
■ Kernel methods, a new generation of learning
algorithms, utilize techniques from optimization,
statistics, and functional analysis to achieve maxi-
mal generality, flexibility, and performance. These
algorithms are different from earlier techniques
used in machine learning in many respects: For
example, they are explicitly based on a theoretical
model of learning rather than on loose analogies
with natural learning systems or other heuristics.
They come with theoretical guarantees about their
performance and have a modular design that
makes it possible to separately implement and ana-
lyze their components. They are not affected by
the problem of local minima because their training
amounts to convex optimization. In the last
decade, a sizable community of theoreticians and
practitioners has formed around these methods,
and a number of practical applications have been
realized. Although the research is not concluded,
already now kernel methods are considered the
state of the art in several machine learning tasks.
Their ease of use, theoretical appeal, and remark-
able performance have made them the system of
choice for many learning problems. Successful
applications range from text categorization to
handwriting recognition to classification of gene-
expression data.

In many respects, the last few years have wit-
nessed a paradigm shift in the area of
machine learning, comparable to the one of

the mid-1980s when the nearly simultaneous
introduction of decision trees and neural net-
work algorithms revolutionized the practice of

pattern recognition and data mining. In just a
few years, a new community has gathered,
involving several thousands of researchers and
engineers, a yearly workshop, web sites, and
textbooks. The focus of their research: support
vector machines (SVMs) and kernel methods. 

Such paradigm shifts are not unheard of in
the field of machine learning. Dating back at
least to Alan Turing’s famous article in Mind in
1950, this discipline has grown and changed
with time. It has gradually become a standard
piece of computer science and even of software
engineering, invoked in situations where an
explicit model of the data is not available but,
instead, we are given many training examples.
Such is the case, for example, of handwriting
recognition or gene finding in biosequences. 

The nonlinear revolution of the 1980s, initi-
ated when the introduction of back-propaga-
tion networks and decision trees opened the
possibility of efficiently learning nonlinear
decision rules, deeply influenced the evolution
of many fields, and paved the way for the cre-
ation of entire disciplines, such as data mining
and a significant part of bioinformatics. Until
then, most data analysis was performed with
linear methods essentially based on the sys-
tems developed in the 1960s, such as the PER-
CEPTRON. The asymmetry however remained: A
number of optimal algorithms and theoretical
results were available for learning linear depen-
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ties of the learning system’s output.
In a way, researchers now have the power of

nonlinear function learning together with the
conceptual and computational convenience
that was, to this point, a characteristic of linear
systems. 

SVMs are probably the best-known example
of this class of algorithms. Introduced in 1992
at the Conference on Computational Learning
Theory (Boser, Guyon, and Vapnik 1992), it
has since been studied, greatly generalized, and
applied to a number of different problems. The
general class of algorithms resulting from this
process is known as kernel methods or kernel
machines. They exploit the mathematical
techniques mentioned earlier to achieve the
maximal flexibility, generality, and perfor-
mance, both in terms of generalization and in
terms of computational cost. They owe their
name to one of the central concepts in their
design: the notion of kernel functions, used in
the representation of the nonlinear relations
discovered in the data and discussed later.

The growing impact of this new approach in
the larger field of machine learning can be
gauged by looking at the number of researchers
and events related to it. The research commu-
nity gathered around these algorithms is very
diverse, including people from classic machine
learning, neural networks, statistics, optimiza-
tion, and functional analysis. It meets at a year-
ly workshop, held at the Neural Information
Processing Systems Conference for the past five
years. Since the first such workshop, the
growth of this field has been rapid: Textbooks
have appeared (Cristianini and Shawe-Taylor
2000; Schölkopf and Smola 2002); many hun-
dreds of papers have been published on this
topic; and all the major conferences and jour-
nals in machine learning, neural networks, and
pattern recognition have devoted increasing
attention to it, with special issues, dedicated
sessions, and tutorials. The recently launched
Journal of Machine Learning Research has a regu-
lar section for kernel methods.1 An increasing
number of universities teach courses entirely
or partly dedicated to kernel machines.

Currently, SVMs hold records in perfor-
mance benchmarks for handwritten digit
recognition, text categorization, information
retrieval, and time-series prediction and have
become routine tools in the analysis of DNA
microarray data.

