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Abstract

Boosting methods are known not to usu-
ally overfit training data even as the size
of the generated classifiers becomes large.
Schapire et al. attempted to explain this phe-
nomenon in terms of the margins the clas-
sifier achieves on training examples. Later,
however, Breiman cast serious doubt on this
explanation by introducing a boosting algo-
rithm, arc-gv, that can generate a higher
margins distribution than AdaBoost and yet
performs worse. In this paper, we take a
close look at Breiman’s compelling but puz-
zling results. Although we can reproduce his
main finding, we find that the poorer per-
formance of arc-gv can be explained by the
increased complexity of the base classifiers it
uses, an explanation supported by our exper-
iments and entirely consistent with the mar-
gins theory. Thus, we find maximizing the
margins is desirable, but not necessarily at
the expense of other factors, especially base-
classifier complexity.

1. Introduction

The AdaBoost boosting algorithm (Freund &
Schapire, 1997) and most of its relatives produce clas-
sifiers that classify by voting the weighted predictions
of a set of base classifiers which are generated in a se-
ries of rounds. Thus, the size — and hence, naively,
the apparent complexity — of the final combined clas-
sifier used by such algorithms increases with each new
round of boosting. Therefore, according to Occam’s
razor (Blumer et al., 1987), the principle that less com-
plex classifiers should perform better, boosting should
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suffer from overfitting; that is, with many rounds of
boosting, the test error should increase as the final
classifier becomes overly complex. Nevertheless, it
has been observed by various authors (Breiman, 1998;
Drucker & Cortes, 1996; Quinlan, 1996) that boosting
often tends to be resistant to this kind of overfitting,
apparently in defiance of Occam’s razor. That is, the
test error of AdaBoost often tends to decrease well af-
ter the training error is zero, and does not increase
even after a very large number of rounds.1

Schapire et al. (1998) attempted to explain AdaBoost’s
tendency not to overfit in terms of the margins of the
training examples, where the margin is a quantity that
can be interpreted as measuring the confidence in the
prediction of the combined classifier. Giving both the-
oretical and empirical evidence, they argued that with
more rounds of boosting, AdaBoost is able to increase
the margins, and hence the confidence, in the predic-
tions that are made on the training examples, and that
this increase in confidence translates into better per-
formance on test data, even if the boosting algorithm
is run for many rounds.

Although Schapire et al. backed up their arguments
with both theory and experiments, Breiman (1999)
soon thereafter presented experiments that raised im-
portant questions about the margins explanation. Fol-
lowing the logic of the margins theory, Breiman at-
tempted to design a better boosting algorithm, called
arc-gv, that would provably maximize the minimum
margin of any training example. He then ran experi-
ments comparing the performance of arc-gv and Ada-
Boost using CART decision trees pruned to a fixed
number of nodes as base classifiers. He found that arc-
gv did indeed produce uniformly higher margins than
AdaBoost. However, contrary to what was apparently
predicted by the margins theory, he found that his new

1However, in some of these cases, the test error has
been observed to increase slightly after an extremely large
number of rounds (Grove & Schuurmans, 1998).
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algorithm arc-gv performed worse on test data than
AdaBoost in almost every case. Breiman concluded
rather convincingly that his experiments put the mar-
gins explanation into serious doubt and that a new
understanding is needed.

In this paper, we take a close look at these compelling
experiments to try to determine if they do in fact con-
tradict the margins theory. In fact, the theory that
was presented by Schapire et al. states that the gen-
eralization error of the final combined classifier can be
upper bounded by a function that depends not only
on the margins of the training examples, but also on
the number of training examples and the complexity
of the base classifiers (where complexity might, for in-
stance, be measured by VC-dimension or description
length). Breiman was well aware of this dependence
on the complexity of the base classifiers and attempted
to control for this factor in his experiments by always
choosing decision trees of a fixed size. However, in our
experiments, we find that there still remain important
differences between the trees chosen by AdaBoost and
arc-gv. Specifically, we find that the trees produced
using arc-gv are considerably deeper, both in terms of
maximum and average depth of the leaves. Intuitively,
such deep trees are more prone to overfitting, and in-
deed, it is clear that the space of decision trees of a
given size is much more greatly constrained when a
bound is placed on the depth of the leaves. Further-
more, we find experimentally that the deeper trees gen-
erated by arc-gv are measurably more prone to over-
fitting than those of AdaBoost. The use of depth as
a measure of tree complexity was also suggested in
the work of Mason, Bartlett and Golea (2002) who
worked on finding more refined ways of measuring the
complexity of a decision tree besides its overall size.

