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Abstract

The rate of energy dissipation in solutions of the body-forced 3-d incompressible Navier-Stokes

equations is rigorously estimated with a focus on its dependence on the nature of the driving force.

For square integrable body forces the high Reynolds number (low viscosity) upper bound on the

dissipation is independent of the viscosity, consistent with the existence of a conventional turbulent

energy cascade. On the other hand when the body force is not square integrable, i.e., when the

Fourier spectrum of the force decays sufficiently slowly at high wavenumbers, there is significant

direct driving at a broad range of spatial scales. Then the upper limit for the dissipation rate may

diverge at high Reynolds numbers, consistent with recent experimental and computational studies

of “fractal-forced” turbulence.
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I. INTRODUCTION

A fundamental principle of modern hydrodynamic turbulence theory is that nonlinear

interactions between Fourier modes of the velocity field can transfer energy from directly-

forced large spatial scales, through the so-called inertial range, down to a small dissipation

length scale where viscosity effectively consumes kinetic energy and transforms it into heat.

This turbulent cascade process has been intensively studied experimentally, numerically, and

theoretically (at various levels of mathematical rigor) since the first half of the twentieth

century. See, e.g., the book by Frisch [1] for an introduction and entry into the vast literature

on this subject, which is still the focus of much current research.

One profound consequence of the cascade mechanism is the so-called dissipative anomaly

wherein a finite and non-vanishing residual energy dissipation persists in the singular limit

of vanishing viscosity, i.e., in the infinite Reynolds number limit. This phenomenon is

quantitatively described as Kolmogorov scaling of the energy dissipation, namely

β ≡
ε#

U3
= O(Re0) as Re → ∞ (1)

where ε is the total energy dissipation rate per unit mass, # is an integral (large) length scale

in the flow characterizing the domain or a large scale in the forcing and flow, U is a turbulent

velocity scale, and Re = U#/ν is the Reynolds number with ν denoting the kinematic

viscosity. Sreenivasan has collected together relevant data illustrating Kolmogorov scaling

in experiments [2] and direct numerical simulations [3]. Moreover, given precise definitions

of all the quantities involved, this β ∼ Re0 Kolmogorov scaling has been shown to be an

upper bound for (weak) solutions of the 3-d incompressible Navier-Stokes equations driven

by sufficiently smooth—in particular, square integrable—body forces [4, 5, 6, 7].

While the cascade picture of turbulence requires that energy be predominantly injected

in a relatively narrow range of spatial scales, some researchers have recently performed

experimental and computational studies of fractal-generated turbulence. These are flows

driven by spatially broadband fractal forces with certain scaling properites that inject energy

directly at a wide range of scales—most notably at small scales that could otherwise only be

excited by the cascade. Such forcing can impose a self-similar structure on the flow that is

independent of the turbulent energy cascade. If such forcing can be achieved experimentally

then one can observe, and in principle control, the balance between the energy that has been

directly injected and the energy transfered by the nonlinear mode interactions.
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Indeed, Queiros-Conde and Vassilicos [8] performed experiments by forcing fluid past a

fractal object, an obstacle that was structurally self-similar over several scales. Staicu et

al [9] experimentally measured energy spectra and structure functions in the wake of grids

of fractal dimensions 2.05, 2.17, and 2.40 in a wind tunnel, concluding that “there may be

a direct relation between the scaling properties of the fractal object and the turbulence it

creates”. This is more easily investigated in direct numerical simulations where details of

the flow field is directly observable.

Mazzi and Vassilicos [10] performed direct numerical simulations of stationary homo-

geneous and isotropic turbulence in a fluid in a 3-d periodic box of size # driven by a

velocity-dependent fractal body force f(x, t) with Fourier components of the form:

f̂k(t) =











F (#|k|)ζ

(

ûk(t)

|ûk(t)|
+ i

k

|k|
×

ûk(t)

|ûk(t)|

)

, 0 < |k| < kF ,

0 , |k| > kF

(2)

where ûk are the velocity field’s Fourier components, f̂k = 0 whenever ûk = 0, and û0 ≡ 0.

The scaling exponent ζ is intended to characterize the fractal properties of the stirrer or

obstacle, and the maximum wavenumber kF is to be thought of as the inverse of the spatial

size of the smallest parts of the fractal stirrer. Mazzi and Vassilicos used numerical values

for which the fractal forcing extended down to scales ∼ k−1
F on the order of the Kolmogorov

dissipation length η ≡ (ν3/ε)1/4. They observed that the bulk energy dissipation rate did

not exhibit Kolmogorov scaling β ∼ Re0, but rather β ∼ Re1 corresponding to ε ∼ U4/ν.

