fix the
length of the x-sequence but u and y can have any finite length.

Now for any type p in the variables x, let θp be the conjunction of the extend-
ability sentence θext and the Lω1,ω(∅)-sentence:

∧

〈γ,S〉∈Γ

(∀y)

[
(Su)(∃x)γ(x,u,y) →

∨

σ∈p

(Su)(∃x)(γ(x,u,y) ∧ ¬σ)

]
.

Part 1). Given an uncountable model (B,<) with order type ω1 omitting p, we
can choose a countable (A,<) so that (B,<) is an LA-elementary end extension
of (A,<). Then (A,<) satisfies the extendibility sentence θext by Theorem B.4.
Applying Definition B.2.3, it is straightforward to prove the result by induction on
the length of the string S.

Before proving part 2, we need some further notation.

Definition B.7 (Cp,A). We say Cp,A holds if for every 〈γ(x,u,y), S〉 ∈ Γ,
every partition of y into y1,y2 and every substitution of an a ∈ A for y2 to yield
γ(x,u,y1,a) in LA(A):

A |=
[
(Su)(∃x)γ(x,u,y1,a) →

∨

σ∈p

(Su)(∃x)(γ(x,u,y1 ,a) ∧ ¬σ(x))

]
.

The following essential claim is easy to check using the observation that θp
contains universal quantifiers while Cp,B contains their instantiations over B.

Claim B.8. For any B, B |= θp is equivalent to Cp,B holds.

Now, for part 2a) note that by Claim B.8, we may assume Cp,B holds. But, if
Cp,B holds then B omits p since for any b ∈ B we can take γ ∈ LA(B) from Cp,B
to be x = b, and then we have a direct statement that the type is omitted.

Part 2b) is immediate noting that if the hypothesis of one conjunct of θp is
satisfied in some Aα, then a particular one of the disjuncts in the conclusion of
the implication is true in Aα and is in LA and so is true in every LA-elementary
extension of Aα.

For part 2c), let A be a countable model of T and X a countable set of types
over the empty set. We will concentrate on a single p, just noting at the key point
that the omitting types theorem will allow us to lift all the θp for p ∈ X to a single
model.

Note that θp is actually in the form asserting a family of types is omitted (if we
write F → ∨

iGi as ¬F ∨∨
iGi). More precisely, define for each γ(x,u,y) ∈ LA(A)

and each string (Su) the LA(A)-type:

λp,γ,S(y) = {(Su)(∃x)γ(x,u,y)} ∪ {¬(Su)(∃x)γ(x,u,y) ∧ ¬σ :σ ∈ p}.
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Now, just checking the definition,

Lemma B.9. For any B, B omits λp,γ,S(y) for each γ, S with γ ∈ LA(∅) if and
only if B |= θp.

Let TA be the theory in LA((A)∪{d}) introduced in Notation B.5 and let φ be
the end extension sentence defined there. We want to show TA ∪ {φ} has a model
(thus a proper LA-elementary end extension (B,<) of (A,<)) omitting each λp,γ .

Lemma B.10. Let A be countable and suppose A |= θp. For any LA(A)-formula,
γ(x,u,y), any type p(x) and any formula π(d,y) ∈ LA(Ad), if (∃y)π(d,y) is
consistent with TA then

• (∃y)(π(d,y) ∧ ¬(Su)(∃x)γ(x,u,y)) is consistent with TA, or
• for some σ ∈ p,

(∃y)(π(d,y) ∧ (Su)(∃x)γ(x,u,y) ∧ ¬σ)

is consistent with TA.

Proof. Since A |= θp, by Claim B.8, Cp,A holds. Because of this observation we
have suppressed additional parameters a which may occur in the formulas π and
γ. Suppose (∃y)π(d,y) is consistent with TA but

TA |= ¬(∃y)(π(d,y) ∧ ¬(Su)(∃x)γ(x,u,y)).

Then

TA |= (∀y)(π(d,y) → (Su)(∃x)γ(x,u,y)).

Recall from the definition of TA that the consistency of π(d,y) means

A′ |= (∃ arb large x)(∃y)π(x,y).

Combining the last two,

A′ |= (∃ arb large x)(∃y)(Su)(∃x)(γ(x,u,y) ∧ π(x,y)).

Let S′xyu denote (∃ arb large x)(∃y)(Su). With this notation, we have

A′ |= (S′xyu)(∃x)(γ(x,u,y) ∧ π(x,y)).

Now, since Cp,A holds, for some σ ∈ p,

A′ |= (S′xyu)(∃x)[γ(x,u,y) ∧ π(x,y) ∧ ¬σ(x)].

Again using the definition of TA, we conclude

(∃y)(Su)(∃x)[γ(x,u,y) ∧ π(d,y) ∧ ¬σ(x)]

is consistent with TA, whence

(∃y)[π(d,y) ∧ (Su)(∃x)γ(x,u,y) ∧ ¬σ(x)]

is consistent with TA as required. �B.10

We conclude with the argument for Part 2c).

Lemma B.11. For any countable model (A,<), if A |= θp , for each p ∈ X where
X is countable, then (A,<) has a proper LA-elementary end extension (B,<) so
that B |= ∧

p∈X θp.