In this article, we survey the main concepts in
the theory of SVMs and kernel methods; their
statistical and algorithmic foundations; and
their application to several problems, such as
text categorization, machine vision, handwrit-
ing recognition, and computational biology.

dencies from data, but for nonlinear ones,
greedy algorithms, local minima, and heuristic
searches were all that was known. In a way,
researchers had come to accept that the theo-
retical elegance and practical convenience of
linear systems was not achievable in the more
powerful setting of nonlinear rules.

A decade later, however, kernel methods
made it possible to deal with nonlinear rules in
a principled yet efficient fashion, which is why
we identify them with a new generation, fol-
lowing the linear learning machines, one in
the 1960s and the first generation of nonlinear
ones in the 1980s. The consequences of this
new revolution could be even more far reach-
ing. In many ways, kernel methods represent
an evolution of the subsymbolic learning
approaches such as neural networks, but in
other ways, they are an entirely new family of
algorithms and have more in common with
statistical methods than with classical AI. 

The differences with the previous approach-
es are worth mentioning. Most of the learning
algorithms proposed in the past 20 years had
been based to a large extent on heuristics or on
loose analogies with natural learning systems,
such as the concept of evolution, or models of
nervous systems. They were mostly the result
of creativity and extensive tuning by the
designer, and the underlying reasons for their
performance were not fully understood. A large
part of the work was devoted to designing
heuristics to avoid local minima in the hypoth-
esis-search process. The new pattern-recogni-
tion algorithms overcome many such limita-
tions by using a number of mathematical tools. 

To start with, in the last decade, a general the-
ory of learning machines has emerged and with
it the possibility of analyzing existing algo-
rithms and designing new ones to explicitly
maximize their chances of success. The impact
of learning theory on machine learning has
been profound, and its effects have also been
felt in the industrial applications. Further-
more—and somehow independently—new effi-
cient representations of nonlinear functions
have been discovered and used for the design of
learning algorithms. This representation makes
use of so-called “kernel functions,” discussed
later, and has a number of useful properties.

The combination of these two elements has
led to powerful algorithms, whose training
often amounts to convex optimization. In oth-
er words, they are free from local minima. This
use of convex optimization theory, largely a
consequence of the novel representation,
marks a radical departure from previous greedy
search algorithms and, furthermore, enables
researchers to analyze general formal proper-
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Statistical Learning Theory
The kind of learning algorithm that we are
talking about can mathematically be described
as a system that receives data (or observations)
as input and outputs a function that can be
used to predict some features of future data. In
other words, it automatically builds a model of
the data being observed and exploits it to make
predictions. Generalization is the activity of
inferring from specific examples a general rule,
which also applies to new examples. Of course,
building a model capable of generalizing
requires detecting and exploiting regularities
(or patterns) in the data.

For example, a learning system can be
trained to recognize a handwritten digit 5 from
the other nine classes of digits. Such a system
would initially be presented with a number of
images of handwritten digits and their correct
class label, and after learning, it would be
required to correctly label new, unseen images
of handwritten digits.

Statistical learning theory (Vapnik 1998)
models this as a function estimation problem:
The function in this case maps representations
of images to their correct class label. Given
some observations of this function at random
positions (the training set of labeled images), it
requires the hypothesis to correctly label new
examples with high accuracy. The performance
in predicting labels in a test set of images is
known as generalization performance. Vladimir
Vapnik and his coworkers at the Institute of
Control Sciences of the Russian Academy of
Science in Moscow pioneered this approach to
statistical pattern recognition, and since then,
many other researchers refined their early
results. 

It turns out that the risk of a learned func-
tion making wrong predictions depends on
both its performance on the training set and a
measure of its complexity. In other words, it is
not sufficient to accurately describe the train-
ing data, but it is necessary to do so with a suit-
ably simple hypothesis (an idea related to the
well-known Occam’s razor principle). For
example, it is always possible to interpolate 5
points in the plane with a polynomial of, say,
degree 25, but nobody expects the resulting
function to have any predictive power; howev-
er, we are more likely to trust predictions of a
linear function interpolating them.

