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Abstract

In this note we give some explicit estimates for the L∞-norm of the periodic so-
lutions of the time-independent non-homogeneous Kuramoto-Sivashinsky equation.
In particular, we give an estimate of the Michelson’s upper bound of all periodic
solutions of the time-independent homogeneous Kuramoto-Sivashinsky equation.
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1 Introduction

The Kuramoto-Sivashinsky equation

∂

∂t
U + ∇4U + ∇2U +

1

2
|∇U |2 = 0 (1.1)

has been independently discovered by Kuramoto and Tsuzuki [11], and by
Sivashinsky [15] in the study of a reaction diffusion system and flame front
propagation respectively as well as in the study of 2D Kolmogorov fluid
flows [16].
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In fact in [16], one considered a slightly modified Kolmogorov flow U = (v, w)
given by the equations



vt + vvx + wvy = −px +R−1∇2v − µR−1v −R−1 sin y

wt + vwx + wwy = −py +R−1∇2w − µR−1w

vx + vy = 0,

(1.2)

where R stands for the Reynolds number and µ > 0 is a small friction coef-
ficient, under the rescaling µ = λε4, ξ = εx, τ = ε4t with a constant λ. The
stream function Ψ(x, y) is assumed to have the form

Ψ(x, y) = cos y + A(ξ + cη, τ) +O(ε)

with another constant c. Then it is shown that U(ζ, s) = c√
2
A(

√
6ζ, 6

√
2s)

satisfies the equation

Us + Uζζζζ + ((2 − (3c)−2U2
ζ )Uζ)ζ − U2

ζ +
λ

6
U = 0. (1.3)

This remarkable equation becomes the one dimensional version of (1.1) in case
c ∼ ∞, λ ∼ 0. In this case it can be written in the following way

ut + uxxxx + uxx + uux = 0, (1.4)

where u = U ′. As argued in [16], this equation provides a good model for the
weak turbulent effects observed for the flow in (1.2).

The equation (1.4) turned out to be a very fruitful subject of research. Periodic
boundary conditions for (1.1) yield periodic boundary conditions for (1.4), i.e.

u(x, t) = u(x+ L, t), ∀x, ∀t, (1.5)

where L is the period in the space variable and the supplementary condition

L∫
0

u(x)dx = 0. (1.6)

Under these conditions the equation (1.4) has, once the period L is large
enough, a very complicated global attractor AL which seems to be amenable
to computer based investigations. The complexity of AL was observed in [8]
and later in low-dimensional approximate inertial forms in [10]. This approach
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allowed the study of several global bifurcations of AL [4]. Moreover, the math-
ematical study of the equation, initiated in [13] also leads to some very inter-
esting results in [13], [5], [6], [2], [12], [7], [9] as well as challenging conjectures
in [14], [3], [7]. For instance: Does there exist a universal constant K such that
for any u ∈ AL one has

|u(x)| ≤ K, ∀x ∈ R. (1.7)

An affirmative answer to this question would give immediate positive answers
to the conjectures that the fractal dimension of the AL scales as L [14] and
(via [7]) that all elements of AL are analytic functions in x with convergence
radius everywhere larger that an absolute positive constant [3]. Both these
conjectures have strong computational support.

In the remarkable paper [12], Michelson has taken a first step in proving (1.7)
for all u ∈ AL, namely he has proven that there exists a constant KM such
that (1.7) holds for all stationary solutions of (1.4) with K = KM. The next
step would be to prove that the set

{
ū =

∫
uµ(du);µ = invariant probability measure on AL, L > 0

}
(1.8)

is bounded in L∞(R). To solve this problem one must study the non-homogeneous
Kuramoto-Sivashinsky equation. In this note we extend Michelson’s result to
this latter equation and give a positive partial answer to the preceding prob-
lem. In fact, we study the non-homogeneous stationary Kuramoto-Sivashinsky
equation

u′′′′(x) + u′′(x) + u(x)u′(x) = f(x) ∀x ∈ R (1.9)

with the periodic boundary conditions (1.5) and the supplementary condition
(1.6).

