

Chapter 4

Greedy Algorithms

Addison
Wesley

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Goals

Understand that sometimes greed is good optimal!

Be able to analyze whether a greedy algorithm is optimal

- show it "stays ahead" of any other algorithm
- inductively
- lower bound the optimal solution, show that greedy achieves this bound
- exchangability and other problem structure

Problems:

- Interval scheduling
- Coin changing
- Optimal caching
- Shortest path
- Minimum spanning tree

4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_{j}.
- [Earliest finish time] Consider jobs in ascending order of finish time f_{j}.
- [Shortest interval] Consider jobs in ascending order of interval length $f_{j}-s_{j}$.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_{j}. Schedule in ascending order of conflicts c_{j}.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

breaks earliest start time
breaks shortest interval
breaks fewest conflicts

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
    , jobs selected
A}\leftarrow
for j = 1 to n {
    if (job j compatible with A)
        A}\leftarrow\mathbf{A}\cup{j
}
return A
```

Implementation. $O(n \log n)$.

- Remember job j^{*} that was added last to A.
- Job j is compatible with A if $s_{j} \geq f_{j^{*}}$.

Interval Scheduling Example

Interval Scheduling Example

Interval Scheduling Example

		B									

Interval Scheduling Example

Interval Scheduling Example

Interval Scheduling Example

Interval Scheduling Example

		B			D	E				
0	1	2	3	4	5	6	7	8	9	10

Interval Scheduling Example

		B				E	F				

Interval Scheduling Example

		B				E		G		

Interval Scheduling Example

| | B | | | E | | | | | H | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots i_{k}$ denote set of jobs selected by greedy.
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with
$i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots i_{k}$ denote set of jobs selected by greedy.
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with
$i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

solution still feasible and optimal, but contradicts maximality of r.

Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

Coin Changing

Goal. Given currency denominations: $1,5,10,25,100$, devise a method to pay amount to customer using fewest number of coins.

Ex: 344.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: \$2.89.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c}\mp@subsup{c}{1}{}<\mp@subsup{c}{2}{}<\ldots<\mp@subsup{c}{n}{}\mathrm{ .
    , coins selected
S}\leftarrow
while (x f= 0) {
    let k be largest integer such that cock m
    if (k = 0)
        return "no solution found"
    x}\leftarrow\mathbf{x}-\mp@subsup{\mathbf{C}}{\mathbf{k}}{
    S}\leftarrowS\cup{k
}
return S
```

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: $1,5,10,25,100$. Pf. (by induction on x)

- Consider optimal way to change $c_{k} \leq x<c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
- if not, it needs enough coins of type c_{1}, \ldots, c_{k-1} to add up to x
- table below indicates no optimal solution can do this
- Problem reduces to coin-changing $x-c_{k}$ cents, which, by induction, is optimally solved by greedy algorithm. -

k	c_{k}	All optimal solutions must satisfy	Max value of coins $1,2, \ldots, k-1$ in any OPT
1	1	$\mathrm{P} \leq 4$	-
2	5	$\mathrm{~N} \leq 1$	4
3	10	$\mathrm{~N}+\mathrm{D} \leq 2$	$4+5=9$
4	25	$\mathrm{Q} \leq 3$	$20+4=24$
5	100	no limit	$75+24=99$

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: $1,10,21,34,70,100,350,1225$, 1500.

Counterexample. 140\$.

- Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
- Optimal: 70,70.

4.1 Interval Partitioning

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.
Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.

$$
a, b, c \text { all contain 9:30 }
$$

Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots\leq\mp@subsup{s}{n}{}
d}\leftarrow0\leftarrow\mathrm{ number of allocated classrooms
for j = 1 to n {
    if (lecture j is compatible with some classroom k)
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d}\leftarrowd+
}
```

Implementation. $O(n \log n)$.

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal. Pf.

- Let $d=$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, we have d lectures overlapping at time $s_{j}+\varepsilon$.
- Key observation \Rightarrow all schedules use $\geq d$ classrooms. .