B. OMITTING TYPES IN UNCOUNTABLE MODELS 215

Proof. Since (A,<) is extendible (this is implied by θp), each of the countably
many types whose omission is encoded in φ is ‘non-principal’. By Lemma B.10, for
each p ∈ X , the same holds for each λp,γ,S(y) with γ ∈ LA(A). By the omitting
types theorem, TA ∪ {φ} has a model (thus a proper LA-elementary end extension
(B,<) of (A,<)) omitting λp,γ,S for each p ∈ X and each γ ∈ LA(A) and in
particular for each γ ∈ LA(∅). Thus B |= ∧

p∈X θp. �B.11

Finally, we prove Part 3) of Theorem B.6. Let X be a collection of complete
LA′(τ ′)-types (for some A′ ⊆ A and τ ′ ⊆ τ) over the empty set that are realized
in every uncountable model of T . If p ∈ X , then for any such (B,<) that is an
LA-elementary end extension of a countable (A,<),

(A,<) |= ¬θp.
That is, there is a formula γp such that:

(A,<) |= (Su)(∃x)γp,

but also for some σ ∈ p:

(A,<) |= ¬(Su)(∃x)(γp ∧ ¬σ).

Note that while there are potentially continuum many formulas θp (infinite
disjunction over p), there are only countably many possible formulas γp. So to
conclude that there only countably many possible p, we need only show that if
p 6= q then γp 6= γq. Since X is a collection of complete LA′(τ ′)-types, there is some
LA(τ ′)-formula σ with σ ∈ p and ¬σ ∈ q.

(A,<) |= ¬(Su)(∃x)γp ∧ ¬σ.

(A,<) |= ¬(Su)(∃x)γq ∧ ¬¬σ.
But if γp = γq, this contradicts that ”arb large” and ”there exists” distribute

over disjunction. So we finish. �B.6





APPENDIX C

Weak Diamonds

In this appendix we state and prove the Devlin-Shelah weak diamond [DS78]
and some variants. This is the only place the book goes beyond ZFC and we use

only the axiom: 2λ < 2λ
+

. For the arguments here, one needs only rudimentary
properties of closed unbounded sets (cub) and stationary sets, as found in many in-
troductory set theory books, e.g. [Kun80, Dev84]. In particular, cub(λ) denotes
the filter of those sets which contain a closed unbounded subset of λ. More back-
ground on the role of weak diamonds and uniformization principles can be found
in [EM90]. A more comprehensive exposition of the material will be in [Gro]. We
introduce here a variant of the Devlin-Shelah diamond which we call Θχ,λ. Θλ,λ

is precisely what is needed to show in Chapter 23 that excellence follows from the
existence of very few models [She83b]. We show the slightly stronger fact that
Θχ,µ+ holds if 2χ ≤ 2µ. Our proof is a slight variant of the original argument for
the Devlin-Shelah diamond and quite different from the argument in [She80]. Θχ,λ

is a simplified notation for what Shelah calls ¬Unif(λ, χ, 2, 2). These results come
from Chapter XIV of [She80] which is reprinted with numerous corrections as an
Appendix to [She98]. It remains very hard to decipher.

We begin by stating the Devlin-Shelah weak diamond.

Definition C.1 (Φλ). Φλ is the proposition; For any function F : 2<λ → 2
there exists g ∈ 2λ such that for every f ∈ 2λ the set {δ < λ :F (f ↾ δ) = g(δ)} is
stationary.

The function F partitions 2<λ into two classes and Φλ asserts that g predicts
for any f which member of the partition f ↾ δ lies in for stationarily many δ. Here is
an ostensibly more general (but equivalent) formulation of this principle; we predict
functions with range λ rather than 2.

Remark C.2. The various set theoretic principles described in this appendix
(Φλ,Θλ etc.) are defined with respect to a parameter λ. In practice, λ is a successor
cardinal. In general, we don’t flag this is the statement of the definition but only
in the lemmas and theorems. We sometimes write Θλ+ emphasize we are working
on a successor cardinal.

Lemma C.3. Suppose λ is a successor cardinal. Φλ implies the proposition:
For any function F : λ<λ → 2 there exists g ∈ 2λ such that for every f ∈ λλ

the set {δ < λ :F (f ↾ δ) = g(δ)} is stationary.

Proof. For α ≤ λ, regard f ∈ αα as a subset of α × α and write χf for the
characteristic function of the graph of f . Now given F : λ<λ → 2, define F ∗ on
2<λ by F ∗(η) = F (f) if η = χf and 0 otherwise. By Φλ (applied to λ × λ; see
Lemma C.5), there is an oracle g for F ∗. For any f ∈ λλ, there is a cub Cf such
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that for δ ∈ Cf , f maps δ into δ. Now Cf ∩S where S = {δ < λ :F ∗(χf ↾ δ) = g(δ)}
is the required stationary set. �C.3

We need to generalize these notions in two ways to handle the arguments in
Chapter 17 and Chapter 23, respectively. For Chapter 17, we need to study the
restriction of weak diamond to subsets but also consider the extension to finite
cartesian powers of λ. The following condition is usually used when λ is a successor.

Definition C.4. The principle Θ̂λ holds if
For every function

F :λ<λ × λ<λ × λ<λ → 2

there is an oracle g :λ→ 2 such for every η, ν, σ :λ→ λ the set

{δ :F (η ↾ δ, ν ↾ δ, σ ↾ δ) = g(δ)}
is stationary in λ.

Following [Gro], we check the easy transfer from Φλ to Θ̂λ. The result is the
same, replacing λ by λk for any finite k; for simplicity we let k = 2.

Lemma C.5. For successor λ, Φλ implies Θ̂λ.

