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Overview

Part 1: Extremal Problems on Directed Hypergraphs

“Extremal Numbers for Directed Hypergraphs with Two
Edges,” The Electronic Journal of Combinatorics, 25(1),
P1.56 (2018).

“Extremal problems on generalized directed hypergraphs,”
arXiv:1607.04927 (2016).

Part 2: The Erdős-Gyárfás Ramsey Problem Variant for
Graphs

“A (5, 5)-colouring of Kn with few colors” (with Emily Heath),
to appear in Combinatorics, Probability & Computing (2018).

“An explicit edge-coloring of Kn with six colors on every K5,”
arXiv:1704.01156 (2017).
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Part 1

Extremal Problems on Directed Hypergraphs
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The Forbidden Subgraph Problem

Definition

Given a forbidden subgraph F let ex(n,F ) denote the maximum
number of edges that a graph on n vertices can have without
containing F as a subgraph (not necessarily induced).
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The Forbidden Subgraph Problem

For example, the number of edges in a triangle-free graph is at
most n2

4 .

Theorem (Mantel, 1907)

ex(n,K3) =
⌊
n
2

⌋ ⌈
n
2

⌉
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The Forbidden Subgraph Problem

Mantel’s Theorem extends to forbidden complete graphs of any
size.

Theorem (P. Turán, 1941)

ex(n,Kr+1) ≈
(
1− 1

r

)
n2

2 for r ≥ 2.

The forbidden subgraph problem extends to hypergraphs.

Definition

Given a forbidden r -uniform hypergraph F let ex(n,F ) denote the
maximum number of hyperedges that an r -uniform hypergraph on
n vertices can have without containing F as a subgraph (not
necessarily induced).

Alex Cameron Thesis Defense



The Forbidden Subgraph Problem

Definition

The Turán density of a forbidden r -uniform hypergraph F is the
limit of the edge densities of the extremal F -free hypergraphs as
the number of vertices increase,

π(F ) = lim
n→∞

ex(n,F )(n
r

) .

For graphs it is well-known that the chromatic number of a
forbidden graph determines its Turán density (Erdős-Stone
Theorem, 1946).

Determining the Turán density of particular forbidden
r -uniform hypergraphs is difficult for r ≥ 3.

However, it is known that π(F ) = 0 if and only if F is
r -partite (Erdős, 1964).
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Extremal Digraph Problems

In 1969, Brown and Harary established the extremal numbers
for many “small” examples of forbidden digraphs and
determined the extremal numbers for all tournaments and
direct sums of tournaments.

In 1973, Brown, Erdős, and Simonovits determined a general
structure of extremal sequences for every forbidden family of
digraphs analogous to the Turán graphs for simple graphs.

In 2017, Kühn, Osthus, Townsend, and Zhao looked at
forbidden oriented cycles.

A nice survey: ‘Extremal multigraph and digraph problems’ by
Brown and Simonovits (2002).
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Extremal Directed Hypergraph Problems

In 1984, Brown and Simonovits looked at r -uniform directed
hypergraphs where each edge had a linear order on r vertices.

In 1993, the graph theoretic properties of a more general
definition of a nonuniform directed hypergraph were studied
by Gallo, Longo, Pallottino, and Nguyen. They defined a
directed hyperedge as some subset of vertices with a partition
into head vertices and tail vertices.

In 2009, Langlois, Mubayi, Sloan, and Turán studied extremal
properties of certain small configurations in a directed
hypergraph model. This model can be thought of as a 2→ 1
directed hypergraph where each edge has three vertices, two
of which are “tails” and the third is a “head.”
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2→ 1 Directed Hypergraphs

Definition

A (2→ 1)-uniform directed hypergraph is defined as D = (V ,E )
where V is some finite vertex set and the edge set E is a family of
pointed 3-subsets of V . That is, each edge has three elements, one
of which is distinguished (the “head” vertex) from the others (the
“tail” vertices). We say that a (2→ 1)-graph is oriented if it has
at most one edge on any three vertices.
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2→ 1 Directed Hypergraphs

Definition

For a given forbidden 2→ 1 directed hypergraph F let ex(n,F )
denote the maximum number of edges that an F -free
(2→ 1)-graph on n vertices can have. Similarly, let exo(n,F )
denote the maximum number of edges that an oriented F -free
(2→ 1)-graph on n vertices can have.

