
1

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Goals

Understand that sometimes greed is good optimal!

Be able to analyze whether a greedy algorithm is optimal
• show it “stays ahead” of any other algorithm
• inductively
• lower bound the optimal solution, show that greedy

achieves this bound
• exchangability and other problem structure

Problems:
• Interval scheduling
• Coin changing
• Optimal caching
• Shortest path
• Minimum spanning tree

4.1 Interval Scheduling

4

Interval Scheduling

Interval scheduling.
 Job j starts at sj and finishes at fj.
 Two jobs compatible if they don't overlap.
 Goal: find maximum subset of mutually compatible

jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take
each job provided it's compatible with the ones
already taken.

 [Earliest start time] Consider jobs in ascending
order of start time sj.

 [Earliest finish time] Consider jobs in ascending
order of finish time fj.

 [Shortest interval] Consider jobs in ascending
order of interval length fj - sj.

 [Fewest conflicts] For each job, count the number
of conflicting jobs cj. Schedule in ascending order
of conflicts cj.

6

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take
each job provided it's compatible with the ones
already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

7

Greedy algorithm. Consider jobs in increasing order
of finish time. Take each job provided it's compatible
with the ones already taken.

Implementation. O(n log n).
 Remember job j* that was added last to A.
 Job j is compatible with A if sj fj*.

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

jobs selected

Interval Scheduling: Greedy Algorithm

8

Interval Scheduling Example

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

9

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

Interval Scheduling Example

10

0 1 2 3 4 5 6 7 8 9 10 11

B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

11

0 1 2 3 4 5 6 7 8 9 10 11

B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

12

0 1 2 3 4 5 6 7 8 9 10 11

BA

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

13

0 1 2 3 4 5 6 7 8 9 10 11

B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

14

0 1 2 3 4 5 6 7 8 9 10 11

B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

15

0 1 2 3 4 5 6 7 8 9 10 11

B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

16

0 1 2 3 4 5 6 7 8 9 10 11

B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

17

0 1 2 3 4 5 6 7 8 9 10 11

B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling Example

18

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution

with
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1

with job ir+1?

job ir+1 finishes before jr+1

. . .

19

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling: Analysis

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution

with
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Coin Changing

Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through,
and captures the essence of the
evolutionary spirit.

- Gordon Gecko (Michael Douglas)

22

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100,
devise a method to pay amount to customer using
fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of
the largest value that does not take us past the
amount to be paid.

Ex: $2.89.

23

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of
the largest value that does not take us past the
amount to be paid.

Q. Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < … < cn.

S

while (x 0) {

let k be largest integer such that ck x

if (k = 0)

return "no solution found"

x x - ck
S S {k}

}

return S

coins selected

24

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.
Pf. (by induction on x)

 Consider optimal way to change ck x < ck+1 : greedy takes coin k.
 We claim that any optimal solution must also take coin k.

– if not, it needs enough coins of type c1, …, ck-1 to add up to x
– table below indicates no optimal solution can do this

 Problem reduces to coin-changing x - ck cents, which, by induction, is
optimally solved by greedy algorithm. ▪

1

ck

10

25

100

P 4

All optimal solutions
must satisfy

N + D 2

Q 3

5 N 1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99

25

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225,
1500.

Counterexample. 140¢.
 Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
 Optimal: 70, 70.

4.1 Interval Partitioning

27

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at the
same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10
lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

28

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at the
same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

29

Interval Partitioning: Lower Bound on Optimal
Solution

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed depth.

Ex: Depth of schedule below = 3 schedule below is
optimal.

Q. Does there always exist a schedule equal to depth of
intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

30

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Implementation. O(n log n).
 For each classroom k, maintain the finish time of the last

job added.
 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d d + 1

}

number of allocated classrooms

31

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.
 Let d = number of classrooms that the greedy

algorithm allocates.
 Classroom d is opened because we needed to

schedule a job, say j, that is incompatible with all d-
1 other classrooms.

 Since we sorted by start time, all these
incompatibilities are caused by lectures that start
no later than sj.

 Thus, we have d lectures overlapping at time sj + .
 Key observation all schedules use d

classrooms. ▪