Thus, we argue that the trees found by arc-gv have
topologies that are more complex in terms of their ten-
dency to lead to overfitting, and that this increase in
complexity accounts for arc-gv’s inferior performance
on test data, an argument that is consistent with the
margins theory.

We then consider the use of other base classifiers, such
as decision stumps, whose complexity can be more
tightly controlled. We again compare the performance
of AdaBoost and arc-gv, and again find that Ada-
Boost is superior, despite the fact that base classi-
fiers of equivalent complexity are being used, and de-
spite the fact that arc-gv tends to obtain a higher
minimum margin than AdaBoost. Nevertheless, on
close inspection, we see that the bounds presented by
Schapire et al. are in terms of the entire distribution
of margins, not just the minimum margin. When this

overall margin distribution is examined, we find that
although arc-gv obtains a higher minimum margin, the
margin distribution as a whole is very much higher for
AdaBoost. Thus, again, these experiments do not ap-
pear to contradict the margins theory.

In sum, our experiments explore the complex interplay
between margins, base classifier complexity and sam-
ple size that helps to determine how well a classifier
performs. We believe that understanding this interac-
tion better might help us to design better algorithms.
In a sense, our results confirm Breiman’s point that
maximizing margins is not enough; we also need to
think about the other factors, especially base classi-
fier complexity, and how that can be driven up by an
over-aggressive attempt to increase the margins. Our
results also explore the interplay between minimum
margin and the overall margins distribution as seen in
the way that arc-gv only increases the minimum mar-
gin, but AdaBoost sometimes seems to do a better job
with the overall distribution.

Our paper focuses only on Breiman’s arc-gv algo-
rithm for maximizing margins although others have
been proposed, for instance, by Rätsch and War-
muth (2002), Grove and Schuurmans (1998) and
Rudin, Schapire and Daubechies (2004). Moreover,
Mason, Bartlett and Golea (2004) were able to show
how the direct optimization of margins could indeed
lead to improved performance. We also focus only
on the theoretical bounds of Schapire et al., although
these have been greatly improved, for instance, by
Koltchinskii and Panchenko (2002). Overviews on
boosting are given by Schapire (2002) and Meir and
Rätsch (2003).

After reviewing the margins theory in Section 2, we be-
gin our study in Section 3 with experiments intended
to replicate those of Breiman. In Section 4, we then
present evidence that arc-gv produces higher margins
by using more complex base classifiers and that its
poorer performance is consistent with the margins the-
ory. In Section 5, we try to control the complexity of
the base classifiers but find that this prevents arc-gv
from having a uniformly higher margins distribution.

2. Algorithms and Theory

Boosting algorithms combine moderately inaccurate
prediction rules and take their weighted majority vote
to form a single classifier. On each round, a boost-
ing algorithm generates a new prediction rule to use
and then places more weight on the examples classi-
fied incorrectly. Hence, boosting constantly focuses on
classifying correctly the examples that are the hardest
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Given: (x1, y1), . . . , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}
Initialize D1(i) = 1/m.
For t = 1, . . . , T :

• Train base learner using distribution Dt.

• Get base classifier ht : X → {−1,+1}.

• Choose αt ∈ R.

• Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that
Dt+1 will be a distribution).

Output the final classifier:

H(x) = sign

(

T
∑

t=1

αtht(x)

)

Figure 1. A generic algorithm equivalent to both AdaBoost
and arc-gv, depending on how αt is selected.

to classify.

Figure 1 presents a generic algorithm that is equivalent
to both AdaBoost and arc-gv, depending on the choice
of αt. Specifically, AdaBoost sets α to be

αt =
1

2
ln

1 + γt

1 − γt

where γt is the so-called edge of ht:

γt =
∑

i

Dt(i)yiht(xi)

which is linearly related to ht’s weighted error.