Our main objective is to study the periodic solutions of (1.9) and their depen-
dence on f . We will prove that the existence of periodic solutions puts some
constraints on the function f . Our method is based on elementary estimates
and is more direct than Michelson’s. In particular, it yields an explicit esti-
mate for the Michelson constant KM, namely KM ≤ 92.2 (see Theorem 5.3
below).
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2 Integral Representation

Integrating equation (1.9), we get

u′′′ + u′ +
1

2
u2 =

1

2
F, (2.1)

where

F (x) = 2

x∫
0

f(y)dy + const. (2.2)

Periodicity of u implies that F is also periodic with the same period L. Inte-
grating over the period one more time, we obtain

L∫
0

F (x)dx =

L∫
0

u2(x)dx. (2.3)

Let

Fmin = min
x
F (x), Fmax = max

x
F (x). (2.4)

Equation (2.3) implies Fmax ≥ 0. Let

c≥
√
Fmax, (2.5)

p(x) =
√
c2 − F (x), x ∈ R. (2.6)

Then the equation (2.1) can be written as

u′′′ + u′ +
1

2
u2 +

1

2
p2 =

1

2
c2, (2.7)

where p(x) is periodic.

Let y := u− c. Then we have that

y′′′ + y′ + cy = −1

2

(
y2 + p2

)
≤ 0. (2.8)

The solutions of the homogeneous part y′′′ + y′ + cy = 0 are

y1 = e−bx, y2 = e
b
2
x cosβx, and y3 = e

b
2
x sin βx,
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where b is the positive solution of b3 + b = c and β =
√

3
4
b2 + 1. By the change

of variables

v(ξ) =
1

c
u

(
ξ

β

)
, q(ξ) =

1

c
p

(
ξ

β

)
, w(ξ) = v(ξ) − 1, (2.9)

the equation (2.7) becomes

v′′′ +
1

β2
v′ =

1

2
δ(1 − v2 − q2), (2.10)

where δ = c
β3 . The equation (2.8) can be written for w as

w′′′ +
1

β2
w′ + δw = −φ(ξ) := −1

2
δ(w2 + q2) ≤ 0. (2.11)

Note that due to periodicity all functions in (2.10) and (2.11) are bounded
on R. Therefore we will first consider solutions of (2.10) and (2.11) which are
bounded on R but not necessarily periodic.

The general solution for this equation is given by

w(ξ) = A(a)e−
b
β

(ξ−a) +B(a)e
b
2β

(ξ−a) cos(ξ − a)

+C(a)e
b

2β
(ξ−a) sin(ξ − a) (2.12)

+A0

a∫
ξ

[
e−

b
β

(ξ−y) − e
b
2β

(ξ−y) cos(ξ − y) +
3b

2β
e

b
2β

(ξ−y) sin(ξ − y)

]
φ(y)dy,

where A0 = β2

3b2+1
and ξ ≤ a.

Multiplying (2.12) by e
b
β

(ξ−a) and letting ξ → −∞, we obtain

A(a) = −A0ψ(a) := −A0

a∫
−∞

e−
b
β

(a−y)φ(y)dy ≤ 0, (2.13)

with φ defined in (2.11).

We can now prove that w satisfies also the following equation:

w′′ − b

β
w′ +

b2 + 1

β2
w = −ψ ≤ 0, (2.14)
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where ψ was defined in (2.13).

Indeed,

w(a)=A(a) + B(a),

w′(a) =− b

β
A(a) +

b

2β
B(a) + C(a), and

w′′(a) =
b2

β2
A(a) +

(
b2

4β2
− 1

)
B(a) +

b

β
C(a),

whence solving for B(a) and C(a) we obtain

A(a) = A0

(
w′′(a) − b

β
w′(a) +

b2 + 1

β2
w(a)

)
.

