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1 − δ, for any h ∈ H,

R(h) ≤ R̂(h) +

√
2(N + 1) log em

N+1

m
+

√
log 1

δ

2m
. (4.37)

When the dimension of the feature space N is large compared to the sample size,
this bound is uninformative. The following theorem presents instead a bound on the
VC-dimension of canonical hyperplanes that does not depend on the dimension of
feature space N , but only on the margin and the radius r of the sphere containing
the data.

Theorem 4.2

Let S ⊆ {x : ‖x‖ ≤ r}. Then, the VC-dimension d of the set of canonical hyperplanes
{x �→ sgn(w · x) : minx∈S |w · x| = 1 ∧ ‖w‖ ≤ Λ} verifies

d ≤ r2Λ2 .

Proof Assume {x1, . . . ,xd} is a set that can be fully shattered. Then, for all
y = (y1, . . . , yd) ∈ {−1, +1}d, there exists w such that,

∀i ∈ [1, d], 1 ≤ yi(w · xi) .

Summing up these inequalities yields

d ≤ w ·
d∑

i=1

yixi ≤ ‖w‖‖
d∑

i=1

yixi‖ ≤ Λ‖
d∑

i=1

yixi‖ .

Since this inequality holds for all y ∈ {−1, +1}d, it also holds on expectation over
y1, . . . , yd drawn i.i.d. according to a uniform distribution over {−1, +1}. In view of
the independence assumption, for i �= j we have E[yiyj ] = E[yi] E[yj ]. Thus, since
the distribution is uniform, E[yiyj ] = 0 if i �= j, E[yiyj ] = 1 otherwise. This gives

d ≤ Λ E
y
[‖

d∑
i=1

yixi‖] (taking expectations)

≤ Λ
[
E
y
[‖

d∑
i=1

yixi‖2]
]1/2

(Jensen’s inequality)

= Λ
[ d∑

i,j=1

E
y
[yiyj ](xi · xj)

]1/2

= Λ
[ d∑

i=1

(xi · xi)
]1/2 ≤ Λ

[
dr2
]1/2 = Λr

√
d.

Thus,
√

d ≤ Λr, which completes the proof.
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