ON A LERAY-a MODEL OF TURBULENCE
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ABSTRACT. In this paper we introduce and study a new model for 3-D turbu
lence, the Leray a model. This model is inspired by the Lagrangian Averaged
Navier—Stokes a model of turbulence (also known Navier—Stokes model

or the viscous Camassa—Holm equations). As in the case dfdbeangian
Averaged Navier—Stokesy model, the Leray o model compares successfully
with empirical data from turbulent channel and pipe flows,davide range of
Reynolds numbers. We establish here an upper bound for tendion of the
global attractor (the number of degrees of freedom) of theay-e« model of
the order of(%)””, whereL is the size of the domain arig is the dissipation
length scale. This upper bound is much smaller than what auddnexpect for
three dimensional models, i.eé.l%)3. This remarkable result suggests that the
Leray—« model has a great potential to become a good sub-grid scgéedddy
simulation model of turbulence. We support this observatipstudying, analyt-
ically and computationally, the energy spectrum and shawithaddition to the
usualk~%/% Kolmogorov power law the inertial range has a steeper pomer |
spectrum for wave numbers larger thgfw. Finally, we propose a Prandtl-like
boundary layer model, induced by the Leray model, and show a very good
agreement of this model with empirical data for turbulentimary layers.

1. INTRODUCTION

The Navier—Stokes equations (NSE) of viscous incompries8iilnds subject to
periodic boundary conditions, with a basic periodic I§bx= [0, 27 L]?, are given
by the set of equations

%v—uAv—i—(v-V)v—i—szf
Q) V-v=0
v — periodic, with periodic boX2 = [0, 27 L]?,

wherew, the velocity, and, the pressure, are the unknowrfsis a given body
forcing term and > 0 is the viscosity. To prove the existence of solutions to the
NSE inR", n = 2,3, Leray [33] considered the following regularization of the
system (1):

%?)a —vAv* + (u* - V)o* + Vp® = f
2) V-v*=0

u® = ¢q * vV,
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whereg,, is a smoothing kernel such that — v“, in some sense, as™\, 0. In
particular, the system (2) converges to the NSE (k) ag 0.

In this paper we consider a special smoothing kernel, theagseciated with
the Green function of the Helmholtz operator:

u® — o2 Au® = v®,

wherea > 0 is a given length scale. Dropping tlae-dependence in the super
index we arrive at the following modification of the NSE, wiiwe will call the
Leray« model:

%U ~vAv+ (u-VYo+Vp=7f

V.v=0

v=u— a?Au

v — periodic, with periodic boX2 = [0, 27 L]3.

®3)

The above model is very similar to the Lagrangian averagedelsstokes-alpha
(LANS-«) model, also known as the Navier—Stokes-alpha (N8&r viscous Camassa—
Holm equations)

%v —vAv + (u-V)v + Z?‘:] v;Vu; +Vp = f
Vou=0 '

v=u— o’Au

v — periodic, with periodic box2 = [0, 27 L]?,

(4)

which was introduced in [3]-[5] and [18] as a closure modeltfee Reynolds av-
eraged equations of the NSE. The inviscid LANSvnodel, i.e., the Lagrangian
averaged Euler equations, may be derived using variatjpnratiples from a La-
grangian that has been averaged along fluid particle trajest See, for example,
[4], [24], [26] or [35]. The LANS« model is then obtained from the Lagrangian
averaged Euler equations by adding a suitable viscous tArgeneral LANSe
model for anisotropic turbulence was derived in [23] and [36is an open ques-
tion whether the Lerayr model has a similar derivation as an averaged equation.
In [11], however, another approach connecting Lagrangiah Eulerian formu-
lations for the Navier—Stokes equations was introducedis €Ract connection
between Lagrangian and Eulerian formulations gives anqttespective for look-
ing at the relation between the Navier—Stokes equationgtntdANS-« and the
Leray« models.

The successful comparison with empirical data for time ayed quantities in
[3]-[5], for a wide range of Reynolds numbers in turbulen&ichel and pipe flows,
led to further study of the LANSin the context of turbulence modeling (see, e.g.,
[71, [8], [28], [36], [38]). Analytical studies of the glolhaxistence, uniqueness
and regularity of solutions to (4) and their connection te MSE are performed
in [18]. Similar results are also established in [34] for Hsmne model subject to
ad hocDirichlet-type boundary conditions. The energy spectrdrdpwas stud-
ied in [17], and semi-rigorous arguments, similar to theogeoduced in [16] (see
also [19]), suggest that the inertial range of (4) has twaspdrhe first part is the
usual Kolmogorow: /3 power law of energy spectrum up to a wave number of
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the orderl /a, then a faster drop in the energy spectrum with the powerdaiv

is shown. In addition, the Karman—Howarth theorem fordfltiirbulence obeyed
by the LANS-« model was proved in [25]. This theorem rigorously proves the
k=53 — k3 spectral scaling transition in wavenumberfas < 1 passes to
ka > 1. This property of the energy spectrum (which also has be@netbcom-
putationally [6]) indicates that the LAN&-model is more reliably “computable”

in direct numerical simulations than the NSE and can be usedsaib-grid scale
model in large eddy simulations (LES). The effectivenedsabh the LANSe and

the Lerayer models as LES models will be discussed further below.

