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We suggest a penalty function to be used in various problems of structural risk minimization. This

penalty is data dependent and is based on the sup-norm of the so called Rademacher process indexed by

the underlying class of functions (sets). The standard complexity penalties, used in learning problems and

based on the VC-dimensions of the classes, are conservative upper bounds (in a probabilistic sense, uniformly

over the set of all underlying distributions) for the penalty we suggest. Thus, for a particular distribution of

training examples one can expect better performance of learning algorithms with the data-driven Rademacher

penalties. We obtain oracle inequalities for the theoretical risk of estimators, obtained by structural mini-

mization of the empirical risk with Rademacher penalties. The inequalities imply some form of optimality

of the empirical risk minimizers. We also suggest an iterative approach to structural risk minimization with

Rademacher penalties, in which the hierarchy of classes is not given in advance, but is determined in the data-

driven iterative process of risk minimization. We prove probabilistic oracle inequalities for the theoretical risk

of the estimators based on this approach as well.

Index Terms: Structural Risk Minimization, Iterative Structural Risk Minimization, Rademacher Penalty,

Oracle Inequalities, Empirical Process, Classi�cation

1. Dimension based penalties and Rademacher penalties in risk minimization. Let Y be a

f0; 1g-valued random variable (label) to be predicted based on an observation of another random variable X

taking values in a measurable space (S;A): A decision rule is a measurable set C 2 A; or, equivalently, the
measurable function g = IC ; where

IC(x) :=
n
1 if x 2 C

0 otherwise.

The risk of the decision rule C is de�ned by L(C) := P(fY 6= IC(X)g): It is well known that the optimal

decision rule (the one that minimizes the risk on A) is given by

Copt :=
n
x : PfY = 0jX = xg � PfY = 1jX = xg

o
:

To determine the set Copt one has to know the joint distribution of (X;Y ): Most often, this distribution

is unknown and determining the decision rule is to be based on the sample ((X1; Y1); : : : ; (Xn; Yn)) of

independent copies of (X;Y ) (the training data). Given a class C of decision rules, the estimate of the

"optimal" decision rule is determined by minimization of the empirical risk Ĉn := argminfLn(C) : C 2 Cg;
where Ln(C) is the average classi�cation error of the decision rule C on the training data:

Ln(C) := n�1
nX
j=1

IfYj 6=IC(Xj )g:

This is the well known method of empirical risk minimization frequently used in the problems of concept

learning (pattern recognition, statistical classi�cation) at least since the landmark works of Vapnik and Cher-

vonenkis (1971, 1974) (see also Vapnik (1982, 1995, 1998), Devroye, Gy�or� and Lugosi (1996), Vidyasagar

(1997)). It plays also an important role in computational learning theory (Valiant (1984), Blumer, Ehren-

feucht, Haussler and Warmuth (1989)).

The choice of the class C of decision rules poses a hard problem. Most often, the available prior informa-

tion about the unknown distribution of (X;Y ) is not enough to determine a reasonable class C that contains

Copt: In an attempt to make the minimal risk minC2CL(C) smaller, one can try to choose very large class

C: This results in poor approximation of the risk L by the empirical risk Ln on the class C: In such cases,
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the solution Ĉn of the empirical risk minimization problem does not have to be close to Copt and the risk

of this solution does not have to be small. This leads to the necessity to take into account the "complexity"

of the class C: The standard way to measure the complexity is based on the notion of V C-dimension of the

class. Given a �nite set F � S; denote �C(F ) := card(fF \ C : C 2 Cg) and

m(C; n) := supf�C(F ) : F � S; card(F ) = ng; n � 1:

Then the V C-dimension of the class C is de�ned as V (C) := supfn � 1 : m(C; n) = 2ng:
Consider now a nondecreasing sequence fCNgN�1 of classes of decision rules (a sieve). Vapnik's method

of structural risk minimization is based on minimizing the so called penalized empirical risk:

Ĉ := argminfLn(C) : C 2 ĈN̂g; N̂ := argminfN � 1 : min
C2CN

Ln(C) + pen(n;N)g;

where pen(n;N) is the complexity penalty of the class CN : A standard choice of the complexity penalty is

as follows:

(1:1) pen(n;N) :=

r
log(4e8m(CN ; n2)) +N

2n
;

which is, roughly, const
p
(V (CN ) logn+N)=n (see, e.g., Lugosi and Zeger (1996)). This particular choice is

based on the following bound (due to Devroye) for the deviations of the empirical risk from the theoretical

one uniformly over a class C of the decision rules:

(1:2) Pfsup
C2C

��Ln(C) � L(C)
�� � "g � 4e8m(C; n2)e�2n"2 :

Lugosi and Zeger (1996) established the following bounds for the estimator Ĉ :

(1:3) P
�
L(Ĉ)� inf

C2CN
L(C) � "

	 � e�n"
2=2 + 4e8m(CN ;n2)e�n"

2=8;

which holds for all " > 4pen(n;N); and

(1:4) EL(Ĉ)� L0 � inf
N�1

h
inf

C2CN
L(C)� L0 +

r
16V (CN ) logn+ 8(N + 11)

n

i
;

where L0 := infN�1 infC2CN L(C):

Given a class C of decision rules and a number L0 2 (0; 1=2); let P(C;L0) be the set of all distributions of
(X;Y ) such that L(C) � L0 for all C 2 C: Suppose that V (C) � 2: Devroye, Gy�or� and Lugosi (1996) gave a

minimax lower bound for the risk of arbitrary empirical decision rule, based on the data (X1; Y1); : : : ; (Xn; Yn)

(see their Theorem 14.5). Namely, for any such a decision rule ~C; there exists a distribution of training

examples from the set P(C;L0) such that

(1:5) EL( ~C)� L0 � e�8
r
L0(V (C)� 1)

24n

for all n � (2L0)
�1((1� 2L0)

�2 _ 9)(V (C)� 1):

Let fCNg be an increasing sequence of VC-classes such that fV (CN )g is strictly increasing and for

some constant D > 0 V (CN+1) � DV (CN ); N � 1: Let f�Ng be a sequence such that �N # 0: Let P :=

P(fCNg; f�Ng;L0) be the class of all distributions of (X;Y ) such that 0 � infC2CN L(C)�L0 � �N ; N � 1:

It follows from (1.4) and (1.5) that with some constants A;B > 0

(1:6) sup
P
EL(Ĉ)� L0 � A inf

N�1

h
�N +

r
V (CN ) logn

n

i
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and

(1:7) inf
~C
sup
P
EL( ~C)� L0 � B inf

N�1

h
�N +

r
V (CN )

n

i
:

Thus the estimator Ĉ; obtained using the structural risk minimization approach, is optimal in the minimax

sense up to a logarithmic factor and up to constants.

A natural measure of complexity of the class C of decision rules in the problems of empirical risk mini-

mization is the accuracy of empirical approximation on the class C; de�ned by kLn�LkC := supC2C
��Ln(C)�

L(C)
��; or as the expectation of this quantity. The bound (1.2) is uniform with respect to all the distributions

of (X;Y ) and therefore it does not have to be optimal for a particular distribution. Also, the constants in

this bound are not best possible and the V C-dimension of the class C of decision rules is often unknown and

has to be replaced by its upper bound (this is the case, for instance, for some classes of neural networks).

This hierarchy of non-optimal upper bounds leads to the fact that the penalty function pen(n;N); de�ned

by (1.1), is often much larger than the "ideal" penalty E kLn�LkCN : The "ideal" penalty, however, can not

be used in practice since the distribution of (X;Y ) is unknown. Therefore, rather conservative upper bounds,

described above, are to be used instead.