In Vapnik’s theory, the key observation is
that the complexity of a function is not an
absolute concept, but it depends on the class of
functions from which it was extracted. Com-
plexity of a learning machine is measured by
counting the number of possible data sets that
the learning machine could perfectly explain

without errors using elements of its associated
function class. Now suppose the learning
machine has explained one data set at hand.
Certainly, if the learning machine’s capacity is
high enough such that it can explain all possi-
ble data sets, then it will come as no surprise if
it can explain the given one. Thus, from the
mathematical point of view, no generalization
to new data points can be guaranteed. If, how-
ever, the learning machine explains the given
data although its capacity is small, then we
have reason to believe that it will also work
well on new data points that it has not seen
during training.

This insight is formalized in statistical learn-
ing theory, and it leads to bounds on the risk of
the learned hypothesis making wrong predic-
tions that depend on many factors, including
the training sample size and the complexity of
the hypothesis (see sidebar 1). 

The theory identifies which mathematical
characteristics of learning machines control
this quantity. Named after its inventors Vapnik
and Chervonenkis, the most famous such char-
acteristic is called the VC dimension. More
refined notions of complexity (or capacity)
have been proposed in recent years. 

The resulting bounds can point algorithm
designers to those features of the system that
should be controlled to improve generaliza-
tion. In many classical learning algorithms, the
main such feature is the dimensionality of the
function class or data representation being
used. The class of algorithms described in this
article, however, exploit very high dimensional
spaces, and for this purpose, it is crucial to
obtain bounds that are not affected by it. One
of such bounds is at the basis of the support
vector machine algorithm and is a reason why
this algorithm does not suffer from the “curse
of dimensionality.” 

Although these general ideas had been
around (but, to some extent, neglected) since
the 1960s, the crucial development for practi-
tioners occurred in the 1990s. It turned out
that not only did this theory explain the suc-
cess of several existing learning procedures, but
more importantly, it enabled researchers to
design entirely new learning algorithms, not
motivated by any analogy, just aimed at direct-
ly optimizing the generalization performance. 

Support Vector Machines
In introducing the main ideas of SVMs, our
reasoning is informal, confining mathematical
arguments to separate sidebars and pointing
the interested readers to the references at the
end of the article.

The fundamental idea of kernel methods is
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The functions learned by kernel machines
can be represented as linear combinations of
kernels computed at the training points:

In approximation theory and functional analy-
sis, this representation was already used,
although never combined with statistical
learning theory results and pattern-recognition
algorithms such as the ones described here.
Importantly, they correspond to linear func-
tions in the embedding space, and hence, pow-
erful linear methods and analysis can be
applied.

The basic algorithm we analyze deals with
the problems of learning classifications into
two categories. SVMs achieve this by first
embedding the data into a suitable space and
then separating the two classes with a hyper-
plane (see sidebar 2). Results from statistical
learning theory show that the generalization
power of a hyperplane depends on its margin,
defined as the distance from the nearest data
point, rather than the dimensionality of the
embedding space. This result provides the
motivation for the following simple algorithm:

Embed the data into a high dimensional
space and then separate it with a maxi-
mum margin hyperplane. Because the
margin measures the distance of the clos-
est training point to the hyperplane, the
maximum margin hyperplane not only
correctly classifies all points, it actually
does so with the largest possible “safety
margin.”

The decision function learned by such a
machine has the form

where xi, yi, k are training points, their labels,
and the kernel function, respectively, and x is
a generic test point.

It is important to note that the problem of
constructing the maximal margin hyperplane
reduces to a quadratic programming problem,
whose convex objective function can always be
maximized efficiently under the given con-
straints. The absence of the so-called local min-
ima in the cost function marks a radical depar-
ture from the standard situations in systems
such as neural networks and decision trees—to
cite the most popular ones—that were forced
to utilize greedy algorithms to find locally opti-
mal solutions. An entire set of empirical
tricks—that often absorbed most of the
researchers’ attention—can thus be replaced by
a well-developed field of mathematics: convex
optimization.

SVMs can always be trained to the optimal

f x sign y k x x bi i i
i
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to embed the data into a vector space, where
linear algebra and geometry can be performed.
One of the simplest operations one can per-
form in such space is to construct a linear sep-
aration between two classes of points. Other
operations can involve clustering the data or
organizing them in other ways. The use of lin-
ear machines is easier if the data are embedded
in a high dimensional space.

However, it is important to embed the data
into the correct space, so that the sought-after
regularities can easily be detected, for example,
by means of linear separators. Informally, one
would like “similar” data items to be represent-
ed by nearby points in the embedding space.
High dimensional spaces are often used for this
purpose. 