Inspired by the work done in association with the systemL(ANS-«, we will
compare here the analogous results associated with (3yterin particular, us-
ing the steady state equations of (3), Lerayas a closure model for the averaged
Reynolds equations in the turbulent channels and pipes ash rexactly the same
conclusions as those reported in [3]-[5] for (4), LANS-This is because in chan-
nels and pipes under the corresponding special symmd11|e'texi’nmzj‘7:1 v;Vu,
in the LANS-« will be a complete gradient. That is, the difference betw@emnd
(3) in the channels and pipes, subject to certain speciair®tnes, will be in the
modified pressure and possibly in some of the associateddRisysiresses. There-
fore, the successful story of the LANSas a closure model in turbulent channels
and pipes applies word for word to the Leraymodel (3). Whether this is a mere
coincidence or there is something much deeper to undersgaglibject of current
and future investigation. It is worth mentioning that thesra@lready a preliminary
computational comparison study which indicates that thay-e model is a valid
competitor to the LANSx and other sub-grid scale models of turbulence. Indeed,
the LES applications tests for turbulent mixing layers i@][221], [22] found that
the Lerayer model predicted the resolved energy evolution properhiteting
both forward and backward transfer of energy. Further aimlghowed accurate
momentum-thicknesses and reliable levels of turbulenemgities. The computa-
tional overhead associated with the Leray model was lowaar that of dynamic
(mixed) models and no introduction afl hocparameters was required. The regu-
larized dynamics showed an appealing robustness at highdREynumbers. In a
geophysical application [27] the LAN&-and Lerayer models both gave realistic
simulations of mean motion in the double gyre problem fondating Gulf Stream
eddies. Thus the main purpose of this paper is to show thigicesimple models
(see, for instance, [2], based on [10] and [32]) comparer&lyg with empirical
data for time averaged fluid quantities as well as the N&viekes-alpha model
does. These models may be more phenomenological than therMNaukes-alpha
model, but their comparisons with empirical data are justadisl. These models
are meant to approximate Eulerian average fluid quantifesl Eulerian averag-
ing in general is not known to have either a variational pglecor a circulation
theorem.

In Section 2 below we introduce the functional setting of tleeay-« model
and establish some priori bounds which are useful for later sections. The global
existence and regularity of the Leraymodel is a classical result and can be found
in many textbooks on the mathematical theory of the NSE. &fbez we will omit
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it. In Section 3 we provide explicit upper bounds for the disien of the global
attractor of the Lerayr model in terms of the relevant physical parameters. Specif-
ically, we show that the number of degrees of freedom in thray-e model is of

the order of
I 12/7 I 9/14
(7)) (+2)
lg o

wherely is the small dissipation length scale associated with trogdeh Notice
that the number of degrees of freedom here does not growallybizith the size of
the domain as would be expected for 3-D systems. This is agiralication that
the Lerayer model has a great potential as a sub-grid scale large eddyagion
model. In Section 4 we follow the work in [16] and [17] (seece$9]) and derive,
using physical arguments, power laws for the energy spettre Leraye: model.
Specifically, we show that for very high Reynolds numbersitiegtial range con-
sists of two parts. In the first part whemx < 1 we find the usual Kolmogorov
x~>/3 power law and fora > 1 we have a different, much steeper, power laws.
We derive different power laws depending on what one migafosa typical eddy
turn-over time. Since we have several options in this matel power laws may
vary. Computational studies, reported in Sections 5 inditizat around the wave
numberx = 1/« the energy spectrum becomes steeper than®. Limited by the
available computer power, we are unable to produce widegmmertial range to
separate the two different parts of the energy spectra. worgh adding that we
have similar behavior in the LAN&-and intensive computational studies are being
carried out by various groups to investigate this potemtieimaly in the behavior
of the energy spectra of the LAN&and Leraya models. In Section 6 we follow
[7] and [8] to develop a Leray- Prandtl-like boundary layer model. We study this
model analytically as well as computationally. We notichdttit is much easier
to study this model analytically than the corresponding ISMNmodel studies in
[7] and [8]. We tested this model successfully against thendary layer empirical
data. It is worth adding that other studies of boundary layenodels have been
reported in [28] and [38].

