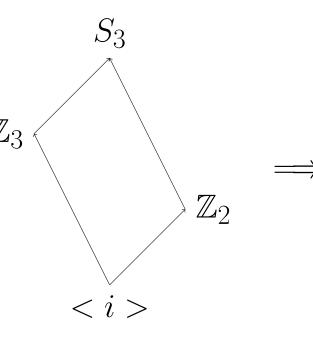
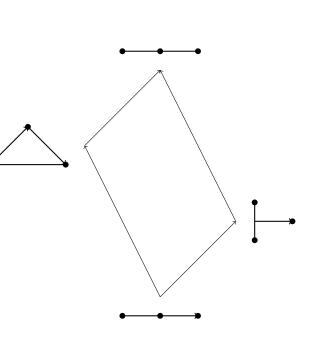
GDH definition

Definition 1 Let $\mathcal{L} = \{E\}$, a language with one r-ary relation symbol E. Let T be an \mathcal{L} -theory **Definition 4** Let T be a GDH theory, then $\alpha \in [0, 1)$ is a jump for T if there exists a c > 0 such that consists of a single sentence of the form that for any $\epsilon > 0$ and any positive integer l, there exists a positive integer $n_0(\alpha, \epsilon, l)$ such that $\forall x_1 \cdots x_r E(x_1, \dots, x_r) \implies \bigwedge_{i \neq j} x_i \neq x_j \land \bigwedge_{\pi \in J_T} E(x_{\pi(1)}, \dots, x_{\pi(r)})$ any GDH G on $n \ge n_0$ elements that has at least $(\alpha + \epsilon) \frac{r!}{m_T} \binom{n}{r}$ edges contains a subGDH on l elements with at least $(\alpha + c) \frac{r!}{m_T} {l \choose r}$ edges. for some subgroup of the group of permutations on r elements, $J_T \subseteq S_r$. Call such a theory a generalized directed hypergraph theory and any finite model of T is a generalized directed hypergraph **Theorem 3** The GDH theory T has a jump α if and only if there exists a finite family \mathcal{F} of GDHs such that $\pi_T(\mathcal{F}) \leq \alpha$ and $b_T(F) > \alpha$ for each $F \in \mathcal{F}$. (GDH).Lattice of GDH types when r = 3Jumps pass up the lattice **Theorem 4** Let T and T' be two GDH theories such that $J_{T'} \subseteq J_T$. Then for any family \mathcal{F} of T-graphs there exists a family \mathcal{F}' of T'-graphs for which $\pi_{T'}(\mathcal{F}') = \pi_T(\mathcal{F})$. Moreover, if \mathcal{F} is a \mathbb{Z}_3 (finite family, then \mathcal{F}' is also finite. The converse is false in general. For example, the permutation subgroup for the theory T' of $(2 \rightarrow 1)$ uniform directed hypergraphs is a subgroup of the permutation group for the theory T of undirected $\langle i \rangle$ 3-graphs, S_3 . The extremal number for the directed hypergraph is $R_4 = \{ab \rightarrow c, cd \rightarrow e\}$ is • • • $ex_{T'}(n, R_4) = \left\lfloor \frac{n}{3} \right\rfloor \left(\begin{bmatrix} \frac{2n}{3} \\ 2 \end{bmatrix} \right)$ Turán density and blowups as shown in [2]. Therefore, the Turán density is $\pi_{T'}(R_4) = \frac{4}{27}$. However, it is well-known that no Turán densities exist for 3-graphs in the interval $\left(0, \frac{6}{27}\right)$ **Definition 2** Given a family of GDHs \mathcal{F} and a positive integer n, let the nth extremal number, **Corollary 1** Let T and T' be two GDH theories such that $J_{T'} \subseteq J_T$. If α is a jump for T', then $ex_T(n, \mathcal{F})$, be defined as the maximum number of edges over all \mathcal{F} -free GDHs on n elements, it is also a jump for T. J -jiee G_n The Turán density of \mathcal{F} is defined as Jumps do not pass down the lattice **Definition 3** Let G be a GDH with $V_G = \{x_1, \ldots, x_n\}$, and let $t = (t_1, \ldots, t_n)$ be a tuple of **Definition 5** Let $\alpha \in [0,1)$. Call α a demonstrated nonjump for a GDH theory T if there exists positive integers. Define the t-blowup of G to be the \mathcal{L} -structure G(t) where an infinite sequence of GDHs, $\{G_n\}$, such that $b_T(G_n) > \alpha$ for each G_n in the sequence and for any positive integer l there exists a positive integer n_0 such that whenever $n \ge n_0$ then any subGDH $H \subseteq G_n$ on l or fewer vertices has blowup density $b_T(H) \leq \alpha$. and **Theorem 5** Let T and T' be GDH theories such that $J_{T'} \subseteq J_T$. Let α be a demonstrated nonjump for T. Then $\frac{km_{T'}}{m_T}\alpha$ is a demonstrated nonjump for T' for $k = 1, \ldots, \frac{m_T}{m_{T'}}$. Constructions of sequences of undirected r-graphs which show that $\frac{5r!}{2r^r}$ is a demonstrated nonjump for each $r \geq 3$ were given in [1]. This gives the following corollary. Supersaturation **Corollary 2** Let T be an r-ary GDH theory for $r \geq 3$. Then $\frac{5m_Tk}{2r^T}$ is a nonjump for T for $k=1,\ldots,rac{r!}{m_T}.$ **Theorem 1** Let F be a GDH on k elements. Let $\epsilon > 0$. For sufficiently large $n \ge n_0(F, \epsilon)$, any This in turn shows that the set of jumps for a theory T' is a proper subset of the set of jumps for T for GDH G on n elements with density $d(G) \geq \pi_T(F) + \epsilon$ will contain at least $c\binom{n}{k}$ copies of F for any T such that $J_{T'} \subseteq J_T$ and $m_T \geq 3m_{T'}$. some constant $c = c(F, \epsilon)$. **Corollary 3** Let T and T' be r-ary GDH theories such that $J_{T'} \subseteq J_T$ and $m_T \geq 3m_{T'}$. Then there exists an α that is a nonjump for T' and a jump for T. Characterization of degenerate forbidden families Question **Theorem 2** Let \mathcal{F} be some family of GDHs, then $\pi_T(\mathcal{F}) = 0$ if and only if some member $F \in \mathcal{F}$





