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1. Introduction

My research is in extremal problems for graphs, hypergraphs, and other combinatorial
structures as well as the closely related field of Ramsey theory. Loosely speaking, these
areas are all about finding the threshold of certain parameters at which some large and
unstructured object is forced to contain a small and highly-structured subobject.

For example, if a graph on n vertices has more than n2/4 edges, then it must contain a
3-clique, three vertices that are all pairwise adjacent, no matter its structure. The complete
bipartite graph with equal (or nearly equal) parts (see Figure 1) demonstrates that we can
have at least this many edges without a 3-clique. The fact that this is the best that we can
do is called Mantel’s Theorem, and we say that n2/4 is the nth extremal number for the
3-clique K3, ex(n,K3) = n2/4. Turán’s Theorem generalized this result for cliques of any
size. It states that the maximum number of edges that a graph can have before it is forced
to contain a clique of k vertices is the same as the number of edges found in the complete
balanced (k − 1)-partite graph.

Questions that ask for such an extremal number of allowed edges before some forbidden
subgraph (or family of subgraphs) is forced are known as Turán-type problems after Paul
Turán due to his important early results and conjectures concerning forbidden complete
graphs and hypergraphs [31, 32, 33]. These kinds of questions are difficult to answer in gen-
eral for hypergraphs and other combinatorial structures. Even for 3-uniform hypergraphs,
the extremal number of a 4-clique is unknown.

Ramsey theory is similar to extremal Turán-type problems. The simplest case in classical
Ramsey theory for graphs asks the following question: “If we take the complete graph on
n vertices, can we color each of the edges either red or blue in such a way that avoids a
monochromatic K3?” The answer depends on the number of vertices, n. If n ≤ 5, then yes,
this is possible. However, if n ≥ 6, then a monochromatic K3 is always forced no matter
how the edges are colored.

Figure 1. The complete balanced bipartite graph contains no 3-clique.
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In general, we can ask the following: “Given k colors and positive integers s1, . . . , sk ≥ 2,
what is the minimum number of vertices N such that for every n ≥ N , no matter how
you color the edges of the complete graph on n vertices, for some i there will exist a set
of si vertices whose induced edges are all given color i?” This minimum N is called the
Ramsey number R(s1, . . . , sk). Ramsey numbers are notoriously difficult to find even for
small cases.

I can categorize my current research into two main ongoing projects. My first project is
about a variant of the Ramsey problem originally proposed by Erdős and Shelah [15, 16].
My second project extends the notions of Turán-type problems to a class of combinatorial
structures called directed hypergraphs. Such structures are useful models when study-
ing propositional logic and other areas. The solutions to extremal problems frequently
use methods from unexpected areas of mathematics including probability, linear algebra,
analysis, and model theory.

2. Project 1: The Erdős-Gyárfás problem of generalized Ramsey numbers

2.1. Background. Let Kn denote the complete graph on n vertices. Fix positive integers
p and q such that 1 ≤ q ≤

(
p
2

)
. A (p, q)-coloring of Kn is any coloring of its edges such that

every p vertices span edges of at least q distinct colors. Let f(n, p, q) denote the minimum
number of colors needed to give a (p, q)-coloring of Kn. This is known as the Erdős-Gyárfás
function. Erdős and Shelah [15, 16] originally introduced the function in 1975, but it was
not studied systematically until 1997 when Erdős and Gyárfás [17] looked at the growth
rate of f(n, p, q) as n→∞ for fixed values of p and q.

We will use the standard asymptotic notation in what follows: For two functions, f(n)
and g(n), we write f = O(g) if there exists some constant c and some integer N such that
f(n) ≤ cg(n) for all n ≥ N . We write f = o(g) if f/g → 0 as n→∞. We write f = Ω(g) if
g = O(f) and f = ω(g) if g = o(f). Finally, we write f = Θ(g) if f = O(g) and f = Ω(g).

Erdős and Gyárfás [17] proved that for fixed p and q,

f(n, p, q) = O (na)(1)

where a = p−2
1−q+(p2)

. Additionally, they gave upper and lower bounds on f(n, p, q) for various

small values of p and q. They also showed that for each fixed p ≥ 3, f(n, p, p) = Ω
(
n1/(p−2)

)
and posed the question of whether f(n, p, p − 1) is subpolynomial in n for all p. Mubayi
and Eichorn [14, 24] showed that this is true for p = 4, 5. In 2015, Conlon, Fox, Lee, and
Sudakov [12] showed that it is true in general by giving an explicit (p, p−1)-coloring of Kn

for any p ≥ 3 (the “CFLS” coloring). This shows that the threshold value for q at which
f(n, p, q) first becomes polynomial in n is at q = p.