In the recent literature on nonparametric estimation, an approach quite similar to the structural risk

minimization is often referred to as the method of sieves. Birg�e and Massart (1996), Barron, Birg�e and

Massart (1999) have studied rather thoroughly the penalty functions to be used in the problems of adaptive

estimation on sieves. They used powerful Talagrand's concentration and deviation inequalities for empirical

processes (Talagrand (1996a,b), Ledoux (1996), Massart (1999)) to obtain the so called oracle inequalities for

the theoretical risk of their estimators. The method of oracle inequalities has become a rather popular way

to prove optimality properties of nonparametric statistical estimators (see Johnstone (1998)). The Birg�e-

Massart penalties are also based on the dimensions of the classes of functions (metric entropy dimensions or

VC-type dimensions). Their approach works rather well in some examples of sieves that frequently occur in

the problems of nonparametric regression and density estimation (for example, for nested families of Sobolev

ellipsoids). In such cases, the Birg�e-Massart penalties provide rather sharp upper bounds for the accuracy

of empirical approximation. This is not always the case, however, in the problems of concept learning. In

these problems, the dimension based penalties often overestimate the value of E kLn � LkC; which imposes

unnecessary restrictions on the complexity of the classes of decision rules and results in prohibitively large

sample sizes required to guarantee a reasonable accuracy of learning.

In this paper, we suggest a data based penalty, de�ned by �(n;N) := Rn(CN ); where

(1:8) Rn(C) := sup
C2C

���n�1
nX
j=1

rjIfYj 6=IC (Xj)g
���

frngn�1 being a Rademacher sequence (i.e. a sequence of independent random variables taking values +1 and

�1 with probability 1=2 each), independent of f(Xn; Yn)g: We call such a penalty the Rademacher penalty.

The quantities similar to Rn(C) have been frequently used in the so called symmetrization inequalities for

empirical processes (see Lemma 2.4 below). The method of Rademacher symmetrization, known in many

areas of Analysis and Probability, was brought to the empirical processes theory by Koltchinskii (1981),

Pollard (1982), and, especially, Gin�e and Zinn (1984). It allowed them to simplify substantially the proofs

of the original Vapnik and Chervonenkis (1971, 1974) results and to develop the techniques of uniform

bounds for empirical processes to the level they could be used to prove uniform versions of the central

limit theorem (see Dudley (1999) and van der Vaart and Wellner (1996) for thorough account of these

developments). Despite the theoretical importance of the Rademacher symmetrization, its use as a tool of

statistical inference has been rather limited. Using Rn(C) as a (computable) measure of the accuracy of

empirical approximation on the class C is actually a special case of the so called weighted bootstrap (see van

der Vaart and Wellner (1996)). Recently, Koltchinskii, Abdallah, Ariola, Dorato and Panchenko (1999) used

similar quantities in statistical learning problems that occur in control theory.

It is easy to check that computing the Rademacher penalty is equivalent to the solution of empirical
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risk minimization problem for "randomly relabeled" sample. Indeed, we have

Rn(C) = sup
C2C

h
n�1

nX
j=1

rjIfYj 6=IC (Xj)g
i_�

� inf
C2C

h
n�1

nX
j=1

rjIfYj 6=IC (Xj)g
i�
;

so, it is enough to compute separately the supremum and the in�mum above. Let us consider, for instance,

the supremum. We have

nX
j=1

rjIfYj 6=IC (Xj)g =
X

rj=+1;Yj=1

(1� IC(Xj)) +
X

rj=+1;Yj=0

IC(Xj)�

�
X

rj=�1;Yj=1
(1� IC(Xj))�

X
rj=�1;Yj=0

IC(Xj) =
X

j=1;:::n:Yj=1

rj +

nX
j=1

�jIC(Xj);

where �j := �(2Yj � 1)rj : Thus, maximizing
Pn

j=1 rjIfYj 6=IC (Xj)g over C 2 C is equivalent to maximizingPn
j=1 �jIC(Xj): Next, we have

nX
j=1

�jIC(Xj) =
X

�j=+1

IC(Xj)�
X

�j=�1
IC(Xj) =

= �
X

�j=�1
IC(Xj)�

X
�j=+1

(1� IC(Xj)) + cardfj = 1; : : : ; n : �j = +1g:

Hence, the problem can be reduced to minimizing

X
�j=�1

IC(Xj) +
X

�j=+1

(1� IC(Xj)) =

nX
j=1

If ~Yj 6=IC (Xj)g;

where ~Yj = 0 i� �j = �1; and ~Yj = 1 otherwise. The above argument also shows that Rn(C) can be viewed

as a measure of "separation power" of the class C of decision rules. Indeed, if the value of Rn(C) is large, the
class of decision rules C would separate the "positive" examples from the "negative" ones with a small error

even if the labels were assigned at random. This indicates that the class C is too large (a reasonable class of

decision rules should separate the positive examples from the negative ones in the case of correct labels, but

should not do this when the labels are randomly misplaced).

In the next section, we describe more general version of structural minimization of empirical risk with

Rademacher penalties. This version also applies to the problems of function learning and regression. We

prove probabilistic oracle inequalities (of the same type as (1.3), (1.4)) that give upper bounds for the

(theoretical) risk of the functions that approximately minimize the penalized empirical risk. The inequalities

show some form of optimality of the procedure of structural risk minimization with Rademacher penalties.

In a special case of the sieve formed by VC-classes of sets (concepts), the decision rule, obtained by the

method of structural risk minimization with Rademacher penalties, has the optimal value of risk (up to a

multiplicative constant).

One of the problems with the implementation of the method of Rademacher penalization is the necessity

to compute the penalties, which, as we have shown above, is equivalent to solving precisely the problem of

minimization of the empirical risk for randomly relabeled data. In many cases only approximate solution

of this problem is available and the accuracy of approximation is not known precisely. We consider in the

last two sections a possible way to get around these di�culties. Namely, we develop in these sections a

method of iterative structural risk minimization with Rademacher penalties. Instead of using the hierarchy

of function classes given in advance, this method allows one to determine �nite data dependent pools of

functions in the data-driven process of empirical risk minimization. The Rademacher penalties are now

computed by maximizing the Rademacher process over these �nite pools of functions. This resembles the
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recent work of some other authors on developing more 
exible data-driven versions of risk minimization

(such as "simple empirical covering" of Buescher and Kumar (1996), "structural risk minimization over data-

dependent hierarchies" of Shawe-Taylor, Bartlett, Williamson and Anthony (1996), "self-bounding learning"

of Freund (1998)). It is also worth mentioning that popular boosting algorithms are, in fact, methods of

iterative structural minimization of risk. They are known to produce classi�ers of rather high complexity

and with small classi�cation error, seemingly overcoming the standard di�culties related to over�tting the

data. This could be due to the fact that the right measure of complexity for such iterative risk minimization

algorithms should be data dependent and based on the functions actually involved in the iteration process

rather than on VC-dimensions of the huge classes of classi�ers of which the actual iteration pool is only a

small part. We prove probabilistic oracle inequalities, showing some form of optimality of iterative structural

risk minimization.

2. Oracle inequalities for structural risk minimization with Rademacher penalties. Let

(S;A) be a measurable space and let fXngn�1 be a sequence of i.i.d. observations in this space with common

distribution P: We assume that this sequence is de�ned on a probability space (
;�;P): Denote P(S) :=
P(S;A) the set of all probability measures on (S;A): Let Pn be the empirical measure based on the sample

(X1; : : : ; Xn) :

Pn := n�1
nX
j=1

�Xj
; where �x(A) :=

n
1 x 2 A

0 otherwise.