Two major problems occur when pursuing
this line of action. First, on the statistical side,
if the dimensionality of such a space is very
high, then it is trivial to find a separation con-
sistent with the labels in the training data.
Hence, according to the learning-theoretic rea-
soning sketched earlier, one cannot expect this
trivial separation to predict well the labels of
new unseen points. For this reason, we have to
incorporate ideas from statistical learning the-
ory to rule out meaningless explanations of the
data, which would lead to overfitting. We see
later how this is performed in practice. 

Second, on the computational side, working
directly in very high dimensional spaces can be
demanding, and this cost can pose a severe
limit on the size of problems that can be solved
with this algorithm. This problem is addressed
in a rather clever way by using kernel func-
tions, as follows.

Kernels are inner products in some space but
not necessarily in the space where the input
data come from. They can often be computed
efficiently. By reformulating the learning algo-
rithms in a way that only requires knowledge
of the inner product between points in the
embedding space, one can use kernels without
explicitly performing such embedding. In oth-
er words, rather than writing the coordinates
of each point in the embedding space, we
directly compute the inner products between
each pair of points in such space. This is some-
times called implicit mapping or implicit embed-
ding. If we call φ the embedding function, then
a kernel can be written as k(x, z) = 〈φ (x), φ (z)〉.
Surprisingly, many learning algorithms can be
formulated in this special way, that is, kernel-
ized. Among these are many standard linear
discriminant techniques, clustering proce-
dures, regression methods such as ridge regres-
sion, and principal components analysis
(PCA).
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solution in polynomial time, which is one of
the reasons for their fast uptake among practi-
tioners in pattern recognition. However, other
important features contribute to their perfor-
mance. 

With convex optimization concepts, it is
possible to show that in the solution, only
some of the α coefficients are nonzero, namely,
the ones lying nearest to the separation hyper-
plane. The other points could be removed from
the training set without loss of information
about the classification function. Thus, what is
called a sparseness of the solution is induced,
which is the key for many efficient algorithmic
techniques for optimization as well as an
analysis of SVM generalization performance
based on the concept of data compression.
Such points are called support vectors (hence the
name of the entire approach). 

Another major property of this class of algo-
rithms is their modularity: The maximal mar-
gin algorithm is independent of the kernel
being used, and vice versa. Domain knowledge
and other techniques dictate the choice of ker-
nel function, after which the same margin-
maximizing module is used. It is important to
note that the maximal margin hyperplane in
the embedding space will usually correspond
to a nonlinear boundary in the input space, as
illustrated by figure 1.

The high generalization power of large mar-
gin classifiers is the result of the explicit opti-
mization of statistical bounds controlling the
risk of “overfitting.” The choice of the kernel
function is the only major design choice. How-
ever, this choice can be guided by domain
expertise, keeping in mind that a kernel can be
regarded as a similarity measure and that often
domain experts already know effective similari-
ty measures between data points. Such has been
the case, for example, in the field of text catego-
rization, where a kernel inspired by informa-
tion-retrieval techniques has successfully been
used (Joachims 1998). Domain-specific kernels
are also increasingly used in bioinformatics.

The maximal margin hyperplane is, however,
not the only classification algorithm to be used
in combination with kernels. For example, the
well-known Fisher discriminant procedure and
methods motivated by the Bayesian approach
to statistics and machine learning have been
combined with kernels, leading to other inter-
esting nonlinear algorithms whose training
often amounts to convex optimization.

Regression
Similarly, several kernel-based methods for
regression have been proposed. For example,
the classic ridge regression algorithm acquires
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Figure 1. A Simple Two-Dimensional Classification Problem (Separate Balls
from Circles), with Three Possible Solutions of Increasing Complexity.

The first solution, chosen from a class of functions with low capacity, misclassifies
even some rather simple points. The last solution, however, gets all points right
but is so complex that it might not work well on test points because it is basically
just memorizing the training points. The medium-capacity solution represents a
compromise between the other two. It disregards the outlier in the top left corner
but correctly classifies all other points.



PCA in a principled way, now known as kernel
PCA (figures 2, 3, and 4).