AdaBoost greedily minimizes a bound on the training
error of the final classifier. In particular, as shown
by Schapire and Singer (1999), its training error is
bounded by

∏

t
Zt, so, on each round, it chooses ht

and sets α to minimize Zt, the normalizing factor.

Freund and Schapire (1997) derived an early bound on
the generalization error of boosting, showing that

Pr [H(x) 6= y] ≤ P̂r[H(x) 6= y] + Õ

(

√

Td

m

)

where Pr [·] denotes probability over the distribution
that was assumed to have generated the training ex-
amples, P̂r[·] denotes the empirical probability on the

training sample, and d is the VC-dimension of the
space of all possible base classifiers. However, this
bound becomes very weak as the number of rounds
T increases, and predicts that AdaBoost will quickly
overfit with only a moderate number of rounds. Early
experiments (Breiman, 1998; Drucker & Cortes, 1996;
Quinlan, 1996), however, showed just the opposite,
namely, that AdaBoost tends not to overfit.

Schapire et al.(1998) attempted to explain why boost-
ing often does not overfit using the concept of mar-
gins on the training examples. The margin of example
(x, y) depends on the votes ht(x) with weights αt of
all the hypotheses:

margin(x, y) =
y
∑

t
αtht(x)
∑

t
αt

.

The magnitude of the margin represents the strength
of agreement of the base classifiers, and its sign indi-
cates whether the combined vote produces a correct
prediction. Using the margins, Schapire et al. proved
a bound not dependent on the number of boosting
rounds. They showed that for any θ, the generalization
error is at most

P̂r[margin(x, y) ≤ θ] + Õ

(

√

d

mθ2

)

. (1)

We can notice that this margins bound depends most
heavily on the margins near the bottom of the distri-
bution, since having generally high smallest margins
allows θ to be small without P̂r[margin(x, y) ≤ θ] get-
ting too large.

Following this logic, Breiman (1999) designed arc-gv
to greedily maximize the minimum margin. Arc-gv
follows the same algorithm as AdaBoost, except for
setting αt differently:

αt =
1

2
log

1 + γt

1 − γt

−
1

2
log

1 + ̺t

1 − ̺t

where ̺t is the minimum margin over all training ex-
amples of the combined classifier up to the current
round:

̺t = min
i

(

yi

∑

t−1

s=1
αshs(xi)

∑

t−1

s=1
αs

)

(It is understood that ̺1 = 0.)

Arc-gv has the property2 that its minimum margin
converges to the largest possible minimum margin,

2Meir and Rätsch (2003) claimed they can only prove
this property when taking ̺t to be the maximum minimum
margin over all previous rounds in the equation above; we
nevertheless decided to use Breiman’s original formulation
of arc-gv.
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Table 1. Dataset sizes for training and test.

cancer ion ocr 17 ocr 49 splice
training 630 315 1000 1000 1000

test 69 36 5000 5000 2175

provided that the edges are sufficiently large, as will
be the case if the base classifier with largest edge is se-
lected on every round. Thus, the margin theory would
appear to predict that arc-gv’s performance should be
better than AdaBoost’s, although as we here explore,
there are other factors at play.

3. Breiman’s Experiments

Breiman (1999) showed that it is possible for arc-gv
to produce a higher margins distribution and yet per-
form worse. He ran AdaBoost and arc-gv for 100
rounds using pruned CART decision trees as base clas-
sifiers. Each such tree was created by generating the
full CART tree and pruning it to the best (i.e., min-
imum weighted error) k-leaf subtree. Breiman’s most
compelling results were for trees of size k = 16 where
he found that the margins distributions are uniformly
higher for arc-gv than for AdaBoost.

We begin our study by replicating his results. How-
ever, unlike Breiman, we did not see the margins of
arc-gv being significantly higher until we ran the al-
gorithms for 500 rounds. Since Breiman’s critique of
the margins theory is strongest when the difference in
the margins distributions is clear, we focus only on the
500-round case with k = 16.