Given a probability measure � on (S;A) (e.g. P or Pn) and a �-integrable function f; we de�ne �(f) :=R
S
fd�; and in what follows we frequently identify � with the mapping f 7! �(f): Given a class F of

measurable functions from (S;A) into [0; 1]; we denote

�n(F) := kPn � PkF and Rn(F) := kn�1
nX
j=1

rj�Xj
kF :

Here k � kF stands for the norm of the space `1(F) of all uniformly bounded real valued functions on F :

kY kF := supf2F jY (f)j; Y : F 7! R:

To avoid dealing with complicated measurability issues that frequently occur in the theory of empirical

processes, we assume in what follows that the classes of functions we are working with are countable. However,

all the results of the paper are true if this assumption is replaced by standard assumptions of empirical

measurability of the classes, the probability measure P is replaced by outer probability, expectation E is

replaced by outer expectation, etc. (see Dudley (1999) or van der Vaart and Wellner (1996) for the discussion

of these issues).

Consider a family fFm : m 2 Mg of classes of measurable functions from (S;A) into [0; 1] (a sieve).

The setM is supposed to be countable. We assume in what follows that for di�erent classes in the sieve one

can use di�erent sample sizes. We denote these sample sizes fnm : m 2Mg: Let ftm : m 2 Mg be a set of
positive real numbers. We de�ne an "ideal" penalty function by

(2:1) I(m) := I(m; fFm; nm; tm : m 2 Mg) := 5E�nm(Fm) +
6tm + 2p

nm

and an empirical Rademacher penalty function by

(2:2) E(m) := E(m; fFm; nm; tm : m 2 Mg) := 2Rnm(Fm) +
3tmp
nm

:

Given � > 0; we de�ne a random variable m̂ 2 M and an estimate f̂ := f̂� 2 Fm̂ (m̂ and f̂ depend on

the data fXj : j = 1; : : : ; nmgm2M), such that

(2:3) inf
m2M

h
inf

f2Fm
Pnm(f) + E(m)

i
+ � � Pnm̂(f̂) + E(m̂):
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In the setting of Section 1, the space S is to be replaced by S � f0; 1g: The sieve in this case is the

family fFN : N � 1g; where

FN :=
n
fC : C 2 CN

o
; N � 1; fC(x; y) := Ify 6=IC (x)g; x 2 S; y 2 f0; 1g:

2.1. Theorem. The following inequalities hold:

(2:4) sup
P2P(S)

P

n
P (f̂) � inf

m2M

�
inf

f2Fm
Pnm(f) + E(m)

�
+ �
o
�
X
m2M

expf�2

3
t2mg

and

(2:5) sup
P2P(S)

P

n
P (f̂) � inf

m2M

�
inf

f2Fm
P (f) + I(m)

�
+ �
o
� 2

X
m2M

expf�2

3
t2mg:

The proof uses a well known exponential inequality for martingale di�erence sequences (see, e.g., Ledoux

and Talagrand (1991), Lemma 1.5, or Devroye, Gy�or� and Lugosi (1996), Theorem 9.1). This inequality is due

to Azuma (1967). Yurinski (1974) suggested a martingale representation of the norms of sums of independent

random vectors and opened a way to use this type of inequalities in Probability in Banach spaces. They

also found a number of applications in the local theory of Banach spaces (Milman and Schechtman (1986)).

Koltchinskii (1985, 1986) applied these inequalities to empirical processes and random entropies, Rhee and

Talagrand (1987) used them in their study of NP-complete problems, McDiarmid (1989) considered a broad

range of applications in graph theory and combinatorics, Devroye, Gy�or� and Lugosi (1996) used them

in the problems of pattern recognition. Talagrand (1996a, 1996b) has developed much more powerful and

sophisticated technique of concentration inequalities that have already been applied to the problems of

adaptive nonparametric estimation (Barron, Birg�e and Massart (1999)).

More speci�cally, the following corollary of Azuma's inequality will be used (see Devroye, Gy�or� and

Lugosi (1996), Theorem 9.2). Let (A;A) be a measurable space and let g be a measurable function from An

into R; such that with some constants ci > 0; i = 1; : : : ; n

jg(x1; : : : ; xi�1; xi; xi+1; : : : ; xn)� g(x1; : : : ; xi�1; x0i; xi+1; : : : ; xn)j � ci;

for all x1; : : : ; xi�1; xi; x0i; xi+1; : : : ; xn 2 A; i = 1; : : : ; n: Let Y1; : : : ; Yn be independent random variables

with values in (A;A): Then for all " > 0

P

n
g(Y1; : : : ; Yn)� E g(Y1; : : : ; Yn) � "

o
� exp

�� 2"2Pn
j=1 c

2
j

	

and

P

n
E g(Y1; : : : ; Yn)� g(Y1; : : : Yn) � "

o
� exp

�� 2"2Pn
j=1 c

2
j

	
:

These inequalities immediately imply the following lemmas.

2.2. Lemma. For all " > 0;

Pf�n(F) � E�n(F) + "g � expf�2"2ng
and

PfE�n(F) � �n(F) + "g � expf�2"2ng:
2.3. Lemma. For all " > 0;

PfERn(F) � Rn(F) + "g � expf�"2n=2g

and

PfRn(F) � ERn(F) + "g � expf�"2n=2g:
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2.4. Lemma. For all " > 0;

Pf�n(F)� 2Rn(F) � E [�n(F)� 2Rn(F)] + 3"g � expf�18"2n=25g � expf�2

3
"2ng

and

Pf�n(F) + 2Rn(F) � E [�n(F) + 2Rn(F)] + 3"g � expf�18"2n=25g � expf�2

3
"2ng:

Note that inequalities similar to the ones of Lemma 2.4 can be also obtained by combining the bounds

of Lemma 2.2 and Lemma 2.3, but this leads to the worse values of constants. [This improvements of the

constants was suggested to the author by Don Hush and Clint Scovel, see also Hush and Scovel (1999)].

2.5. Lemma. The following inequalities hold:

1

2
ERn(F)� 1

2
p
n
� 1

2
E kn�1

nX
j=1

rj(�Xj
� P )kF � E�n(F) � 2ERn(F):

Lemma 2.5 gives symmetrization inequalities for empirical processes. The proofs of the last two in-

equalities can be found, for instance, in van der Vaart and Wellner (1996). The proof of the �rst inequality

is obvious:

ERn(F) � E kn�1
nX
j=1

rj(�Xj
� P )kF + E jn�1

nX
j=1

rj j �

� E kn�1
nX
j=1

rj(�Xj
� P )kF + E

1=2jn�1
nX
j=1

rj j2 = E kn�1
nX
j=1

rj(�Xj
� P )kF +

1p
n
:

Proof of Theorem 2.1. The following bound is obvious (since f̂ 2 Fm̂):

(2:6) P (f̂) � Pnm̂(f̂) + �nm̂(Fm̂);

and using the �rst bound of Lemma 2.4 and the inequality E [�(Fm) � 2Rn(Fm)] � 0 (Lemma 2.5) we can

write

(2:7) P

� [
m2M

n
�nm(Fm) � 2Rnm(Fm) + 3tmn

�1=2
m

o�
�
X
m2M

expf�2

3
t2mg:

This implies that with probability at least 1�Pm2M expf� 2
3
t2mg; we have (by the de�nition of f̂ ; m̂)

P (f̂) � Pnm̂(f̂) + 2Rnm̂(Fm̂) + 3tmn
�1=2
m =

(2:8) = Pnm̂(f̂) + E(m̂) � inf
m2M

h
inf

f2Fm
Pnm(f) + E(m)] + �;

and the inequality (2.4) follows.