Novelty detection is the task of spotting anom-
alous observations, that is, points that appear
to be different from the others. It can be used,
for example, in credit card fraud detection,
spotting of unusual transactions of a customer,
and engine fault detection and medical diag-
nosis. An efficient SVM method for represent-
ing nonlinear regions of the input space where
normal data should lie makes use of kernel
embedding. 

Clustering is the task of detecting clusters
within a data set, that is, sets of points that are
“similar to each other and different from all
the others.” Obviously, performing clustering
requires a notion of similarity, which has usu-
ally been a distance in the data space. Being
able to reformulate this problem in a generic
embedding space created by a nonlinear kernel
has paved the way to more general versions of
clustering. 

Applications
The number of successful applications of this
class of methods has been growing steadily in
the last few years. The record for performance
in text categorization, handwriting recogni-
tion, and some genomics applications is cur-
rently held by SVMs. Furthermore, in many
other domains, SVMs deliver performance
comparable to the best system, requiring just a
minimum amount of tuning.

We review just a few cases: text categoriza-

a completely new flavor when executed in a
nonlinear feature space. Interestingly, the
resulting algorithm is identical to a well-
known statistical procedure called Gaussian
processes regression and to a method known in
geostatistics as Krieging. 

Also in this case, the nonlinear regression
function is found as a linear combination of
kernels by solving a convex optimization prob-
lem. A special choice of loss function also leads
to sparseness and an algorithm known as SVM
regression.

Unsupervised Learning
The same principles and techniques deployed
in the case of SVMs have been exported to a
number of other machine learning tasks. Unsu-
pervised learning deals with the problem of
discovering significant structures in data sets
without an external signal (such as labels pro-
vided by human expert).

For example, PCA is a technique aimed at
discovering a maximally informative set of
coordinates in the input space to obtain a more
efficient representation of the data. This tech-
nique was routinely performed in a linear fash-
ion, using as coordinate basis vectors the eigen
vectors of the data set’s covariance matrix
(roughly speaking, the directions in which the
data vary most). Several tricks existed to over-
come the obvious limitations of linear systems,
but the discovery that this algorithm can be
used in any kernel-induced embedding space
opened the possibility to perform nonlinear
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Figure 2. The First (and Only) Two Principal Components of a Two-Dimensional Toy Data Set.
Shown are the feature-extraction functions, that is, contour plots of the projections onto the first two eigenvectors of the covariance matrix.
Being a linear technique, principal component analysis cannot capture the nonlinear structure in the data set.



tion, handwritten digit recognition, and gene
expression data classification. We briefly sum-
marize here the results of these benchmarks
but strongly recommend readers access the
original papers to obtain a full description and
justification of the cost functions being used
for the comparison, the data sets, the experi-
mental design, and other fundamental statisti-
cal considerations that we could not address
here because of space limitations. A proper dis-
cussion would require several pages for each
experiment.

Text Categorization
Researchers have constructed a kernel from a
representation of text documents known in
information retrieval as a bag of words. In this
representation, a document is associated with a
sparse vector that has as many dimensions as
there are entries in a dictionary. Words that are
present in the document are associated with a
positive entry, whereas words that are absent
will have a zero entry in the vector. The weight
given to each word depends also on its infor-
mation content within the given corpus. The
similarity between two documents is measured
by the cosine between vectors, which corre-
sponds to a kernel.

The combination of this kernel with SVMs
has created the most efficient algorithm for the
classification of news wire stories from Reuters,
a standard benchmark. 

Comparisons with four conventional algo-
rithms (k-nearest neighbor, the decision tree

learner C4.5, the standard Rocchio algorithm,
and naïve Bayes) reported by Thorsten
Joachims (1998) on two standard benchmarks
(the Reuters and the Oshumed corpora) show
SVMs consistently outperforming these meth-
ods. Performance was measured by microaver-
aged precision/recall breakeven point across 10
categories for Reuters and 23 categories for
Oshumed. In particular, for the Reuters data,
the average performance across the 10 cate-
gories ranges for the conventional methods
from 72 to 82 where SVMs achieve 86.0 with
polynomial kernels and 86.4 with Gaussian
kernels. For the Oshumed data, the conven-
tional systems ranged from 50.0 to 59.1, but
SVMs achieved 65.9 with polynomial kernels
and 66.0 with Gaussian kernels. 

Since then, SVMs have been used in a num-
ber of text categorization applications.