Proof. Fix a bijection H from λ × λ onto λ. Suppose F :λ<λ × λ<λ → 2. For
each η, ν ∈ 2<λ we define a function fη,ν from λ to λ by fη,ν(α) = H(η(α), ν(α))
for α ∈ λ. Now define F ∗ from λ<λ to 2 by

F ∗(fη,ν ↾ α) = F (η ↾ α, ν ↾ α);

set F ∗ equal to zero for arguments not of this form. By Lemma C.3, we find g ∈ 2λ

such that the set Sη,ν of α < λ such that F (η ↾ α, ν ↾ α) = g(α) is stationary. For
fixed η, ν, note that there is a closed unbounded set in Cη,ν ⊂ λ such that η, ν map
δ into δ and G maps δ × δ into δ. Intersecting Cη,ν with Sη,ν , we find the required
stationary set and complete the proof. �C.5

Shelah and Devlin proved that the weak diamond principles could be relativized
to a large family of stationary sets; relativization to all stationary sets is a stronger
principle.

Definition C.6.

(1) For X ⊆ λ, let Φλ(X) be the following proposition. For any function
F : 2λ → 2 there exists g ∈ 2λ such that for every f ∈ 2<λ the set
{δ ∈ X :F (f ↾ δ) = g(δ)} is stationary.

(2) Let J = Jλ = {X ⊂ λ : ¬Φλ(X)}.
(3) Θ̂λ+(X) is the analogous relativization of Θ̂λ+ to X.

Fact C.7 (2λ < 2λ
+

). If λ is a successor cardinal, Jλ is a normal ideal. In
particular, there is a family of λ+ disjoint stationary subsets Si of λ+ such that for
each i, Φ̂λ+(Si) holds.

We do not reproduce the several page proof that the ideal of those X such
Φλ+(X) fails is normal. (See [DS78] or [Gro]). This relativized form is used
directly only in Chapter 17 but the model theoretic consequence derived there is
basic for Part 4.

In Part 4, specifically for Remark 23.13.1 and to express clearly the argument
in Lemma 23.12, we need a still more refined version of the weak diamond (Φλ).
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We prove this version with an additional parameter χ. The basic idea is that while
it is crucial that g take on only two values, we can extend Lemma C.3 and allow
the predicted function f to take values not only up to λ but up to certain χ > λ
(on a small number of arguments). In the applications, failure of amalgamation
will produce χ models in a larger cardinality.

We deal with functions with domain α ≤ λ and with certain restrictions on
the range. We introduce some specific notation. D(α, χ, θ)1 is the collection of
functions with domain α whose first value is less than χ and all the rest are less
than θ. Formally,

Definition C.8. [Φχ,λ] Fix χ < 2λ.

(1) For α ≤ λ, let D(α, χ, θ) = χ × θα. Let D(< λ, χ, θ) =
⋃
α<λD(α, χ, θ).

Note D(λ, λ, 2) = λ × 2λ = {f | f : 1 + λ → λ with f(α) < 2 if α > 0} ⊆
λλ.

(2) Let Φχ,λ be the following proposition.
For any function F :D(< λ, χ, 2) → 2 there exists g ∈ 2λ such that

for every f ∈ D(λ, χ, 2) the set {δ < λ :F (f ↾ δ) = g(δ)} is stationary.
(3) In the more general notation of Definition C.16, Φχ,λ is ¬Unif(λ, χ, 2, 2).

Then, Φ2,λ is just another name for Φλ. By Lemma C.3, Φ2,λ implies Φλ,λ.
Note that replacing g ∈ 2λ as written in Definition C.8.2 of Φχ,λ by g ∈ D(λ, χ, 2)
yields an equivalent statement since we are only interested in the values of g on a
stationary set. For applications we need a restatement of the weak diamond.

Definition C.9. [Θχ,λ] Let Θχ,λ be the following proposition.
For any collection of functions 〈fη :η ∈ 2λ〉, with fη ∈ D(λ, χ, λ) and any cub

C ⊂ λ there are δ ∈ C and η, ν such that:

(1) η ↾ δ = ν ↾ δ,
(2) η(δ) 6= ν(δ),
(3) fη ↾ δ = fν ↾ δ,

Note in particular this implies fη(0) = fν(0) < χ. Just as we wrote Φλ for Φ2,λ,
we write Θλ for the equivalent Θ2,λ.

We observed that Φ2,λ = Φλ implies Φλ,λ; thus a special case of Lemma C.10 is
Φλ implies Θχ,λ if χ ≤ λ. The additional step here (coming from [She80] but with
a different proof) is to allow f(0) to attain values up to χ for still larger χ < 2λ.
(Of course one could allow this freedom on any small number of arguments but
we need only one so for ease of notation we give the freedom only at zero.) In
Theorem C.11 we give a minor variant on the original proof of Φ2 which suffices to
prove Φχ,λ if χµ ≤ 2µ (where λ = µ+).

Lemma C.10. For successor λ, Φχ,λ implies Θχ,λ.

Proof. We must show that given {fη ∈ D(λ, χ, λ) : η ∈ 2λ} and a cub C ⊆ λ,
there exist δ ∈ C, and η, ν ∈ 2λ such that: η ↾ δ = ν ↾ δ, η(δ) 6= ν(δ), and fη ↾ δ =
fν ↾ δ.

For each α < λ, σ ∈ 2α and τ ∈ D(α, χ, λ), let F (σ, τ) = 0 if there is a
ρ ∈ 2λ such that ρ ↾α = σ, fρ extends τ and ρ(α) = 0; otherwise F (σ, τ) = 1. As
given, the arguments of F are pairs of functions from D(< λ, χ, λ). By coding pairs

1The relationD defined here is based on a more complicated notation in [She98]; our notation
is adequate for the cases we consider. But there is no direct translation.
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and applying the argument for Lemma C.3 we may assume that F is a map from
D(< λ, χ, 2) into 2. Thus, by Φχ,λ, there is an oracle g ∈ D(λ, χ, 2) for F : for all
η ∈ 2λ and h ∈ D(λ, χ, 2),

{δ < λ :F (η ↾ δ, h ↾ δ) = g(δ)}
is stationary. The required η ∈ 2λ is defined by: for all α < λ: η(α) = 1 − g(α).
Choose δ ∈ C so that:

F (η ↾ δ, fη ↾ δ) = g(δ).