This and the definition of ψ gives (2.14).

The general solution for (2.14) is

w(ξ)=A1(a)e
b
2β

(ξ−a) cos(ξ − a) +B1(a)e
b
2β

(ξ−a) sin(ξ − a)

−
ξ∫

a

e
b

2β
(ξ−y) sin(ξ − y)ψ(y)dy. (2.15)

Letting a→ ∞, we finally obtain the following:

Lemma 2.1 Any solution w of the equation (2.11) bounded over all R is given
by the following integral representation:

w(ξ) =

∞∫
ξ

e
b
2β

(ξ−y) sin(ξ − y)ψ(y)dy, (2.16)

where w and ψ are defined in (2.9) and (2.13) respectively.

In the next section we will show how this representation (2.16) leads to some
global estimates for the bounded solution of the equations (2.10) and (2.11).

3 Global Estimates

We start by proving that the first derivative of the bounded solution w of
(2.11) is also bounded.
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Lemma 3.1 For all ξ ∈ R we have

b

2β
w(ξ) +

1√
γ
w
(
ξ +

π

2

)
≤ w′(ξ) ≤ b

2β
w(ξ) −√

γw
(
ξ − π

2

)
, (3.1)

where γ(β) = e
bπ
2β .

PROOF. Recall that ψ(y) ≥ 0, y ∈ R. Therefore, from (2.16) we obtain

w′(ξ) =

∞∫
ξ

e
b
2β

(ξ−y)

[
b

2β
sin(ξ − y) + cos(ξ − y)

]
ψ(y)dy

=
b

2β
w(ξ) +

ξ+ π
2∫

ξ

e
b
2β

(ξ−y) cos(ξ − y)ψ(y)dy

+ e−
bπ
4β

∞∫
ξ+ π

2

e
b
2β

(ξ+π/2−y) cos ((ξ + π/2) − y − π/2)ψ(y)dy

≥ b

2β
w(ξ) +

1√
γ
w
(
ξ +

π

2

)
,

and

w′(ξ) =

∞∫
ξ

e
b
2β

(ξ−y)

[
b

2β
sin(ξ − y) + cos(ξ − y)

]
ψ(y)dy

=
b

2β
w(ξ) −

ξ∫
ξ−π

2

e
b
2β

(ξ−y) cos(ξ − y)ψ(y)dy

+ e
bπ
4β

∞∫
ξ−π

2

e
b
2β

(ξ−π/2−y) cos ((ξ − π/2) − y + π/2)ψ(y)dy

≤ b

2β
w(ξ) −√

γw
(
ξ − π

2

)
. �

This lemma immediately implies the following global estimates for v.

Theorem 3.2 Any bounded solution of (2.10) satisfies

|v(ξ)| ≤ γ + 1

γ − 1
, ξ ∈ R. (3.2)
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PROOF. From Lemma 3.1 it follows that

γw
(
ξ − π

2

)
+ w

(
ξ +

π

2

)
≤ 0, (3.3)

or, in terms of v,

γv
(
ξ − π

2

)
+ v

(
ξ +

π

2

)
≤ 1 + γ, ξ ∈ R. (3.4)

Consider v1(ξ) = −v(−ξ), q1(ξ) = q(−ξ). Since (2.10) is valid if we replace
{v, q} with {v1, q1}, we also have

γv
(
ξ +

π

2

)
+ v

(
ξ − π

2

)
≥ −(1 + γ), ξ ∈ R. (3.5)

Relations (3.4) and (3.5) imply (3.2). �

Note that γ+1
γ−1

is bounded by 7
5
, which implies the following:

Corollary 3.3 Any bounded solution u of (2.7) satisfies

|u(x)| ≤ 7

5
c. (3.6)

Combining Lemma 3.1 and Theorem 3.2 we can now obtain L∞ bounds for
the first and second derivatives of v.