Since Erdős and Gyárfás’s work, better upper and lower bounds for this function in
terms of n have been found for various cases of small fixed values for (p, q) by Mubayi [25],
Axenovich [2], and Krop [19]. Specifically, Mubayi [25] showed that the

f(n, 4, 4) ≤ n1/2+o(1),
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almost matching the order of the known lower bound. However, the best known general
upper bound when p = q is

f(n, p, p) = O
(
n2/(p−1)

)
,

which comes from Equation 1 [17].

2.2. Research in progress. Recently, Heath and I [11] improved this upper bound in the

case when q = p = 5 by giving an explicit (5, 5)-coloring that uses only n1/3+o(1) colors.

This comes close to matching the order of the lower bound, n1/3.

Theorem 2.1 (Cameron-Heath, [11]). As n→∞,

f(n, 5, 5) ≤ n1/32O(
√
logn log logn).

The construction used to prove Theorem 2.1 uses a modified version of the CFLS color-
ing and pairs it with an “algebraic” coloring, extending many of the ideas behind Mubayi’s
(4, 4)-edge coloring [25]. The algebraic part of our coloring views the vertices of the com-
plete graph as three-dimensional vectors over a finite field, F. The explicit definition of the
color between any two such vectors is a bit technical, but is essentially a map to the base
field

χ : F3 × F3 → F,
giving about n1/3 colors. This construction allows for interesting general arguments about
affine geometry when proving that the coloring is actually (5, 5).

Similarly, I [10] was able to show that some modifications to Mubayi’s (4, 4)-coloring
along with the modified version of the CFLS coloring we used in [11], gives a good (5, 6)-
coloring.

Theorem 2.2 (Cameron, [10]). As n→∞,(
5

6
n− 95

144

)1/2

≤ f(n, 5, 6) ≤ n1/22O(
√
logn log logn).

This again beats the best general upper bound from Equation 1 and provides another
success for the general strategy of using finite field constructions.

2.3. Proposed research.

(1) (p, p)-colorings in general. The method of combining a variation of the CFLS
coloring with a general algebraic construction using vectors from a space of dimen-
sion p− 2 has the potential to show that

n1/(p−2) ≤ f(n, p, p) = n1/(p−2)+o(1)

for p ≥ 6. I have already shown that the variation the CFLS coloring (when
generalized) only leaves p-cliques with exactly p − 1 colors behind that are highly
structured and easily definable. I believe that these remaining “bad” cliques could
be avoided with a general algebraic coloring.
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(2) A better bound for f(n, 5, 7). The (5, 5) and (5, 6)-colorings that I developed in
[10, 11] have left q = 7 as the only remaining value for which a polynomial gap (in
the order) between the known upper and lower bounds exists when p = 5. In this
case we know that there are positive constants c1 and c2 such that

c1n
2/3 ≤ f(n, 5, 7) ≤ c2n3/4.

I would like to tighten this gap.
I have been attempting to extend the methods I have used so far to give an

explicit (5, 7)-coloring using only n2/3+o(1) colors. Several ideas have come close,
but nothing has been successful yet. I believe that if such a construction does even-
tually succeed, then it would shed much more light on how these specific algebraic
constructions might be generalized in a way to give colorings for (p, q) when q ≥ p.

Currently, I know of successful algebraic colorings for (p, q) cases: (3, 3), (4, 4),
(4, 5), (5, 5), (5, 6), and (5, 8). Equation 1 gives a linear upper bound on f(n, 5, 8),
but I have shown that a variation of the algebraic coloring gives a linear upper
bound with a better coefficient. So there is reason to believe that such constructions
might apply to more cases.

(3) The hypergraph version. Let fk(n, p, q) denote the minimum number of colors
needed to color the edges of the complete k-uniform hypergraph on n vertices in
such a way so that every p vertices span at least q colors. To date, little work has
been done on this hypergraph version of the problem. There appear to be only two
papers published on the topic, one by Conlon, Fox, Lee, and Sudakov [13] and one
by Mubayi [26].

The main problem in the area is to determine for fixed p the threshold values for
q at which there are large jumps in the order of the f(n, p, q). For p > k ≥ 3 and
0 < i < k, Conlon, Fox, Lee, and Sudakov [13] showed that there exists a constant
c dependent on k, p, and i for which

fk

(
n, p,

(
p− i
k − i

)
+ 1

)
= Ω

(
log(i−1)(n)c

)
where we define log0(x) = x and logi(x) = log

(
logi−1(x)

)
. They conjecture that

this value of q is such a jump in the order. Is it true that

fk

(
n, p,

(
p− i
k − i

))
=
(

log(i−1) n
)o(1)

?

