MCS 548 – Mathematical Theory of Artificial Intelligence Fall 2018 Problem Set 3

Lev Reyzin

Due: 11/21/18 at the beginning of class

Instructions: Do at least 3 of the 4 problems. Atop your problem set, please write your name and list your collaborators.

Problems

1. We proved a margin bound (Theorem 7.8 of Mohri et al.) on the number of mistakes for the Perceptron algorithm for the update rule $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t$. Consider the general update rule $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta y_t \mathbf{x}_t$, where $\eta > 0$. Prove a bound on the maximum number of mistakes for this rule. How does η affect the bound?

2. Imagine that a bandit or an online learning algorithm A that runs in T rounds and has an expected regret bound of $\epsilon + T/\epsilon$, where ϵ is set by the algorithm. Clearly the optimal setting is $\epsilon = \sqrt{T}$. The problem is that sometimes T is not known in advance. How do we fix this issue? We can have an algorithm A' that does the following: A' starts with a parameter ϵ_1 and runs A for T_1 rounds, then adjusts the parameter to ϵ_2 and runs A for T_2 rounds, and so on. Construct a schedule of (ϵ_i, T_i) that asymptotically achieves the \sqrt{T} expected regret bound without knowing T in advance.

3. Suppose you have two coins, one perfectly fair, and one with bias toward H of $1/2 + \epsilon$ for some $\epsilon > 0$. It is known that to tell which coin is biased (with probability > 3/4) one needs to perform at least c/ϵ^2 coin flips (c > 0 is some constant). Show that this implies that EXP3's asymptotic regret dependence of $T^{1/2}$ cannot be improved to $T^{1/2-\delta}$ for any constant $\delta > 0$.

4. In unregularized least squares regression, we solve $W = (XX^T)^{-1}XY$, where $x_i \in \mathcal{R}^N$ (for $1 \le i \le m$) and

$$X = \begin{bmatrix} x_1 & \dots & x_m \\ 1 & \dots & 1 \end{bmatrix}, \ W = \begin{bmatrix} w_1 \\ \dots \\ w_n \\ b \end{bmatrix}, \ Y = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix},$$

when XX^T is invertible. What conditions are required on x_1, \ldots, x_m (and thereby X) for XX^T to be invertible?