We considered the following datasets: breast cancer,
ionosphere, splice, ocr17, and ocr49, all available from
the UCI repository. These include the same natural
datasets as Breiman, except the sonar dataset, since
it only includes 208 data points and thereby produces
high variance in experiment. The splice dataset was
modified to collapse the two splice categories into one
to create binary-labeled data. Also, ocr17 and ocr49
contain randomly chosen subsets of the NIST database
of handwritten digits consisting only of the digits 1 and
7, and 4 and 9 (respectively); in addition, the images
have been scaled down to 14 × 14 pixels, each with
only four intensity levels. Table 1 shows the num-
ber of training and test examples used in each. The
stark differences in the training and test sizes among
the datasets occur because we used the same random
splits Breiman used for ionosphere and breast cancer,
but the additional datasets we used had many more
data points, which allowed us to use larger sets for
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Figure 2. Cumulative margins for AdaBoost and arc-gv for
the breast cancer dataset after 500 rounds of boosting.

Table 2. Test errors, averaged over 10 trials, of AdaBoost
and arc-gv, run for 500 rounds using CART decision trees
pruned to 16 leaf nodes as base classifiers.

cancer ion ocr 17 ocr 49 splice
AdaBoost 2.46 3.46 0.96 2.04 3.18

arc-gv 3.04 7.69 1.76 2.38 3.45

test data. In running our experiments, we followed
Breiman’s technique of choosing an independently ran-
dom subset for training data of sizes specified in the
table. All experiments were repeated on ten random
partitions of the data, and, in most cases, the results
were averaged.

Figure 2 shows the cumulative margins distribution af-
ter 500 rounds for both AdaBoost and arc-gv on the
breast cancer dataset. As observed by Breiman, arc-gv
does indeed produce higher margins. These distribu-
tions are representative of the margins distributions
for the rest of the datasets.

Table 2 shows the test errors for each algorithm.
Again, in conformity with Breiman, we see that the
test errors of arc-gv are indeed higher than those of
AdaBoost.

To further visualize what is happening during the run-
ning of these algorithms, we plotted both the test error
and minimum margin as a function of the number of
rounds in Figures 3 and 4. These results seem to be
in direct contradiction to the margins theory.
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Table 3. Test errors, minimum margins, and tree depths, averaged over 10 trials, of AdaBoost and arc-gv, run for 500
rounds using CART decision trees pruned to 16 leaf nodes as base classifiers. (For 100 rounds, we also saw arc-gv
producing deeper trees on average.)

test error minimum margin tree depth
arc-gv AdaBoost arc-gv AdaBoost arc-gv AdaBoost

breast cancer 3.04 2.46 0.64 0.61 9.71 7.86
ionosphere 7.69 3.46 0.97 0.77 8.89 7.23

ocr 17 1.76 0.96 0.95 0.88 7.47 7.41
ocr 49 2.38 2.04 0.53 0.49 7.39 6.70
splice 3.45 3.18 0.46 0.42 7.12 6.67
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Figure 3. Test errors for AdaBoost and arc-gv for the ocr49
dataset as a function of the number of rounds of boosting.

4. Tree Complexity

Can these results be reconciled with the margins ex-
planation? In fact, according to Eq. (1), there are
factors other than the minimum margin that need to
be considered. Specifically, the generalization error of
the combined classifier depends both on the margins
it generates, the size of the training sample, and on
the complexity of the base classifiers. Since the size of
the sample is the same for both arc-gv and AdaBoost,
after recording the margins, we should examine the
complexity of the base classifiers.

How can we measure the complexity of a decision tree?
The most obvious measure is the number of leaves in
the tree, which, like Breiman, we are already control-
ling by always selecting trees with exactly 16 leaves.
However, even among all trees of fixed size, we claim
that there remain important topological differences
that affect the tendency of the trees to overfit. In
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Figure 4. Minimum margins for AdaBoost and arc-gv for
the ocr49 dataset as a function of the number of rounds of
boosting.

particular, deeper trees make predictions based on a
longer sequence of tests and therefore intuitively tend
to be more specialized than shallow trees and thus
more likely to overfit.