Biferale et al [11, 12] performed numerical simulations of the 3-d Navier-Stokes equations

with a stochastic body force that was white-noise in time but with a power law spectrum of

spatial scales ∼ kζ . They investigated small scale turbulent fluctuations and concluded that

the statistics displayed two distinct qualitative behaviors. When the spatial spectrum of

the forcing decayed sufficiently fast, the small scale fluctuations were universal in the sense

that they were independent of the details of the force spectrum. This regime corresponds

to conventional cascade dynamics. When the spatial spectrum of the forcing decayed more

slowly, however, the small scale fluctuations were “force-dominated” with the cascade being

overwhelmed by the direct excitation from the driving. Interestingly, they reported that

this transition occurs at a value ζ = −3
2 of the scaling exponent corresponding to the

boundary between (spatially) square integrable and “rougher” forcing functions without

square summable Fourier coefficients.
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In this paper we derive rigorous upper bounds on the bulk energy dissipation ε in an

incompressible Newtonian fluid driven by a variety of body forces including forces that are

not square integrable. This work generalizes the previous analysis for square integrable

body forces [4, 5, 7] to include fractal forces that drive the flow directly at a broad range of

scales. In accord with the findings of Biferale et al we find that the case of square integrable

forcing is a borderline situation: β ! Re0 when the body forces are square integrable (or

smoother), but the estimates increase for rougher driving so that the dissipation coefficient β

may increase asymptotically as Re → ∞. For the roughest forcing functions that make sense

mathematically, i.e., forcing functions with Fourier coefficients satisfying
∑

k
k−2|f̂k|2 < ∞,

we find that β ! Re1, the scaling observed by Mazzi et al .

The rest of this paper is organized as follows. The following Section II lays out the

mathematical setting for the analysis and gives the definitions of the physically relevant

quantities of interest. In Section III we study the case of time-independent body forces,

and the subsequent Section IV deals with velocity-dependent forces like (2). The concluding

Section V contains a brief summary and some closing remarks. For completeness and to

make the paper self-contained, we include some mathematical details in an appendix.

II. STATEMENT OF THE PROBLEM AND DEFINITIONS

Consider the incompressible 3-d Navier-Stokes equations on a periodic domain x ∈ [0, #]3:

∂tu + (u · ∇)u + ∇p = ν∆u + f (3)

where u(x, t) is the divergence-free velocity field, p(x, t) is the pressure, f(x, t) is the applied

body-force, ν > 0 is the kinematic viscosity, and u|t=0 = u0(x) is the initial condition. We

will take the body force to be a specified time independent (divergence-free) function f(x)

in Section III, or given by a velocity-dependent expression like (2) in Section IV. We write

Fourier expansions as

u(x, t) =
∑

k

ûk(t)eix·k where ûk(t) =
1

#3

∫

"3
e−ix·ku(x, t)d3x. (4)

Without loss of generality, in every case we will take the applied body force and initial data

to have spatial mean zero so that k = |k| > 0 in all sums.
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A field u(x, t) ∈ Hα if ‖u(·, t)‖Hα < ∞ where we define the Sobolev norms ‖ · ‖Hα by

‖u(·, t)‖2
Hα ≡

∑

u

(#k)2α|ûk(t)|
2 =

1

#3

∫

"3
|(−#2∆)αu(x, t)|2d3x. (5)

The index α can be positive or negative and the function spaces Hα are nested according to

Hα ⊂ Hα′

for α > α′. The case α = 0 corresponds to the usual L2 norm (with the volume

normalization) and we write

‖u‖H0 = ‖u‖L2 = ‖u‖ (6)

“Fractal” forces are defined as those with power-law Fourier coefficients, |f̂k| = Ckζ . For

such a function to belong to the Sobelov space Hα its exponent must satistfy ζ < −α − 3
2 ,

i.e., the Fourier coefficients must decay as |f̂k| ! k−α− 3
2−δ for some δ > 0.

We define time averages of functions g(t) according to

g = lim
T→∞

∫ T

0

g(t)dt (7)

and for simplicity in this paper we presume that this limit exists for all quantities of interest.

