# MCS 441 - Theory of Computation I <br> Spring 2013 <br> Problem Set 2 

Lev Reyzin
Due: $2 / 1 / 13$ at the beginning of class

## Related reading: Chapter 1.1

Instructions: Atop your problem set, write your name, clearly list your collaborators ${ }^{11}$ (see syllabus for the collaboration policy), and indicate whether you are an undergraduate or graduate student. Important note: Problems labeled " U " and " G " are assigned to undergraduate and graduate students, respectively. Undergraduate students can get a small bonus for solving the graduate problems. Graduate students are encouraged to solve the undergraduate problems for practice.

## Drawing state machines

1. [ $\mathbf{9} \mathbf{p t s}$ ] Draw state diagrams for DFAs recognizing the following languages:
i. $L_{1}=\{w \mid$ length of $w$ is odd $\}, \Sigma=\{1\}$
ii. $L_{2}=\{w \mid w$ begins with "aaa" or ends with "aaa" $\}, \Sigma=\{a, b\}$. Restriction: your DFA may contain no more than 8 states.
iii. $L_{3}=\{w \mid$ the characters of $w$, interpreted as decimal digits, sum to less than 6$\}, \Sigma=\{1,2,3\}$.

## Reading state machines

2. [ $\mathbf{1 0} \mathbf{~ p t s}]$ For each of the following DFAs, explain what language they recognize:
i. $M_{1}$


For machine $M_{1}$, also give its formal description as a 5 -tuple. You do not need to do this for the machines that follow in parts ii. and iii. of this question.

[^0]ii. $M_{2}$

iii. $M_{3}$


## Closure

3. $[6 \mathrm{pts}]$ Let $A$ and $B$ be regular languages. Show that $A \backslash B$ is also regular. (Remember that $A \backslash B=\{x \mid x \in A, x \notin B\}$. Hence, this operation removes all strings from $A$ that are also in $B$.)

## Counting

4. [ $\mathbf{9} \mathrm{pts}]$ In this problem we shall examine some limitations behind small automata. Note that a DFA is allowed to have unreachable states.
i. How many different languages can be recognized by 2 state DFAs over $\Sigma=\{1,2\}$ ?
ii. Give an example of a regular language that cannot be recognized by a 3 state DFA. Explain why.
iii. U. Describe all the languages recognizable by 1 state DFAs over $\Sigma=\{1\}$.
G. Give an upper bound on the number of different languages recognizable by an $n$ state machine over an alphabet of size $s$, as a function of $n$ and $s$. Explain why your bound is valid.

[^0]:    ${ }^{1}$ If you did not have any collaborators, please say so.