$$ex_T(n, \mathcal{F}) := \max_{\mathcal{F} \text{-free } G_n} \{ e_T(G_n) \}.$$

$$\pi_T(\mathcal{F}) := \lim_{n \to \infty} \frac{ex_T(n, \mathcal{F})}{\frac{r!}{m_T} \binom{n}{r}}.$$

$$V_{G(t)} = \{x_{11}, \dots, x_{1t_1}, \dots, x_{n1}, \dots, x_{nt_n}\}$$

$$(x_{i_1j_1},\ldots,x_{i_rj_r})\in E_{G(t)}\iff (x_{i_1},\ldots,x_{i_r})\in E_G$$

is a subGDH of the t-blowup of a single edge for some vector, $t = (t_1, \ldots, t_r)$, of positive integers. Let T' and T be r-ary GDH theories for $r \geq 3$ such that $J_{T'} \subseteq J_T$ and $m_T = 2m_{T'}$. Does there exists Otherwise, $\pi(\mathcal{F}) \geq \frac{m_T}{r^r}$. some $\alpha \in [0, 1)$ for which α is a jump for T but not for T'?

EXTREMAL PROBLEMS ON GENERALIZED DIRECTED HYPERGRAPHS

Alex Cameron University of Illinois at Chicago

Jumps

A $(2 \rightarrow 1)$ -graph H is degenerate if its vertices can be partitioned into three sets, $V(H) = T_1 \cup T_2 \cup K$ such that every edge of E(H) is of the form $t_1t_2 \to k$ for some $t_1 \in T_1, t_2 \in T_2$, and $k \in K$.

There are nine different $(2 \rightarrow 1)$ -graphs with exactly two edges. The extremal numbers for two of these - the one with two nonintersecting edges and the one with two completely intersecting edges - are trivial to find. Of the other seven, four are degenerate and three are nondegenerate.

Extremal numbers for the nondegenerate cases

• For all n > 6,

Moreover, there is one unique extremal R_3 -free construction up to isomorphism for each n. • For all $n \ge 70$,

Moreover, in each case there is one unique extremal construction up to isomorphism when $n \equiv 1$ 0, 1 mod 3 and exactly two when $n \equiv 2 \mod 3$.

• For all n,

Extremal numbers for the degenerate cases

• For each $n \ge 5$, $ex(n, I_0) = n(n-2)$.

- For all $n \ge 8$,
- For all n > 5.
- For all n > 4

References

- at Chicago, 2010.

Extremal numbers for $(2 \rightarrow 1)$ -graphs with exactly two edges

$$\begin{array}{cccc} & & & & & \\ & & & & \\ R_3 & & R_4 & & E \end{array}$$

$$ex(n, R_3) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil \frac{n-2}{2}$$

$$ex(n, R_4) = \left\lfloor \frac{n}{3} \right\rfloor \begin{pmatrix} \left\lceil \frac{2n}{3} \right\rceil \\ 2 \end{pmatrix}.$$

$$ex(n,E) = \binom{n}{3} + 2$$

and there are exactly two extremal construction up to isomorphism for each $n \geq 4$.

$$\begin{array}{c|c} & & & \\ \hline & & \\ I_0 & H_1 & H_2 & I_2 \end{array}$$

$$ex(n, H_1) = \binom{n+1}{2} - 3$$
$$ex(n, H_2) = \binom{n}{2}.$$

$$\operatorname{ex}(n, I_1) = n \left\lfloor \frac{n-1}{2} \right\rfloor.$$

[1] P. Frankl, Y. Peng, V. Rödl, and J. Talbot. A note on the jumping constant conjecture of Erdős. Journal of Combinatorial Theory, Series B, 97(2):204–216, 2007.

[2] M. Langlois. *Knowledge representation and related problems*. PhD thesis, University of Illinois