The bulk (volume and time) average of a function h(x, t) is denoted by

〈h〉 =
1

#3

∫

"3
h(x, ·)d3x. (8)

The root means square velocity U of a solution u(x, t) of the Navier-Stokes equations is

U =
〈

|u|2
〉1/2

= ‖u‖2
1/2

, (9)

and the bulk energy dissipation rate (per unit mass) is defined by

ε =
〈

ν|∇u|2
〉

=
ν

#2
‖u‖2

H1. (10)

When a solution u(x, t) satisfies the energy equality (i.e., when the energy is absolutely

continuous, which holds for every regular solution), the energy dissipation rate satisfies

ε = 〈f · u〉 . (11)

That is, the power supplied by the driving force is balanced by the viscous dissipation.

Weak solutions to these 3-d Navier-Stokes equations exist for f ∈ H−1, and then in

general the relation in (11) is only an inequality, i.e., ε ≤ 〈f · u〉 [13, 14, 15]. This fact does

not affect our results, however, because we will just derive upper limits on ε. Moreover,
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the assumption of the existence of the long times averages is not necessary if the limit is

replaced by lim supT→∞. With that definition the estimates we derive are fully applicable

to weak solutions.

Using the definitions above, the Reynolds number is identified Re = U#/ν and the dis-

sipation coefficient as β = ε#/U3. In the scenario described here both Re (or U) and β

(or ε) are formally “emergent” quantities, not directly controllable but determined rather

as functions of # and ν and functionals of u0 and f . These bulk averaged quantities gener-

ally depend on u0, but the relationships derived below are uniformly valid for all solutions

regardless of initial data so we will drop any further reference to them. In practice one

assumes that the parameters of the force, e.g., its amplitude, can be tuned to achieve any

desired Reynolds number. Then β may be considered a function of Re. The overdamped

highly viscous limit is Re → 0 and the vanishing viscosity limit is explored as Re → ∞.

Some very general statements can be made for the overdamped limit. Poincare’s inequal-

ity implies that

ε ≥
4π2ν

#2
U2, (12)

so for any forcing

β ≥
4π2

Re
. (13)

This Reynolds number scaling is sharp: as will be seen below, for a wide variety of forces

there exists a constant c ≥ 4π2 (generally depending on the details of the forcing) such that

β ≤
c

Re
as Re → 0. (14)

This scaling, β ∼ Re−1, is characteristic of large scale laminar flows where the typical rate

of strain is proportional to U/# and the typical stress is proportional to νU/#.

For higher Reynolds numbers the lower estimate in (13) can generally not be improved.

That is, at arbitrarily high Re there are forces that can sustain the flow with β ∼ Re−1.

Those flows—which may be unstable—are necessarily sufficiently laminar to exclude any

characterization as being turbulent. The upper bound on β, however, necessarily increases

above Re−1 as Re → ∞. For turbulent flows with an effective energy cascade the dissipation

becomes independent of ν as Re → ∞, i.e., β ∼ Re0, as evidenced by experiments and direct

numerical simulations. But for sufficiently broadband forcing β may increase indefinitely in

this limit, and the task of the next two sections is to place rigorous upper bounds on β as
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a function of Re for flows driven by fractal forces.

III. STEADY H−α BODY FORCES

In this section we generalize the approach introduced by Doering & Foias [4]—an approach

that was inspired by previous work of Foias and coworkers [16, 17, 18]—to cases where the

time independent force f(x) ∈ H−α with α ∈ [0, 1]. For α ≤ 0 the force f ∈ L2 and the

β ! Re0 upper bound, corresponding to the usual energy cascade, is effective [4]. We do

not consider values of α > 1, for then even weak solutions of the Navier-Stokes equations

are not known to exist. While the analysis in this section is not restricted to strictly fractal

forces, the results apply nevertheless to those with power-law Fourier coefficients |f̂k| ∼ kζ

where ζ = α− 3
2 − δ for any δ > 0.

Write the steady body force as

f(x) = Fφ(#−1x), (15)

where F is the amplitude of the force, the H−α norm of f , and the “shape” function φ is a

dimensionless divergence-free field on the unit 3-torus normalized according to

‖φ‖H−α = 1. (16)

Using Cauchy-Schwarz and the interpolation inequality (A6) with s = α, r = 1, t = 0, we

estimate

∣

∣

∣

∣

1

#3

∫

"3
f · u dx

∣

∣

∣

∣

≤
∑

k

|f̂k| |ûk| ≤

[

∑

k

(#k)−2α|f̂k|
2

]1/2 [

∑

k

(#k)2α|ûk|
2

]1/2

= ‖f‖H−α‖u‖Hα = F‖u‖Hα ≤ F‖u‖α
H1‖u‖1−α.

