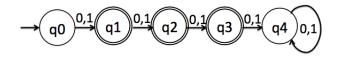
MCS 441 – Theory of Computation I Spring 2013 Problem Set 2

Lev Reyzin

Due: 2/1/13 at the beginning of class

Related reading: Chapter 1.1

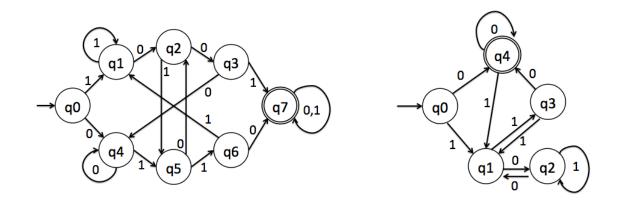

Instructions: Atop your problem set, write your name, clearly list your collaborators¹ (see syllabus for the collaboration policy), and indicate whether you are an undergraduate or graduate student. **Important note:** Problems labeled "U" and "G" are assigned to undergraduate and graduate students, respectively. Undergraduate students can get a small bonus for solving the graduate problems. Graduate students are encouraged to solve the undergraduate problems for practice.

Drawing state machines

- 1. [9 pts] Draw state diagrams for DFAs recognizing the following languages:
 - i. $L_1 = \{w \mid \text{length of } w \text{ is odd}\}, \Sigma = \{1\}$
 - ii. $L_2 = \{w \mid w \text{ begins with "aaa" or ends with "aaa"}\}, \Sigma = \{a, b\}$. Restriction: your DFA may contain no more than 8 states.
 - iii. $L_3 = \{w \mid \text{the characters of } w, \text{ interpreted as decimal digits, sum to less than 6}\}, \Sigma = \{1, 2, 3\}.$

Reading state machines

- 2. [10 pts] For each of the following DFAs, explain what language they recognize:
 - i. M_1



For machine M_1 , also give its formal description as a 5-tuple. You do not need to do this for the machines that follow in parts ii. and iii. of this question.

 $^{^1\}mathrm{If}$ you did not have any collaborators, please say so.

ii. M_2

iii. M_3

Closure

3. [6 pts] Let A and B be regular languages. Show that $A \setminus B$ is also regular. (Remember that $A \setminus B = \{x | x \in A, x \notin B\}$. Hence, this operation removes all strings from A that are also in B.)

Counting

4. [9 pts] In this problem we shall examine some limitations behind small automata. Note that a DFA is allowed to have unreachable states.

- i. How many different languages can be recognized by 2 state DFAs over $\Sigma = \{1, 2\}$?
- ii. Give an example of a regular language that cannot be recognized by a 3 state DFA. Explain why.
- iii. U. Describe all the languages recognizable by 1 state DFAs over $\Sigma = \{1\}$.
 - **G.** Give an upper bound on the number of different languages recognizable by an n state machine over an alphabet of size s, as a function of n and s. Explain why your bound is valid.