Lemma 3.4 For v as in Theorem 3.2 we have

− 2γ

γ − 1

(
b

2β
+

1√
γ

)
≤ v′ ≤ g(β) :=

2

γ − 1

(
b

2β
+ γ

√
γ

)
(3.7)

and

|v′′| ≤ b

β
g(β) +

b2 + 1

β2

2γ

γ − 1
. (3.8)

PROOF. Relation (3.7) follows from Theorem 3.2 and Lemma 3.1.

For (3.8) we apply (2.14), Theorem 3.2 and (3.7) to obtain
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v′′ ≤ b

β
v′ − b2 + 1

β2
(v − 1)

≤ b

β
g(β) +

b2 + 1

β2

2γ

γ − 1
.

Using again the fact that {v1, q1} defined in the proof of Theorem 3.2 is a
solution of (2.10), we get

v′′ ≥ − b

β
g(β) − b2 + 1

β2

2γ

γ − 1
. �

4 Universal Bounds

After the preparation done in the preceding sections we can now proceed to
our main result.

Lemma 4.1 Let [ξ1, ξ2] be an interval such that v′(ξ) > 0 for ξ ∈ (ξ1, ξ2),
v′(ξ1) = v′(ξ2) = 0. Let h be an absolutely continuous non-negative function
on the interval [v1, v2], where v1 := v(ξ1), v2 := v(ξ2). Then

v2∫
v1

v2h(v)dv ≥
(

1 − q2
0 −

2g(β)

δβ2

) v2∫
v1

h(v)dv +
2

δ

ξ2∫
ξ1

(v′)2v′′h′(v)dξ, (4.1)

where q0 = maxξ q(ξ).

PROOF. Multiplying (2.10) by h(v)v′ and integrating over the interval [ξ1, ξ2],
we obtain

ξ2∫
ξ1

v′′′h(v)v′dξ +

ξ2∫
ξ1

(v′)2h(v)dξ

β2

=
δ

2




ξ2∫
ξ1

h(v)v′dξ −
ξ2∫

ξ1

v2h(v)v′dξ −
ξ2∫

ξ1

v′h(v)q2dξ




≥ δ

2


 v2∫

v1

h(v)dv −
v2∫

v1

v2h(v)dv − q2
0

v2∫
v1

h(v)dv


 .

Since v′(ξ) ≤ g(β) for any ξ, we have
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(
1 − q2

0 −
2g(β)

δβ2

) v2∫
v1

h(v)dv −
v2∫

v1

v2h(v)dv

≤ 2

δ

ξ2∫
ξ1

v′′′h(v)v′dξ

=−2

δ




ξ2∫
ξ1

(v′′)2h(v)dξ +

ξ2∫
ξ1

(v′)2v′′h′(v)dξ




≤−2

δ

ξ2∫
ξ1

(v′)2v′′h′(v)dξ. �

Lemma 4.2 Let v be any bounded solution of (2.10), and let

max
ξ
q2(ξ) < G(β) := 1 − 2

g(β)

β2δ
− 1

6

(
γ + 1

γ − 1

)2

. (4.2)

Let also [ξ1, ξ2], ξ1 < ξ2, be an interval such that v′(ξ) > 0 for ξ ∈ (ξ1, ξ2),
v′(ξ1) = v′(ξ2) = 0. Then

v1v2 > 0 and (4.3)

max{|v1|, |v2|} > 1√
6

γ + 1

γ − 1
, (4.4)

where v1 = v(ξ1), v2 = v(ξ2).

PROOF. First, consider the case when 0 ≤ v1 < v2. Set

h(v) := v2 − v for v ∈ [v1, v2]. (4.5)

Note that

ξ2∫
ξ1

(v′)2v′′h′(v)dξ=
1

3

ξ2∫
ξ1

(
(v′)3

)′
h′(v)dξ

=−1

3

ξ2∫
ξ1

(v′)3h′′(v)dξ = 0.