Then taking time average and applying Hölder’s inequality,

ε ≤ | 〈f · u〉 | ≤ F‖u‖α
H1‖u‖1−α ≤ F

(

‖u‖2
H1

)
α
2

(

‖u‖
2(1−α)
2−α

)
2−α

2

= F
( ν

#2

)−α
2
( ν

#2
‖u‖2

H1

)
α
2

(

‖u‖
2(1−α)
2−α

)
2−α

2

= F
( ν

#2

)−α
2
ε

α
2

(

‖u‖
2(1−α)
2−α

)
2−α

2

.

7



Note that (1−α)
2−α ∈ [0, 1

2 ] so Jensen’s inequality (A2) ensures that the last term in the last

line above is bounded by U1−α. Hence

ε ≤ #
2α

2−α ν− α
2−α F

2
2−α U

2(1−α)
2−α . (17)

On the other hand we can also estimate F from above independently in terms of U , ν

and #. Multiply the Navier-Stokes equation (3) by a sufficiently smooth time-independent,

divergence-free function ψ(#−1x) on the unit 3-torus satisfying 〈φ · ψ〉 > 0. (It’s easy to

produce such fields ψ, for example as a finite Fourier mode Galerkin truncation of φ.)

Integrating by parts, taking time averages, and applying Hölder and Cauchy-Schwarz,

F 〈φ · ψ〉 = −〈u · (∇ψ) · u〉 − ν 〈u ·∆ψ〉 ≤ ‖∇ψ‖L∞‖u‖2 + ν‖∆ψ‖‖u‖2
1/2

. (18)

Hence

F ≤
1

〈φ · ψ〉

[

‖∇̃ψ‖L∞

U2

#
+ ‖ψ‖H2

νU

#2

]

, (19)

where ∇̃ = #∇ is the dimensionless gradient on the unit 3-torus . Plugging this estimate for

F into the bound (17) for ε we deduce

β ≤ Re
α

2−α

(

C1 + C2 Re−1
)

2
2−α , (20)

where the coefficients Cj depend only on the shape function φ and the multiplier function

ψ—but not on the parameters of the problem, i.e., the force strength F , the viscosity ν, or

the outer length scale #. Specifically,

C1 =
‖φ‖2

H−α‖∇̃ψ‖2
L∞

〈φ · ψ〉2
and C2 =

‖φ‖2
H−α‖ψ‖2

H2

〈φ · ψ〉2
. (21)

For Re / 1 the upper bound (20) scales

β ! Re
α

2−α (22)

where the exponent α
2−α ∈ [0, 1]. If α = 0, i.e., when the force f ∈ L2, we recover the classical

estimate corresponding to Kolmogorov scaling

β ! 1 (23)

that holds as well when α < 0 [4]. In the other borderline case α = 1,

β ! Re. (24)
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And as advertised, when Re 0 1 the overdamped laminar scaling

β ! Re−1 (25)

emerges for all α ≤ 1.

IV. A TIME DEPENDENT FRACTAL FORCE

Following Mazzi & Vassilicos [10], consider a fractal forcing function of the form:

f̂k(t) = F (#|k|)ζ−δ

(

ûk

|ûk|
+ i

k × ûk

|k| |ûk|

)

, (26)

where F is the strength coefficient, ζ ∈ [−3
2 ,−

1
2 ] and δ > 0 and f̂k ≡ 0 whenever ûk = 0. The

Navier-Stokes equations (3) driven by this velocity-dependent time-varying force constitute

an autonomous system. We assume initial data u0(x) 1= 0, that a (statistically) steady flow

is subsequently sustained, and that for t > 0 each |ûk(t)| = 0 only on a measure-zero set of

times. The scaling exponent ζ = −1
2 corresponds to the case where the forcing is in H−1 at

each instant of time for all δ > 0, while ζ = −3
2 (or less) is L2 (or smoother) forcing.

Start by writing

ε = 〈f · u〉 =
∑

k

f̂k · û∗
k

= F
∑

k

1

(#|k|)3/2+δ
(#|k|)ζ+3/2|ûk|. (27)

Applying the Cauchy-Schwarz inequality,

ε ≤ F C

(

∑

k

(#|k|)2ζ+3|ûk|2

)1/2

. (28)

where

C ≡

(

∑

k

1

(#|k|)3+2δ

)1/2

. (29)

Note that the (3-d) sum defining C converges iff δ > 0. Indeed, C = O(δ−1/2) as δ → 0.

