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GDH definition

Definition 1 Let L = {E}, a language with one r-ary relation symbol E. Let T be an L-theory
that consists of a single sentence of the form

∀x1 · · ·xrE(x1, . . . , xr) =⇒
∧
i 6=j

xi 6= xj ∧
∧
π∈JT

E(xπ(1), . . . , xπ(r))

for some subgroup of the group of permutations on r elements, JT ⊆ Sr. Call such a theory a
generalized directed hypergraph theory and any finite model of T is a generalized directed hypergraph
(GDH).

Lattice of GDH types when r = 3
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Z3
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Turán density and blowups

Definition 2 Given a family of GDHs F and a positive integer n, let the nth extremal number,
exT (n,F), be defined as the maximum number of edges over all F-free GDHs on n elements,

exT (n,F) := max
F-free Gn

{eT (Gn)}.

The Turán density of F is defined as

πT (F) := lim
n→∞

exT (n,F)
r!
mT

(n
r

) .

Definition 3 Let G be a GDH with VG = {x1, . . . , xn}, and let t = (t1, . . . , tn) be a tuple of
positive integers. Define the t-blowup of G to be the L-structure G(t) where

VG(t) = {x11, . . . , x1t1, . . . , xn1, . . . , xntn}

and
(xi1j1, . . . , xirjr) ∈ EG(t) ⇐⇒ (xi1, . . . , xir) ∈ EG.

Supersaturation

Theorem 1 Let F be a GDH on k elements. Let ε > 0. For sufficiently large n ≥ n0(F, ε), any
GDH G on n elements with density d(G) ≥ πT (F ) + ε will contain at least c

(n
k

)
copies of F for

some constant c = c(F, ε).

Characterization of degenerate forbidden families

Theorem 2 Let F be some family of GDHs, then πT (F) = 0 if and only if some member F ∈ F
is a subGDH of the t-blowup of a single edge for some vector, t = (t1, . . . , tr), of positive integers.
Otherwise, π(F) ≥ mT

rr .

Jumps

Definition 4 Let T be a GDH theory, then α ∈ [0, 1) is a jump for T if there exists a c > 0 such
that for any ε > 0 and any positive integer l, there exists a positive integer n0(α, ε, l) such that

any GDH G on n ≥ n0 elements that has at least (α + ε) r!mT

(n
r

)
edges contains a subGDH on l

elements with at least (α + c) r!mT

(l
r

)
edges.

Theorem 3 The GDH theory T has a jump α if and only if there exists a finite family F of
GDHs such that πT (F) ≤ α and bT (F ) > α for each F ∈ F .

Jumps pass up the lattice

Theorem 4 Let T and T ′ be two GDH theories such that JT ′ ⊆ JT . Then for any family F of
T -graphs there exists a family F ′ of T ′-graphs for which πT ′(F ′) = πT (F). Moreover, if F is a
finite family, then F ′ is also finite.

The converse is false in general. For example, the permutation subgroup for the theory T ′ of (2→ 1)-
uniform directed hypergraphs is a subgroup of the permutation group for the theory T of undirected
3-graphs, S3. The extremal number for the directed hypergraph is R4 = {ab→ c, cd→ e} is

exT ′(n,R4) =
⌊n

3

⌋(⌈2n
3

⌉
2

)
as shown in [2]. Therefore, the Turán density is πT ′(R4) = 4

27. However, it is well-known that no Turán

densities exist for 3-graphs in the interval
(

0, 6
27

)
.

Corollary 1 Let T and T ′ be two GDH theories such that JT ′ ⊆ JT . If α is a jump for T ′, then
it is also a jump for T .

Jumps do not pass down the lattice

Definition 5 Let α ∈ [0, 1). Call α a demonstrated nonjump for a GDH theory T if there exists
an infinite sequence of GDHs, {Gn}, such that bT (Gn) > α for each Gn in the sequence and
for any positive integer l there exists a positive integer n0 such that whenever n ≥ n0 then any
subGDH H ⊆ Gn on l or fewer vertices has blowup density bT (H) ≤ α.

Theorem 5 Let T and T ′ be GDH theories such that JT ′ ⊆ JT . Let α be a demonstrated nonjump

for T . Then
kmT ′
mT

α is a demonstrated nonjump for T ′ for k = 1, . . . , mT
mT ′

.

Constructions of sequences of undirected r-graphs which show that 5r!
2rr is a demonstrated nonjump for

each r ≥ 3 were given in [1]. This gives the following corollary.

Corollary 2 Let T be an r-ary GDH theory for r ≥ 3. Then 5mTk
2rr is a nonjump for T for

k = 1, . . . , r!mT
.

This in turn shows that the set of jumps for a theory T ′ is a proper subset of the set of jumps for T for
any T such that JT ′ ⊆ JT and mT ≥ 3mT ′.

Corollary 3 Let T and T ′ be r-ary GDH theories such that JT ′ ⊆ JT and mT ≥ 3mT ′. Then
there exists an α that is a nonjump for T ′ and a jump for T .

Question

Let T ′ and T be r-ary GDH theories for r ≥ 3 such that JT ′ ⊆ JT and mT = 2mT ′. Does there exists
some α ∈ [0, 1) for which α is a jump for T but not for T ′?

Extremal numbers for (2→ 1)-graphs with exactly two
edges

A (2→ 1)-graph H is degenerate if its vertices can be partitioned into three sets, V (H) = T1∪T2∪K
such that every edge of E(H) is of the form t1t2→ k for some t1 ∈ T1, t2 ∈ T2, and k ∈ K.

There are nine different (2→ 1)-graphs with exactly two edges. The extremal numbers for two of these
- the one with two nonintersecting edges and the one with two completely intersecting edges - are trivial
to find. Of the other seven, four are degenerate and three are nondegenerate.

Extremal numbers for the nondegenerate cases

R4R3 E

• For all n ≥ 6,

ex(n,R3) =
⌊n

2

⌋ ⌈n
2

⌉ n− 2

2
.

Moreover, there is one unique extremal R3-free construction up to isomorphism for each n.

• For all n ≥ 70,

ex(n,R4) =
⌊n

3

⌋(⌈2n
3

⌉
2

)
.

Moreover, in each case there is one unique extremal construction up to isomorphism when n ≡
0, 1 mod 3 and exactly two when n ≡ 2 mod 3.

• For all n,

ex(n,E) =

(
n

3

)
+ 2

and there are exactly two extremal construction up to isomorphism for each n ≥ 4.

Extremal numbers for the degenerate cases

I0 H1 H2 I2

• For each n ≥ 5, ex(n, I0) = n(n− 2).

• For all n ≥ 8,

ex(n,H1) =

(
n + 1

2

)
− 3.

• For all n ≥ 5,

ex(n,H2) =

(
n

2

)
.

• For all n ≥ 4,

ex(n, I1) = n

⌊
n− 1

2

⌋
.

References
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