10



Denote

a = a(β, q0) := 1 − q2
0 − 2

g(β)

β2δ
. (4.6)

Using Lemma 4.1 we obtain

a

v2∫
v1

(v2 − v)dv≤
v2∫

v1

v2(v2 − v)dv,

a
(
v2(v2 − v1) − 1

2
(v2

2 − v2
1)
)
≤ 1

3
v2(v

3
2 − v3

1) −
1

4
(v4

2 − v4
1).

So, we have

a ≤ v2
2 + 2v1v2 + 3v2

1

6
.

Thus, by the assumption (4.2),

v2
2 + 2v1v2 + 3v2

1 >

(
γ + 1

γ − 1

)2

. (4.7)

Therefore, v1 �= 0 by virtue of (3.2). Moreover,

6 max{v2
1, v

2
2} ≥ v2

2 + 2v1v2 + 3v2
1 >

(
γ + 1

γ − 1

)2

,

which implies

max{|v1|, |v2|} > 1√
6

γ + 1

γ − 1
. (4.8)

In the case when v1 < v2 ≤ 0 we define h on the interval [v1, v2] as

h(v) := v − v1. (4.9)

As in the previous case we get that v2 �= 0 and

v2
1 + 2v1v2 + 3v2

2 >

(
γ + 1

γ − 1

)2

. (4.10)
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Therefore,

max{|v1|, |v2|} > 1√
6

γ + 1

γ − 1
. (4.11)

In the remaining case when v1v2 < 0 we have to get a contradiction. Define
the function h on the interval [v1, v2] as follows.

h(v) :=




v−v1

−v1
when v1 ≤ v < 0,

v2−v
v2

when 0 ≤ v ≤ v2.
(4.12)

Let ξ0 ∈ (ξ1, ξ2) be the point where v vanishes. Then notice that

ξ2∫
ξ1

(v′)2v′′h′(v)dξ=− 1

v1

ξ0∫
ξ1

(v′)2v′′dξ − 1

v2

ξ2∫
ξ0

(v′)2v′′dξ

=− 1

v1

1

3
(v′(ξ0))3 +

1

v2

1

3
(v′(ξ0))3 > 0.

By the Lemma 4.1,

a

0∫
v1

v − v1

−v1
dv + a

v2∫
0

v2 − v

v2
dv <

0∫
v1

v2(v − v1)

−v1
dv +

v2∫
0

v2(v2 − v)

v2
dv,

a

2

(
v2

1

−v1

+
v2

2

v2

)
<

1

−v1

(
−v

4
1

4
+ v1

v3
1

3

)
+

1

v2

(
−v

4
2

4
+ v2

v3
2

3

)
,

a

2
(|v1| + v2)<

1

12
(|v1|3 + v3

2).

Thus,

a <
1

6

|v1|3 + v3
2

|v1| + v2

.

So, by virtue of (4.2),

|v1|3 + v3
2

|v1| + v2
>

(
γ + 1

γ − 1

)2

. (4.13)

Finally,

|v1|

v2

1 −
(
γ + 1

γ − 1

)2

+ v2


v2

2 −
(
γ + 1

γ − 1

)2

 > 0,
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which contradicts (3.2). �

Theorem 4.3 Let v be any periodic solution of (2.10) with zero mean. Then
the function q from equation (2.10) must satisfy

max
ξ
q2(ξ) ≥ G(β), (4.14)

for G defined in Lemma 4.2.

PROOF. Suppose, to the contrary, that

max
ξ
q2(ξ) < G(β).

Since v has zero mean, but is not identical zero (since q2 can not reach one),
there exists ξ0 with the property that v(ξ0) = 0 and that for any ε > 0 there
exists ξε > ξ0 such that ξε − ξ0 < ε and v′(ξε) > 0. Given ε > 0, consider the
maximal interval (ξL

ε , ξ
R
ε ) such that ξε ∈ (ξL

ε , ξ
R
ε ) and v′(ξ) > 0, ξ ∈ (ξL

ε , ξ
R
ε ).