Mubayi and I have spent some time working on the upper and lower bounds on
the Erdős-Gyárfás function for 3-graphs for small cases of p and q. It seems likely
that algebraic constructions have a place in this area as well.
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Figure 2. Three of the (2→ 1)-graphs with two edges and extremal num-
bers that are cubic in n.

3. Project 2: Extremal problems on directed hypergraphs

3.1. Background. In addition to graphs and hypergraphs, Turán-type problems have
been considered for directed graphs and multigraphs by Brown, Erdős, Harary, and Si-
monovits [4, 5]. Brown and Simonovits [6] studied the more general directed multi-
hypergraphs, directed hypergraphs with r-uniform edges such that the vertices of each
edge are given a linear ordering. The properties of a different, nonuniform definition of
directed hypergraph were studied by Gallo, Longo, Pallottino, and Nguyen [18]. They
defined a directed hyperedge as some subset of vertices with a partition into head vertices
and tail vertices.

Yet another type of directed hypergraph arises as a model used to represent definite
Horn clauses in the study of propositional logic and knowledge representation [1, 28]. This
kind of directed hypergraph has nonuniform edges each with exactly one “head” vertex.
Some combinatorial properties of a limited version of this model were recently studied
by Langlois, Mubayi, Sloan, and Turán [21, 22]. In this uniform version, each edge of a
directed hypergraph has exactly three vertices - one “head” vertex and two “tail” vertices.

They studied the extremal numbers for two specific 2 → 1 directed hypergraphs, the
4-resolvent (R4) and the 3-resolvent (R3) configurations, named after their behavior as
Horn clauses (see Figure 2). In what follows, we extend the use of ex(n, F ) to denote
the maximum number of edges that a (2 → 1)-graph on n vertices can have without
containing a copy of the forbidden (2→ 1)-graph F . Langlois, Mubayi, Sloan, and Turán
[21, 22] determined ex(n,R4) exactly for sufficiently large n and found good upper and
lower bounds on ex(n,R3).

3.2. Research in progress. Up to this point my research has focused primarily on deter-
mining the extremal number of edges for several particular (2→ 1)-graphs. Additionally, I
have worked on generalizing the various ideas of a uniform “directed hypergraph” in terms
of first-order logic. I have shown that some foundational results for hypergraphs extend to
this entire class of structures.

As with digraphs, there are actually two notions of an extremal number for (2 → 1)-
graphs. We call a (2 → 1)-graph oriented if any three distinct vertices span at most one
edge. Given a directed hypergraph F let exo(n, F ) denote the maximum number of edges
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Figure 3. Four of the (2→ 1)-graphs with two edges and extremal num-
bers that are not cubic in n.

that an oriented (2 → 1)-graph on n vertices can have without containing a copy of F .
This differs from the standard extremal number ex(n, F ) studied by Langlois, Mubayi,
Sloan, and Turán [21, 22] only in the additional restriction that the F -free (2→ 1)-graphs
be oriented. This restriction does not always change the extremal number, but sometimes
the difference ex(n, F )− exo(n, F ) can be quite large (cubic in n) depending on F .

For sufficiently large n, I [7, 8] have found the exact extremal numbers, both standard
and oriented, for each (2→ 1)-graph with exactly two edges. The nontrivial cases are shown
in Figure 2 and Figure 3. Of course, the standard extremal number for R4 was already
found by Langlois, Mubayi, Sloan, and Turán [21], but I have found a much shorter proof
for this result and shown that the oriented extremal number is the same [7].

Additionally, I characterized the difference between degenerate (2 → 1)-graphs, those
with extremal numbers that are not cubic in n, and nondegenerate (2→ 1)-graphs, those
with cubic extremal numbers [9]. This result actually applies more generally to all gener-
alized directed hypergraphs defined by the following definition from [9].

Definition Let L = {E}, a language with one r-ary relation symbol E. Let T be an
L-theory that consists of a single sentence of the form

∀x1 · · ·xrE(x1, . . . , xr) =⇒
∧
i 6=j

xi 6= xj ∧
∧
π∈JT

E(xπ(1), . . . , xπ(r))

for some subgroup of the group of permutations on r elements, JT ⊆ Sr. Call such a theory
a generalized directed hypergraph theory and any finite model of T is a generalized directed
hypergraph (GDH).

