MCS 549 - Foundations of Data Science
 Fall 2019
 Problem Set 2

Lev Reyzin

Due: $11 / 1 / 19$ at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

1. Given the set of integers $\{1,2, \ldots, n\}$, what is the expected number of draws d with replacement until the integer 1 is drawn? What is the expected number of draws until every integer from the set is drawn? (This is needed for the expected cover time of K_{n}.)
2. What is the hitting time $h_{u v}$ for two adjacent vertices on a cycle of length n ? What is the hitting time if edge (u, v) is removed?
3. What is the escape probability of a random walk starting at the root of an infinite binary tree.
4. Find the threshold for $p(n)$ for the existence of 4 -cliques in $G(n, p(n))$. Prove your answer correct.
5. In class we showed that if the degrees in $G\left(n, \frac{1}{n}\right)$ were independent, there would be a vertex of degree

$$
d=\frac{\log n}{\log \log n}
$$

with constant positive probability. However, the degrees are not independent. Show how to overcome this difficulty.
6. Show that in $G(n, 1 / 2)$ there are almost surely are no cliques of size greater than or equal to $2 \log _{2} n$. Then, use the second moment method to show that in $G(n, 1 / 2)$, almost surely there are cliques of size $(2-\varepsilon) \log _{2} n$ (for any constant $\varepsilon>0$).