Hölder’s inequality then implies

ε ≤ CF

(

∑

k

|ûk|2

)−ζ/2−1/4 (

∑

k

(#|k|)2|ûk|2

)ζ/2+3/4

(30)

= CFU−ζ−1/2

(

ε#2

ν

)ζ/2+3/4

. (31)
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Solving for ε,

ε ≤ C
4

1−2ζ F
4

1−2ζ U
4ζ+2
2ζ−1

( ν

#2

)

2ζ+3
2ζ−1

. (32)

Now the challenge is to eliminate F in favor of U , # and ν.

To derive an upper bound on F we will estimate the bulk average of the (3) dotted into

the time-dependent test function ψ(x, t) with the Fourier coefficients:

ψ̂k(t) =
ûk

|ûk|
(#|k|)−4−δ′ (33)

for |ûk| 1= 0, with ψ̂k = 0 when |ûk| = 0, and δ′ > 0. We consider the resulting terms one

by one.

First note that the pressure term 〈ψ · ∇p〉 = 0 since ∇ · ψ = 0. The advection term is

estimated

| 〈ψ · (u · ∇u)〉 | = | 〈u · (∇ψ) · u〉 | ≤ ‖∇ψ‖L∞

〈

|u|2
〉

(34)

where

‖∇ψ‖L∞ ≤ #−1
∑

k

#|k| |ψ̂k(t)| ≤ #−1
∑

k

(#|k|)−3−δ′ =
C ′

#
(35)

and the pure number C ′ is finite for all δ′ > 0; C ′ = O(δ′−1) as δ′ → 0. The force term is

〈f · ψ〉 = F
∑

k

(#|k|)ζ−4−δ−δ′ = C ′′F (36)

where the sum for C ′′ converges uniformly for all non-negative δ and δ′ and all ζ ≤ −1/2.

By asserting equality in (36) above we use the assumption that |ûk| > 0 for almost all t > 0.

Next, the viscous term is

〈ψ · ν∆u〉 = ν 〈∆ψ · u〉 ≤ ν‖ψ‖H2 U = C ′′′ νU

#2
(37)

where

C ′′′ =

(

∑

k

#|k|−4−2δ′

)1/2

(38)

is uniformly bounded for all δ′ ≥ 0. Finally, observe that

〈ψ · ∂tu〉 =
d

dt

∑

k

|ûk|(#|k|)−4−δ′. (39)

The time average of the time derivative of a quantity vanishes if the quantity is uniformly

bounded in time. Because

∑

k

|ûk(t)|(#|k|)
−4−δ ≤

(

∑

k

|ûk(t)|
2

)1/2 (

∑

k

(#|k|)−8−2δ′

)1/2

(40)
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where
∑

k
|ûk(t)|2 = ‖u(·, t)‖2 is uniformly bounded in time for these H−1 (or smoother)

forces, the sum above converges for all δ′ ≥ 0 and we conclude that 〈ψ · ∂tu〉 = 0.

Hence the bulk average of ψ dotted into the Navier-Stokes equations yields

F ≤
C ′

C ′′

U2

#
+

C ′′′

C ′′

νU

#2
(41)

with absolute constants C ′′ and C ′′′, and C ′ depending only on δ′ > 0. Inserting into (32),

β ≤ Re
3+2ζ
1−2ζ

(

c1 + c2Re−1
)

4
1−2ζ (42)

where

c1 =
CC ′

C ′′
and c2 =

CC ′

C ′′
. (43)

As before, when Re → 0, this result produces the laminar scaling

β ! Re−1, (44)

for all relevant values of the force’s scaling exponent. When Re → ∞, however, the dissipa-

tion may be as large as

β ! Re
3+2ζ
1−2ζ (45)

with exponent 0 ≤ 3+2ζ
1−2ζ ≤ 1 as ζ varies from −3

2 to −1
2 . It is worthwhile noting that the

coefficients c1 and c2 depend on δ > 0 (and δ′ > 0, introduced for convenience)—but not at

all on the force parameters F and ζ or on ν or #—and that the coefficients c1(δ) and c2(δ)

diverge as δ → 0 because C(δ) defined in (29) diverges as δ → 0.