2. A PRIORI ESTIMATES

2.1. Functional setting. First, let us introduce some notation and the functional
setting. Recall the periodic ba® = [0,27L]* and fix a constant length scale

a > 0. We denote by-,-) and| - | the L2-inner product and the corresponding

L?-norm. We denote by

H={u:ue L*N)3 V-u=0,uis periodic in periodic box2,
and / udx = 0},
JQ

andV = HN H'(Q)3. LetP, : L?(Q)®> — H be theL?-orthogonal projection,
referred to as the Leray-Helmholtz projector. Denotedy- — P, A the Stokes
operator with the domai® (A) = (H?(2))? N V. In the periodic casel = —A.
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The Stokes operator is a self-adjoint positive operatoh witmpact inverse. The
eigenvalues ofl are denoted by; so that

1
The inner product i will be denoted by
((u,v)) := (AY%u, AV?v) = (Vu, V), || = |A 2, for u,v € V.
Note that by Poincaré inequality we have
1
(5) ul? < A—llluH2

for everyu € V. In order to have dimensionally homogeneous norm& iii€2)3
andH? (), we will use the following inner products in these spacespeetively:

((w,0)) g = A [(u,0) + & ((u,0))],

(6) ((w,0)) g2 = A [(u,0) + 202 ((u,v)) + o’ (Au, Av)] .
Due to (6) we have
(7) Aol < lullgz < 2], wherev = u — o®Au,

i.e., the norm|ul| ;- is equivalent to\; |v|, wherev = u — o Au.

Following a well accepted notation and well establishecproes of the NSE
(see, e.g., [13], [19], [39] and references therein), wetkeR (u, v) := P, [(u- V)v] €
V' for all u,v € V, whereV’ denotes the dual space Bf We denote by, v)y-
the dual action ofp € V' onv € V. The bilinear formB has the following
property:

(B(u,v),w)yr = —(B(u,w),v)y, for all u,v,w € V.

In particular,
(8) (B(u,v),v)yr =0 forall u,v € V.

By analogy with the NSE (see, e.g., [13], [19], [39] and referes therein) the
Leray« model, system (3), if? is equivalent to the functional differential equation

%U +vAv + B(u,v) = f
u+?Au=u—?Au=v

u, v are periodic, with periodic bof

U|t:0 = V9.

For simplicity, we assume that the forcing tefintloes not depend on time.

As we have indicated in the introduction, Leray establishg@3] the existence
of solutions to the Navier—Stokes equation®ih » = 2, 3. To accomplish this he
introduced a modified system similar to (3), for which it wasier to establish the
existence and uniqueness, and then by passing with the gmam\, 0* he could
achieve existence of solutions to the Navier—Stokes empugtilndeed, the global
existence of solutions to (3) iR*, n = 2, 3 follows from Leray’s analysis [33]. For
the periodic case similar arguments to those establishiébdd@-D LANS« model
(see [18]) lead to the global existence and uniqueness & amdstrong solutions

(9)
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to the system (3) (equivalently (9)). Here, we will only st#te theorem without
a proof. However, we will formally establish priori estimates on the solutions,
which we will need later when we discuss global attractorghe system (9). Let
us stress that all these estimates can be proved rigorosisiy, for instance, the
Galerkin approximation procedure following, for instanfs].

Theorem 2.1 (Leray [33]) LetT > 0,v > 0, « > 0 be given.

(): If f € V''andvy € H, then the system (9) has a unique weak solution on
[0,T]. That is, there is a unique functiansuch thaty € L>((0,7'); H) N
L2((0,T); V) N C([0,T); H-weak with £v € L2((0,T); V') such that

d

(v, Oy + v(APu, AV26) + (B(u,v), d)vr = (£, d)v

in D'((0,7)), for everyp € V, whereu = (I + a?A) 'v andv(0) = vy.
(ii): If f € H,vg € V, then the unique weak solutiert) mentioned ir(7) is
a strong solution orf0, 7'). Thatis,v € C([0,7];V) N L%((0,T); D(A))
with £v € L%((0,T); H) such that
d
7 (0.0) +v(A2u, A129) + (B(u,0), ¢) = (£.9)
in D'((0,7)), for everyp € V, whereu = (I + a?A) 'v andv(0) = vy.

Next, we will present formadh priori estimates for the solutions established in
the above theorem. As we have mentioned before, these ésticen be obtained
rigorously using the Galerkin procedure.