To prove (2.5), note that, by the second bound of Lemma 2.4, we get

P

� [
m2M

�
�n(Fm) + 2Rn(Fm) � E [�n(Fm) + 2Rn(Fm)] + 3tmn

�1=2
m

	� � X
m2M

expf�2

3
t2mg:

We also have (using the bounds of Lemma 2.5)

(2:9) ERnm(Fm) � E kn�1m
nmX
j=1

rj(�Xj
� P )kFm + n�1=2m � 2E�nm(Fm) + n�1=2m :
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Therefore

P

� [
m2M

�
�n(Fm) + 2Rn(Fm) � 5E�n(Fm) + 3tmn

�1=2
m + 2n�1=2m

	� �

(2:10) �
X
m2M

expf�2

3
t2mg:

Using (2.8){(2.10), we conclude that with probability at least 1� 2
P

m2M expf� 2
3 t
2
mg; we have

P (f̂) � inf
m2M

h
inf

f2Fm
Pnm(f) + E(m)

i
+ � �

� inf
m2M

h
inf

f2Fm
P (f) + �nm(Fm) + 2Rnm(Fm) + 3tmn

�1=2
m

i
+ � �

� inf
m2M

h
inf

f2Fm
P (f) + 5E�nm(Fm) + 2n�1=2m + 6tmn

�1=2
m

i
+ � =

= inf
m2M

h
inf

f2Fm
P (f) + J (m)

i
+ �;

which completes the proof.

Let �(x) := 1p
2�

R x
�1 e�u

2=2du:

2.6. Corollary. The following inequality holds for all P 2 P(S) :

(2:11) EP (f̂) � inf
m2M

�
inf

f2Fm
P (f) + I(m)

�
+ � + 6

p
6�

X
m2M

1p
nm

�
1��(

2p
3
tm)

�
:

Proof. Given " > 0; let us replace tm by t0m := tm + "n
1=2
m : Then I 0(m) = I(m) + 6" and E 0(m) =

E(m) + 3": The estimates m̂ and f̂ remain unchanged. In this case it follows from the inequalities (2.4) and

(2.5) that

(2:40) sup
P2P(S)

P

n
P (f̂) � inf

m2M

�
inf

f2Fm
Pnm(f) + E(m)

�
+ � + 3"

o
�
X
m2M

expf�2

3
(tm + "n1=2m )2g

and

(2:50) sup
P2P(S)

P

n
P (f̂) � inf

m2M

�
inf

f2Fm
P (f) + I(m)

�
+ � + 6"

o
� 2

X
m2M

expf�2

3
(tm + "n1=2m )2g:

De�ne

� :=
�
P (f̂)� inf

m2M

�
inf

f2Fm
P (f) + I(m)

�� �
�
=6:

It follows from (2.5') that for all " > 0

Pf�+ � "g = Pf� � "g � 2
X
m2M

expf�2

3
(tm + "n1=2m )2g:

Integrating with respect to " from 0 to +1 gives:

E � � E �+ =

Z +1

0

Pf�+ � "gd" � 2
X
m2M

Z +1

0

expf�2

3
(tm + "n1=2m )2gd" =
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= 2
X
m2M

1p
nm

Z +1

0

expf�2

3
(tm + v)2gdv =

p
6�

X
m2M

1p
nm

�
1��(

2p
3
tm)

�
;

and (2.11) easily follows.

In particular, assume that nm � n and let C := 2
P

m2M expf� 2
3 t
2
mg < +1: Then we have

I(m) := I(m;n) := 5E�n(Fm) + 6tm + 2p
n

:

Theorem 2.1 and Corollary 2.6 imply that

sup
P2P(S)

P

n
P (f̂) � inf

m2M

�
inf

f2Fm
P (f) + I(m)

�
+ � + 6"

o
� C expf�2

3
"2ng

and

EP (f̂) � inf
m2M

�
inf

f2Fm
P (f) + I(m)

�
+ � +

(3=2)
p
6�Cp
n

:

To be more speci�c, assume that M := N and take tm := 
(logm)1=2 with 
 >
q

3
2 : Then C := C
 :=

2
P

m�1m
� 2
3

2 : If, in addition, E�n(Fm) � Dm(P )p

n
with some Dm(P ) > 0 (this holds, for instance, if Fm is

a P -Donsker class for all m � 1), then we have

sup
P2P(S)

P

n
P (f̂) � inf

m2N

�
inf

f2Fm
P (f) +

5Dm(P ) + 6

p
logm+ 2p

n

�
+ � + 6"

o
�

(2:12) � C
 expf�2

3
"2ng

and

(2:13) EP (f̂) � inf
m2N

�
inf

f2Fm
P (f) +

5Dm(P ) + 6

p
logm+ 2p

n

�
+ � +

(3=2)
p
6�C
p
n

:

The meaning of these oracle inequalities can be described as follows. Suppose there exists an oracle

who knows the distribution P of our data and who can compute any quantity related to this distribution.

Then we can ask the oracle to tell us the values of the quantities Dm(P ) as well as the quantities �m(P ) :=

inff2Fm P (f) � infm2N inff2Fm P (f); that characterize the approximation error of the minimal risk on the

class Fm: Since Dm(P )p
n

characterizes the accuracy of empirical approximation on the class Fm; it can be used
as a complexity penalty. With such a penalty, a reasonable choice of m is

~m := argmin
�
�m(P ) +

Dm(P )p
n

�
:

Thus, one can try to estimate the minimizer of the risk P by minimizing the empirical risk Pn on the class

F ~m: Suppose for simplicity that � = 0: Then the oracle inequlities above tell us that if the sample size n is

large enough, namely, n > 3
2
1
"2
log

C

�
; then for all P 2 P(S) with probability at least 1� �

P (f̂)� inf
m2N

inf
f2Fm

P (f) < inf
m2N

�
�m(P ) +

5Dm(P ) + 6

p
logm+ 2p

n

�
+ 6":

Moreover, for all n and all P 2 P(S)

E
�
P (f̂)� inf

m2N
inf

f2Fm
P (f)

� � inf
m2N

�
�m(P ) +

5Dm(P ) + 6

p
logm+ 2p

n

�
+

(3=2)
p
6�C
p
n

:
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Thus, using Rademacher penalization allows us to obtain the solution of empirical risk minimization problem

that is almost as good (up to constants and a couple of relatively small extra terms) as the one suggested

by the oracle.

Being even more speci�c, one can assume that for each m the class Fm := fIC : C 2 Cmg; where Cm is

a VC-class of sets. In this case, using well known bounds for the expectation of the sup-norm of empirical

process and the bounds on uniform entropies of VC-classes (see, e.g., van der Vaart and Wellner (1996),

Theorem 2.6.4), one can easily prove that for all P 2 P(S) we can choose Dm(P ) � D
p
V (Cm) with some

numerical constant D > 0: This allows us to conclude that in the context of the classi�cation problem

discussed in section 1 (see (1.6), (1.7)), we have

inf
~C
sup
P
EL( ~C)� L0 � inf

N�1

h
�N +

r
V (CN )

n

i

and the best possible (in the minimax sense and up to a constant) asymptotic rate of convergence is attained

for the decision rule obtained via structural risk minimization with Rademacher penalties.

It is also worth mentioning that the upper bounds (2.12) and (2.13) depend on the distribution P and,

for a particular distribution, they can be much sharper than the "worst case" bounds, depending on the

VC-dimensions. On the other hand, these bounds can not be used in practice since the distribution P is

unknown. The inequality (2.4) (see also (2.4')) provides a complementary data dependent upper bound on

the theoretical risk that can be used instead (and which is sharper than the distribution dependent bound,

given by (2.5), as it follows from the proofs).