In fact, arc-gv generates significantly deeper trees than
AdaBoost. Table 3 shows the average depths of the
trees (measured by the maximum depth of any leaf)
in addition to the minimum margin and error rates for
each algorithm. We also measured the running aver-
age of the tree complexity of both algorithms as the
number of rounds increased. The pattern in Figure 5
is representative of the results for most datasets. In
this figure, we can see that at the beginning of boost-
ing, the depths of the trees generated by AdaBoost
converge downward to a value, while the depths of
the trees generated by arc-gv continue to increase for
about 200 rounds before leveling off to a higher value.
It is evident that while arc-gv has higher margins and
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Figure 5. Cumulative average of decision tree depth for
AdaBoost and arc-gv for the breast cancer set for 500
rounds of boosting.

Table 4. Percent test and training errors per generated
tree, and their differences, averaged over all CART deci-
sion trees generated in 500 rounds of boosting, over 10
trials.

AdaBoost arc-gv
test train diff test train diff

cancer 13.2 9.7 3.5 10.4 6.3 4.1

ion 19.8 10.9 8.9 12.5 2.6 9.9

ocr 17 5.6 3.7 1.9 2.6 0.6 2.0

ocr 49 24.8 21.1 3.7 21.9 17.8 4.1

splice 27.7 23.4 4.3 23.9 19.2 4.7

higher error, it also produces, on average, deeper trees.

Referring back to the bound in Eq. (1), we can up-
per bound the VC-dimension d of a finite space of
base classifiers H by lg |H|. Thus, measuring com-
plexity is essentially a matter of counting how many
trees there are of bounded depth. Clearly, the more
tightly bounded is the depth, the more constrained
is the space of allowable trees, and the smaller will
be the complexity measure lg |H|. This can be seen
in Figure 6 which shows the number of 16-leaf tree
topologies of depth at most d, as a function of d.

So we are claiming that a possible explanation for the
better performance of arc-gv despite its higher margins
is that it achieves them by choosing from a greater
set of base classifiers. By the bound in Eq. (1), we
can see that the higher depths of arc-gv trees can be
affecting the generalization error even if the margins
explanation holds.
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Figure 6. The number of tree topologies of depth at most
d, as a function of d.

In general, we expect the difference between training
and test errors to be greater when classifiers are se-
lected from a larger or more complex class. Thus, as
a further indication that the deeper trees generated
by arc-gv are more likely to cause overfitting, we can
directly measure the difference between the test error
and (unweighted) training error for the trees gener-
ated by each algorithm. In Table 4, we can see that
this difference is substantially higher for arc-gv than
for AdaBoost in each of the datasets. This adds to the
evidence that arc-gv is producing higher margins by
using trees which are more complex in the sense that
they have a greater tendency to overfit.3

The margins explanation basically says that when all
other factors are equal, higher margins result in lower
error. Given, however, that arc-gv tends to choose
trees from a larger class, its higher test error no longer
qualitatively contradicts the margin theory.

5. Controlling Classifier Complexity

Knowing that arc-gv should produce a higher min-
imum margin in the limit, and observing that with
CART trees, arc-gv produces a uniformly higher dis-
tribution than AdaBoost, we wished to fix the com-
plexity of the classifiers both algorithms produce. The

3While it is curious that the test errors of the individ-
ual trees generated by arc-gv are on average lower than
those for AdaBoost, it does not necessarily follow that the
combination of trees generated by arc-gv should perform
better than that produced by AdaBoost. For example, as
will be seen in Section 5, decision stumps can work quite
well as base classifiers while individually having quite large
test and training errors.
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Table 5. Test errors, minimum margins, and average margins averaged over 100 trials, of AdaBoost and arc-gv, run for
100 rounds using decision stumps as weak learners.

test error minimum margin average margin
arc-gv AdaBoost arc-gv AdaBoost arc-gv AdaBoost

cancer 4.15 4.29 -.01 -.06 .07 .27
ionosphere 10.27 9.58 .01 .03 .09 .20

ocr 17 1.12 1.10 .03 .06 .14 .36
ocr 49 6.38 6.28 -.02 -.07 .05 .20
splice 7.22 6.79 -.01 -.07 .06 .21
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Figure 7. Cumulative margins for AdaBoost and arc-gv for
the breast cancer dataset after 100 rounds of boosting on
decision stumps.

margins theory tells us that if arc-gv still continued to
produce higher margins, it should also perform better.
However, if we could see that arc-gv, with some class
of weak learners, gets higher margins without gener-
ating higher depth trees and still performs worse, it
would put the margins theory into serious doubt.

