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Background: Let Kn denote the complete graph on n vertices. Define a (p, q)-coloring of a graph
to be any edge-coloring such that every p-clique contains edges of at least q different colors. Let
f(n, p, q) denote the minimal number of colors needed to (p, q)-color Kn.

In 1981, Paul Erdős originally proposed the problem of determining the values of f(n, p, q) [1].
Of course, when q = 2 the problem is equivalent to the classical Ramsey problem for graphs and is
therefore very difficult. However, it is far less difficult to see that f(n, 3, 3) is equal to n for odd n
and n− 1 for even n since a (3, 3)-coloring is equivalent to a proper edge-coloring.

In 1997, Erdős and András Gyárfás used the Local Lemma to give a general upper bound [2]:

f(n, p, q) = O

(
n

p−2

1−q+(p
2)

)
.

They also determined that the smallest q for which f(n, p, q) is linear in n (for a fixed p) is

q =

(
p

2

)
− p + 3,

and the smallest q for which f(n, p, q) is quadratic in n is

q =

(
p

2

)
−
⌊p

2

⌋
+ 2

for all p ≥ 4.
Tighter bounds for most cases with small p and q were left open although they did find that

5(n− 1)

6
≤ f(n, 4, 5) ≤ n.

Erdős and Gyárfás also made special mention of three particular cases. They called the prob-
lem of determining f(n, 4, 3) “annoying” and claimed that f(n, 4, 4) and f(n, 5, 9) are the “most
interesting” of the small cases.

In 1998, Dhruv Mubayi constructed an (4, 3)-coloring of Kn that uses O
(
e
√
logn

)
colors [3]. This

improves the above probabilistic upper bound though it is still unknown how close to the actual
order of magnitude it is. He called this construction the “Symmetric Subset Ranking coloring
(SSR).” The actual definition is somewhat involved, but the gist is that each vertex is associated
with a t-subset of [m] for some fixed integer m, the subsets of each t-set are then given some linear
ordering, and the color of an edge between two vertices is based on properties of the symmetric
difference of the corresponding t-sets as well as the ranks of their intersection.

In 2004, Mubayi gave an explicit edge-coloring that shows that f(n, 4, 4) = n
1
2+o(1) [4]. An easy

argument shows that f(n, 4, 4) = Ω
(
n

1
2

)
. Therefore, Mubayi conjectured that the real value is

f(n, 4, 4) = Θ
(
n

1
2

)
.

This construction is even more involved. Loosely speaking, it combines the SSR coloring with
something he calls a “Divided Algebraic coloring (DAC).” The DAC construction is a slight modi-
fication of an “Algebraic coloring” in which each vertex is associated with a vector from F2

q where

1



Fq is a finite field for some odd prime power q. The color between two vertices is then based on a
symmetric map from the associated vectors to the underlying field.

While these constructions take some room to describe, the math behind them does not go be-
yond basic abstract algebra.

Questions: There is simple induction argument on p that shows that

f(n, p, p) = Ω
(
n

1
p−2

)
.

Since there are known (p, p)-colorings for p = 3, 4 that use almost n
1

p−2 colors, it seems natural to
ask whether we might be able to find similar constructions for p ≥ 5.

Question 1. Can we construct a (5, 5)-coloring of Kn that uses O
(
n

1
3

)
colors or at least fewer

than n
1
2 colors? Alternatively, can we show a better lower bound to improve on f(n, 5, 5) = Ω

(
n

1
3

)
?

Question 2. More generally, can we beat the current upper and lower bounds,

Ω
(
n

1
p−2

)
≤ f(n, p, p) ≤ O

(
n

2
p−1

)
for any p?

Question 3. Can we determine any f(n, p, q) for any other small values of q and p?
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