3. Iterative structural risk minimization with Rademacher penalties. In this section, we

consider an abstract iterative procedure of empirical risk minimization. We use Rademacher penalties in

this procedure and obtain probabilistic bounds for the theoretical risk of the empirical risk minimizer. Our

approach has some similarities with recent work of Freund (1999) on self bounding versions of local search

minimization of empirical risk. Instead of using the sieve of function classes given in advance, as it is common

in the traditional approach to structural risk minimization and as we did in the previous section, we construct

here iteratively two nondecreasing sequences of �nite pools of functions: the inner pools fF̂�k g; that are used
to minimize the empirical risk Pn; and the outer pools fF̂+

k g; that are used to compute the Rademacher

penalties Rn(F̂+
k ): In addition to these two data dependent pools, we construct recursively three other

nondecreasing sequences of �nite pools of functions, fF�k g; fFkg; fF+
k g: These three pools are related to the

minimization of the theoretical risk and they depend on the unknown distribution P: The construction of the

pools is based on the notion of extension operator, that allows one, given a �nite path through the space of

functions, to extend this path by adding a �nite number of new functions, that are used in the process of risk

minimization. The extension operator is the main ingredient of our method and its choice would be crucial

for designing speci�c learning algorithms using the method. The pools are constructed in such a way that

the inclusions F�k � F̂�k � Fk � F̂+
k � F+

k hold for all k with high probability. We obtain an explicit bound

for this probability, which enables us to prove the oracle inequalities for iterative structural risk minimizers.

To de�ne things precisely, we need some elementary notions of graph theory. Let V and L be sets. V is

supposed to be countable. The elements of V will be used as vertices of the graphs below and the elements of

L will be used as labels assigned to the vertices. For a graph G; V (G) denotes the set of all vertices of G and

E(G) is the set of all edges. A tree is a connected graph with no cycles. A rooted tree is a tree with a �xed

vertex (the root). Given a tree G; an L-labeling of G is a mapping L : V (G) 7! L: A couple (G; L) is called an

L-labeled tree. Let v0 2 V (G) be the root of the rooted tree G: We denote V0(G) = fv0g; V1(G) the set of all
vertices of G adjacent to v0; : : : ; Vk(G) the set of all vertices of G connected to V0 with a path of length k: The

number h(G) := maxfk : Vk(G) 6= ;g will be called the height of the rooted tree G: We denote T (G) the set
of all terminal vertices of G (the vertices of degree 1 that are not equal to v0). We set Tk(G) := T (G)\Vk(G):
Clearly, Th(G)(G) = Vh(G)(G): We call the vertices in this set alive and the rest of the terminal vertices

dead. The set A(G) of all alive vertices is equal to Th(G)(G) and the set D(G) of all dead vertices is equal to

T (G) nA(G): For an L-labeled tree T = (G;L); we use the notations V (T ); Vk(T ); T (T ); Tk(T ); : : : that have
similar meaning. For a rooted tree G and v 2 V (G); we denote by G(v) the subtree of G rooted at the vertex

v: For an L-labeled tree T ; we use similarly the notation T (v):
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Next we de�ne recursively an ordering on the set of all rooted L-labeled trees as follows. Given L-labeled
trees T1; T2; we write T1 � T2; i�

(i) the roots of T1 and T2 have the same labels;
(ii) card(V1(T1)) � card(V1(T2)) and, moreover, there exists a one-to-one mapping ' from V1(T1) onto

V � V1(T2) that preserves the labels;
(iii) for any v 2 V1(T1); we have T1(v) � T2('(v)):
If T1 � T2 and T2 � T1; we say that the rooted labeled trees T1 and T2 are isomorphic and write T1 ' T2:
Next we de�ne an extension operator E on the set of all L-labeled rooted trees. Let Fin(L) be the

class of all �nite subsets of L: For all k � 1; de�ne a mapping Ek : Lk 7! Fin(L): Suppose that � =

((v0; l0); : : : ; (vk; lk)); where lj := L(vj); is a path through the labeled tree from the root to a terminal vertex

vk: Let F := Ek+1(l0; : : : ; lk): Given �; E(�) is obtained by adding card(F ) new vertices (from the set V) to
the tree, connecting them with edges to vk and labeling them with di�erent labels from F: In a special case

F = ;; the path does not have further extension. We denote E(T ) the tree obtained from T by extending it

in the described way along all the paths from the root to all the alive vertices of T : Clearly, there might be
many extentions E(T ); but all of them are isomorphic rooted L-labeled trees, so E(T ) is well de�ned up to

an isomorphism.

We give below some examples of the extension operators that can be used in minimization algorithms.

To relate these examples to the risk minimization problems, one should think of the class of functions

parametrized by the set L : F := ff(l; �) : l 2 Lg:
Example 3.1. Suppose that L is a countable set and for each l 2 L there exists a �nite neighbourhood

N(l) � L: For k � 0; de�ne Ek+1(l0; : : : ; lk) := N(lk): This de�nes an extension operator E ; which will be

called a local search operator (because of its connection to the local search minimization algorithm). Starting

with a trivial labeled tree T0 with one labeled vertex (the root) (v0; l0); one can de�ne recursively a sequence

of labeled trees with root v0 : Tk := E(Tk�1); k = 1; 2; : : : :

Example 3.2. Assume now that L := Z
d and that each point l 2 Z

d is provided with a �nite neigh-

bourhood N(l) � Z
d: We de�ne E1(l0) := N(l0) and for k � 1

Ek+1(l0; : : : ; lk) :=
� f2lk � lk�1; lkg if lk 6= lk�1
N(lk) otherwise.

This de�nes another extension operator, which will be called an extension according to the previous pattern.

Example 3.3. This is a more sophisticated version of the previous example. Suppose that L := R
d:

Let N � R
d; N 3 0 be a �nite set (a "neighbourhood" of 0). Let f�jgj�1 be a sequence of positive

numbers such that �j # 0: The mappings Ek will be de�ned as follows. For k = 1; E1(l0) := l0 + �1N:

Suppose that k � 1: We de�ne Ek+1(l0; : : : ; lk): If lk 6= lk�1; Ek+1(l0; : : : ; lk) := f2lk � lk�1; lkg: Otherwise,
if lk = lk�1 6= lk�2; we set Ek+1(l0; : : : ; lk) := lk + �1N: More generally, if lk = lk�1 = : : : = lk�j 6= lk�j�1;
we set Ek+1(l0; : : : ; lk) := lk + �jN: This de�nes an extension operator that is closely related to some well

known minimization algorithms. Given a sequence (l0; : : : ; lk) of points from R
d; we say that lj is a double

point in this sequence i� lj = lj�1: If the double point occurs in iterative minimization process, it means

that the iterations got stuck at this point (for instance, close to a local minimum). The extension operator

described above reduces in such a case the size of the iterative step, trying to approach the minimum closer.

Example 3.4. This example is related to some minimization techniques that are suitable for functions

of many variables whose graph has the shape of a ravine (the minimization method goes back to Gelfand and

Tsetlin). Namely, such an algorithm starts at any point and employs a version of steepest descent method

to reach the bottom of the ravine. Then, another point is picked up (far enough from the �rst one) and the

steepest descent method is used again to hit the bottom of the ravine. The two points at the bottom are

connected with the segment of straight line and a point in the segment (far enough from the both ends) is

picked up. The steepest descent to the bottom starts at this point. Thus, we have now three points at the

bottom. The second one and the third one are used to repeat the iterations, and so on.

We de�ne the corresponding extension operator as follows. Suppose that L := R
d and that we are given

a mapping Rd 3 l 7! l0 2 R
d (the point l0 is "far enough" from the point l). Similarly to Example 3.3, we

de�ne a �nite "neighbourhood" N of 0: As before, E1(l0) = l0 + N: If lk and lk�1 are not double points
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(in the context of the minimization method described above, the double point occurs when the steepest

descent stops and we are at the bottom of the ravine), de�ne Ek+1(l0; : : : ; lk) = f2lk � lk�1; lkg: If lk is not

a double point, but lk�1 is, set Ek+1(l0; : : : ; lk) = lk + N: Otherwise, if lk is the �rst double point, we set

Ek+1(l0; : : : ; lk) := fl00g: Finally, if lk is a double point and, for j < k; lj is the last double point before lk;

we set ~l := 
lj + (1� 
)lk (
 2 (0; 1) being a parameter of the algorithm) and de�ne Ek+1(l0; : : : ; lk) := f~lg:
Example 3.5. In this example, the extension operator can change the dimension (or the complexity)

of the labels. The necessity to do this can occur, for instance, in neural networks learning (when one changes

the complexity of the network in the process of learning), and also in such learning procedures as boosting.

