Extremal Problems on Directed Hypergraphs and the Erdős-Gyárfás Ramsey Problem Variant for Graphs

Alex Cameron
University of Illinois at Chicago

April 26, 2018

Part 1: Extremal Problems on Directed Hypergraphs

- "Extremal Numbers for Directed Hypergraphs with Two Edges," The Electronic Journal of Combinatorics, 25(1), P1.56 (2018).
- "Extremal problems on generalized directed hypergraphs," arXiv:1607.04927 (2016).

Part 2: The Erdős-Gyárfás Ramsey Problem Variant for

 Graphs- "A $(5,5)$-colouring of K_{n} with few colors" (with Emily Heath), to appear in Combinatorics, Probability \& Computing (2018).
- "An explicit edge-coloring of K_{n} with six colors on every K_{5}," arXiv:1704.01156 (2017).

Extremal Problems on Directed Hypergraphs

Definition

Given a forbidden subgraph F let ex (n, F) denote the maximum number of edges that a graph on n vertices can have without containing F as a subgraph (not necessarily induced).

The Forbidden Subgraph Problem
For example, the number of edges in a triangle-free graph is at most $\frac{n^{2}}{4}$.

Theorem (Mantel, 1907)
 $e x\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$

The Forbidden Subgraph Problem

Mantel's Theorem extends to forbidden complete graphs of any size.

Theorem (P. Turán, 1941)

$e x\left(n, K_{r+1}\right) \approx\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}$ for $r \geq 2$.
The forbidden subgraph problem extends to hypergraphs.

Definition

Given a forbidden r-uniform hypergraph F let ex (n, F) denote the maximum number of hyperedges that an r-uniform hypergraph on n vertices can have without containing F as a subgraph (not necessarily induced).

The Forbidden Subgraph Problem

Definition

The Turán density of a forbidden r-uniform hypergraph F is the limit of the edge densities of the extremal F-free hypergraphs as the number of vertices increase,

$$
\pi(F)=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{r}}
$$

- For graphs it is well-known that the chromatic number of a forbidden graph determines its Turán density (Erdős-Stone Theorem, 1946).
- Determining the Turán density of particular forbidden r-uniform hypergraphs is difficult for $r \geq 3$.
- However, it is known that $\pi(F)=0$ if and only if F is r-partite (Erdős, 1964).

Extremal Digraph Problems

- In 1969, Brown and Harary established the extremal numbers for many "small" examples of forbidden digraphs and determined the extremal numbers for all tournaments and direct sums of tournaments.
- In 1973, Brown, Erdős, and Simonovits determined a general structure of extremal sequences for every forbidden family of digraphs analogous to the Turán graphs for simple graphs.
- In 2017, Kühn, Osthus, Townsend, and Zhao looked at forbidden oriented cycles.
- A nice survey: 'Extremal multigraph and digraph problems' by Brown and Simonovits (2002).

Extremal Directed Hypergraph Problems

- In 1984, Brown and Simonovits looked at r-uniform directed hypergraphs where each edge had a linear order on r vertices.
- In 1993, the graph theoretic properties of a more general definition of a nonuniform directed hypergraph were studied by Gallo, Longo, Pallottino, and Nguyen. They defined a directed hyperedge as some subset of vertices with a partition into head vertices and tail vertices.
- In 2009, Langlois, Mubayi, Sloan, and Turán studied extremal properties of certain small configurations in a directed hypergraph model. This model can be thought of as a $2 \rightarrow 1$ directed hypergraph where each edge has three vertices, two of which are "tails" and the third is a "head."

$2 \rightarrow 1$ Directed Hypergraphs

Definition

A $(2 \rightarrow 1)$-uniform directed hypergraph is defined as $D=(V, E)$ where V is some finite vertex set and the edge set E is a family of pointed 3 -subsets of V. That is, each edge has three elements, one of which is distinguished (the "head" vertex) from the others (the "tail" vertices). We say that a $(2 \rightarrow 1)$-graph is oriented if it has at most one edge on any three vertices.

