STAT 473 - Game Theory
 Spring 2020
 Problem Set 1

Lev Reyzin

Due: $1 / 31 / 20,9: 30 \mathrm{am}$

1. [$\mathbf{1 0} \mathbf{~ p t s]}$ Consider the game Chomp on a 3×3 board (see Figure 1). Draw a graph representation (as in Firgure 1.3 in the book) of all states reachable from the initial 3×3 position, and mark all edges as red, green, or black, as in the book. Mark each state as belonging to \mathbf{N} or \mathbf{P}.

Figure 1: The starting position of a 3×3 game of Chomp
2. [10 pts] Consider the subtraction game with the subtraction set (i.e. the number of chips each player can remove on a turn) of $\{1,2\}$. For which integers does the first ("next") player have a winning strategy? Argue for the correctness of your answer.
3. [10 pts] Prove that the first player in a game of (the usual 3×3) tic-tac-toe can always (at least) force a draw. Note that one way to do this is to draw the full game tree, but there is an easier proof.
4. [10 pts] Consider the following (silly) game. Players 1 and 2 play rock-paper-scissors in turn as a combinatorial game: first player 1 chooses among $\{R, P, S\}$, then (after seeing what player 1 has chosen) player 2 replies from among $\{R, P, S\}$. The payoffs (of $-1,0$, or 1) to the two players are calculated using the usual rules (in Table 1 below. Draw the full (minimax) game tree of this game (see notes from Lecture 3 for some examples). What is player 1's payoff if both players play optimally?

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Table 1: The payoff matrix for player 1. (The payoffs to player 2 are the negations of the payoffs to player 1)