If ξ0 ∈ [ξL
ε , ξ

R
ε ] then we get v(ξL

ε )v(ξR
ε ) ≤ 0 which contradicts the previous

lemma. Thus, ξ0 < ξL
ε . Choose now ξ∗ ∈ [ξ0, ξ

L
ε ) such that v′(ξ∗) > 0. Consider

again the maximal interval (ξL
∗ , ξ

R
∗ ) such that ξ∗ ∈ (ξL

∗ , ξ
R
∗ ) and v′(ξ) > 0,

ξ ∈ (ξL
∗ , ξ

R
∗ ). Notice that

|ξR
∗ − ξ0| < ε.

As above, ξ0 < ξL
∗ by virtue of the previous lemma. Moreover, that lemma

also implies that

v(ξR
∗ ) >

1√
6

γ + 1

γ − 1
.

Since this is valid for any ε, we have destroyed the continuity of v at ξ0. �

5 Explicit Estimates

Theorem 4.3 can be stated in a more explicit way. For this consider the fol-
lowing equation:

q2
0 = G(β). (5.1)
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Note that the right hand side is bounded

G(β) < q2
∗ := lim

τ→∞G(τ), ∀β > 0.

For q2
0 < q2

∗ we can solve (5.1) numerically. Let us define β0(q
2
0) as the largest

positive solution of (5.1). The graph of β0(q
2
0) is shown in Figure 1. Then

Theorem 4.3 has the following corollary:

Theorem 5.1 If there exists a periodic solution of (2.10) with zero mean and
q2
0 := max q(ξ)2 < q2

∗ ≈ 0.68, then

β ≤ β0(q
2
0). (5.2)
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Fig. 1. Graph of β0(q2
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Fig. 2. Graph of H(c)

Let us reformulate this theorem in terms of equation (2.7). Recall that β was

defined as a function of c in the following way: β(c) :=
√

3
4
b2 + 1, where b is

the positive solution of b3 + b = c. Then equality (5.1) can be written as

q2
0 = H(c) := G(β(c)). (5.3)

From Theorem 4.3 we see that

max
x

q(x)2 ≥ H(c).

We solve (5.3) numerically for c and define C(q2
0) to be the largest positive

solution. Let also

K(q2
0) :=

γ(β(C(q2
0))) + 1

γ(β(C(q2
0))) − 1

C(q2
0). (5.4)
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The graphs of C(q2
0) and K(q2

0) are shown in Figures 3 and 4 respectively.
Then using Theorem 3.2 and the definition (2.9) for q we get the following
corollary:

Corollary 5.2 If there exists a periodic solution of (2.7) with zero mean, then

maxx p(x)
2

c2
≥ H(c) and |u(x)| ≤ γ + 1

γ − 1
c <

7

5
c, ∀x. (5.5)

In particular, if maxx p(x)2

c2
≤ q2

0 < q2
∗ ≈ 0.68, then

c ≤ C(q2
0) and |u(x)| ≤ K(q2

0), ∀x ∈ R. (5.6)

The graphs of H(c), C(q2
0), and K(q2

0) are shown in Figures 2, 3, and 4.
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Consider (2.7) with p = 0:

u′′′ + u′ +
1

2
u2 =

1

2
c2. (5.7)

As a particular case of Corollary 5.2, we obtain an explicit estimate for the
Michelson constant KM. For this, define C := C(0), K := K(0). Then we have

Theorem 5.3 Let u be any periodic solution of (5.7) with zero mean. Then

c ≤ C ≈ 64.7 (5.8)
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and

|u(x)| ≤ KM ≤ K ≈ 92.2, for all x ∈ R. (5.9)

