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ABSTRACT. In this paper we introduce and study a new model for 3-D turbu-
lence, the Leray�� model. This model is inspired by the Lagrangian Averaged
Navier–Stokes�� model of turbulence (also known Navier–Stokes�� model
or the viscous Camassa–Holm equations). As in the case of theLagrangian
Averaged Navier–Stokes�� model, the Leray�� model compares successfully
with empirical data from turbulent channel and pipe flows, for a wide range of
Reynolds numbers. We establish here an upper bound for the dimension of the
global attractor (the number of degrees of freedom) of the Leray�� model of
the order of( Lld )12=7, whereL is the size of the domain andld is the dissipation
length scale. This upper bound is much smaller than what one would expect for
three dimensional models, i.e.( Lld )3. This remarkable result suggests that the
Leray�� model has a great potential to become a good sub-grid scale large eddy
simulation model of turbulence. We support this observation by studying, analyt-
ically and computationally, the energy spectrum and show that in addition to the
usualk�5=3 Kolmogorov power law the inertial range has a steeper power law
spectrum for wave numbers larger than1=�. Finally, we propose a Prandtl-like
boundary layer model, induced by the Leray�� model, and show a very good
agreement of this model with empirical data for turbulent boundary layers.

1. INTRODUCTION

The Navier–Stokes equations (NSE) of viscous incompressible fluids subject to
periodic boundary conditions, with a basic periodic box
 = [0; 2�L℄3, are given
by the set of equations

(1)

8<: ��tv � ��v + (v � r)v +rp = fr � v = 0v – periodic, with periodic box
 = [0; 2�L℄3;
wherev, the velocity, andp, the pressure, are the unknowns,f is a given body
forcing term and� > 0 is the viscosity. To prove the existence of solutions to the
NSE inRn , n = 2; 3, Leray [33] considered the following regularization of the
system (1):

(2)

8<: ��tv� � ��v� + (u� � r)v� +rp� = fr � v� = 0u� = �� � v�;
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where�� is a smoothing kernel such thatu� ! v�, in some sense, as�& 0+. In
particular, the system (2) converges to the NSE (1) as�& 0+.

In this paper we consider a special smoothing kernel, the oneassociated with
the Green function of the Helmholtz operator:u� � �2�u� = v�;
where� > 0 is a given length scale. Dropping the�–dependence in the super
index we arrive at the following modification of the NSE, which we will call the
Leray-� model:

(3)

8>><>>: ��tv � ��v + (u � r)v +rp = fr � v = 0v = u� �2�uv – periodic, with periodic box
 = [0; 2�L℄3:
The above model is very similar to the Lagrangian averaged Navier–Stokes-alpha
(LANS-�) model, also known as the Navier–Stokes-alpha (NS-�) or viscous Camassa–
Holm equations)

(4)

8>><>>: ��tv � ��v + (u � r)v +P3j=1 vjruj +rp = fr � v = 0v = u� �2�uv – periodic, with periodic box
 = [0; 2�L℄3;
which was introduced in [3]-[5] and [18] as a closure model for the Reynolds av-
eraged equations of the NSE. The inviscid LANS-� model, i.e., the Lagrangian
averaged Euler equations, may be derived using variationalprinciples from a La-
grangian that has been averaged along fluid particle trajectories. See, for example,
[4], [24], [26] or [35]. The LANS-� model is then obtained from the Lagrangian
averaged Euler equations by adding a suitable viscous term.A general LANS-�
model for anisotropic turbulence was derived in [23] and [35]. It is an open ques-
tion whether the Leray-� model has a similar derivation as an averaged equation.
In [11], however, another approach connecting Lagrangian and Eulerian formu-
lations for the Navier–Stokes equations was introduced. This exact connection
between Lagrangian and Eulerian formulations gives another perspective for look-
ing at the relation between the Navier–Stokes equations andthe LANS-� and the
Leray-� models.

The successful comparison with empirical data for time averaged quantities in
[3]-[5], for a wide range of Reynolds numbers in turbulent channel and pipe flows,
led to further study of the LANS-� in the context of turbulence modeling (see, e.g.,
[7], [8], [28], [36], [38]). Analytical studies of the global existence, uniqueness
and regularity of solutions to (4) and their connection to the NSE are performed
in [18]. Similar results are also established in [34] for thesame model subject to
ad hocDirichlet-type boundary conditions. The energy spectrum of (4) was stud-
ied in [17], and semi-rigorous arguments, similar to those introduced in [16] (see
also [19]), suggest that the inertial range of (4) has two parts. The first part is the
usual Kolmogorov��5=3 power law of energy spectrum up to a wave number of
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the order1=�, then a faster drop in the energy spectrum with the power law��3
is shown. In addition, the Kármán–Howarth theorem for fluid turbulence obeyed
by the LANS�� model was proved in [25]. This theorem rigorously proves thek�5=3 ! k�3 spectral scaling transition in wavenumber ask� < 1 passes tok� > 1. This property of the energy spectrum (which also has been noticed com-
putationally [6]) indicates that the LANS-� model is more reliably “computable”
in direct numerical simulations than the NSE and can be used as a sub-grid scale
model in large eddy simulations (LES). The effectiveness ofboth the LANS-� and
the Leray-� models as LES models will be discussed further below.