Assume that L :=
S1
j=1 Lj : Denote c(l) := inffj � 1 : l 2 Ljg; l 2 L (c(l) is the "complexity" of l). Suppose

also that, for each j � 1; E(j) is an extension operator on Lj-labeled rooted trees. Let � be a mapping from

L into L such that c(�(l)) = c(l) + 1; l 2 L (for instance, if Lj = R
j and c(l) is equal to the dimension

of l; one can de�ne �(l) = (l; 0)). We de�ne an extension operator E on L-labeled rooted trees as follows.

Given a sequence of points (l0; : : : ; lk) such that lk = lk�1; we set Ek+1(l0; : : : ; lk) = f�(lk)g: Otherwise,
if lk 6= lk�1; let s � 1 be the smallest integer such that c(lk) = c(lk�1) = : : : = c(lk�s+1) = i 6= c(lk�s):
We de�ne Ek+1(l0; : : : ; lk) = E(i)s (lk�s+1; : : : ; lk): In other words, as soon as the double point occurs in the

sequence, we increase the complexity of the space. We are extending the graph in this space until the next

double point occurs, and so on.

In addition to the extension operator, we need also a trimming operator, de�ned below. Given a rooted

tree G and a vertex v 2 V (G); we denote by C(G; v) (the trimming of G at the vertex v) the tree obtained

from G by eliminating the subtree G(v) (along with the edge that connects it to the rest of the graph). If

V � V (G); C(G;V ) denotes the tree obtained from G by eliminating all the subtrees G(v); v 2 V (and the

edges connecting the vertices v 2 V to the rest of the graph). Given a labeled tree T ; we use quite similarly
the notations C(T ; v) and C(T ;V ):

In what follows, a class F of measurable functions from (S;A) into [0; 1] will be used as the label set

L; so we will deal with F-labeled trees. An extension operator E on the set of all such trees is supposed to

be given and �xed. We will use the notation fv := L(v):

Let � > 0 and let ftk : k � 1g be a nondecreasing sequence of nonnegative numbers. We de�ne an

F-labeled tree T0 with one vertex, say, (v0; f0); set F0 := ffv : v 2 V (E(T0))g; and then de�ne recursively,

for k = 0; 1; 2; : : :

Tk+1 :=
� C(E(Tk);Tk)) if E(Tk) 6= Tk
Tk otherwise,

Tk := fv 2 A(E(Tk)) : P (fv) � min
Fk

P + �g;

Fk+1 := Fk [ ffv : v 2 V (E(Tk+1))g; �k := th(Tk):

In other words, the iterative process of risk minimization starts with the initial function f0 (the label of the

root of the tree). Then we use extension operator to create the pool of iterations F0 and to select from this

pool the functions (labels) with too large value of risk. We trim the extended tree E(T0) to get rid of these

functions (and the vertices they label) and we are getting the tree T1 as the result. Then the iterative process

continues recursively.

Clearly, the trees Tk and the pools of iterations Fk can not be computed unless the distribution P is

known precisely. Therefore, we de�ne below the empirical versions of these objects. We set

T̂ +
0 := T0; T̂ �0 := T0; F̂+

0 := ffv : v 2 V (E(T0))g; F̂�0 := ffv : v 2 V (E(T0))g;

and then de�ne recursively

T̂ +
k+1 :=

� C(E(T̂ +
k ); T̂+

k )) if E(T̂ +
k ) 6= T̂ +

k

T̂ +
k otherwise,

T̂ �k+1 :=
� C(E(T̂ �k ); T̂�k )) if E(T̂ �k ) 6= T̂ �k
T̂ �k otherwise,

T̂+
k := fv 2 A(E(T̂ +

k )) : Pn(fv) � min
F̂�
k

Pn + � + 4Rn(F̂+
k ) +

6�̂+kp
n
g;
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T̂�k := fv 2 A(E(T̂ �k )) : Pn(fv) � min
F̂+

k

Pn + � � 4Rn(F̂+
k )�

6�̂+kp
n
g;

F̂+
k+1 := F̂+

k [ ffv : v 2 V (E(T̂ +
k+1))g; F̂�k+1 := F̂�k [ ffv : v 2 V (E(T̂ �k+1))g;

�̂+k := th(T̂ +

k
); �̂

�
k := th(T̂ �

k
):

These empirical rooted trees and the corresponding pools of functions (labels) can be computed recursively,

given the empirical data.

Finally, we de�ne

T +
0 := T0; T �0 := T0;

F+
0 := ffv : v 2 V (E(T0))g;F�0 := ffv : v 2 V (E(T0))g;

T +
k+1 :=

�
C(E(T +

k );T+
k )) if E(T +

k ) 6= T +
k

T +
k otherwise,

T �k+1 :=
�
C(E(T �k );T�k )) if E(T �k ) 6= T �k
T �k otherwise,

T +
k+1 := C(E(T +

k );T+
k ); T �k+1 := C(E(T �k );T�k );

T+
k := fv 2 A(E(T +

k )) : P (fv) � min
F�
k

P + � + 10E�n(F+
k ) +

12�+k + 4p
n

g;

T�k := fv 2 A(E(T �k )) : P (fv) � min
F+

k

P + � � 10E�n(F+
k )�

12�+k + 4p
n

g;

F+
k+1 := F+

k [ ffv : v 2 V (E(T +
k+1))g; F�k+1 := F�k [ ffv : v 2 V (E(T �k+1))g:

�+k := th(T̂+
k
); �

�
k := th(T̂�

k
):

Note that the choice of the parameter � in the de�nitions above could pose a practical problem. A

reasonable approach could be to use a prior upper bound on the accuracy of empirical approximation (for

instance, in terms of VC-dimensions) as the value of �:

We consider below two approaches to the problem of empirical risk minimization, based on the iterative

pools of functions de�ned above. In the �rst approach, the number of iterations N is given in advance and

we de�ne ~fN := argminF̂�
N

Pn: In the second approach, the Rademacher penalty is used to determine the

number of iterations in a way close to optimal. Namely, we de�ne, for 1 � N � 1 and for � � 0; a random

number k̂ such that

min
f2F̂�

k̂

Pn + 2Rn(F̂+

k̂
) +

3�̂+
k̂p
n
� inf

1�k�N
[ min
f2F̂�

k

Pn + 2Rn(F̂+
k ) +

3�̂+kp
n
] + �

and set f̂N := argminF̂�
k̂

Pn:

The following theorems give probabilistic oracle inequalities for the empirical risk minimizers de�ned

above.