First note that this implies g(δ) = 0. For, if g(δ) = 1, by the definition of η,
η(δ) = 0. Since η ↾ δ ⊳ η and fη ↾ δ ⊂ fη, we conclude from the definition of F that
F (η ↾ δ, fη ↾ δ) = 0. But then g(δ) = 0.

Now, since g(δ) = 0, the choice of δ guarantees that F (η ↾ δ, fη ↾ δ) = 0. That
is, there is an ρ ∈ 2λ such that fη ↾ δ ⊂ fρ ∈ D(λ, χ, λ), η ↾ δ = ρ ↾ δ, and ρ(δ) = 0.
As η(δ) = 1, η, ρ and δ are as required. �C.10

Sometimes Φλ is written as Φ2
λ to put it into a hierarchy where for Φkλ the

functions f and g map into k rather than 2. And it is known that even Φ3
λ requires

stronger set theoretic hypotheses. The difference between 3 and 2 is the ability to
define the function fg in the next proof. We have generalized the following argument
from that in [DS78]. Shelah knew the stronger version long ago [She80].

Theorem C.11. If λ = µ+, 2µ < 2λ and χµ = 2µ then Φχ,λ holds.
In particular, if 2ℵn−1 < 2ℵn then Φ2ℵn−1 ,ℵn

Proof. Suppose not. Then there is an F :D(< λ, χ, 2) → 2 so that for every
g ∈ 2λ there is an f ∈ D(λ, χ, 2) for which the set {δ < λ :F (f ↾ δ) = g(δ)} is not
stationary. Since g maps into 2, the set {δ < λ :F (f ↾ δ) = 1−g(δ)} contains a cub.
Replacing g by 1− g we conclude: there is an F :D(< λ, χ, 2) → 2 so that for every
g ∈ 2λ there is an f = fg ∈ D(λ, χ, 2) for which the set {δ < λ :F (f ↾ δ) = g(δ)}
contains a cub Cg.

Now we consider the set T of all structures 〈α, fi, gi〉i<β where α, β < λ, gi ∈ 2α

and fi ∈ D(α, χ, 2). There are λ choices for α and only χ + 2µ choices for each
fi, gi so there are only χ+ 2µ such structures; by our hypothesis this is 2µ. Let H
be a 1 − 1 function from T onto the set of functions from µ to 2.

Our goal is to define an equivalence relation on 2λ and prove that the equiv-
alence relation both has at most 2µ < 2λ classes and is the identity. This con-
tradiction will yield the theorem. For this purpose, we define by induction for
each function g ∈ 2λ, sequences of functions 〈gi, fi : i < µ · ω〉 with gi ∈ 2λ and
fi ∈ D(λ, χ, 2) and cubs on λ, Cn for n < ω.

Fix g ∈ 2λ. Let C0 = λ and for i < µ, let gi = g and fi = fg. Then, let
C1 = Cg. Suppose we have constructed 〈gj , fj : j < µ · n〉 and Cn. We now define
〈gµ·n+i, fµ·n+i : i < µ〉. Let βα,n = min{β ∈ Cn :β > α} and to define the functions
at α, let

Tα,n = 〈βα,n, fi ↾ βα,n, gi ↾βα,n〉i<µ·n.
For each i < µ let

gµ·n+i(α) = H(Tα,n)(i).

Then let fµ·n+i = fgµ·n+i for i < µ. Finally let Cn+1 be the intersection of Cn with
all the Cgµ·n+i for i < µ; Cn+1 is clearly a cub.

We require below the following easy observation.
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Fact C.12. Let 〈Ci : i < ω〉 be a decreasing sequence of cubs and C =
⋂
Ci.

(1) If δi = minCi and δ = minC then δ = sup δi.
(2) If 〈γi : i < λ〉 is a continuous strictly increasing enumeration of C and

βγj ,n = min{α :α > γj ∧ α ∈ Cn}
then γj+1 = supn<ω βγj ,n.

Proof. The first is routine. For the second apply the first to the cubs

C∗
n = {α :α > γj ∧ α ∈ Cn}.

�C.12

Now we define the equivalence relation.

Notation C.13. For g, g′ ∈ 2λ we have constructed Cn and C′
n for n < ω and

also 〈gi, fi : i < µ · ω〉, and 〈g′i, f ′
i : i < µ · ω〉.

(1) Let C =
⋂
n<ω Cn and C′ =

⋂
n<ω C

′
n. Let 〈γj : j < λ〉, 〈γ′j : j < λ〉 be

strictly increasing continuous enumerations of C and C′.
(2) We say gEg′ if

(a) γ0 = γ′0;
(b) for every i < µ · ω, gi ↾ γ0 = g′i ↾ γ0;
(c) for every i < µ · ω, fi ↾ γ0 = f ′

i ↾ γ0;

Clearly E is an equivalence relation on 2λ. Since there are only λ possible
values for γ0 and only 2µ choices for 2b) and (χ+ 2µ)µ possible representatives for
2c) there are there are less than 2λ equivalence classes. We obtain our contradiction
by proving:

Claim C.14. For g, g′ ∈ 2λ, if gEg′, then g = g′.

Proof. We prove by induction on j < λ that γj = γ′j , and for each i < µ · ω,

fi ↾ γj = f ′
i ↾ γj and gi ↾ γj = g′i ↾ γj . If we complete the construction, we have the

lemma. Since C is a cub for any α < λ there is a γ ∈ C with γ > α. Then
g0 ↾ γ = g′0 ↾ γ. As g0 = g and g′0 = g′, g and g′ agree on α.