Inspired by the work done in association with the system (4),LANS-�, we will
compare here the analogous results associated with (3), Leray-�. In particular, us-
ing the steady state equations of (3), Leray-�, as a closure model for the averaged
Reynolds equations in the turbulent channels and pipes we reach exactly the same
conclusions as those reported in [3]-[5] for (4), LANS-�. This is because in chan-
nels and pipes under the corresponding special symmetries the term

P3j=1 vjruj
in the LANS-� will be a complete gradient. That is, the difference between(4) and
(3) in the channels and pipes, subject to certain special symmetries, will be in the
modified pressure and possibly in some of the associated Reynolds stresses. There-
fore, the successful story of the LANS-� as a closure model in turbulent channels
and pipes applies word for word to the Leray-� model (3). Whether this is a mere
coincidence or there is something much deeper to understandis a subject of current
and future investigation. It is worth mentioning that thereis already a preliminary
computational comparison study which indicates that the Leray-� model is a valid
competitor to the LANS-� and other sub-grid scale models of turbulence. Indeed,
the LES applications tests for turbulent mixing layers in [20], [21], [22] found that
the Leray-� model predicted the resolved energy evolution properly, exhibiting
both forward and backward transfer of energy. Further analysis showed accurate
momentum-thicknesses and reliable levels of turbulence intensities. The computa-
tional overhead associated with the Leray model was lower than that of dynamic
(mixed) models and no introduction ofad hocparameters was required. The regu-
larized dynamics showed an appealing robustness at high Reynolds numbers. In a
geophysical application [27] the LANS-� and Leray-� models both gave realistic
simulations of mean motion in the double gyre problem for simulating Gulf Stream
eddies. Thus the main purpose of this paper is to show that certain simple models
(see, for instance, [2], based on [10] and [32]) compare favorably with empirical
data for time averaged fluid quantities as well as the Navier-Stokes-alpha model
does. These models may be more phenomenological than the Navier-Stokes-alpha
model, but their comparisons with empirical data are just asvalid. These models
are meant to approximate Eulerian average fluid quantities.And Eulerian averag-
ing in general is not known to have either a variational principle or a circulation
theorem.

In Section 2 below we introduce the functional setting of theLeray-� model
and establish somea priori bounds which are useful for later sections. The global
existence and regularity of the Leray-� model is a classical result and can be found
in many textbooks on the mathematical theory of the NSE. Therefore we will omit
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it. In Section 3 we provide explicit upper bounds for the dimension of the global
attractor of the Leray-�model in terms of the relevant physical parameters. Specif-
ically, we show that the number of degrees of freedom in the Leray-� model is of
the order of �Lld�12=7 �1 + L��9=14 ;
whereld is the small dissipation length scale associated with this model. Notice
that the number of degrees of freedom here does not grow cubically with the size of
the domain as would be expected for 3-D systems. This is a strong indication that
the Leray-� model has a great potential as a sub-grid scale large eddy simulation
model. In Section 4 we follow the work in [16] and [17] (see also [19]) and derive,
using physical arguments, power laws for the energy spectraof the Leray-� model.
Specifically, we show that for very high Reynolds numbers theinertial range con-
sists of two parts. In the first part when�� � 1 we find the usual Kolmogorov��5=3 power law and for�� � 1 we have a different, much steeper, power laws.
We derive different power laws depending on what one might use for a typical eddy
turn-over time. Since we have several options in this model,the power laws may
vary. Computational studies, reported in Sections 5 indicate that around the wave
number� = 1=� the energy spectrum becomes steeper than��5=3. Limited by the
available computer power, we are unable to produce wide enough inertial range to
separate the two different parts of the energy spectra. It isworth adding that we
have similar behavior in the LANS-� and intensive computational studies are being
carried out by various groups to investigate this potentialanomaly in the behavior
of the energy spectra of the LANS-� and Leray-� models. In Section 6 we follow
[7] and [8] to develop a Leray-� Prandtl-like boundary layer model. We study this
model analytically as well as computationally. We noticed that it is much easier
to study this model analytically than the corresponding LANS-� model studies in
[7] and [8]. We tested this model successfully against the boundary layer empirical
data. It is worth adding that other studies of boundary layer�-models have been
reported in [28] and [38].