2.2. L*-Estimates. Taking the inner product of (9) withand using (8), we obtain

§E|U| +vllol|” = (f,v).
By Cauchy-Schwarz inequality and Poincaré inequality {8} reach
2
A
G0 SIflel < gl + 2l
‘f‘Q v 2
< — :
< oo Tl
Thus
d 2
(10) %‘?)‘2 + v|jv||? < Vf—>\1

Using (5) one more time we reach
d 2 2 ‘f‘Q
— A <
dt‘v‘ + vjv]” < »e
Using Gronwall’s inequality we conclude that
(L= e MOIfP

—vA
(11) PP < e OF + 55

: R(t),
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and as result we have
limsup [v(t)| < Ry :=

t—o00

HenceB; = {w € H : |w| < Ry} is an absorbing ball for the solution(?).
Moreover, (7) implies

1
Z/)\] '

lim sup ||u(t)]| g2 < 2X1 Ro.
t— 00
ThereforeBy = {w € H : ||w| g2 < 2X\1 Ry} is an absorbing ball for the solution

u(t).
Furthermore, for ever§” > 0 we have from (10)

T
(12) lo(T)|> + I//O (7)) |[2dr < [v(0)]* +T

Thusv € L2((0,T); V) forall T > 0.

2

2.3. Hl—Estimat&s Taking the inner product of (9) witdv we obtain
||?)||2 + v|Av|* = (f, Av) — (B(u,v), Av).

2 dt
Thus, by Cauchy-Schwartz, Young, and Holder inequalitteseach
2 v
|(f, Av)[ +[(B(u,v), Av)| < ==+ Z\Av\Q + [Avl[[o]l[|ull 7
12w v 1
< = + Z\A?)\Q + Z|AU|2 + ;||?)||2||U,H%Oo
2 v 1
<t Al 4 S o) ull

Notice that by the Sobolev inequality in 3-D we have

lul[ g < — ]

Ul [ S U|| 2
A}/ 1 ’

for some dimensionless universal constantherefore

2 v CQ
(. A0)] + (Bl ), 40 < L4 a4 ol
v\
Thus | 2 2
d f
R s e L

We use (11) and (7) to obtain

(;]f( +lol?) < K@)+ [ol?),

where

K(t) :max{ ,
v v

Now Gronwall’s inequality implies that

L+ o()]* < (1+ [lo(s)]*) e T, t=s20.

2f2 42 R (1) }
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Since for anyl’ > 0 K(7) is integrable on0,7") (by (11)) and because of (12)
we have thaw € L>([0,7]; V'), wheneveryy, € V, andv € L ((0,T];V),
whenevew, € H.

Denote byS(t) the semi-group of the solution operators to the equation (9)
corresponding to the unknown functiort), i.e., we have that(t) = S(t)vg.
Following similar arguments as those well establishedtier2-D NSE (see, e.g.,
[1], [12], [13], and [39]), one can easily prove the followitheorem:

Theorem 2.2. Letwy, f € H. Then for anyl’ > 0 the semi-groug(¢) is compact
and differentiable with respect to the initial datg on the interval(0, 77.

SinceS(t) is a compact semi-group arg) is an absorbing ball i, the equa-
tion (9) has a unique global attractor

A= Us®B
s>01>s

(see, e.g., [1],[12], [13] and [39]).

3. DIMENSION OF THE ATTRACTOR

Note that/v|? andv||v||? represent in the Lerag-system (3) the kinetic energy
and the rate of dissipation of energy respectively. Theeefoy analogy with the
conventional theory of turbulen@a Kolmogorov, the mean rate of dissipation of
energy for the system (3) should be given by

- v 2
€leray — W(HUH >7

where (-) denotes an ensemble average. Influenced by the Ergodic érheafr
Birkhoff, people usually replace the ensemble average byithe average. In our
case we will consider the worst scenario and define

sup limsup — /HU )? dr

13 “Leray —
( ) €Leray (27’1’L) (O)EA  t—00

to be the mean rate of dissipation of energy for the systemw@8jch is finite
because of (12) and the fact that we have a compact globatimitr Also by
analogy with conventional theory of turbulence we set fer¥fscous dissipation

length scale
3 1/4
ld = ( 7 > 3
€Leray

which is supposed to represent the smallest scale that @us te@resolve in order
to get a complete resolution for turbulent flows associatitd tlve Leraye: model.

Theorem 3.1. The Hausdorff and fractal dimensions of the global attractbthe
Leray« model satisfy

I\ 127 JARAL
dn(A) < dr(A) < ( ) (1+_) 7
lg «
for some universal constanf which one can estimate explicitly.
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Proof. We follow [12] (see also [13], [39], and references thereinll linearize
Leray« model about a trajectory in the global attractdt) = u(t) + o Au(t)
obtaining

(14) n+a’An=¢,
£(0) = &°.