3.1. Theorem. For all N � 1

(3:1) sup
P2P(S)

P

n
P ( ~fN ) > min

F̂�
N

Pn + 2Rn(F̂+
N ) +

3�̂+Np
n

o
� 6

NX
k=1

expf�t2k=2g

and

(3:2) sup
P2P(S)

P

n
P ( ~fN) > min

F�
N

P + 2E�n(F+
N ) +

2�+Np
n

o
� 6

NX
k=1

expf�t2k=2g:
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3.2. Theorem. For all N; 1 � N � 1;

(3:3) sup
P2P(S)

P

n
P (f̂N ) > inf

1�k�N
[min
F̂�
k

Pn + 2Rn(F̂+
k ) +

3�̂+kp
n
] + �

o
� 6

NX
k=1

expf�t2k=2g

and

(3:4) sup
P2P(S)

P

n
P (f̂N ) > inf

1�k�N
[min
F�
k

P + 5E�n(F+
k ) +

6�+k + 2p
n

] + �
o
� 6

NX
k=1

expf�t2k=2g:

The meaning of these results can be explained as follows. De�ne

�k(P ) := min
F�
k

P � inf
j�1

min
F�
j

P:

This quantity gives the accuracy of approximation of the "minimal" theoretical risk at kth iteration. If we

use Pn instead of P in the iteration process (but, miraculously, we are getting the correct pool of functions

F�k ) and we stop at the k-th iteration, the error could become as much as �k(P ) + �n(F�k ); which is less

than �k(P ) + �n(F+
k ): If there were an oracle who could tell us what is the value of �k(P ) and what is

the average accuracy of empirical approximation E�n(F+
k ) for the "theoretical" outer iteration pool, then,

by choosing the number of iterations properly, we could achieve the average accuracy of the empirical risk

minimization of the order inf1�k�N [�k(P ) + E�n(F+
k )]:

Let 
 >
p
2 and de�ne C
 := 6

P
m�1m

�
2=2: We set tk := 

p
log k + t with t �

q
2 log

C

�
: For

simplicity, assume that � = 0: Then, it follows from the bound (3.4) that for all P 2 P(S) with probability

at least 1� �

P (f̂N )� inf
j�1

min
F�
j

P � inf
1�k�N

[�k(P ) + 5E�n(F+
k ) +

6

p
log k + t+ 2p

n
]:

Despite the fact that the oracle is not involved, the iterative structural risk minimization method allows us

to achieve almost the same accuracy as with the help of the oracle (up to constants and some extra terms,

that are relatively small) with guaranteed probability. This bound, of course, is more of theoretical interest,

it demonstrates a form of optimality of the method. On the other hand, it follows from the bound (3.3) that

for all P 2 P(S) with probability at least 1� �

P (f̂N ) � inf
1�k�N

[min
F̂�
k

Pn + 2Rn(F̂+
k ) +

3

p
log kp
n

]:

The expression in the right hand side can be computed based on the data, providing a conservative, but

quite reasonable, con�dence bound for the risk of the estimator f̂N :

4. Proofs of the oracle inequalities for iterative structural risk minimization. The following

lemmas describe the properties of iterative trees and pools and they are the key ingredients of the proofs of

Theorems 3.1{3.2.

4.1. Lemma. De�ne

l := maxfj : h(Tk) = k; k � jg;
l� := maxfj : h(T �k ) = k; k � jg; l+ := maxfj : h(T +

k ) = k; k � jg;
l̂� := maxfj : h(T̂ �k ) = k; k � jg; l̂+ := maxfj : h(T̂ +

k ) = k; k � jg:
Then

Tk = Tl; k � l; T �k = T �
l�
; k � l�; T +

k = T +
l+
; k � l+;

T̂ �k = T̂ �
l̂�
; k � l̂�; T̂ +

k = T̂ +

l̂+
; k � l̂+:
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Proof. Let us prove that

(4:1) T �k = T �
l�
; k � l�:

Clearly, this is the case when E(T �
l�
) = T �

l�
(in this case the tree does not grow further). Suppose that

E(T �
l�
) 6= T �

l�
: It easily follows from the de�nitions of the trees that, for all j; h(T �j ) � j (since each iteration

increases the height of the tree at most by 1). Clearly, we have h(T �
l�+1

) = h(T �
l�
) = l; which means that

T�
l�

= A(E(T �
l�
)) (all alive vertices of E(T �

l�
) are going to be trimmed and the tree is going to stop growing)

and hence T �
l�+1

= T �
l�
: Then, since F+

l�
� F+

l�+1
; we get

T�
l�+1

= fv 2 A(E(T �
l�+1

)) : P (fv) > min
F+

l�+1

P + � � 10E�n(F+
l�+1

)� 12�+
l�+1

+ 4p
n

g =

= fv 2 A(E(T �
l�
)) : P (fv) > min

F+

l�+1

P + � � 10E�n(F+
l�+1

)� 12�+
l�+1

+ 4p
n

g �

� fv 2 A(E(T �
l�
)) : P (fv) > min

F+

l�

P + � � 10E�n(F+
l�
)� 12�+

l�
+ 4p
n

g = T�
l�
:

It follows that T�
l�+1

= A(E(T �
l�
)) = T�

l�
; which implies T �

l�+2
= T �

l�+1
; and (4.1) follows by a simple

induction.

The proofs of other relationships are quite similar, only with slight modi�cations. For instance, to prove

that

(4:2) T̂ +
k = T̂ +

l̂+
; k � l̂+

assume that E(T̂ +

l̂+
) 6= T̂ +

l̂+
(otherwise (4.2) is obvious) and note that h(T̂ +

l̂++1
) = h(T̂ +

l̂+
) = l̂+; which means

that T̂+

l̂+
= A(E(T̂ +

l̂+
)) and hence T̂ +

l̂++1
= T̂ +

l̂+
: This implies that F̂+

l̂+
= F̂+

l̂++1
and since F̂�

l̂+
� F̂�

l̂++1
; we get

T̂+

l̂++1
= fv 2 A(E(T̂ +

l̂++1
)) : Pn(fv) > min

F̂�
l̂++1

Pn + � + 4Rn(F̂+

l̂++1
) +

6�̂+
l̂++1p
n

g =

= fv 2 A(E(T̂ +

l̂+
)) : Pn(fv) > min

F̂�
l̂++1

Pn + � + 4Rn(F̂+

l̂+
) +

6�̂+
l̂++1p
n

g �

� fv 2 A(E(T̂ +

l̂+
)) : P (fv) > min

F̂�
l̂+

Pn + � + 4Rn(F̂+

l̂+
) +

6�̂+
l̂+p
n
g = T̂+

l̂+
= A(E(T̂ +

l̂+
)):

Hence T̂+

l̂++1
= A(E(T̂ +

l̂+
)) = T̂+

l̂+
; which implies T̂ +

l̂++2
= T̂ +

l̂++1
; and (4.2) again follows by a simple induction

argument.

Lemma 4.1 immediately implies that

h(Tk) = k ^ l; h(T +
k ) = k ^ l+; h(T �k ) = k ^ l�; h(T̂ +

k ) = k ^ l̂+; h(T̂ �k ) = k ^ l̂�

and hence

�k = tk^l; �
+
k = tk^l+ ; �

�
k = tk^l� ; �̂

+
k = tk^l̂+ ; �̂

�
k = tk^l̂� :
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4.2. Lemma. Let N 2 f1; 2; : : : ;1g: De�ne

E :=
n
! : 8k = 1; : : : ; N : jRn(F+

k )� ERn(F+
k )j <

�+kp
n
; j�n(F+

k )� E�n(F+
k )j <

�+kp
n
;

jRn(Fk)� ERn(Fk)j < �kp
n

o
:

Then

(4:3) P(Ec) � 6

NX
k=1

expf�t2k=2g:

and on the event E

(4:4) 8k = 1; : : : ; N : T �k � T̂ �k � Tk � T̂ +
k � T +

k ;

(4:5) 8k = 1; : : : ; N : F�k � F̂�k � Fk � F̂+
k � F+

k

Proof. Lemma 4.1 implies that for k = 1; : : : ; l �k = tk and for k > l �k = tl and Fk = Fl: Similarly,
for k = 1; : : : ; l+ �+k = tk and for k > l+ �+k = tl+ and Fk = Fl+ : Therefore,

Ec :=

l+[
k=1

n
j�n(F+

k )� E�n(F+
k )j � tkn

�1=2
o[ l+[

k=1

n
jRn(F+

k )� ERn(F+
k )j � tkn

�1=2
o[

[ l[
k=1

n
jRn(Fk)� ERn(Fk)j � tkn

�1=2
o
:

It follows from lemmas 2.2, 2.3 that for all k = 1; : : : ; l+

(4:6) Pfj�n(F+
k )� E�n(F+

k )j � tkn
�1=2g � 2 expf�2t2kg;

(4:7) PfjRn(F+
k )� ERn(F+

k )j � tkn
�1=2g � 2 expf�t2k=2g;

and for all k = 1; : : : ; l

(4:8) PfjRn(Fk)� ERn(Fk)j � tkn
�1=2g � 2 expf�t2k=2g:

Then (4.6){(4.8) imply the bound (4.3).