Definition

The Turán density of a forbidden (2→ 1)-graph F is the limit of
the edge densities of the extremal F -free hypergraphs as the
number of vertices increase,

π(F ) = lim
n→∞

ex(n,F )

3
(n
3

) .
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ex(n,R4)

Theorem (Langlois, Mubayi, Sloan, and Turán, 2010)

For sufficiently large n,

ex(n,R4) =
⌊n

3

⌋(⌈2n
3

⌉
2

)
where V (R4) = {a, b, c , d , e} and E (R4) = {ab → c , cd → e}.

Alex Cameron Thesis Defense



ex(n,R4)

Theorem (C. (alternate proof), 2018)

For all n ≥ 29,

exo(n,R4) =
⌊n

3

⌋(⌈2n
3

⌉
2

)
and for all n ≥ 56,

ex(n,R4) =
⌊n

3

⌋(⌈2n
3

⌉
2

)
.

Moreover, in each case there is one unique extremal construction
up to isomorphism when n ≡ 0, 1 mod 3 and exactly two when
n ≡ 2 mod 3.
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ex(n,R3)

Theorem (Langlois, Mubayi, Sloan, and Turán, 2009)

Let R3 denote the (2→ 1)-graph on vertex set {a, b, c, d} with
edge set {ab → c , bc → d}, then π(R3) = 1

4 .
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ex(n,R3)

Theorem (C., 2018)

For all n ≥ 6,

ex(n,R3) = exo(n,R3) =
⌊n

2

⌋ ⌈n
2

⌉ n − 2

2
.

Moreover, there is one unique extremal R3-free construction up to
isomorphism for each n.
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7 Types of (Nontrivial) Intersection

Alex Cameron Thesis Defense



The Escher Graph

Theorem (C., 2018)

For all n,

exo(n,E ) =

(
n

3

)
and there is exactly one extremal construction up to isomorphism.
For all n,

ex(n,E ) =

(
n

3

)
+ 2

and there are exactly two extremal construction up to isomorphism
for each n ≥ 4.
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First Construction

The first construction can be formed from the ordered construction
in the oriented case by adding edges {1, 3} → 2 and {2, 3} → 1.

→ → · · · →

1

2

3
4 n
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Second Construction

The second construction can be formed from the ordered
construction in the oriented case by removing the edge {2, 3} → 4
and adding edges {1, 3} → 2, {1, 4} → 2 and {1, 4} → 3.

→ → · · · →1

2

3

4

5 n
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The Degenerate Cases

Theorem (C., 2018)

For each n ≥ 5,
ex(n, I0) = n(n − 2)

and for each n ≥ 6, there are exactly (n − 1)n different labeled
I0-free graphs that attain this maximum number of edges.
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The Degenerate Cases

Theorem (C., 2018)

For all n ≥ 9,

exo(n, I0) =


n(n − 3) + n

3 n ≡ 0 mod 3

n(n − 3) + n−4
3 n ≡ 1 mod 3

n(n − 3) + n−5
3 n ≡ 2 mod 3

with exactly one extremal example up to isomorphism when 3|n,
exactly 18 non-isomorphic extremal constructions when

n ≡ 1 mod 3,

and exactly 32 constructions when

n ≡ 2 mod 3.
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The Degenerate Cases

Theorem (C., 2018)

For all n ≥ 4,

ex(n, I1) = exo(n, I1) = n

⌊
n − 1

2

⌋
and there are (

(n − 1)!

2b
n−1
2 c ⌊n−1

2

⌋
!

)n

labeled graphs that attain this maximum in the standard case.
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The Degenerate Cases

Theorem (C., 2018)

For all n ≥ 6,

exo(n,H1) =
⌊n

2

⌋
(n − 2).

Theorem (C., 2018)

For all n ≥ 8,

ex(n,H1) =

(
n + 1

2

)
− 3.

Moreover, there is one unique extremal construction up to
isomorphism for each n.