So for a fixed edge size r, the set of GDHs can be related through a poset depending on
the subgroup of permutations associated with each. At the top of this lattice will always
be the standard r-uniform hypergraph (associated with the group of all permutations on
r elements Sr), and at the bottom is the totally ordered r-uniform hypergraph studied
by Brown and Simonovits [6] (associated with the trivial group). I have shown that their
supersaturation, continuity, and approximation results for this kind of structure [6] extend
to all GDHs [9]. I have also extended many important notions from extremal hypergraph
theory to this general setting including Turán density, blow-ups, blow-up density, edge-
polynomials, and jumps/nonjumps.
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3.3. Proposed research.

(1) Enumeration and stability. The two main areas under the umbrella of extremal
combinatorial questions that I have yet to address for the (2 → 1)-graphs are
enumeration and stability. With respect to a forbidden subgraph F , an enumeration
result asks for the number of different labelled F -free graphs on n vertices. Roughly
speaking, a stability result shows that any F -free graph on n vertices with “almost”
the maximum number of edges will differ from some canonical extremal F -free
structure by “few” edges. These notions are closely related. It was already shown
in [21] that the extremal construction for R4 is stable, but I have yet to find a
corresponding result for R3 despite its similar extremal construction.

A recently developed method in extremal combinatorics, hypergraph contain-
ers [3, 29], has been applied toward getting these kinds of results in a variety of
combinatorial structures with great success. Kühn, Osthus, Townsend, and Zhao
[20] used hypergraph containers to get enumeration results for certain forbidden
digraphs. Terry [30] used hypergraph containers to obtain some general results
about enumeration of any hereditary property (including F -freeness) for general
first-order relational structures.

Currently, Turán and I are discussing the various ways that we could extend the
concept of an “extremal problem” to structures with more than one relation in a
way that is meaningful. We have several ideas, but we are also aware that such
generalizations have been considered by Razborov [27] and others.

(2) Difference between oriented and standard extremal numbers. Gerbner,
Keszegh, Turán, and I have been looking into characterizing the set of forbidden
(2 → 1)-graphs F which give ex(n, F ) − exo(n, F ) = Θ(n3). Interestingly, this
question seems to connect back with the stability question.

(3) Exponents. Another question from extremal graph theory asks the following: “For
which r does there exist a graph F such that ex(n, F ) = Θ(nr)?” This question
can be just as easily asked in the (2 → 1)-graph setting. For the set of 2 → 1
standard extremal exponents, it is easy to see that if r is an exponent for some
undirected graph G, then 1 + r is an exponent for the (2→ 1)-graph, G→, defined
by V (G→) = V (G) ∪ {x} and

E(G→) = {ab→ x : ab ∈ E(G)}.

It is not difficult to show that

ex(n,G→) = n · ex(n− 1, G).

It is also interesting to note that while the extremal number for two undirected
3-edges that intersect in exactly one vertex is linear in n, any 2 → 1 orientation
given to these two edges makes the extremal number quadratic in n.

(4) Other extremal numbers. I also have found upper and lower bounds for various
extremal numbers for some other (2→ 1)-graphs as well as a few from other types
of GDHs including (r → 1)-uniform directed hypergraphs, (1 → 1 → 1)-uniform
directed hypergraphs, and a model where each edge has three vertices with one of



ALEX CAMERON: RESEARCH STATEMENT 8

two cyclic orders: a → b → c → a or a → c → b → a. This last model relates to
research on d-simplex structures by Leader and Tan [23].

(5) Jumping constant conjecture. For hypergraphs, we can define a jump roughly
as a number α ∈ [0, 1) such that any hypergraph with edge density slightly more
than α must contain an arbitrarily large subhypergraph with edge density α + c
for some fixed c. A big area of research is to determine the subset of [0, 1) that are
jumps for r-uniform hypergraphs where r ≥ 3.

This definition can be applied to GDHs in a natural way. Moreover, for a fixed
edge size r, there is a relation between the subgroup lattice of GDHs and the set
of jumps for each. I have shown [9] that jumps always pass up the lattice, but not
always (if ever) back down. That is, if T ′ and T are GDH theories with associated
groups JT ′ ⊆ JT , then the set of jumps for T ′ is a subset of the set of jumps for T .
However, if the order of JT is at least three times the order of JT ′ , then this subset
is necessarily proper. I would like to look further into the case where the order of
JT is twice as much as the order of JT ′ .

4. Other Research Interests

In general, I would be very happy to work on any combinatorial problems. I have spent
some time working on open problems involving list colorings, decision tree complexity
of graph and hypergraph properties, the sensitivity conjecture, forbidden posets, random
threshold hypergraphs, and Turán numbers for various forbidden hypergraphs. I am always
interested in working on a new problem. More broadly, I am interested in learning and
working more in the in areas of graph limits, graph algebras, and finite model theory.
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