2. A PRIORI ESTIMATES

2.1. Functional setting. First, let us introduce some notation and the functional
setting. Recall the periodic box
 = [0; 2�L℄3 and fix a constant length scale� > 0. We denote by(�; �) and j � j theL2-inner product and the correspondingL2-norm. We denote byH = fu : u 2 L2(
)3;r � u = 0; u is periodic in periodic box
;

and
Z
 u dx = 0g;

andV = H \ H 0(
)3. Let P� : L2(
)3 ! H be theL2-orthogonal projection,
referred to as the Leray-Helmholtz projector. Denote byA = �P�� the Stokes
operator with the domainD(A) = (H2(
))3 \ V . In the periodic caseA = ��.
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The Stokes operator is a self-adjoint positive operator with compact inverse. The
eigenvalues ofA are denoted by�j so that1L2 = �1 � �2 � ::: � �j � :::; �j !1 as j !1:
The inner product inV will be denoted by((u; v)) := (A1=2u;A1=2v) = (ru;rv); kuk := jA1=2uj; for u; v 2 V:
Note that by Poincaré inequality we have

(5) juj2 � 1�1 kuk2
for everyu 2 V . In order to have dimensionally homogeneous norms inH1(
)3
andH2(
)3, we will use the following inner products in these spaces, respectively:((u; v))H1 := �1 �(u; v) + �2((u; v))� ;((u; v))H2 := �21 �(u; v) + 2�2((u; v)) + �4(Au;Av)� :(6)

Due to (6) we have

(7) �1jvj � kukH2 � 2�1jvj; wherev = u� �2�u;
i.e., the normkukH2 is equivalent to�1jvj, wherev = u� �2�u.

Following a well accepted notation and well established properties of the NSE
(see, e.g., [13], [19], [39] and references therein), we denoteB(u; v) := P� [(u � r)v℄ 2V 0 for all u; v 2 V , whereV 0 denotes the dual space ofV . We denote byh�; viV 0
the dual action of� 2 V 0 on v 2 V . The bilinear formB has the following
property: hB(u; v); wiV 0 = �hB(u;w); viV 0 ; for all u; v; w 2 V:
In particular,

(8) hB(u; v); viV 0 = 0 for all u; v 2 V:
By analogy with the NSE (see, e.g., [13], [19], [39] and references therein) the

Leray-�model, system (3), in
 is equivalent to the functional differential equation

(9)

8>><>>: ddtv + �Av +B(u; v) = fu+ �2Au = u� �2�u = vu; v are periodic, with periodic box
vjt=0 = v0:
For simplicity, we assume that the forcing termf does not depend on time.

As we have indicated in the introduction, Leray establishedin [33] the existence
of solutions to the Navier–Stokes equations inRn , n = 2; 3. To accomplish this he
introduced a modified system similar to (3), for which it was easier to establish the
existence and uniqueness, and then by passing with the parameter�& 0+ he could
achieve existence of solutions to the Navier–Stokes equations. Indeed, the global
existence of solutions to (3) inRn , n = 2; 3 follows from Leray’s analysis [33]. For
the periodic case similar arguments to those established for the 3-D LANS-�model
(see [18]) lead to the global existence and uniqueness of weak and strong solutions
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to the system (3) (equivalently (9)). Here, we will only state the theorem without
a proof. However, we will formally establisha priori estimates on the solutions,
which we will need later when we discuss global attractors for the system (9). Let
us stress that all these estimates can be proved rigorously using, for instance, the
Galerkin approximation procedure following, for instance, [18].

Theorem 2.1 (Leray [33]). LetT > 0, � > 0, � > 0 be given.

(i): If f 2 V 0 andv0 2 H, then the system (9) has a unique weak solution on[0; T ℄. That is, there is a unique functionv such thatv 2 L1((0; T );H)\L2((0; T );V ) \ C([0; T ℄;H-weak) with ddtv 2 L2((0; T );V 0) such thatddthv; �iV 0 + �(A1=2u;A1=2�) + hB(u; v); �iV 0 = hf; �iV 0
in D0((0; T )), for every� 2 V , whereu = (I + �2A)�1v andv(0) = v0.

(ii): If f 2 H, v0 2 V , then the unique weak solutionv(t) mentioned in(i) is
a strong solution on(0; T ). That is,v 2 C([0; T ℄;V ) \ L2((0; T );D(A))
with ddtv 2 L2((0; T );H) such thatddt(v; �) + �(A1=2u;A1=2�) + (B(u; v); �) = (f; �)
in D0((0; T )), for every� 2 V , whereu = (I + �2A)�1v andv(0) = v0.