$2 \rightarrow 1$ Directed Hypergraphs

Definition

For a given forbidden $2 \rightarrow 1$ directed hypergraph F let ex (n, F) denote the maximum number of edges that an F-free $(2 \rightarrow 1)$-graph on n vertices can have. Similarly, let ex ${ }_{o}(n, F)$ denote the maximum number of edges that an oriented F-free ($2 \rightarrow 1$)-graph on n vertices can have.

Definition

The Turán density of a forbidden $(2 \rightarrow 1)$-graph F is the limit of the edge densities of the extremal F-free hypergraphs as the number of vertices increase,

$$
\pi(F)=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, F)}{3\binom{n}{3}}
$$

$\operatorname{ex}\left(n, R_{4}\right)$

Theorem (Langlois, Mubayi, Sloan, and Turán, 2010)

For sufficiently large n,

$$
\operatorname{ex}\left(n, R_{4}\right)=\left\lfloor\frac{n}{3}\right\rfloor\binom{\left\lceil\frac{2 n}{3}\right\rceil}{ 2}
$$

where $V\left(R_{4}\right)=\{a, b, c, d, e\}$ and $E\left(R_{4}\right)=\{a b \rightarrow c, c d \rightarrow e\}$.

$\operatorname{ex}\left(n, R_{4}\right)$

Theorem (C. (alternate proof), 2018)

For all $n \geq 29$,

$$
e x_{o}\left(n, R_{4}\right)=\left\lfloor\frac{n}{3}\right\rfloor\binom{\left\lceil\frac{2 n}{3}\right\rceil}{ 2}
$$

and for all $n \geq 56$,

$$
e x\left(n, R_{4}\right)=\left\lfloor\frac{n}{3}\right\rfloor\binom{\left\lceil\frac{2 n}{3}\right\rceil}{ 2}
$$

Moreover, in each case there is one unique extremal construction up to isomorphism when $n \equiv 0,1 \bmod 3$ and exactly two when $n \equiv 2 \bmod 3$.

$\operatorname{ex}\left(n, R_{3}\right)$

Theorem (Langlois, Mubayi, Sloan, and Turán, 2009)

Let R_{3} denote the $(2 \rightarrow 1)$-graph on vertex set $\{a, b, c, d\}$ with edge set $\{a b \rightarrow c, b c \rightarrow d\}$, then $\pi\left(R_{3}\right)=\frac{1}{4}$.

$\operatorname{ex}\left(n, R_{3}\right)$

Theorem (C., 2018)
For all $n \geq 6$,

$$
e x\left(n, R_{3}\right)=e x_{0}\left(n, R_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil \frac{n-2}{2} .
$$

Moreover, there is one unique extremal R_{3}-free construction up to isomorphism for each n.

7 Types of (Nontrivial) Intersection

The Escher Graph

Theorem (C., 2018)

For all n,

$$
e x_{o}(n, E)=\binom{n}{3}
$$

and there is exactly one extremal construction up to isomorphism. For all n,

$$
e x(n, E)=\binom{n}{3}+2
$$

and there are exactly two extremal construction up to isomorphism for each $n \geq 4$.

First Construction

The first construction can be formed from the ordered construction in the oriented case by adding edges $\{1,3\} \rightarrow 2$ and $\{2,3\} \rightarrow 1$.

Second Construction

The second construction can be formed from the ordered construction in the oriented case by removing the edge $\{2,3\} \rightarrow 4$ and adding edges $\{1,3\} \rightarrow 2,\{1,4\} \rightarrow 2$ and $\{1,4\} \rightarrow 3$.

The Degenerate Cases

Theorem (C., 2018)

For each $n \geq 5$,

$$
e x\left(n, I_{0}\right)=n(n-2)
$$

and for each $n \geq 6$, there are exactly $(n-1)^{n}$ different labeled I_{0}-free graphs that attain this maximum number of edges.

