STAT 473 - Game Theory
 Fall 2021
 Problem Set 3

Lev Reyzin

Due: 11/9/21, 9:30 am

For problems 1 and 2 below, consider the modified game of Rock-Paper-Scissors in Figure 1 where players are both punished when they both play the same action.

	R	P	S
R	$(-1,-1)$	$(-1,1)$	$(1,-1)$
P	$(1,-1)$	$(-1,-1)$	$(-1,1)$
S	$(-1,1)$	$(1,-1)$	$(-1,-1)$

Table 1: The payoff matrix for players 1 and 2 of modified Rock-Paper-Scissors.

1. [10 pts] Find a Nash equilibrium of the game in Figure 1. What is the expected payoff to both players? Is this equilibrium evolutionarily stable? Why or why not?
2. [$\mathbf{1 0} \mathbf{~ p t s}]$ Find a correlated equilibrium of the game in Figure 1 that results in an expected higher payoff (than the Nash equilibrium) to both players and explain why that distribution is in fact a correlated equilibrium.
3. [10 pts] Consider a game where two players simultaneously choose A or B and both get a payoff of 1 if they choose the same letter and both get a payoff of 0 if they choose different letters. Is both players playing $(1 / 2,1 / 2)$ a Nash equilibrium? If so, is $(1 / 2,1 / 2)$ also an evolutionarily stable equilibrium? Why or why not?
4. [10 pts] Consider a similar game where where two players simultaneously choose A or B and both get a payoff of 1 if they choose different letters and both get a payoff of 0 if they choose the same letter. Is both players playing $(1 / 2,1 / 2)$ a Nash equilibrium? If so, is $(1 / 2,1 / 2)$ also an evolutionarily stable equilibrium? Why or why not?
5. [10 pts] Consider the game "Golden Balls" where two players must divide a pot of money by each choosing split or steal. If both players choose split, the pot is divided evenly. If one chooses split and the other chooses steal, the player who chose steal gets the entire pot. If both choose steal, both get nothing. In class, we noted that steal is a dominant strategy and (steal,steal) is a Nash equilibrium. However, we might ask whether there exists a correlated equilibrium that gives a non-zero expected payoff to each player. Does such an equilibrium exist? If so, what is one such equilibrium and why? If not, why not?
