MCS 590 - Foundations of Data Science
 Spring 2015
 Problem Set 1

Lev Reyzin

Due: $2 / 13 / 15$ at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

1. Let $p>0$ be a constant independent of n. Give a polynomial time algorithm that finds cliques of expected size $\Omega(\log n)$ in $G(n, p)$. Argue that your algorithm is correct.
2. Find the sharp threshold for p for the existence of 4 -cliques in $G(n, p)$. Prove your answer correct.
3. The example at the end of Section 4.1.1 (and done in class) showed that if the degrees in $G\left(n, \frac{1}{n}\right)$ were independent, there would be a vertex of degree $\frac{\log n}{\log \log n}$ with constant positive probability. However, the degrees are not independent. Show how to overcome this difficulty.
4. $\sqrt{1}$ Search the Web for two real-world graphs in machine readable form. Plot the degree distribution of the graphs. Give the average degree and number of connected components of the graphs. Describe your findings.
[^0]
[^0]: ${ }^{1}$ No collaboration is allowed on this problem.