The Degenerate Cases

Theorem (C., 2018)

For all $n \geq 9$,

$$
e x_{o}\left(n, I_{0}\right)= \begin{cases}n(n-3)+\frac{n}{3} & n \equiv 0 \bmod 3 \\ n(n-3)+\frac{n-4}{3} & n \equiv 1 \bmod 3 \\ n(n-3)+\frac{n-5}{3} & n \equiv 2 \bmod 3\end{cases}
$$

with exactly one extremal example up to isomorphism when $3 \mid n$, exactly 18 non-isomorphic extremal constructions when

$$
n \equiv 1 \bmod 3
$$

and exactly 32 constructions when

$$
n \equiv 2 \bmod 3
$$

The Degenerate Cases

Theorem (C., 2018)

For all $n \geq 4$,

$$
e x\left(n, l_{1}\right)=e x_{o}\left(n, l_{1}\right)=n\left\lfloor\frac{n-1}{2}\right\rfloor
$$

and there are

$$
\left(\frac{(n-1)!}{2\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor!}\right)^{n}
$$

labeled graphs that attain this maximum in the standard case.

The Degenerate Cases

Theorem (C., 2018)
For all $n \geq 6$,

$$
e x_{o}\left(n, H_{1}\right)=\left\lfloor\frac{n}{2}\right\rfloor(n-2) .
$$

Theorem (C., 2018)
For all $n \geq 8$,

$$
e x\left(n, H_{1}\right)=\binom{n+1}{2}-3
$$

Moreover, there is one unique extremal construction up to isomorphism for each n.

The Degenerate Cases

Theorem (C., 2018)

For all $n \geq 5$,

$$
e x\left(n, H_{2}\right)=e x_{o}\left(n, H_{2}\right)=\binom{n}{2} .
$$

Moreover, there are $(n-2)\binom{n}{2}$ different labeled H_{2}-free graphs attaining this extremal number when in the standard version of the problem.

GDH definition

Definition

Let $\mathcal{L}=\{E\}$, a language with one r-ary relation symbol E. Let T be an \mathcal{L}-theory that consists of a single sentence of the form

$$
\forall x_{1} \cdots x_{r} E\left(x_{1}, \ldots, x_{r}\right) \Longrightarrow \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{\pi \in J_{T}} E\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)
$$

for some subgroup of the group of permutations on r elements, $J_{T} \subseteq S_{r}$. Call such a theory a generalized directed hypergraph theory and any finite model of T is a generalized directed hypergraph (GDH).

Lattice of GDH types when $r=3$

Definition

Given a family of GDHs \mathcal{F} and a positive integer n, let the nth extremal number, $\operatorname{ex}_{T}(n, \mathcal{F})$, be defined as the maximum number of edges over all \mathcal{F}-free GDHs on n elements,

$$
\operatorname{ex}_{T}(n, \mathcal{F}):=\max _{\mathcal{F} \text {-free } G_{n}}\left\{e_{T}\left(G_{n}\right)\right\}
$$

The Turán density of \mathcal{F} is defined as

$$
\pi_{T}(\mathcal{F}):=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}_{T}(n, \mathcal{F})}{\frac{r!}{m_{T}}\binom{n}{r}}
$$

Characterization of degenerate forbidden families

Definition

Let G be a GDH with $V_{G}=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $t=\left(t_{1}, \ldots, t_{n}\right)$ be a tuple of positive integers. Define the t-blowup of G to be the \mathcal{L}-structure $G(t)$ where

$$
V_{G(t)}=\left\{x_{11}, \ldots, x_{1 t_{1}}, \ldots, x_{n 1}, \ldots, x_{n t_{n}}\right\}
$$

and

$$
\left(x_{i_{1} j_{1}}, \ldots, x_{i_{r} j_{r}}\right) \in E_{G(t)} \Longleftrightarrow\left(x_{i_{1}}, \ldots, x_{i_{r}}\right) \in E_{G} .
$$

Theorem (C., 2016)

Let \mathcal{F} be some family of GDHs, then $\pi_{T}(\mathcal{F})=0$ if and only if some member $F \in \mathcal{F}$ is a subGDH of the t-blowup of a single edge for some vector, $t=\left(t_{1}, \ldots, t_{r}\right)$, of positive integers. Otherwise, $\pi(\mathcal{F}) \geq \frac{m_{T}}{r^{r}}$.