That is, the deviatiog(¢), with initial deviation¢(0) = £°, evolves according to

{ FE+VAE+ B(u,€) + B(n,v) =0

d

il A —
where
A(t)y = A + B(u(t), ) + B(d, v(t)), b+ a’Ap =1, u+a’Au=nw.
Let¢;(#) be solutions of the above system witf{0) = 5 ,j=1,...N. Assume

&Y, ..., &% are linearly independent. L&@y(t) be theL2 orthogonal projection
from L2(€2) ontospan{& (¢), ..., én (1)}, then

H(El JARTRAN EN)(I‘)H%Q = H(El Ao A fN)(())HQLQe* Jo Trace[Qn (7)o A(T)oQn (7)) dT’

whereTrace[-] denotes the trace of a linear operator.
Now, let{t (t), ..., (t)} be anL?-orthonormal basis afpan{¢; (t), ..., En (2)},
e., (i, ;) = 6;j, and letp; = (I — o®>A) 14, Itis clear thaty; € H(Q), for
j=1,2,..., N. Recall that B(u, w), w) = 0 (equation (8)) for alk,, w € V, then
we have

Mz

Trace[Qn(t) o A(t) o Qn(t)] = (A5, ¢5)

<.
Il
-

(Wll;I1? + (B(u, ), 1) + (B(g,v), ;)

I
Mz

7=1
N
(15) = > (gl + (B(g),0),¢5))
7=1
N N
> vy |l - Z (65, 0)
=1 =1
Notice that
N N
> (B¢ 0),%5)] = D (65 V)v,1)
j=1 j=1
N 1/2
6 v oo (2)|? dx
(16) < vlllonle (]Z]/Q%( )l d)

lollllpa | = N2,
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where
N

r) =Y |¢;(x)
j=1

To finish the estimate for tHerace[Q y () o A(t) o Q x (¢)] we need the following
two propositions:

Proposition 3.2. Lety = «/L. Then for every functiop € H?(S2)
9l < C(v)(2rL)"*2|(¢ + a*A9)],
whereC(v) is given below in equation (17).

Proof. We denote by

bre 27TL / P(x)e T d,

the Fourier coefficients of a functiof(x). Thus we have

|9l = (Z $n2> (2mL)?,

KEZ3

and

KEZ3 KEZS3
1/2 1/2
< ST 16l (1 442K S+
KEZ3 kEZ3

It is obvious that there exists a universal constant 0 (see, e.g., [13] or [39] for
explicit bounds or;) such that

2(4‘75 i( 224/3)2
KEZ3 p=0

Therefore,
[(cry)~3/2)

_ 1 o d
Z(1+V2”2) "< Z 1+Z+/( ‘ 44y8/3

e ez 7'y

34 5 4 1 \3/4
17 < AT [
@ < (77) i3 (@)
5.
4

%( )3/4 %),
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Putting the above together we get

1/2
Il L < C(7) (Z 6l? (1 + v%?)?) = C(y)(2nL) *|(¢ + o Ag)|.

KEZ3

O

Proposition 3.3. Let{«1,...,9)x } C H?(Q) be orthonormal inZ.2-inner product,
i.e., (Vr, 1) = Ok Letg, = (I + a?A) Y.,k =1,2,..., N. Let alsop? (z) =
Z;.V:] |¢;(x)]?. Then there exists a constafif: (), independent oV, such that

(18) lowllre < Cr(y)(2mL) 2.

In fact, Cr(7) < V/3C(v), whereC(v) is given in (17).

Proof. Let 64,...,65 € R to be chosen later, such th@ff:] 62 = 1. Then by
Proposition 3.2

N N
D Oxdul(z) < CHETL) 1Y 0u(ds + a*Ady)
k=1 k=1
N
= CM@rL) 2|3 Outs
k=1

N 1/2
= C(y)(2rL) 3/ (Z m?)
k=1

— C(y)2rL) 7,

for all z € 2, where we have used the orthogonality{@f. }. ¢ From the above we
have

N 2 N 2 N 2
(Zemk(m)) +<Zeﬁ¢i(m>) +<Zeﬁ¢i(ac>> <OM)?@2rl)?, zeq.