Handwritten-Digit Recognition
During the 1990s, the so-called MNIST set
emerged as the “gold standard” benchmark for
pattern-recognition systems in what was then
the Adaptive Systems Research Group at AT&T
Bell Labs. This group pioneered the industrial
use of machine learning as well as contributed
fundamental insights to the development of
the field in general. The MNIST training set
contains 60,000 handwritten digits, scanned in
a resolution of 28 x 28 pixels. All major algo-
rithms were tested on this set, and a sophisti-
cated multilayer neural net (called LENET) had
long held the benchmark record. Recently, an
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Figure 3. The First Two Principal Components for Kernel Principal Components Analysis (PCA), That Is, PCA Performed in the
Feature Space Associated with a Kernel Function.

The two feature extractors identify the cluster structure in the data set: The first one (left) separates the bottom left cluster from the top
one; the second one (right) then disregards this distinction and focuses on separating these two clusters from the third one.



ing systems. In particular, gene-expression data
generated by DNA microarrays are high dimen-
sional and noisy and usually expensive to
obtain (hence only available in small data sets).
A typical microarray experiment produces a
several-thousand–dimension vector, and its
cost means that usually only a few dozen such
vectors are produced.

SVMs are trained on microarray data to accu-
rately recognize tissues that are, for example,
cancerous or to detect the function of genes
and, thus, for genomic annotation.

SVMs were first used for gene-function pre-
diction based on expression data at the Univer-
sity of California at Santa Cruz in 1999 (Brown
et al. 2000). The same group later pioneered
the use of SVMs for cancer diagnosis based on
tissue samples. In both cases, they delivered
state-of-the-art performance, and since this
time, these experiments were repeated and
extended by a number of groups in essentially
all the leading institutions for bioinformatics
research. Kernel methods are now routinely
used to analyze such data. 

In this first experiment, SVMs were com-
pared to four conventional algorithms (deci-
sion tree learner C4.5, the perceptron decision
tree learner MOC1, Parzen windows, and the
Fisher discriminant) on a data set of about

SVM invariant to a class of image transforma-
tions has achieved a new record result, thus
taking over one of the previous strongholds of
neural nets. The previous record was owned by
a boosted version of the sophisticated neural
network LENET4, which has been refined for
years by the ATT Labs, with 0.7-percent test
error. SVMs with so-called jittered kernels
(DeCoste and Schoelkopf 2002) achieved 0.56
percent. On the same data set, 3 nearest neigh-
bors obtains 2.4 percent, 2-layer neural net-
works 1.6 percent, and SVMs without special-
ized kernels 1.4 percent, illustrating the
importance of kernel design. 

Gene Expression Data
Modern biology deals with data mining as
much as it does with biochemical reactions.
The huge mass of data generated first by the
Genome Project and then by the many postge-
nomic techniques such as DNA microarrays
calls for new methods to analyze data. Nowa-
days, the problem of obtaining biological
information lies just as much in the data analy-
sis as it lies in the development of actual mea-
suring devices.

However, the high dimensionality and the
extreme properties of bioinformatics data sets
represent a challenge for most machine learn-

Articles

38 AI MAGAZINE

Figure 4. Because It Is Performed in a High-Dimensional Feature Space, Kernel Principal Components Analysis Can Extract More
Than Just the Two Feature Extractors Shown in Figure 2.

It turns out that the higher-order components analyze the internal structure of the clusters; for example, component number 4 (top right)
splits the bottom left cluster in a way that is orthogonal to component number 8 (bottom right).
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In pattern classification, the objective is
to estimate a function f: ℜn → {–1, +1}
using training data—that is, n-dimension-
al vectors xi and class labels yi such that f
will correctly classify new examples (x, y)
with high probability. More precisely, we
would like the predicted label f(x) to equal
the true label y for examples (x, y), which
were generated from the same underlying
probability distribution P(x, y) as the
training data. 

If we put no restriction on the class of
functions that we choose our estimate f
from, however, even a function that does
well on the training data—for example, by
satisfying f(xi) = yi for all i—need not gener-
alize well to unseen examples. Suppose we
have no additional information about f (for
example, about its smoothness). Then the
values on the training patterns carry no
information whatsoever about values on
novel patterns. Hence, learning is impossi-
ble, and minimizing the training error does
not imply a small expected test error. 

