1. Develop a divide-and-conquer algorithm (use pseudocode if you like) to find the smallest value in a set of \(n \) numbers which uses \(n/2 \) processors and has complexity of \(O(\log n) \).

2. Develop a parallel algorithm (use pseudocode if you like) to compute the polynomial

\[P_n(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \]

from a given \(x, n \) and set of \(a_i \), which has the complexity of \(O(\log n) \). It is up to you how many processors to use, but try to minimize the number of used processors.