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76 Support Vector Machines

1—6, for any h € H,

2(N + 1) log -2 log 1
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R(h) < R(h) + \/

When the dimension of the feature space N is large compared to the sample size,
this bound is uninformative. The following theorem presents instead a bound on the
VC-dimension of canonical hyperplanes that does not depend on the dimension of
feature space N, but only on the margin and the radius r of the sphere containing
the data.

Theorem 4.2
Let S C {x: ||x|| <r}. Then, the VC-dimension d of the set of canonical hyperplanes
{z — sgn(w - x): mingeg |w-x| =1A||w| < A} verifies

d < r?A2.

Proof Assume {xi,...,X4} is a set that can be fully shattered. Then, for all
y=(y1,...,9q) € {—1,+1}¢ there exists w such that,

Vie [1,d),1 <y(w-x;).

Summing up these inequalities yields
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Since this inequality holds for all y € {—1,+1}%, it also holds on expectation over
Y1, .-, Yyq drawn i.i.d. according to a uniform distribution over {—1,+41}. In view of
the independence assumption, for ¢ # j we have E[y;y;] = E[y;] E[y;]. Thus, since
the distribution is uniform, E[y;y;] = 0 if i # j, E[y;y;] = 1 otherwise. This gives
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Thus, v/d < Ar, which completes the proof. m
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