Then we choose

oo
K 1 2’
(N (@h@)?)
and alternatively
0 o) Gle)
(X1 (62(@)2) (SN (62 ))2)

to obtain
(@) <3C()*2rL) %, zeq.
Hence, our estimate. O
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Now we go back to estimatingirace[Q n () o A(t) o Qn(t)]. ¢From (15), (16),
and (18) we have

Trace[Qn () o A(t) o Qn(1)]

v

uZHW o) | lpn e N2

v

VZA — u(®)||Cr (y)(2mL) 32N 1/2,

Note that in the three dimensional case we haye> ¢, L.~25%/3 for some positive
universal constant; (see, e.g., [13] and [39]). Therefore,

Trace[Qn (1) o A(t) o Qn(#)] > oL *N/* — |lo(t) | Cr (v)(2nL) */* N/,
for some positive constaat. Hence,

1 T
lim in /U Trace[Qn (1) o A(t) o Qu (£)] dt

T—o0
1 T 1/2
> L 2N®3 — Cp(7)(2nL) "2 N2 lim sup (—/ o (t )y2df>
T500 \1' Jo
I3 1/2
> L 2N — Cp(v)(2rL) 32 N/? (—61 y> :
14

For N > 1, such that
12/7 6/7
N> <£> (Cp(v)> ’
~ \Uqg ()

hjgnlnf—/ Trace[@Qn (t) o A(t) o Qn(t)] dt > 0.

Therefore, based on the trace formula (see [9] [12], [13],381), this NV is an
upper bound for the dimension of the global attractor, i.e.,

dn(A) < d(A) < (L>W (Cpc—mfﬁ.

we have

la 2

SinceCr () < e3(y~3/*+1) for some universal constang, we have the following
upper bound for the dimension of the global attractor:

dy(A) < dp(A) <c <L>12/7 (1 + §>9/14’

la
for some universal constant This concludes the proof. O

Remark. A heuristic physical argument in classical theory of tuemge suggests
that the number of degrees of freedom for the 3-D NSE is ptiap to (L/14)3.
This formula is still far from being reached rigorously ftet3-D NSE due to the
lack of a proof for the global regularity of the 3-D NSE. Howeva similar formula
has been shown to be correct for the LANINS-« or viscous Camassa—Holm)
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model [18]. The above estimate, on the other hand, sugdestshe number of
degrees of freedom of the Leraymodel is much smaller than that of the NSE
or the LANS« models. This remarkable result indicates that the Leragodel
might be much easier to compute with and that it lies, fromadbmplexity point
of view, between the 2-D and 3-D cases.

We observe that foy = «/L large enough one can easily show, using energy
estimates, that the dynamics of the Leraynodel is trivial and the attractor is
a single stable steady state. Hence, the dimension of thmlghdtractor tends
to zero. While deriving the above estimate for the dimensibthe attractor we
assumedy to be a positive finite number. In fact, we implicitly kept inmd that
~ is a small number in order to stay “close” to the 3-D NSE. S&3 {@r related
results concerning the dependence of the global attrantarfor the 2-D LANS«
or the NSe: model.

4., ENERGY SPECTRUM

Following the work of [16] and [17] (see also [19]) we provilere physical
arguments for studying the energy spectrum of the Lerawedel, equations (3).

Let - -
Uy = Z ;e T, Uy = Z vjel T,
w<]jl<2x k<|j[<2k
here againp; = ﬁ [ #(x)e "% dz denote the Fourier coefficients of the
function ¢(x). The energy balance far, is given by
1d
(19) 5%(”&7”1{) +V(_AUH7UH) =Ty — T,
where
T = —((uZ - V)vg, v) + ((ug +ul) - V)(ve +05),02),
and

u'Z:Zu]-, uf = Zu]-.
J<k J22k
Taking an ensemble average of (19), e.g., long time avevegeptain

v((=Avg,vk)) = (T) — (Tax)-

In terms of the energy spectruff, () of the variablev we have
2K

VB ) v [ ) dn ~ (1) - (Tan).

K
As long as
vi’ By (k) < (Ty),
i.e., (T,) =~ (Ta) (there is no leakage of energy due to dissipation), the wave
numberx belongs to the inertial range.
As before, lef qray represent the mean rate of dissipation of energy:

. v
€Leray 1= <ﬁ /Q(A?)) ¥y dm>,
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which in principle should be comparable witfy...,, which was introduced earlier
in equation (13). The average velocity of an eddy of spaita of the order ol /x
can be evaluated in three different ways:

1 1/2 2K 1/2
0t = (s [evete) = ([T Emean)  ~wEy
L JQ JK
1/2 %k v 1/2 1/2 o (,\1/2
U; = L,;/u,{-v,{drl: = / Eai(n)dﬁ N%a
7 o . (+a2P) (1 F 02?172
1 1/2 26 pu 1/2 1/2 g ()1/2
Uz = <—3/u,{-u,{dr1:> = </ %“ﬁ) N%’
7 Jq « (1t a2 1+ a?s?)