Choosing c =
√
Fmax, the theorem can be reformulated in terms of F . Namely,

let u be a periodic solution of (1.9) and let Fmax and Fmin be defined as in
(2.4). Then Theorem 4.3 has also the following consequence:

Corollary 5.4 If there exists a periodic solution u of (1.9) with zero mean,
then

Fmax − Fmin

Fmax

≥ H
(√

Fmax

)
and |u(x)| ≤ γ + 1

γ − 1

√
Fmax <

7

5
c, ∀x.(5.10)

In particular, if Fmax−Fmin

Fmax
≤ q2

0 < q2
∗ ≈ 0.68, then

Fmax ≤ C(q2
0)

2 and |u(x)| ≤ K(q2
0), ∀x ∈ R.

6 Universal Bounds on Averages of Solutions

In this section we apply the results obtained thus far to time averages of pe-
riodic solutions of the non-stationary Kuramoto-Sivashinsky equation (1.4).
In order to define the average, we have to use a functional Lim which is an
extension of the ordinary limit to the Banach space B(0,∞) of all bounded
functions on (0,∞). Thanks to the Hahn-Banach theorem, there exists a func-
tional Lim satisfying the following conditions:

(1) |Limt→∞f(t)| ≤ ‖f‖∞.

(2) Limt→∞f(t) = limt→∞ f(t) if this limit exists in the classical case.

Let u(x, t) be a solution of (1.4) satisfying the conditions (1.5), (1.6).

Denote by ū(x) the time average

ū(x) := Limt→∞
1

t

t∫
0

u(x, τ)dτ (6.1)

As in [1] one can prove that there exists an invariant probability measure µ
on AL such that

ū(x) =
∫
u(x)µ(du) (6.2)
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Henceforth we let an upper bar denote the average with respect to such an
invariant probability measure µ. It is then easy to show using equation (1.4)
that ū satisfies

ū′′′′ + ū′′ +
(

1

2
u2

)′
= 0, (6.3)

where

u2(x) =
∫
u2(x)µ(du).

Set ũ(x) = u(x) − ū(x) and let p(x) be the positive square root of

p2(x) = ũ2(x) =
∫
ũ2(x)µ(du).

Since u2 = ū2 + p2, we have

ū′′′′ + ū′′ + ūū′ +
1

2
(p2)′ = 0. (6.4)

Integrating this equation, we get

ū′′′ + ū′ +
1

2
ū2 +

1

2
p2 = c1.

Since u is periodic, ū is periodic also. Thus, after integrating one more time
over the period, we get

c1L ≥ 0.

Denote c =
√

2c1. So, we have

ū′′′ + ū′ +
1

2
ū2 +

1

2
p2 =

1

2
c2. (6.5)

Thus, ū(x) satisfies equation (2.7) with

c2 =
1

L

L∫
0

|u(x)|2dx and p2(x) = |u(x) − ū(x)|2. (6.6)
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So, Corollary 5.2 implies

Corollary 6.1 Let u(x, t) be any periodic solution of (1.4) with zero mean.
Then

(1) |ū(x)| ≤ γ + 1

γ − 1


 1

L

L∫
0

|u(x)|2dx



1
2

, ∀x ∈ R.

(2) Moreover, if

|u(x) − ū(x)|2 ≤ q2
0

1

L

L∫
0

|u(x)|2dx, ∀x ∈ R, (6.7)

for some q0 < q∗, then

1

L

L∫
0

|u(x)|2dx ≤ C(q2
0)

2 and |ū(x)| ≤ K(q2
0), ∀x ∈ R,

where C(·) and K(·) are the functions in the Corollary 5.2.

For example, in the particular case of (6.7) when

|u(x) − ū(x)|2 < 0.5
1

L

L∫
0

|u(x)|2dx, ∀x,

we have

1

L

L∫
0

|u(x)|2dx ≤ 235425 and |ū(x)| ≤ 678.7, for all x ∈ R.
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