Publications and preprints
-
R. Abramov, A kinetic theory hypothesis on the equilibrated pressure behavior in a low Mach, high Reynolds number gas flow,
preprint, 2024.
[arXiv.org]
-
R. Abramov, Turbulence via intermolecular potential: Uncovering the origin,
Communications in Nonlinear Science and Numerical Simulation, 2024, vol. 130, 107727.
[DOI]
[arXiv.org]
-
R. Abramov, Turbulence via intermolecular potential: Viscosity and transition range of the Reynolds number,
Fluids, 2023, vol. 8, no. 3, 101.
[DOI]
[arXiv.org]
-
R. Abramov, Turbulence via intermolecular potential: A weakly compressible model of gas flow at low Mach number,
Physics of Fluids, 2022, vol. 34, no. 12, 125104.
[DOI]
[arXiv.org]
-
R. Abramov, Creation of turbulence in polyatomic gas flow via an intermolecular potential,
Physical Review Fluids, 2022, vol. 7, 054605.
[DOI]
[arXiv.org]
-
R. Abramov, Turbulence in large-scale two-dimensional balanced hard sphere gas flow,
Atmosphere, 2021, vol. 12, no. 11, 1520.
[DOI]
[arXiv.org]
-
R. Abramov, Macroscopic turbulent flow via hard sphere potential,
AIP Advances, 2021, vol. 11, no. 8, 085210.
[DOI]
[arXiv.org]
Also see erratum.
-
R. Abramov, Formation of turbulence via an interaction potential,
preprint, 2021.
[arXiv.org]
-
R. Abramov, Turbulent energy spectrum via an interaction potential,
Journal of Nonlinear Science, 2020, vol. 30, 3057—3087.
[DOI]
[Free view-only version]
[arXiv.org]
-
R. Abramov, A theory of average response to large jump perturbations, Chaos, 2019, vol. 29, 083128.
[DOI]
[arXiv.org]
-
R. Abramov, The random gas of hard spheres, J, 2019, vol. 2, no. 2, 162—205.
[DOI]
[arXiv.org]
-
R. Abramov, The effect of the Enskog collision terms on the steady shock
transitions in a hard sphere gas, preprint, 2018.
[arXiv.org]
-
R. Abramov and J. Otto, Nonequilibrium diffusive gas dynamics: Poiseuille
microflow, Physica D, 2018, vol. 371, 13—27.
[DOI]
[arXiv.org]
-
R. Abramov, Gas near a wall: shortened mean free path, reduced viscosity,
and the manifestation of the Knudsen layer in the Navier-Stokes solution
of a shear flow, Journal of Nonlinear Science, 2018, vol. 28, no. 3, 833—845.
[DOI]
[arXiv.org]
-
R. Abramov, A mass diffusion effect in gas dynamics equations, preprint, 2017.
[arXiv.org]
-
R. Abramov, Diffusive Boltzmann equation, its fluid dynamics,
Couette flow and Knudsen layers, Physica A, 2017, vol. 484, 532—557.
[DOI]
[arXiv.org]
-
R. Abramov, Leading order response of statistical averages of a dynamical system to
small stochastic perturbations, Journal of Statistical Physics, 2017, vol. 166, no. 6, 1483—1508.
[DOI]
[arXiv.org]
-
R. Abramov, Linear response of the Lyapunov exponent to a small constant perturbation,
Communications in Mathematical Sciences, 2016, vol. 14, no. 4, 1155—1167.
[DOI]
[arXiv.org]
-
R. Abramov, A simple stochastic parameterization for reduced models of multiscale
dynamics, Fluids, 2016, vol. 1, no. 1.
[DOI]
[arXiv.org]
-
R. Abramov and M. Kjerland, The response of reduced models of multiscale dynamics
to small external perturbations, Communications in Mathematical Sciences,
2016, vol. 14, no. 3, 831—855.
[DOI]
[arXiv.org]
-
R. Abramov, Coarse-grained transport of a turbulent flow via moments of the
Reynolds-averaged Boltzmann equation,
submitted to Journal of Fluid Mechanics, 2015 — oops, rejected. Left as a preprint.
[arXiv.org]
-
R. Abramov, A simple closure approximation
for slow dynamics of a multiscale system: Nonlinear and multiplicative coupling,
Multiscale Modeling and Simulation, 2013, vol. 11, no. 1, 134—151.
[DOI]
[arXiv.org]
-
R. Abramov, A simple linear response closure approximation
for slow dynamics of a multiscale system with linear
coupling, Multiscale Modeling and Simulation, 2012, vol. 10, no. 1, 28—47.