Alex Cameron Thesis Defense



The Degenerate Cases

Theorem (C., 2018)

For all n ≥ 5,

ex(n,H2) = exo(n,H2) =

(
n

2

)
.

Moreover, there are (n − 2)(n2) different labeled H2-free graphs
attaining this extremal number when in the standard version of the
problem.
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GDH definition

Definition

Let L = {E}, a language with one r -ary relation symbol E . Let T
be an L-theory that consists of a single sentence of the form

∀x1 · · · xrE (x1, . . . , xr ) =⇒
∧
i 6=j

xi 6= xj ∧
∧
π∈JT

E (xπ(1), . . . , xπ(r))

for some subgroup of the group of permutations on r elements,
JT ⊆ Sr . Call such a theory a generalized directed hypergraph
theory and any finite model of T is a generalized directed
hypergraph (GDH).
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Lattice of GDH types when r = 3

S3

Z3

Z2

< i >

=⇒
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Turán density

Definition

Given a family of GDHs F and a positive integer n, let the nth
extremal number, exT (n,F), be defined as the maximum number
of edges over all F-free GDHs on n elements,

exT (n,F) := max
F-free Gn

{eT (Gn)}.

The Turán density of F is defined as

πT (F) := lim
n→∞

exT (n,F)
r !
mT

(n
r

) .
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Characterization of degenerate forbidden families

Definition

Let G be a GDH with VG = {x1, . . . , xn}, and let t = (t1, . . . , tn)
be a tuple of positive integers. Define the t-blowup of G to be the
L-structure G (t) where

VG(t) = {x11, . . . , x1t1 , . . . , xn1, . . . , xntn}

and
(xi1j1 , . . . , xir jr ) ∈ EG(t) ⇐⇒ (xi1 , . . . , xir ) ∈ EG .

Theorem (C., 2016)

Let F be some family of GDHs, then πT (F) = 0 if and only if
some member F ∈ F is a subGDH of the t-blowup of a single edge
for some vector, t = (t1, . . . , tr ), of positive integers. Otherwise,
π(F) ≥ mT

r r .
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Open Questions

What are the extremal numbers for tournaments? Conjecture:

ex(n,TT4) = n

(
n − 1

2

)2

.

What are the exact extremal numbers for (r → 1)-graphs with
exactly two edges?

Characterization of the difference between the standard and
oriented extremal numbers.

Extremal numbers of small cases for other directed
hypergraph models .
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Part 2

The Erdős-Gyárfás Ramsey Problem Variant for Graphs
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Classical Ramsey Theory

Color the edges of a complete graph on n vertices red and
blue in any way.

Given two integers s, t ≥ 2, what is the minimum number of
vertices N for which any such coloring of the edges of KN

must yield a red Ks or a blue Kt .

We say that N = R(s, t), the Ramsey number for s, t.
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Classical Ramsey Theory

This question generalizes to more than 2 colors. Let
R(s1, . . . , sk) denote the minimum number of vertices N for
which a coloring of the edges of KN with k colors results in
either an s1-clique in the first color, or an s2-clique in the
second color, etc.

Diagonal case: Let Rk(s) denote the minimum number of
vertices at which any edge coloring with k colors of the
complete graph is forced to contain a monochromatic s-clique.
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Definition

Definition (Erdős and Shelah; 1975)

A (p, q)-coloring of a graph is coloring of the edges such that every
copy of Kp contains at least q distinct colors. Let f (n, p, q) denote
the minimum number of colors needed to (p, q)-color of the
complete graph on n vertices, Kn.

1 ≤ q ≤
(p
2

)
.

f (n, p, 1) = 1.

f
(
n, p,

(p
2

))
=
(n
2

)
for p ≥ 4.

f (n, 3, 3) ≈ n.
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Background

Theorem (Erdős and Gyárfás; 1997)

The Local Lemma gives a general upper bound:

f (n, p, q) ≤ cn

p−2

(p2)−q+1 .

Theorem (Erdős and Gyárfás; 1997)

Fix p and let q =
(p
2

)
− p + 3. Then f (n, p, q) = Θ(n) and

f (n, p, q − 1) ≤ cn1−
1

p−1 .

