
MCS 401 – Computer Algorithms I
Spring 2017

Problem Set 5

Lev Reyzin

Due: 4/17/17 by the beginning of class

Instructions: Atop your problem set, write your name and whether you are an undergraduate or
graduate student. Also write the names of all the students with whom you have collaborated on
this problem set.

1. [10 pts] Let G be an arbitrary flow network with a source s, sink t, and positive integer ca-
pacity ce on every edge e. Let (A,B) be a minimum s–t cut of G with respect to these capacities
{ce : e ∈ E}. Now, if we add 1 to every capacity, will (A,B) remain a minimum s–t cut with
respect to the new capacities {1 + ce : e ∈ E}? Prove your answer correct.

2. [10 pts] Consider the network below in which an s–t flow has been computed. The capacity of
each edge appears as a label next to the edge, and the numbers in the boxes give the amount of
flow sent on each edge. (Edges without numbers in boxes have no flow being sent on them.)

What is the value of this flow? Is this a maximum (s, t) flow in the graph? What is the minimum
s–t cut in this graph? (It is suggested that you use this problem to practice your understanding of
the Ford-Fulkerson algorithm)

3. [10 pts] Let G = (V,E) be a directed graph with a source s ∈ V , sink t ∈ V , and positive
integer edge capacities {ce}. Give a polynomial time algorithm to decide whether G has more than
one distinct minimum s–t cut.
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4. [10 pts] You are given an undirected graph G = (V,E). A certain collection of nodes D ⊂ V
are designated as dangerous and a certain collection of nodes S ⊂ V is designated as safe (assume
D ∩ S = ∅). In an emergency, we want a set of evacuation routes from the dangerous nodes to the
safe ones. A set of evacuation routes is defined as a set of paths in G such that:

i. each node in D is the tail of one path,

ii. the last node on each path lies in S,

iii. no two paths share any nodes in common.

Such a collection lets the populations of D escape to S without overly congesting any edge in G.

Given G, D, and S, give a polynomial time algorithm to decide if a set of evacuation routes exists
in G.

5. [10 pts] Consider the following claims.

i. Is the following claim true or false? “For every directed graph G = (V,E) with positive integer
capacities and for every pair of vertices s and t (where s 6= t and t is reachable from s), there
always exists an edge such that increasing the capacity of that edge will increase the maximum
s−t flow that is possible in G.” Explain your answer.

ii. Is the following claim true or false? “For every directed graph G = (V,E) with edge capacities
that are positive integer multiples of 3 and for every pair of vertices s and t (where s 6= t and
t is reachable from s), the value of the maximum s−t flow must be an integer multiple of 3.”
Explain your answer.
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