Open Questions

- What are the extremal numbers for tournaments? Conjecture:

$$
\operatorname{ex}\left(n, T T_{4}\right)=n\left(\frac{n-1}{2}\right)^{2}
$$

- What are the exact extremal numbers for $(r \rightarrow 1)$-graphs with exactly two edges?
- Characterization of the difference between the standard and oriented extremal numbers.
- Extremal numbers of small cases for other directed hypergraph models.

Part 2

The Erdős-Gyárfás Ramsey Problem Variant for Graphs

Classical Ramsey Theory

- Color the edges of a complete graph on n vertices red and blue in any way.
- Given two integers $s, t \geq 2$, what is the minimum number of vertices N for which any such coloring of the edges of K_{N} must yield a red K_{s} or a blue K_{t}.
- We say that $N=R(s, t)$, the Ramsey number for s, t.

Classical Ramsey Theory

- This question generalizes to more than 2 colors. Let $R\left(s_{1}, \ldots, s_{k}\right)$ denote the minimum number of vertices N for which a coloring of the edges of K_{N} with k colors results in either an s_{1}-clique in the first color, or an s_{2}-clique in the second color, etc.
- Diagonal case: Let $R_{k}(s)$ denote the minimum number of vertices at which any edge coloring with k colors of the complete graph is forced to contain a monochromatic s-clique.

Definition

Definition (Erdős and Shelah; 1975)

A (p, q)-coloring of a graph is coloring of the edges such that every copy of K_{p} contains at least q distinct colors. Let $f(n, p, q)$ denote the minimum number of colors needed to (p, q)-color of the complete graph on n vertices, K_{n}.

- $1 \leq q \leq\binom{ p}{2}$.
- $f(n, p, 1)=1$.
- $f\left(n, p,\binom{p}{2}\right)=\binom{n}{2}$ for $p \geq 4$.
- $f(n, 3,3) \approx n$.

Background

Theorem (Erdős and Gyárfás; 1997)
The Local Lemma gives a general upper bound:

$$
f(n, p, q) \leq c n^{\frac{p-2}{\binom{p}{2}-q+1}}
$$

Theorem (Erdős and Gyárfás; 1997)
Fix p and let $q=\binom{p}{2}-p+3$. Then $f(n, p, q)=\Theta(n)$ and $f(n, p, q-1) \leq c n^{1-\frac{1}{p-1}}$.

Theorem (Erdős and Gyárfás; 1997)

Fix p and let $q=\binom{p}{2}-\lfloor p\rfloor+2$. Then $f(n, p, q)=\Theta\left(n^{2}\right)$ and $f(n, p, q-1) \leq c n^{2-\frac{4}{p}}$.

Background

Erdős and Gyárfás gave a simple induction argument which demonstrates that

$$
n^{\frac{1}{p-2}}-1 \leq f(n, p, p)
$$

the smallest value of q for which they could find a polynomial lower bound. They also considered several cases for small p :

- $\frac{5(n-1)}{6} \leq f(n, 4,5) \leq n$.
- $n^{1 / 2}-1 \leq f(n, 4,4) \leq c n^{2 / 3}$ - one of the "most interesting" cases.
- $f(n, 4,3) \leq c n^{1 / 2}$ - the "most annoying" case since unsure if it is even polynomial at all.
- $c n \leq f(n, 5,9) \leq c n^{3 / 2}$ - the other "most interesting" case to see whether this is linear or not.