Theorem (Erdős and Gyárfás; 1997)

Fix p and let q =
(p
2

)
− bpc+ 2. Then f (n, p, q) = Θ(n2) and

f (n, p, q − 1) ≤ cn2−
4
p .
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Background

Erdős and Gyárfás gave a simple induction argument which
demonstrates that

n
1

p−2 − 1 ≤ f (n, p, p),

the smallest value of q for which they could find a polynomial
lower bound.They also considered several cases for small p:

5(n−1)
6 ≤ f (n, 4, 5) ≤ n.

n1/2 − 1 ≤ f (n, 4, 4) ≤ cn2/3 - one of the “most interesting”
cases.

f (n, 4, 3) ≤ cn1/2 - the “most annoying” case since unsure if
it is even polynomial at all.

cn ≤ f (n, 5, 9) ≤ cn3/2 - the other “most interesting” case to
see whether this is linear or not.
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(5, 9)-coloring

Theorem

11

4
n − 23

4
≤ f (n, 5, 9) ≤ 2n

1+ c√
log n

Upper bound: Axenovich; 2000.

Lower bound: Krop; 2008.
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(p, p − 1)-coloring

Theorem (Mubayi; 1998)

f (n, 4, 3) ≤ e
√
c log n(1+o(1)).

Theorem (Conlon, Fox, Lee, and Sudakov; 2015)

f (n, p, p − 1) ≤ 216p(log n)
1−1/(p−2) log log n.

This shows that q = p is the threshold at which f (n, p, q) becomes
polynomial in n.
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(4, 4)-coloring

Theorem (Mubayi; 2004)

f (n, 4, 4) ≤ n1/2ec
√
log n.

This shows that n1/2 ≤ f (n, 4, 4) ≤ n1/2+o(1).

Uses the product of two explicit colorings:

the construction showing that f (n, 4, 3) is subpolynomial, and
an algebraic coloring which associates each vertex with a
vector in F2

q and uses a symmetric map F2
q × F2

q → Fq to color
the edges.
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(5, 5)-coloring

Theorem (C. and Heath; 2017)

f (n, 5, 5) ≤ n1/32c
√
log n log log n.

This shows that n1/3 ≤ f (n, 5, 5) ≤ n1/3+o(1).

Uses the product of two explicit colorings:

the construction by Conlon, Fox, Lee, and Sudakov (CFLS)
using no(1) colors, and
an algebraic coloring which associates each vertex with a
vector in F3

q and uses a symmetric map F3
q × F3

q → Fq to color
the edges.
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Problem Configurations

Three configurations not avoided by the modified CFLS coloring.
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Modified Inner Product (MIP) Coloring

Let q be some odd prime power, and let F*
q denote the nonzero

elements of the finite field with q elements. The vertices of our
graph will be the three-dimensional vectors over this set,

V =
(
F*
q

)3
.

The explicit definition of the coloring is a bit technical, but it is
essentially the inner product of the the two vectors with several
modifications to take care of certain cases.
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Monochromatic Neighborhoods

Given a vertex a ∈
(
F*
q

)3
and a color α ∈ Fq, the monochromatic

α-neighborhood of a is contained within an affine plane in F3
q.

Fq

Fq

Fq

a

Alex Cameron Thesis Defense



Intersection of Monochromatic Neighborhoods

“Most” of the time the intersection of two monochromatic
neighborhoods defines a subset of an affine line.

Fq

Fq

Fq
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(5, 6)-coloring

Theorem (C., 2017)

As n→∞,(
5

6
n − 95

144

)1/2

≤ f (n, 5, 6) ≤ n1/22O(
√
log n log log n).

This shows that n1/2 ≤ f (n, 5, 6) ≤ n1/2+o(1).

Combines an adjusted version of the algebraic part of Mubayi’s
(4, 4)-coloring with the modified version of the CFLS coloring.
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Open Problems

Is f (n, p, p) ≤ n1/(p−2)+o(1) in general?

Hypergraph version

Tighten other small cases: cn2/3 ≤ f (n, 5, 7) ≤ cn3/4
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