Statistical learning theory shows that it
is crucial to restrict the class of functions
that the learning machine can implement
to one with a capacity that is suitable for
the amount of available training data. 

We call error of the function f the prob-
ability of mislabeling a point x whose
label is y: 

_ = P({x | f(x) ≠ y})
and the theory aims at upper bounding
this quantity with an expression that
includes observable characteristics of the
learning machine.

For example, the probability of misla-
beling a new point from the same distrib-
ution, with a function that perfectly
labels the training sample, increases with
a measure of the function complexity,
known as the VC dimension (but other
measures of capacity exist). Controlling
the capacity is, hence, a crucial step in the
design of a learning machine: Given two
functions with identically performing
training sets, the one with lower capacity
has the higher probability of generalizing
correctly on new points. 

It follows from the previous considera-
tions that to design effective learning algo-
rithms, we must come up with a class of
functions whose capacity can be comput-
ed. The algorithm should then attempt to
keep the capacity low and also fit the train-

ing data. Support vector classifiers are based
on the class of hyperplanes

〈w, x〉 + b = 0
w, x ∈ ℜn, b ∈ ℜ

corresponding to decision functions
f(x) = sign(〈w, x〉 + b)
It is possible to prove that the optimal

hyperplane, defined as the one with the
maximal margin of separation between
the two classes (figure A), stems from the
function class with the lowest capacity.
This hyperplane can be constructed uni-
quely by solving a constrained quadratic
optimization problem whose solution w
has an expansion in terms of a subset of
training patterns that lie closest to the
boundary (figure A). These training pat-
terns, called support vectors, carry all rele-
vant information about the classification
problem. Omitting many details of the
calculations, there is just one crucial
property of the algorithm that we need to
emphasize: Both the quadratic program-
ming problem and the final decision
function depend only on dot products
between patterns, which is precisely what
lets us generalize to the nonlinear case. 

The key to set up the optimization
problem of finding a maximal margin
hyperplane is to observe that for two
points x+ and x– that lie nearest to it, it is
true that

Hence, the margin is inversely propor-
tional to the norm of w. Therefore, we
need to minimize the norm of w subject
to the given constraints: 

min〈w, w〉
s.t.yi[〈w, xi〉 + b] ≥ 1

This equation can be solved by construct-
ing a Lagrangian function:

where the coefficient α is a Lagrange mul-
tiplier, and by transforming it into the
corresponding dual Lagrangian by impos-
ing the optimal conditions,

Figure A. A Maximal Margin 
Separating Hyperplane.

Notice that its position is determined by the
nearest points, called support vectors.

The result is a quadratic programming
problem with linear constraints

that presents just a global maximum and
can always be exactly solved efficiently. The
resulting solution has the property that  

and in fact, often most of the coefficients
αi are equal to zero. The only positive
coefficients correspond to the points that
lie closest to the hyperplane, and for this
reason, such points go under the name of
support vectors.

The final decision function can be writ-
ten as  

where the index i runs only on the sup-
port vectors. In other words, if all data
points other than the support vectors
were removed, the algorithm would find
the same solution. This property, known
as sparseness, has many consequences,
both in the implementation and in the
analysis of the algorithm.

Notice also that both in the training
and in the testing, the algorithm uses
data-only inside inner products. This
property paves the way for the use of ker-
nel functions, which can be regarded as
generalized inner products, with this
algorithm (see sidebar 2).
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(with standard approaches ranging between 6
and 12). Other successful applications of SVMs
to computational biology involve protein
homology prediction, protein fold classifica-
tion, and drug activity prediction.

Conclusions
The development of kernel-based learning sys-
tems in the mid-1990s represented another
turning point in the history of pattern-recogni-
tion methods, comparable to the “nonlinear
revolution” of the mid-1980s, when the intro-

2500 genes, each described by 79 expression
values and labeled according to one of 5 func-
tions as stated by the MIPS database. The per-
formance was measured by the number of false
positives plus twice the number of false nega-
tives. SVMs with Gaussian kernels achieved a
cost of 24 for the first class (conventional
methods ranging between 28 and 41), 21 for
the second class (conventional methods
between 30 and 61), 17 for the third class (con-
ventional methods between 22 and 78), 17 for
the fourth class (conventional methods
between 31 and 44); and 4 for the fifth class
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The main idea behind kernel methods is
to embed the data items into a vector
space and use linear algebra and geome-
try to detect structure in the data.  For
example, one can learn classifications in
the form of maximal margin hyper-
planes, as described in sidebar 1. There
are several reasons to embed the data
into a feature space. By mapping the
data into a suitable space, it is possible
to transform nonlinear relations within
the data into linear ones. Furthermore,
the input domain does not need to be a
vector space, just the embedding space
needs to be.  