A natural class to look at is decision stumps, which
are commonly used as base classifiers in boosting and
all have the same complexity by most any measure.
Yet, looking at sample margins distributions that Ada-
Boost and arc-gv generate, in Figure 7, we can see
that while arc-gv usually does have a larger minimum
margin, it does not have a higher margins distribu-
tion overall. In fact, if we look at the average margins,
AdaBoost’s are uniformly higher, and once again Ada-
Boost on average performs better than arc-gv. These
results are in Table 5.4

4If arc-gv and AdaBoost run for more rounds, their mar-
gins distributions begin to converge, as do their test errors.

Table 6. Percent test and training errors per generated
stump, and their differences, averaged over all decision
stumps generated in 100 rounds of boosting, over 10 trials.

AdaBoost arc-gv
test train diff test train diff

cancer 40.7 40.5 0.2 41.8 41.7 0.1

ion 42.4 41.4 1.0 42.7 41.8 0.9

ocr 17 34.1 33.9 0.2 34.5 34.2 0.2

ocr 49 42.4 42.0 0.4 43.3 42.9 0.4

splice 42.5 41.9 0.6 43.2 42.7 0.5

This result is both surprising and insightful. We would
have expected arc-gv to have uniformly higher margins
once more, but this time have lower test error. Yet,
it seems that in the case where arc-gv could not pro-
duce more complex trees, it sacrificed on the margins
distribution as a whole to have an optimal minimum
margin in the limit. Knowing this, the margins theory
would no longer predict arc-gv to perform better, and
it does not.

This is because the margins bound, in Eq. (1), depends
on setting θ to be as low as possible while keeping the
probability of being less than θ low. So if the margins of
AdaBoost overtake the margins of arc-gv at the lower
cumulative frequencies, then the theory would predict
AdaBoost to perform better. This is exactly what hap-
pens.

For comparison to Table 4, we give in Table 6 the
differences between the test and training errors of in-
dividual decision stumps generated in 100 rounds of
AdaBoost and arc-gv. Consistent with theory, the dif-
ferences in these test and training errors for individ-
ual stumps are much smaller than they are for CART

Hence, in the few data sets where AdaBoost has slightly
higher minimum margin after 100 rounds, this difference
disappears when boosting is run longer.
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trees, reflecting the lower complexity or tendency to
overfit of stumps compared to trees. Since these dif-
ferences are nearly identical for AdaBoost and arc-gv,
this also suggests that the stumps generated by the
two algorithms are roughly of the same complexity.

6. Discussion

In this paper, we have shown an alternative explana-
tion for arc-gv’s poorer performance that is consistent
with the margins theory. We can see that while having
higher margins is desirable, we must pay attention to
other factors that can also influence the generalization
error of the classifier.

Our experiments with decision stumps show us that
it may be fruitful to consider boosting algorithms
that greedily maximize the average or median mar-
gin rather than the minimum one. Such an algorithm
may outperform both AdaBoost and arc-gv.

Finally, we leave open an interesting question. We
have tried to keep complexity constant using base clas-
sifiers other than decision stumps, and in every in-
stance we have seen AdaBoost generate higher aver-
age margins. Is there a base classifier that has con-
stant complexity, with which arc-gv will have an over-
all higher margins distribution than AdaBoost? If such
a base learner exists, it would be a good test of the
margins explanation to see whether arc-gv would have
lower error than AdaBoost as we predict. However,
it is also possible that unless arc-gv “cheats” on com-
plexity, it cannot generate overall higher margins than
AdaBoost.
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Meir, R., & Rätsch, G. (2003). An introduction
to boosting and leveraging. In S. Mendelson and
A. Smola (Eds.), Advanced lectures on machine
learning (lnai2600), 119–184. Springer.

Quinlan, J. R. (1996). Bagging, boosting, and C4.5.
Proceedings of the Thirteenth National Conference
on Artificial Intelligence (pp. 725–730).
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