. H]/QEQ(H)]/Q
"1+ 2Ry
It is not clear, based on physical grounds, which one of thé@gsrent expressions
is the right one. As we see below each expression will leaddifierent power law
in the energy spectrum. A careful study on the power laws énetiergy spectra
will shed some light on which of the above expressions is idjie one, a subject
of future and on going research. In the inertial range, atingrto the Kraichnan
mechanism of energy cascade [31] (see also [16], [17], [119¢)turn over time of
eddies of the spatial sizE/x is the time it takes for the eddies of spatial size:
to transfer their energy to the eddies of smaller siz&«), which is about
n= 1 =0,1,2
TH.—HU’?, n=20,1,2.
Then for the different definitions df,’, n = 0, 1, 2, we have
(14 a2k2)n/?

n=0,1,2.

n
T, ~

Therefore

) 1% KO B (k)2
€Leray — E /K () diy ~ m’

which implies the following spectral scaling law:
EL(K) ~ (fLeray) k23 (1 + a2k2)"/3,

Consequently, the translational kinetic energy spectrlithevariableu is given
by

Eq(r)
(14 a?k2)?

Notice that forax < 1 the energy spectrum is the usual®/? power law as
for the Navier—Stokes equations. But fex > 1 we have a faster decaying power

2n—17

law x—3 , forn = 0,1,2. This indicates that the Leray-model can serve as

a very good sub-grid scale model. Similar results concerttie LANS« (NS«

or viscous Camassa—Holm equations) has been reported]jibfiséd on the eddy
turn over timeT,f, i.e.,n = 2. It has been shown there that the power laws for the

E'(k) = ~ (ELeray) 225231 + o262
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energy spectra in the initial range are®/3, for ka < 1, andx 3 for ka > 1.
Notice, that for the Lerayr model we also have®/3 for ka < 1, while we
haver'3/3 for ka > 1, when we take: = 2. Therefore, the Leray model
decays even faster than the LANS{NS-) model for ke > 1. Preliminary
computational results which compare the energy spectiaediSE, LANSe and
the Leraye support this observation, see Fig. 1.

5. NUMERICAL SIMULATIONS

Numerical simulations of flows with high-symmetry were cootid to compare
the energy spectra of the Lerayand LANS« models to the the incompressible
Navier-Stokes equations. Flows with high-symmetry wers ftudied by Kida
in [30]. All computations were carried out using a modifiedsien of the FOR-
TRAN code of [37], see also [15]. Changes were made to imphtithe Leraye
and LANS« models. The actual calculations were done at the Departofent
Mathematics, University of California, Irvine using Int&keon dual 1.8Ghz P4
Beowulf compute nodes.

Fourier transforms were performed ori28% grid using the 2/3 rule to avoid
aliasing. Due to the high-symmetry of the flow, the spatiabhation of our cal-
culation is comparable to turbulence in a periodic box ustogrier transforms
of size5123. Time was integrated using a second order Adams—Bashfathad
with a step size o.0005. We took viscositys = 0.001 anda = 0.05. The forcing
function f was designed so that fok| < 4 the Fourier modeg,, of the solution
remained constant in time. The initial value was taken to be

UO(Iu Y, Z) = [UU(Iu Y, Z), UU(y7 va)u UO(vavy)]
where

Uo(z,y,z) = 0.40031233 sin z(cos 3y cos z — cos y cos 32)
+ 0.22272469 sin 3x(cos 3y cos z — cos y cos 3z)
+ 0.07043173 sin 4z (cos 2y + cos 2z)
— 0.14086346 sin 2x(cos 4y + cos4z).

We calculated the translational energy spectéjfix) for the three-dimensional
Lerayw, LANS-a and incompressible Navier—Stokes equations by averaging i
time from¢ = 33 t0 100. It is evident from Figure 1 that LANS-has a more com-
pact spectrum than the Navier—Stokes equations. This isigtent with results
reported earlier in [6] and [36]. Note also that Lerayxas an even more compact
spectrum than LANSy. This is consistent with our analysis, which estimates a
faster rate of decay for the energy spectrum of the Leray-

Our analytical estimate on the dimension of the global etitraindicates that
the degrees of freedom of Lerayis significantly less than would be expected for
extensive three-dimensional turbulence. Therefore,dladive compactness of the
energy spectrum for Leray-should increase at higher Reynold’s numbers.
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FIGURE 1. Comparison of the average energy spectra of the
Navier—Stokes equations to the LANS and Leray models of tur-
bulence forr = 0.001 anda = 0.05.