Rather than writing down explicitly
the positions of the data points within
some reference frame, we make use of
information about the relative positions
of the points with respect to each other.
In particular, we use the inner products
between all pairs of vectors in the embed-
ding space. Such information can often
be obtained in a way that is independent
of the dimensionality of this space. Many
algorithms (for example, the maximal
margin classifier described in this article)
can make use of inner product informa-
tion. 

Figure A shows the basic idea behind
support vector machines, which is to
map the data into some dot product
space (called the feature space) F using a
nonlinear map φ: ℜn → F and perform the
maximal margin algorithm in F.

Clearly, if F is high dimensional, work-
ing in the feature space can be expensive. 

Figure A. A Nonlinear Map Is Used to
Embed the Data in a Space Where Linear

Relations Are Sought.

However, in sidebar 1, we saw that all we
need to know to perform the maximal
margin algorithm is the inner product
between vectors in the feature space. This
quantity can often be computed more
efficiently by means of a kernel function
k(x, z) = 〈φ(x), φ(z)〉.

This computational shortcut can be
used by a large class of algorithms,
including principal components analysis
and ridge regression.

As an example of kernel function,
consider the following map from a two-
dimensional space to a three-dimension-
al one: 

The inner product in such a space can
easily be computed without explicitly
rewriting the data in the new representa-
tion. 

Consider two points:
x = (x1, x2)
z = (z1, z2)

and consider the kernel function
obtained by squaring their inner prod-
uct: 

This function corresponds to the inner
product between 2 three-dimensional
vectors. If we had used a higher expo-
nent, we would have virtually embedded
these two vectors in a much higher-
dimensional space at a very low compu-
tational cost. 

More generally, we can prove that for
every kernel that gives rise to a positive
definite matrix Kij = k(xi, xj), we can con-
struct a map φ such that k(x, z) = 〈φ(x),
φ(z)〉.

Other examples of kernels include the
Gaussian 

the polynomial   
k(x, z) = (〈x, z〉 + 1)d

and kernels defined over sets such as
strings and text documents. Such kernels
virtually embed elements of general sets
into a Euclidean space, where learning
algorithms can be executed. This capabil-
ity to naturally deal with general data
types (for example, biosequences, images,
or hypertext documents) is one of the
main innovations introduced by the ker-
nel approach.
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duction of back-propagation networks and deci-
sion trees triggered a series of rapid advances,
that ultimately spawned entire fields such as
data mining. The present revolution comes with
a new level of generalization performance, the-
oretical rigor, and computational efficiency. The
extensive use of optimization methods, the
deeper understanding of the phenomenon of
overfitting from the statistical point of view,
and the use of kernels as nonlinear similarity
measures all represent elements of novelty,
directly addressing weaknesses of the previous
generation of pattern-recognition systems.

The resulting systems have rapidly become
part of the toolbox of practitioners in addition
to still being the object of much theoretical
attention. A rich research community has
emerged, and many universities and software
companies participate in the research in this
field, including startups that use it for mining
postgenomic data. The future of this field ulti-
mately depends on the performance of the
algorithms. As long as kernel-based learning
methods continue to deliver state-of-the-art
performance in strategic applications such as
text categorization, handwriting recognition,
gene function, and cancer tissue recognition,
the interest in them is bound to remain high.2

Kernel methods also mark an important
development in AI research, demonstrating
that—at least in very specific domains—a rigor-
ous mathematical theory is not only possible
but also pays off from a practical point of view.
The impact of this research direction would be
even larger if it could inspire neighboring fields
to introduce analogous tools in their method-
ology. There is no doubt that a mathematical
theory of intelligent systems is still far in the
future, but the success of learning theory in
delivering effective learning methods demon-
strates that this possibility is at least not impos-
sible.

Notes
1. www.jmlr.org.

2. Official kernel machines web site: www.kernel-
machines.org.
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