(5, 9)-coloring

Theorem

$$
\frac{11}{4} n-\frac{23}{4} \leq f(n, 5,9) \leq 2 n^{1+\frac{c}{\sqrt{\log n}}}
$$

- Upper bound: Axenovich; 2000.
- Lower bound: Krop; 2008.

($p, p-1$)-coloring

Theorem (Mubayi; 1998)

$$
f(n, 4,3) \leq e^{\sqrt{c \log n}(1+o(1))}
$$

Theorem (Conlon, Fox, Lee, and Sudakov; 2015)

$$
f(n, p, p-1) \leq 2^{16 p(\log n)^{1-1 /(p-2)} \log \log n} .
$$

This shows that $q=p$ is the threshold at which $f(n, p, q)$ becomes polynomial in n.

(4, 4)-coloring

Theorem (Mubayi; 2004)

$$
f(n, 4,4) \leq n^{1 / 2} e^{c \sqrt{\log n}}
$$

- This shows that $n^{1 / 2} \leq f(n, 4,4) \leq n^{1 / 2+o(1)}$.
- Uses the product of two explicit colorings:
- the construction showing that $f(n, 4,3)$ is subpolynomial, and
- an algebraic coloring which associates each vertex with a vector in \mathbb{F}_{q}^{2} and uses a symmetric map $\mathbb{F}_{q}^{2} \times \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}$ to color the edges.

(5, 5)-coloring

Theorem (C. and Heath; 2017)

$$
f(n, 5,5) \leq n^{1 / 3} 2^{c \sqrt{\log n} \log \log n}
$$

- This shows that $n^{1 / 3} \leq f(n, 5,5) \leq n^{1 / 3+o(1)}$.
- Uses the product of two explicit colorings:
- the construction by Conlon, Fox, Lee, and Sudakov (CFLS) using $n^{o(1)}$ colors, and
- an algebraic coloring which associates each vertex with a vector in \mathbb{F}_{q}^{3} and uses a symmetric map $\mathbb{F}_{q}^{3} \times \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$ to color the edges.

Problem Configurations

Three configurations not avoided by the modified CFLS coloring.

Modified Inner Product (MIP) Coloring

Let q be some odd prime power, and let \mathbb{F}_{q}^{*} denote the nonzero elements of the finite field with q elements. The vertices of our graph will be the three-dimensional vectors over this set,

$$
V=\left(\mathbb{F}_{q}^{*}\right)^{3}
$$

The explicit definition of the coloring is a bit technical, but it is essentially the inner product of the the two vectors with several modifications to take care of certain cases.

Monochromatic Neighborhoods

Given a vertex $a \in\left(\mathbb{F}_{q}^{*}\right)^{3}$ and a color $\alpha \in \mathbb{F}_{q}$, the monochromatic α-neighborhood of a is contained within an affine plane in \mathbb{F}_{q}^{3}.

Intersection of Monochromatic Neighborhoods

"Most" of the time the intersection of two monochromatic neighborhoods defines a subset of an affine line.

(5, 6)-coloring

Theorem (C., 2017)

As $n \rightarrow \infty$,

$$
\left(\frac{5}{6} n-\frac{95}{144}\right)^{1 / 2} \leq f(n, 5,6) \leq n^{1 / 2} 2^{O}(\sqrt{\log n} \log \log n)
$$

- This shows that $n^{1 / 2} \leq f(n, 5,6) \leq n^{1 / 2+o(1)}$.
- Combines an adjusted version of the algebraic part of Mubayi's $(4,4)$-coloring with the modified version of the CFLS coloring.

Open Problems

- Is $f(n, p, p) \leq n^{1 /(p-2)+o(1)}$ in general?
- Hypergraph version
- Tighten other small cases: $c n^{2 / 3} \leq f(n, 5,7) \leq c n^{3 / 4}$