6. BOUNDARY LAYER APPROXIMATION

Following [7] and [8] we derive here a boundary layer appmation of the
Leray« model for a stationary two-dimensional flow near a surface, taen re-
duce it to an extension of the Blasius equation in the case®f@pressure gradient
flow near a flat plate. Let be the coordinate along the surfagethe coordinate
normal to the surface, and= (U, V') the mean velocity of the flow.

Consider the stationary two dimensional Lewaynodel:

(u-V)v=vAv—Vp
V.-u=0,

wherev = (v, 7) = u— V- (a?(x)Vu). We supplement system (20) with non-slip
boundary conditions|,—o = 0, as well as

(20)

for all z > 0, where(U,, 0) is the mean external velocity of the flow. In addition,
we assume here tha{-) is a function ofx variable.
Let us fix/ on thex-axis and define(l) in the following way:

0) 1 v
€l) == ——=,/—.
VR Uel
We change variables:
_7 _y _U _ v _ P _a
=7 = Ul_Ue’ Vl_eUe’ pl—UeQ, o= -
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Note that the new variables are dimensionless. Recalldha$ a function ofxz
only. Then we obtain

1 02 0?2 0 0
—~(x = Ui(x — U — a?—U) ——a? —U
UQW(”I‘,?J) 1(71,y1) — € 83:% 1 — O ay% 1 —€ oz Qg o1 15
1 3 9 02 , 07 3 0 o 0
ﬁeT(I,y) = eVi(z1,y1) — € 0418—11%‘/1—&118—%2‘/1—6 8—95104].8—x1 1-

Neglecting the terms in equation (20) with high powers,afropping subscripts
and denoting

we arrive at the following Prandtl-like boundary layer appmation of the Leray-
« model:

UgW +VEW = 2w - Zp
(21) p =0

2U+ZV =0

Fore small enough we have

z Yy U, T Y
U"a teUoo R ) V"a( ~ Voo 7 ’
(z.9) (z\n-@> (.9~ T <l z-@)

wherel, is a length associated with the external flow= v /U, and (U, Vo) IS
a solution of (21).

Next we simplify (21) using Blasius’ similarity variable the case of a zero
pressure gradient, i.e., we assume that

0
%pfov

and the exterior velocity/, is constant. We will study the flow near some fixed
point zy on the plate. Let us chose the origin on the plate so that thd pg
has the coordinateg, 0), wherel is a parameter of the boundary layer. Now, we
assume thad is proportional to,/z, i.e.,

a = ap,
whereg is another parameter of the boundary layer. In addition, Westudy the

solutions(Us, Vo) Of (21) that on some adequate interval e < = < [ + € are
of the form

1
(22) U = f(6), Vo= —mg(6), £=-F.
Now we obtain the following equations fgrandg:
{ _%ffl€ +62f(%fm€ + fll) _ ﬁfo” +gfl _ 629]“” _ fll _ ﬁQf””
g — 3¢ =0.
Let ¢
h(§) = dn.
©= [ s
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FIGURE 2. Comparison with experimental data of the Rolls-
Royce applied science laboratory, ERCOFTAC t3b test case fo
cy = 0.00401, Ry = 1436.

Theng = 3¢h' — Sh, and we have the following equation fbr

(23) hlll + %hh” _ /82 (hlllll + %h””) — 0

The boundary conditiot/|,—, = 0 requiresf (0) = 0 and thush(0) = A'(0) = 0.
In addition, the physical interpretation D%U for y = 0 as the shear stress on the
wall imposes the conditiofi’ (0) > 0, thatis,h”(0) > 0. Moreover,U(x,y) — U,
asy — oc requires that’(¢) — 1 as¢ — oc.

Note that ifh(¢) is a solution of (23), theh(x) := Bh(Sx) is a solution of

(24) _hIIIII _ %hh”” + hIII + %hhll — 0

This equation can be also written as

m! + lhm,” =0
(25) { m = hzf h”.

Here agaim(0) = A'(0) = 0, ”(0) > 0. In addition,U(z,y) — Us asy — oo
requires that'(¢) — B? as¢ — oo.

Notice that the equation (24) is the same as the correspgpmrdjnation for the
LANS-a (NS-«) model. In [8] it was proved that the solutions of this eqoiati
satisfying the above physical boundary conditions form a-parameter family.
These two parameters are the skin friction coefficignand the Reynolds number
based on momentum thickneBg, and they determine the velocity profile for each
horizontal coordinate. The family of of velocity profilgs , ., } match experi-
mental data for a wide range of Reynolds numbers (see FigA)ther version
on the boundary layer approximation of the LAMSNS-« or viscous Camassa—
Holm) model and its applications to turbulent jets and wakespresented in [28]
and [38].
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