[DOI]
[arXiv.org]
-
R. Abramov, Suppression of chaos at slow variables by
rapidly mixing fast dynamics through linear energy-preserving
coupling, Communications in Mathematical Sciences, 2012,
vol. 10, no. 2, 595—624.
[DOI]
[arXiv.org]
-
R. Abramov & A. Majda, Low Frequency Climate Response
of Quasigeostrophic Wind-Driven Ocean Circulation,
Journal of Physical Oceanography, 2012, vol. 42, no. 2, 243—260.
[DOI]
-
R. Abramov, Improved linear response for stochastically
driven systems, Frontiers of Mathematics in
China, 2012, vol. 7, no. 2, 199—216.
[DOI]
[arXiv.org]
-
R. Abramov, Approximate linear response for slow variables
of dynamics with explicit time scale separation, Journal
of Computational Physics, 2010, vol. 229, no. 20,
7739—7746.
[DOI]
-
A. Majda, R. Abramov & B. Gershgorin, High skill in
low frequency climate response through fluctuation dissipation
theorems despite structural instability, Proceedings of
the National Academy of Sciences, 2010, vol. 107, no. 2, 581—586.
[DOI]
-
R. Abramov, The multidimensional maximum entropy moment
problem: A review on numerical methods, Communications in
Mathematical Sciences, 2010, vol. 8, no. 2,
377—392.
[DOI]
-
R. Abramov, Short-time linear response with reduced-rank
tangent map, Chinese Annals of Mathematics series B, 2009,
vol. 30B, no. 5, 447—462.
[DOI]
-
R. Abramov, The multidimensional moment-constrained
maximum entropy problem: A BFGS algorithm with constraint
scaling, Journal of Computational Physics, 2009,
vol. 228, 96—108.
[DOI]
-
R. Abramov & A. Majda, A new algorithm for low
frequency climate response, Journal of the
Atmospheric Sciences, 2009, vol. 66, 286—309.
[DOI]
-
R. Abramov & A. Majda, New approximations and tests of
linear fluctuation-response for chaotic nonlinear
forced-dissipative dynamical systems, Journal of
Nonlinear Science, 2008, vol. 18, 303—341.
[DOI]
-
R. Abramov & A. Majda, Blended response algorithms for
linear fluctuation-dissipation for complex nonlinear dynamical
systems, Nonlinearity, 2007, vol. 20, 2793—2821.
[DOI]
-
R. Abramov, An improved algorithm for the multidimensional
moment-constrained maximum entropy problem, Journal of
Computational Physics, 2007, vol. 226, 621—644.
[DOI]
-
R. Abramov, A practical computational framework for the
multidimensional moment-constrained maximum entropy
principle, Journal of Computational Physics, 2006,
vol. 211, 198—209.
[DOI]
-
A. Majda, R. Abramov & M. Grote, Information theory
and stochastics for multiscale nonlinear systems, vol. 25
of CRM Monograph Series, Centre de Recherches
Mathématiques, Université de
Montréal. Published by American Mathematical Society,
2005. ISBN-10: 0-8218-3843-1. ISBN-13: 978-0-8218-3843-3. 133 pp.
[AMS Bookstore][Amazon]
-
K. Haven, A. Majda & R. Abramov, Quantifying
predictability through information theory: Small sample
estimation in a non-Gaussian framework, Journal of
Computational Physics, 2005, vol. 206, 334—362.
[DOI]
-
R. Abramov, A. Majda & R. Kleeman, Information Theory
and Predictability for Low Frequency Variability, Journal
of Atmospheric Sciences, 2005, vol. 62, no. 1,
65—87.
[DOI]
-
R. Abramov & A. Majda, Quantifying uncertainty for
non-Gaussian ensembles in complex systems, SIAM Journal
on Scientific Computing, 2003, vol. 26, no. 2,
411—447.
[DOI]
-
R. Abramov & A. Majda, Discrete approximations with
additional conserved quantities: Deterministic and statistical
behavior, Methods and Applications of Analysis, 2003,
vol. 10, no. 2, 151—190.
[DOI]
-
R. Abramov & A. Majda, Statistically relevant
conserved quantities for truncated quasi-geostrophic
flow, Proceedings of the National Academy of Sciences,
2003, vol. 100, no. 7, 3841—3846.
[DOI]
-
R. Abramov, G. Kovačič & A. Majda, Hamiltonian
structure and statistically relevant conserved quantities for
the truncated Burgers-Hopf equation, Communications in
Pure and Applied Mathematics, 2003, vol. 56,
1—46.
[DOI]
Ph.D. Rensselaer Polytechnic
Institute, Department of
Mathematics, 2002.
Thesis title: Statistically
relevant and irrelevant conserved quantities for the
equilibrium statistical description of the truncated
Burgers-Hopf equation and the equations for barotropic
flow.
[PDF]