For j = 0 this is immediate and at limits the result is routine. Consider a
successor ordinal j + 1. For each n < ω and i < µ, we defined the gµ·n+i so that
H(Tγj,n) = 〈gµ·n+i(γj) : i < µ〉. But since γj ∈ Cn and by induction,

〈gµ·n+i(γj) : i < µ〉 = 〈F (fµ·n+i ↾ γj) : i < µ〉 = 〈F (f ′
µ·n+i ↾ γ

′
j) : i < µ〉.

But now applying the same argument to C′
n, γ

′
j , we have

〈F (f ′
µ·n+i ↾ γ

′
j) : i < µ〉 = 〈g′µ·n+i(γ

′
j) : i < µ〉 = H(T ′

γ′
j,n

).

Since H is one-to-one we have for every n < ω, that Tγj,n = T ′
γ′

j,n
.

In particular, this implies that for all n, βγj,n = β′
γ′

j ,n
. Thus γj+1 = γ′j+1

by Fact C.12.2. But then induction and the fact that Tγj,n = T ′
γ′

j ,n
implies that

gi ↾βγj ,n = g′i ↾β
′
γj ,n and fi ↾ βγj ,n = f ′

i ↾β′
γj ,n for each n < ω. Thus gi ↾ γj+1 =

g′i ↾ γ
′
j+1 and fi ↾ γj+1 = f ′

i ↾ γ
′
j+1. This completes the proof of the claim. �C.14.

And so we have proved the main theorem. �C.11

Remark C.15. Our statement of Theorem C.11 was gleaned from Chapter
XIV of [She80] and the appendix of [She98].
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The argument here shows that one can allow the function from λ to have
χ > λ values in a few places without disturbing the original argument. But the
size of range of the functions enters the argument at a second point: defining the
diagonalization H ; in formulating Theorem C.11 we simply kept χ small enough
for the argument for Φλ to continue to work.

We briefly describe the connections to some extensions by Shelah in [She80]
and [She98]. He defines the term Unif with more parameters. I think the definition
below is what his notion specifies in the relevant cases.

Definition C.16. [Unif(λ, χ, θ, κ)] 2

(1) Let Unif(λ, χ, θ, κ) be the following proposition.
There is a function F :D(< λ, χ, θ) → λθ such that for any g ∈ λκ

there is an f ∈ D(λ, χ, θ) such that the set {δ < λ : F (f ↾ δ) = g(δ)}
contains a cub.

(2) Then Unif(λ, χ, 2<λ, 2<λ) is the following proposition. There is a function

F :D(λ, χ, 2<λ) → 2<λ such that for any g ∈ λ

(<λ2) there is an f ∈ D(<
λ, χ, 2<λ) such that the set {δ < λ :F (f ↾ δ) = g(δ)} contains a cub.

Under this definition, using the trick in the first paragraph of the proof of
Theorem C.11, Φλ is ¬Unif(λ, 2, 2, 2) and Φχ,λ is ¬Unif(λ, χ, 2, 2).

Remark C.17. Various statements in [She83b] are confusing and after con-
sultation with Shelah I include some clarification.

(1) In 2) on the bottom of page 270 of [She83b], the intent is to withdraw

the claim: I(λ++,K)ℵ0 = 2λ
++

.
(2) The difficulty in Theorem 6.4 and footnote on page 265 of [She83b] is

the assertion that I(λ,K) > χ (as in Lemma 23.12) can be obtained from
¬Unif(λ, χ, 2µ, 2µ). This is unproved; as we have shown, ¬Unif(λ, χ, λ, 2)
does suffice. Theorem 1.10 of the Appendix to [She98] proves:

Theorem C.18. If λ = µ+, 2µ < 2λ and χℵ0 < 2λ, then ¬Unif(λ, χ, 2µ, 2µ).

The argument is based on mutually almost disjoint sets and is rather different
from the one presented here or [DS78].

2These are simplifications of the notions defined by Shelah; we list all parameters throughout
to avoid the confusion caused when one member of a string is suppressed.



APPENDIX D

Problems

These problems range from some that should be immediately accessible to
major conjectures and methodological issues and areas in need of development.
Many of them have been ‘in the air’ for some time. We have not attempted a
detailed history of the problems but refer to relevant papers.

Problem D.1 (Eventual Categoricity).
Shelah’s Categoricity Conjecture: Calculate a cardinal µ(κ

K
) such that if an

AEC K is categorical in some cardinal λ > κK then K is categorical in all cardinals
µ.

We noted in Chapter 15, that [She99] proves the existence (with no method of
calculation) of such a µ for successor cardinals λ when K satisfies amalgamation
and joint embedding.

For the following problems suppose K has the amalgamation property, joint
embedding, and arbitrarily large models. Suppose K is λ-categorical with λ > H1.

(1) If such an AEC is categorical in a limit cardinal greater than H2 must it
be categorical in all larger cardinals?

(2) If K is categorical in a sufficiently large limit cardinal λ, must the model
of cardinal λ be saturated.

(3) Can one calculate µ(κ
K

) (even in the successor case)? See Conclu-
sion 15.13.

(4) Is this problem any easier if restricted to Lω1,ω?
(5) Can the lower bound in Theorem 13.13 be brought below H2? Is it as low

as iω or iω1?
(6) Find an example of a λ-big type (Definition 12.20) that is realized exactly

λ+ times. Does tameness affect the answer to this problem?

Can the results of Chapters 13 –15 be proved (possibly with further set the-
ory) if the hypothesis of amalgamation is replaced by ‘no maximal models’? (See
Chapter 16, [SV99, Van06].)

