MCS 441 - Theory of Computation I Spring 2013
 Problem Set 3

Lev Reyzin
Due: $2 / 8 / 13$ at the beginning of class

Related reading: Chapters 1.1-1.3, focusing on 1.2.
Instructions: Atop your problem set, write your name, clearly list your collaborators ${ }^{11}$ (see syllabus for the collaboration policy), and indicate whether you are an undergraduate or graduate student.

NFA Design

1. [6 pts] Give state diagrams for any NFAs recognizing the following languages over $\Sigma=\{0,1\}$.
i. [3 pts] $L_{1}=\{w \mid w$ contains two consecutive 1 s or w contains no 0 s$\}$
ii. [3 pts] $L_{2}=\left\{w \mid w=w_{1} w_{2} \ldots w_{n}\right.$ with $w_{n-3}=1$ and $\left.w_{n-1}=0\right\}$

NFAs and DFAs

2. [10 pts] Consider the NFA: $N=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$, with δ defined in Table 1 .

δ	0	1	ϵ
q_{1}	$\left\{q_{1}, q_{2}\right\}$	\emptyset	\emptyset
q_{2}	\emptyset	$\left\{q_{1}\right\}$	$\left\{q_{1}\right\}$

Table 1: The transition function δ for N
i. [3 pts] Draw the state diagram for N.
ii. [3 pts] What language does N recognize?
iii. [3 pts] Let M_{1} be a DFA recognizing $L(N)$. Using the "power set" construction in the proof of Theorem 1.39 from Sipser, draw the state diagram for M_{1}, labeling the states of M_{1} with the corresponding members of $\mathcal{P}\left(\left\{q_{1}, q_{2}\right\}\right)$.
iv. [1 pts] Let M_{2} be a DFA recognizing $L\left(M_{1}\right)$ but containing fewer states than M_{1}. Draw the state diagram of M_{2}.

[^0]
Accept States

3. [$6 \mathbf{p t s}$] Remember that GNFAs may have only one accept state but can still recognize any regular language.
i. [3 pts] If we allowed NFAs to have only one accept state, would they still be able to recognize any regular language? Why or why not?
ii. [3 pts] How about DFAs? Why or why not?

More Closure

4. [6 pts] For a string $w=w_{1} w_{2} \ldots w_{n}$, let $w^{\leftrightarrow}=w_{n} w_{n-1} \ldots w_{1}$; further, let $\epsilon \leftrightarrow=\epsilon$. For a language A, define the operation

$$
A^{\leftrightarrow}=\left\{w^{\leftrightarrow} \mid w \in A\right\} .
$$

Show that A is regular if and only if A^{\leftrightarrow} is regular.

Representation

5. [12 pts] This question explores the conciseness of representation of regular languages.
i. [1 pt] Argue that if a language can be recognized by a DFA with k states then it can also be recognized by an NFA with k states.

Let $\Sigma^{n}=\underbrace{\Sigma \Sigma \ldots \Sigma}_{n}$. Consider the regular language $R_{1}=\Sigma^{*} 1 \Sigma^{k-1}$ over $\Sigma=\{0,1\}$.
ii. [2 pts] Show that R_{1} can be recognized by an NFA with $k+1$ states.
iii. [6 pts] Prove that any DFA that recognizes R_{1} must have at least 2^{k} states.

You can get full credit for the next questions even if you were not able to answer parts i. - iii.
iv. [1 pt] What does part iii. of this question tell you about Theorem 1.39 from Sipser?
v. [2 pts] What do parts i., ii., and iii. of this question tell you about DFAs as compared to NFAs? Be concrete.

[^0]: ${ }^{1}$ If you did not have any collaborators, please say so.