V. SUMMARY & DISCUSSION

In this paper we generalized the analysis that was previously employed for square inte-

grable (or smoother) steady forces [4] and velocity-dependent forces [7] to derive bounds on

the energy dissipation in the case of broad-band and fractally-forced flow described by the

incompressible 3-d Navier-Stokes equations. When a steady body-force f(x) ∈ H−α with

α ∈ [0, 1], we showed that the dimensionless dissipation factor β(Re) is limited according to

4π2Re−1 ≤ β ≤ Re
α

2−α

(

C1 + C2Reα−2
)

2
2−α . (46)
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For velocity-dependent fractal forces of the form (26) with |f̂k| ∼ kζ−δ, ζ ∈ [−3
2 ,−

1
2 ], and

δ > 0, we deduced that

4π2Re−1 ≤ β ≤ Re
3+2ζ
1−2ζ

(

c1(δ) + c2(δ)Re−1
)

4
1−2ζ . (47)

These scalings are sharp as Re → 0, displaying the laminar behavior β ∼ Re−1. As

Re → ∞, both upper estimates are β ∼ Re0 for square integrable forcing, i.e., α = 0 and

ζ = −3
2 . And in the extreme limits α = 1 and ζ = −1

2 , both estimates give β ∼ Re1. We

remark that the scalings in (46) and (47) are clearly consistent with each other when it is

recognized that forces with |f̂k| ∼ kζ−δ are in H−α when ζ = α− 3
2 .

In terms of dimensional physical quantities, we have estimated the energy dissipation rate

(per unit mass) ε in terms of the rms velocity U , # and ν. Laminar dissipation corresponds

to ε ∼ νU2/#2 while the turbulent cascade is characterized by ε ∼ U3/# and the roughest

fractal forces may allows ε ∼ U4/ν. But for a specified form of the body force it is natural

to consider ε and U as functions of the forcing amplitude F , # and ν [19]. When the force

is specified, rather than the rms velocity, it is well known (and easy to show) that the

Stokes flow driven by the given force sets an upper limit for the dissipation rate; any other

flow necessarily dissipates less energy. In terms of the F , # and ν, the maximal Stokes flow

dissipation is ε ∼ F 2#2/ν which may be interpreted as a laminar flow bound. It is interesting

to note that in the extreme limits of H−1 forcing in (17) and ζ = −1
2 in (32), the scaling in

this laminar upper limit is reproduced explicitly.
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APPENDIX A: INEQUALITIES

For convenience, in this appendix we collect the mathematical estimates used here:

(a) Jensen’s inequality: If the real-valued function of a real variable θ(x) is convex, then

for each real-valued function g

θ(〈g〉) ≤ 〈θ ◦ g〉 , (A1)

where 〈·〉 stands for averaging. In particular, for any nonnegative function g and any

real number p ∈ [0, 1],

〈gp〉 ≤ 〈g〉p . (A2)

(b) Hölder’s inequality:
∣

∣

∣

∣

∫

φ(x) ψ(x) dx

∣

∣

∣

∣

≤

(
∫

|φ(x)|p dx

)1/p (
∫

|ψ(x)|q dx

)1/q

(A3)

valid for all φ ∈ Lp and ψ ∈ Lq, where p and q ≥ 1 and 1
p + 1

q = 1. For an lp sequence

(ak) and an lq sequence (bk) (where p and q are related as above) the discrete analogue

of (A3) reads
∣

∣

∣

∣

∣

∑

k

akbk

∣

∣

∣

∣

∣

≤

(

∑

k

|ak|
p

)1/p (

∑

k

|bk|
q

)1/q

. (A4)

An important case of (A4) (for p = q = 2) is the Cauchy-Schwarz inequality

φψ ≤ φ2
1/2

ψ2
1/2

. (A5)

(c) Interpolation inequalities between Sobolev spaces: Let 0 ≤ r < s < t and u ∈ H t.

Note the algebraic identities

r
t − s

t − r
+ t

s − r

t − r
= s,

t − s

t − r
+

s − r

t − r
= 1.

These interpolation estimates are the result of applying Hölder’s inequality (A4) in

Fourier space:

‖u‖2
s =

∑

k

(#k)2s|ûk|
2 =

∑

k

[

(#k)2r|ûk|
2
]

t−s
t−r

[

(#k)2t|ûk|
2
]

s−r
t−r

≤

[

∑

k

(#k)2r|ûk|
2

]
t−s
t−r

[

∑

k

(#k)2t|ûk|
2

]
s−r
t−r

= ‖u‖
2 t−s

t−r
r ‖u‖

2 s−r
t−r

t . (A6)
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