Problem D.2 (Tameness). Some related questions arise for tameness; the first
three questions continue to assume amalgamation, joint embedding, and arbitrarily
large models.

(1) Is there any way to reduce the upper bound on χ in Theorem 11.15 (or
find a lower bound above LS(K))?

(2) Is there any way to replace weakly tame by tame or by local in Theo-
rem 11.15?

(3) Does categoricity in sufficiently large λ or even λ-stability imply K is
(H1, λ)-tame? I.e. can the hypotheses of Theorem 11.15 be weakened or
the conclusion strengthened?

223
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(4) Find more, and more algebraic, examples of tameness appearing late1.
(5) Is there an eventually categorical AEC with Löwenheim number ℵ0 that

is not (ℵ0,∞)-tame?

Note that a positive solution of Problem D.2.3 would yield eventual categoricity.
For nuances on this problem consult Chapters 13 – 15.

Problem D.3 (Other spectrum issues). There are a number of questions about
the spectrum of amalgamation, tameness, stability and so on.

Grossberg’s Amalgamation Question: Calculate a cardinal µ(κ) such that if an
AEC has amalgamation in some cardinal λ > κ then K has amalgamation in all
cardinals µ.

The promised [Shea] asserts that AEC may fail amalgamation for the first time
at quite large cardinals, but below the first measurable.

(1) Is there a short list of functions which give all possible stability spectrums
for an AEC? Is there such a list for (ℵ0,∞)-tame AEC? Are there examples
of mathematical interest in the various classes?

(2) Are there similar functions for the spectrum of tameness, amalgamation,
etc.?

(3) In particular, is there a cardinal κ such that if an AEC K is categorical
in λ > κ then K is stable in all sufficiently large µ?

(4) Does categoricity in λ imply disjoint amalgamation in µ for µ < λ?
(5) If an AEC fails amalgamation in λ (and λ is sufficiently large) must it have

2λ
+

models in λ+? (No assumption is made on the number of models in
λ. [BKS] has a counterexample with λ = LS(K) = ℵ0.)

Problem D.4 ( Atomic classes).

(1) Can one find an integerm ≥ 1 and an atomic class K that is ℵn-categorical
for n ≤ m but K does not have arbitrarily large models?

(2) Is there an ω-stable atomic class with no model above ℵ2?
(3) Find an atomic class K that is ω-stable and tame but not excellent.

Problem D.5 (quasiminimal excellence).

(1) Determine if Zilber’s conjecture that (C,+, ·, exp) is a member of the
quasiminimal class of pseudo-exponential fields is correct.

(2) Can one show covers of semi-abelian varieties (Chapter 3 and [Zil06]) are
tame by direct algebraic argument?

(3) Are the covers of semi-abelian varieties considered in [Zil03, Gav06]
categorical in uncountable cardinalities?

Problem D.6 (Lω1,ω(Q)).

(1) Show that the Shelah categoricity transfer theorem for Lω1,ω (Theorem 25.19)
also holds for Lω1,ω(Q). More modestly, show this for a fragment of
Lω1,ω(Q) sufficient for the Zilber construction.

(2) Is it possible to represent an ℵ1-categorical sentence in Lω1,ω(Q) by an
AEC with Löwenheim-Skolem number ℵ0 and the same uncountable mod-
els?

1Baldwin and Shelah [BS08] provide an example of an AEC with the amalgamation property
in a countable language with Lowenheim-Skolem number ℵ0 which is not (ℵ0,ℵ1)-tame but is
(2ℵ0 ,∞)-tame. But the language is artificial.
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Problem D.7 (Set theoretic issues).

(1) Is categoricity in ℵ1 of an Lω1,ω-sentence absolute? [Kie80]
(2) More specifically, is there (in some model of set theory) an ℵ1-categorical

complete sentence of Lω1,ω that is not ω-stable and/or does not have
amalgamation in ℵ0?

(3) Can one prove the following assertion from VWGCH? If a sentence φ of
Lω1,ω has less than 2ℵn models in ℵn for each n < ω then φ defines an
excellent class.

(4) Is the Galois stability spectrum of an AEC absolute?
(5) Find in ZFC examples of AEC where the Galois types are not compact in

the sense of Definition 11.42.

Problem D.8 (Finitary Classes). See Definition 24.14.

(1) (Kueker) Is there a finitary class that is not axiomatizable in L∞,ω.
(2) (Kueker) If a finitary class is categorical in some κ > ℵ0, must it be Lω1,ω

axiomatizable?
(3) Is there a sentence of Lω1,ω which is ℵ1-categorical and has both the amal-

gamation and joint embedding properties but has 2ℵ0 countable models3?
(4) Distinguish ‘finite diagrams’ (not necessarily homogeneous), finitary classes

in the sense of [HK06], and ‘atomic classes’.
(5) Is Vaught’s conjecture true for finite diagrams (or for finitary classes) that

are ω-stable?
Examples 6.1.3 and 4.14 illustrate the importance of joint embedding

for Problem D.8.3 and ω-stability for Problem D.8.5.

Problem D.9 (Methodological issues).

(1) Are there examples of AEC with no syntax more natural that the PCΓ
characterization?

(2) Find natural mathematical classes that are AEC but not axiomatizable in
an infinitary logic. In particular, find such examples more connected with
problems in geometry and algebra. Find such examples distinguished by
natural AEC properties: tameness, amalgamation, stability etc.

(3) Develop a theory of superstability that connects the stability spectrum
function with properties in a fixed cardinal such as uniqueness of limit
models and preservation of saturation under unions of chains. (This is in
some sense a parallel to Shelah’s work on good frames.) See also [GK]. In
the light of [GVV], a plausible definition for µ-superstable is: stability in
µ, κ(K, µ) = ω (Chapter 15) and that K satisfies disjoint amalgamation
over limit models in µ. Does the third condition follow from the first two?