We will show that on the event E; for any 0 � k � N � 1; the conditions

(4:9) T �j � T̂ �j � Tj � T̂ +
j � T +

j ; j � k

and

(4:10) F�j � F̂�j � Fj � F̂+
j � F+

j ; j � k

imply that

(4:11) T �k+1 � T̂ �k+1 � Tk+1 � T̂ +
k+1 � T +

k+1
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and

(4:12) F�k+1 � F̂�k+1 � Fk+1 � F̂+
k+1 � F+

k+1:

Since T �0 = T̂ �0 = T0 = T̂ +
0 = T +

0 and F�0 = F̂�0 = F0 = F̂+
0 = F+

0 this would imply that

E �
n
8k = 1; : : : ; N : T �k � T̂ �k � Tk � T̂ +

k � T +
k

o\

\n
8k = 1; : : : ; N : F�k � F̂�k � Fk � F̂+

k � F+
k

o

and the result would follow from the bound (4.3).

First we establish (4.11). To this end, we only prove that T �k+1 � T̂ �k+1 (the proof of other relations

is quite similar). If l� < k; the conditions (4.9) and Lemma 4.1 imply that T �k+1 = T �
l�

� T̂ �
l�

� T̂ �k+1
(the relation T̂ �j � T̂ �k+1 holds, obviously, for all j � k + 1). Thus it is enough to consider the case when

l� � k and, hence, h(T �k ) = h(T̂ �k ) = k: In this case the assumption T �k � T̂ �k immediately implies that

E(T �k ) � E(T̂ �k ): If E(T �k ) = T �k ; then obviously Tk+1 � T̂ �k+1: Otherwise, it follows that the set A(E(T �k ))

can be identi�ed with a subset of A(E(T̂ �k )); so that the labels coincide, i.e. there exists a one-to-one map

' from A(E(T �k )) onto V � A(E(T̂ �k )) such that fv = f'(v):

Note that (4.9) implies h(T̂ +
k ) � h(T +

k ); which in turn implies

�̂+k = th(T̂ +

k
) � th(T +

k
) = �+k :

If v 2 A(E(T �k )) and

P (fv) < min
F+

k

P + � � 10E�n(F+
k )�

12�+k + 4p
n

;

then on the event E (using the fact that F̂+
k � F+

k ), we get

Pn(f'(v)) = Pn(fv) < min
F+

k

Pn + � � 10E�n(F+
k )�

12�+k + 4p
n

+ 2�n(F+
k ) �

� min
F+

k

Pn + � � 8E�n(F+
k )�

10�+k + 4p
n

�

� min
F+

k

Pn + � � 4ERn(F+
k )�

10�+kp
n

� min
F+

k

Pn + � � 4Rn(F+
k )�

6�+kp
n
�

� min
F̂+

k

Pn + � � 4Rn(F̂+
k )�

6�̂+kp
n
:

Hence, on the event E; '(A(E(T �k )) n T�k ) � A(E(T̂ �k )) n T̂�k ; which implies that

T �k+1 = C(E(T �k );T�k ) � C(E(T̂ �k ); T̂�k ) = T̂ �k+1:

Next we prove that (4.9) and (4.10) imply (4.12). Since the proofs of all inclusions are similar, let us prove

only that F̂+
k+1 � F+

k+1: Clearly, h(T̂ +
j ) � h(T +

j ) � j; j � k+1: If l̂+ � k+1; then h(T̂ +
k+1) = h(T +

k+1) = k+1

and the fact (previously proved) that T̂ +
k+1 � T +

k+1 implies E(T̂ +
k+1) � E(T +

k+1): It follows that

ffv : v 2 V (E(T̂ +
k+1))g � ffv : v 2 V (E(T +

k+1))g:

By the de�nition of the classes F̂+
k+1;F+

k+1 and the induction assumption, it follows that F̂+
k+1 � F+

k+1:
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Otherwise, if l̂+ < k + 1; we have by Lemma 4.3, that T̂ +
j = T̂ +

l̂+
; j � l̂+. Therefore,

E(T̂ +
k+1) = E(T̂ +

k ) = : : : = E(T̂ +

l̂+
);

which implies F̂+
k+1 = F̂+

k = : : : = F̂+
l : By the induction assumption, we have F̂+

l � F+
l : Also, F+

l � F+
k+1

for l < k + 1; so, we conclude that F̂+
k+1 = F̂+

l � F+
l � F+

k+1:

Proof of Theorem 3.1. On the event E (see Lemma 4.2), in view of (4.5), we have F̂�N � FN �
F̂+
N � F+

N and

�N = th(TN) � �̂+N = th(T̂ +

N
) � �+N = th(T +

N
):

Therefore, the following bounds hold (recall Lemma 2.5):

P ( ~fN) � Pn( ~fN ) + �n(F̂�N ) � min
F̂�
N

Pn +�n(FN ) �

� min
F̂�
N

Pn + E�n(FN ) + �Np
n
� min

F̂�
N

Pn + 2ERn(FN ) + �Np
n
�

� min
F̂�
N

Pn + 2Rn(F̂N ) + 3�Np
n
� min

F̂�
N

Pn + 2Rn(F̂+
N ) +

3�̂+Np
n
;

which, by Lemma 4.2, implies (3.1). Similarly, we have

P ( ~fN ) � Pn( ~fN ) + �n(F̂�N ) � min
F̂�
N

Pn +�n(F̂�N ) �

� min
F̂�
N

P + 2�n(F̂�N ) � min
F�
N

P + 2�n(FN ) � min
F̂�
N

P + 2E�n(F+
N ) +

2�+Np
n
;

which implies (3.2) by Lemma 4.2.

Proof of Theorem 3.2. Again we claim that on the event E for all k = 1; : : : ; N F̂�k � Fk � F̂+
k � F+

k

and

�k = th(Tk) � �̂+k = th(T̂ +

k
) � �+k = th(T +

k
):

Hence, we get

P (f̂N ) � Pn(f̂N ) + �n(F̂�
k̂
) � min

F̂�
k̂

Pn +�n(Fk̂):

Since also on the event E for all k = 1; : : : ; N;

�n(Fk) � E�n(Fk) + �kp
n
� 2ERn(Fk) + �kp

n
� 2Rn(Fk) + 3�kp

n
;

we get

P (f̂N) � min
F̂�
k̂

Pn + 2Rn(Fk̂) +
3�k̂p
n
� min

F̂�
k̂

Pn + 2Rn(F̂+

k̂
) +

3�̂+
k̂p
n
�

� inf
1�k�N

[min
F̂�
k

Pn + 2Rn(F̂+
k ) +

3�̂+kp
n
] + �;

and (3.3) follows by Lemma 4.2.
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To prove (3.4), note that on the event E

inf
1�k�N

[min
F̂�
k

Pn + 2Rn(F̂+
k ) +

3�̂+kp
n
] � inf

1�k�N
[min
F�
k

P +�n(F+
k ) + 2Rn(F+

k ) +
3�+kp
n
] �

� inf
1�k�N

[min
F�
k

P + E�n(F+
k ) + 2ERn(F+

k ) +
6�+kp
n
] �

� inf
1�k�N

[min
F�
k

P + 5E�n(F+
k ) +

6�+k + 2p
n

];

where we used the bound of Lemma 2.5.
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