MCS 549 - Mathematical Foundations of Data Science Fall 2019
 Problem Set 1

Lev Reyzin

Due: 10/4/19 at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

Prove all your answers.

1. Show that for any $c \geq 1$ there exist distributions for which Chebyshev's inequality is tight, i.e. for which $\mathrm{P}(|x-E(x)| \geq c)=\operatorname{Var}(x) / c^{2}$.
2. For what value of d is the volume of the d-dimensional unit ball maximized?
3. Suppose we are given n unit vectors in R^{n} divided into two sets P, Q with the guarantee that there exists a hyperplane $a \cdot x=0$ such that every point in P is on one side of it and every point in Q is on the other. Furthermore, assume that the ℓ_{2} distance of each point to the hyperplane is at least γ (this is sometimes called the "margin"). Show that random projection (as defined in the book) to some $c \log n / \gamma^{2}$ dimensions will have the property that with high probability, the two sets of points will still remain separated by a hyperplane with margin $\gamma / 2$.
4. Show that if A is a symmetric matrix with distinct singular values, then the left and right singular vectors are the same and $A=V D V^{T}$.
5. A Markov chain is said to be symmetric if for all i and $j, p_{i j}=p_{j i}$. What is the stationary distribution of a connected symmetric Markov chain?
6. Given a Markov chain on an undirected graph, we modify the chain as follows: at the current state, we stay there with probability $1 / 2$; with the other probability $1 / 2$, we move as in the old chain. Show that the new chain has the same stationary distribution.