(4) Prove categoricity transfer theorems for classes with no maximal models.
See [Van06] and [SV99].

(5) Develop geometric stability theory in the context of AEC [HLS05]. This
was the origin of the development of finitary classes ([HK06, HK00,

HK07].

2The examples of non-compactness as in Problem D.7.5 in [BS08] use ♦ and �.
3These question were raised by Marker and Kueker in the Fall of 2008 but Kierstead [Kie80]

had addressed them and provided conjectures in terms of admissible logics thirty years before.
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Shelah has informed me that, assuming the weak GCH, solutions to D1.1, D1.2,
D1.3 and D2.2 can be derived from the forthcoming book [She00a]. I thank David
Kueker for significant clarifications and suggestions for this section.
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[AR94] Jǐŕı Adámek and Jǐŕı Rosický. Locally Presentable and Accessible Categories, volume
189 of London Mathematical Society Lecture Notes. Cambridge, New York, 1994.

[AS81] U. Abraham and S. Shelah. Martin’s axiom does not imply that every two ℵ1-dense sets
of reals are isomorphic. Israel J Math, 38:161–176, 1981.

[Bal78] J.T. Baldwin. Some ECΣ classes of rings. Zeitshrift Math. Logik. and Grundlagen der
Math, 24:489–492, 1978.

[Bal88] J.T. Baldwin. Fundamentals of Stability Theory. Springer-Verlag, 1988.
[Bal02] John T. Baldwin. Rank and homogeneous structures. In Katrin Tent, editor, Tits Build-

ings and the Theory of Groups Wurzburg Sept 14-17 2000. Cambridge University Press,
2002.

[Bal04] J.T. Baldwin. Notes on quasiminimality and excellence. Bulletin of Symbolic Logic,
10:334–367, 2004.

[Bal05] J.T. Baldwin. Ehrenfeucht-Mostowski models in abstract elementary classes. In
Yi Zhang, editor, Logic and its Applications, Contemporary Mathematics, pages 1–17.
American Mathematical Society, 2005.

[Bal06] John T. Baldwin. The complex numbers and complex exponentiation: Why infinitary
logic is necessary! In Apuntes del XV Congreso Nacional. Columbian Mathematical
Society, 2006.

[Bal07a] J.T. Baldwin. Models in ω1. lecture notes: see http://www2.math.uic.edu/~jbaldwin/

keisleruic6.pdf, 2007.
[Bal07b] J.T. Baldwin. Vaught’s conjecture, do uncountable models count? Notre Dame Journal

of Formal Logic, pages 1–14, 2007.
[Bar68] J. Barwise, editor. The syntax and semantics of infinitary languages. LNM 72. Springer-

Verlag, 1968.
[Bar73] J. Barwise. Back and forth through infinitary logic. In M. Morley, editor, Studies in

Model Theory, pages 1–34. Mathematical Association of America, 1973.
[Bar81] J. Barwise. The role of omitting types in infinitary logic. Archive fur Math. Log., 21:55–

68, 1981.
[Bau73] J. Baumgartner. On ℵ1-dense sets of reals. Fundamenta Mathematica, LXXIX:101–106,

1973.
[BB04] A. Berenstein and S. Buechler. Simple stable homogeneous expansions of banach spaces.

Annals of Pure and Applied Logic, 128:75–101, 2004.
[BET07] John T. Baldwin, Paul Eklof, and Jan Trlifaj. ⊥N as an abstract elementary class.

Annals of Pure and Applied Logic, 149:25–39, 2007. preprint: www.math.uic.edu/

\~jbaldwin.
[BF85] J. Barwise and S. Feferman, editors. Model-Theoretic Logics. Springer-Verlag, 1985.
[BK] John T. Baldwin and Alexei Kolesnikov. Categoricity, amalgamation, and tameness. to

appear: Israel Journal of Mathematics; also at www.math.uic.edu/\~\jbaldwin.
[BKS] J.T. Baldwin, A. Kolesnikov, and S. Shelah. The amalgamation spectrum. to appear:

Journal of Symbolic Logic.
[BKV06] J.T. Baldwin, D.W. Kueker, and M. VanDieren. Upward stability transfer theorem for

tame abstract elementary classes. Notre Dame Journal of Formal Logic, 47:291–298,
2006.

[BL71] J.T. Baldwin and A.H. Lachlan. On strongly minimal sets. Journal of Symbolic Logic,
36:79–96, 1971.

[BL03] S. Buechler and O. Lessmann. Simple homogeneous models. Journal of the American
Mathematical Society, 16:91–121, 2003.

227



228 BIBLIOGRAPHY

[BL06] J.T. Baldwin and O. Lessmann. Upward categoricity of very tame abstract elementary
classes with amalgamation. Annals of Pure and Applied Logic, 143:29–42, 2006.

[Bou99] E. Bouscaren, editor. Model Theory and Algebraic Geometry : An Introduction to E.
Hrushovski’s Proof of the Geometric Mordell-Lang Conjecture. Springer-Verlag, 1999.

[BS90] J.T. Baldwin and S. Shelah. The primal framework: I. Annals of Pure and Applied
Logic, 46:235–264, 1990.

[BS91] J.T. Baldwin and S. Shelah. The primal framework II: Smoothness. Annals of Pure and
Applied Logic, 55:1–34, 1991.

[BS97] J.T. Baldwin and S. Shelah. Randomness and semigenericity. Transactions of the Amer-
ican Mathematical Society, 349:1359–1376, 1997.

[BS08] J.T. Baldwin and S. Shelah. Examples of non-locality. Journal of Symbolic Logic,
73:765–783, 2008.

