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Chapter 4 
 
Greedy Algorithms 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 



4.5  Minimum Spanning Tree 



3 

Minimum Spanning Tree 

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is minimized. 
 
 
 
 
 
 
 
 
 

Cayley's Theorem.  There are nn-2 spanning trees of Kn. 

 5 

23 

10  
21 

 14 

24 

 16 

 6 

 4 

18 
9 

7 

11 
 8 

 5 

 6 

 4 

9 

7 

11 
 8 

G = (V, E) T,  Σe∈T ce = 50 

can't solve by brute force 
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Applications 

MST is fundamental problem with diverse applications. 

■  Network design. 
–  telephone, electrical, hydraulic, TV cable, computer, road 

■  Approximation algorithms for NP-hard problems. 
–  traveling salesperson problem, Steiner tree 

■  Indirect applications. 
–  max bottleneck paths 
–  LDPC codes for error correction 
–  image registration with Renyi entropy 
–  learning salient features for real-time face verification 
–  reconstructing most parsimonious phylogenetic trees 
–  reducing data storage in sequencing amino acids in a protein 
–  model locality of particle interactions in turbulent fluid flows 
–  autoconfig protocol for Ethernet bridging to avoid cycles in a network 

■  Cluster analysis. 
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Greedy Algorithms 

Kruskal's algorithm.  Start with T = φ. Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle. 
 
Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so would 
disconnect T. 
 
Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T. 
 
 
Remark.  All three algorithms produce an MST. 
Remark for the bored. Think of the generic implementation with a bag 
data structure 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S.  Then the MST contains e. 
 
Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then the MST does not contain f. 

f  
C 

S 

e is in the MST 

e 

f is not in the MST 
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Cycles and Cuts 

Cycle.  Set of edges the form a-b, b-c, c-d, …, y-z, z-a.  
 
 
 
 
 
 
 
 
Cutset.  A cut is a subset of nodes S.  The corresponding cutset D is 
the subset of edges with exactly one endpoint in S. 
 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
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Cut S       =  { 4, 5, 8 } 
Cutset  D =  5-6, 5-7, 3-4, 3-5, 7-8 
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Cycle-Cut Intersection 

Claim.  A cycle and a cutset intersect in an even number of edges. 
 
 
 
 
 
 
 
 
Pf.  (by picture) 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 



9 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T* contains e. 
 
Pf.  (exchange argument) 
■  Suppose e does not belong to T*, and let's see what happens. 
■  Adding e to T* creates a cycle C in T*. 
■  Edge e is both in the cycle C and in the cutset D corresponding to S  
⇒  there exists another edge, say f, that is in both C and D. 

■  T' = T* ∪ { e } - { f } is also a spanning tree. 
■  Since ce < cf, cost(T') < cost(T*). 
■  This is a contradiction.   ▪ 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f. 
 
Pf.  (exchange argument) 
■  Suppose f belongs to T*, and let's see what happens. 
■  Deleting f from T* creates a cut S in T*. 
■  Edge f is both in the cycle C and in the cutset D corresponding to S  
⇒  there exists another edge, say e, that is in both C and D. 

■  T' = T* ∪ { e } - { f } is also a spanning tree. 
■  Since ce < cf, cost(T') < cost(T*). 
■  This is a contradiction.   ▪ 
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Prim's Algorithm:  Proof of Correctness 

Prim's algorithm.  [Jarník 1930, Dijkstra 1957, Prim 1959] 
■  Initialize S = any node. 
■  Apply cut property to S. 
■  Add min cost edge in cutset corresponding to S to T, and add one 

new explored node u to S. 

S 
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Implementation:  Prim's Algorithm 

Prim(G, c) { 
   foreach (v ∈ V) a[v] ← ∞ 
   Initialize an empty priority queue Q 
   foreach (v ∈ V) insert v onto Q 
   Initialize set of explored nodes S ← φ 
 
   while (Q is not empty) { 
      u ← delete min element from Q 
      S ← S ∪ { u } 
      foreach (edge e = (u, v) incident to u) 
          if ((v ∉ S) and (ce < a[v])) 
             decrease priority a[v] to ce 
} 

Implementation.  Use a priority queue ala Dijkstra. 
■  Maintain set of explored nodes S. 
■  For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge v to a node in S. 
■  O(n2) with an array; O(m log n) with a binary heap. 
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Kruskal's Algorithm:  Proof of Correctness 

Kruskal's algorithm.  [Kruskal, 1956] 
■  Consider edges in ascending order of weight. 
■  Case 1:  If adding e to T creates a cycle, discard e according to 

cycle property. 
■  Case 2:  Otherwise, insert e = (u, v) into T according to cut 

property where S = set of nodes in u's connected component.  

Case 1 
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Case 2 
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e S 
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Implementation:  Kruskal's Algorithm 

Kruskal(G, c) { 
   Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm. 
   T ← φ 
 
   foreach (u ∈ V) make a set containing singleton u 
 
   for i = 1 to m 
      (u,v) = ei 
      if (u and v are in different sets) { 
         T ← T ∪ {ei} 
         merge the sets containing u and v 
      } 
   return T 
} 

Implementation.  Use the union-find data structure. 
■  Build set T of edges in the MST. 
■  Maintain set for each connected component. 
■  O(m log n) for sorting and  O(m α (m, n)) for union-find. 

are u and v in different connected components? 

merge two components 

m ≤ n2 ⇒ log m is O(log n) essentially a constant 
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Lexicographic Tiebreaking 

To remove the assumption that all edge costs are distinct:  perturb all 
edge costs by tiny amounts to break any ties. 
 
Impact.  Kruskal and Prim only interact with costs via pairwise 
comparisons.  If perturbations are sufficiently small, MST with 
perturbed costs is MST with original costs.  
 
 
 
Implementation.  Can handle arbitrarily small perturbations implicitly 
by breaking ties lexicographically, according to index. 

boolean less(i, j) { 
   if      (cost(ei) < cost(ej)) return true 
   else if (cost(ei) > cost(ej)) return false 
   else if (i < j)               return true 
   else                          return false 
} 

e.g., if all edge costs are integers, 
perturbing cost of edge ei by i / n2 