[Bue91] Steven Buechler. Essential Stability Theory. Springer-Verlag, 1991.
[BY03a] I. Ben-Yaacov. Positive model theory and compact abstract theories. Journal of Math-

ematical Logic, 3:85–118, 2003.
[BY03b] I. Ben-Yaacov. Simplicity in compact abstract theories. Journal of Mathematical Logic,

3:163–191, 2003.
[BZ00] M. Bays and B.I. Zilber. Covers of multiplicative groups of an algebraically closed field

of arbitrary characteristic. preprint: arXive math.AC/0401301, 200?

[Cha68] C. C. Chang. Some remarks on the model theory of infinitary languages. In J. Barwise,
editor, The syntax and semantics of infinitary languages, pages 36–64. Springer-Verlag,
1968. LNM 72.

[CK73] C.C. Chang and H.J Keisler. Model theory. North-Holland, 1973. 3rd edition 1990.
[Cop05] Andrew Coppola. The theory of Q-abstract elementary classes. PhD thesis, University

of Illinois, Chicago, 2005.
[Dev84] Keith Devlin. Constructibility. Springer-Verlag, 1984.
[DS78] K. Devlin and S. Shelah. A weak version of ⋄ which follows from 2ℵ0 < 2ℵ1 . Israel

Journal of Mathematics, 28:239–247, 1978.
[EM56] A. Ehrenfeucht and A. Mostowski. Models of axiomatic theories admitting auto-

mophisms. Fund. Math., 43:50–68, 1956.
[EM90] P. Eklof and Alan Mekler. Almost Free Modules: Set theoretic Methods. North Holland,

1990.
[EM02] P. Eklof and Alan Mekler. Almost Free Modules: Set theoretic Methods. North Holland,

2002. 2nd edition.
[Gav06] Misha Gavrilovich. Model Theory of universal covering spaces of complex analytic va-

rieties. PhD thesis, Balliol college Oxford, 2006.
[Gav08] Misha Gavrilovich. A remark on transitivity of galois action on the set of uniquely

divisible abelian extensions of E(Q) by z2. Journal of K-theory, 38:135–152, 2008.
[GH89] R. Grossberg and Bradd Hart. The classification theory of excellent classes. The Journal

of Symbolic Logic, 54:1359–1381, 1989.
[GK] R. Grossberg and Alexei Kolesnikov. Superior abstract elementary classes are tame.

preprint.
[GL02] R. Grossberg and Olivier Lessmann. Shelah’s stability spectrum and homogeneity spec-

trum in finite diagrams. Archive for Mathematical Logic, 41:1–31, 2002.
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[Hir06] Åsa Hirvonen. Categoricity in homogeneous complete metric spaces. PhD thesis, Uni-
versity of Helsinki, 2006.

[Hjo07] Greg Hjorth. Knight’s model, its automorphism group, and characterizing the uncount-
able cardinals. Notre Dame Journal of Formal Logic, 2007.
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Hart-Shelah example, 194
hereditary cardinality, 110
homogeneity: ℵ0-over models, 8

homogeneous geometry, 3
homogeneous model theory, 35
homogeneous, sequence, 22

Hrushovski construction, 29

independence, atomic classes, 146
independent family, 125
independent system, 10, 151

inhomogeneity, 21
isomorphic systems, 167

J. Knight example, 138
joint embedding, 29, 64

Löwenheim-Skolem number, 28
Lachlan example, 193

limit model, 76, 80, 123
linearization, 152
local galois types, 84
Lopez-Escobar theorem, 40

Marcus Example, 22, 139, 142

Martin’s Axiom, 126
maximal model, 123
maximal triple, 57

metric AEC, 36
minimal type, 97
model homogeneous, 67

monster model, 68
Morley omitting types theorem, 205
Morley’s categoricity theorem, 45

Non-elementary class, 26
nonalgebraic, 94

omitting Galois types, 106

omitting types theorem, 33
omitting types: set theoretic method, 111
order property, 116

order type, 73

partial monomorphism, 7

partial type, 33
pregeometry, 3
Presentation Theorem, 30

primary, 141
prime over, 10, 141
proper for linear orders, 50

proper pair, 57
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pseudoelementary, 34

quasiminimal, 97
quasiminimal class, 8
quasiminimal class, abstract, 7

quasiminimal type, 186

rank in atomic classes, 143

restriction, Galois type, 69

Scott sentence, uncountable model, 47

Shelah’s Categoricity Conjecture, 99
Silver example, 34
simple AEC, 184
small, 46

solution, 197
special , 75
special set, 10
spectrum, 32
splits, 144

splitting of Galois-types, 91
stable model, 71
standard model, 196
stationary, 147
Stone space, 137

strongly ω-homogenous, 138
strongly minimal, 4
strongly model homogeneous, 67
strongly realized, 120

superstable, 113
symmetry property, 148
system, 151

tame, 14, 85, 183
Tarski-Vaught, 144
Tarski-Vaught sequences, 151
template, 50

Thumbtack Lemma, 20
transitive linear order, 51, 87
true Vaughtian pair, 100
two cardinal theorem, 188, 205

type, Lω1,ω, 9
type, algebraic, 94
type, first order, 33
type, Galois, 68
type, syntactic, 33

universal over, 76
universal over ... in, 73

Vaught’s conjecture, 53
Vaughtian pair, 100

Vaughtian triple, 187
very few, 165
very weak GCH, ix
vocabulary, 27

VWGCH, ix

weak AEC, 122

weak diamond, 217

weak GCH, ix
weakly tame, 85
WGCH, ix

Zilber example: covers, 17
Zilber example: pseudoexponentiation, 23