Next, we will present formala priori estimates for the solutions established in
the above theorem. As we have mentioned before, these estimates can be obtained
rigorously using the Galerkin procedure.

2.2. L2-Estimates. Taking the inner product of (9) withv and using (8), we obtain12 ddt jvj2 + �kvk2 = (f; v):
By Cauchy-Schwarz inequality and Poincaré inequality (5), we reach(f; v) � jf jjvj � jf j22��1 + ��12 jvj2� jf j22��1 + �2kvk2:
Thus

(10)
ddt jvj2 + �kvk2 � jf j2��1 :

Using (5) one more time we reachddt jvj2 + ��1jvj2 � jf j2��1 :
Using Grönwall’s inequality we conclude that

(11) jv(t)j2 � e���1tjv(0)j2 + (1� e���1t)jf j2�2�21 =: R(t);
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and as result we have lim supt!1 jv(t)j � R0 := jf j��1 :
HenceB1 = fw 2 H : jwj � R0g is an absorbing ball for the solutionv(t).
Moreover, (7) implies lim supt!1 ku(t)kH2 � 2�1R0:
ThereforeB2 = fw 2 H : kwkH2 � 2�1R0g is an absorbing ball for the solutionu(t).

Furthermore, for everyT > 0 we have from (10)

(12) jv(T )j2 + � Z T0 kv(�)k2d� � jv(0)j2 + T jf j2��1 :
Thusv 2 L2((0; T );V ) for all T > 0.

2.3. H1-Estimates. Taking the inner product of (9) withAv we obtain12 ddtkvk2 + �jAvj2 = (f;Av)� (B(u; v); Av):
Thus, by Cauchy-Schwartz, Young, and Hölder inequalitieswe reachj(f;Av)j+ j(B(u; v); Av)j � jf j2� + �4 jAvj2 + jAvjkvkkukL1� jf j2� + �4 jAvj2 + �4 jAvj2 + 1� kvk2kuk2L1� jf j2� + �2 jAvj2 + 1� kvk2kuk2L1 :
Notice that by the Sobolev inequality in 3-D we havejjujjL1 � �1=41 kukH2 ;
for some dimensionless universal constant. Thereforej(f;Av)j + j(B(u; v); Av)j � jf j2� + �2 jAvj2 + 2��1=21 kvk2kuk2H2 :
Thus 12 ddtkvk2 + �2 jAvj2 � jf j2� + 2��1=21 kvk2kuk2H2 :
We use (11) and (7) to obtainddt(1 + kvk2) � K(t)(1 + kvk2);
where K(t) = max(2jf j2� ; 42�3=21 R2(t)� ) :
Now Grönwall’s inequality implies that1 + kv(t)k2 � �1 + kv(s)k2� eR ts K(�) d� ; t � s � 0:
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Since for anyT > 0 K(�) is integrable on(0; T ) (by (11)) and because of (12)
we have thatv 2 L1([0; T ℄;V ), wheneverv0 2 V , andv 2 L1lo((0; T ℄;V ),
wheneverv0 2 H.

Denote byS(t) the semi-group of the solution operators to the equation (9)
corresponding to the unknown functionv(t), i.e., we have thatv(t) = S(t)v0.
Following similar arguments as those well established for the 2-D NSE (see, e.g.,
[1], [12], [13], and [39]), one can easily prove the following theorem:

Theorem 2.2. Letv0; f 2 H. Then for anyT > 0 the semi-groupS(t) is compact
and differentiable with respect to the initial datav0 on the interval(0; T ℄.

SinceS(t) is a compact semi-group andB1 is an absorbing ball inH, the equa-
tion (9) has a unique global attractorA = \s>0[t�sS(t)B1
(see, e.g., [1],[12], [13] and [39]).

3. DIMENSION OF THE ATTRACTOR

Note thatjvj2 and�kvk2 represent in the Leray-� system (3) the kinetic energy
and the rate of dissipation of energy respectively. Therefore, by analogy with the
conventional theory of turbulenceala Kolmogorov, the mean rate of dissipation of
energy for the system (3) should be given by~�Leray = �(2�L)3 hkvk2i;
whereh�i denotes an ensemble average. Influenced by the Ergodic Theorem of
Birkhoff, people usually replace the ensemble average by the time average. In our
case we will consider the worst scenario and define

(13) �Leray = �(2�L)3 supv(0)2A lim supt!1 1t Z t0 kv(�)k2 d�
to be the mean rate of dissipation of energy for the system (3), which is finite
because of (12) and the fact that we have a compact global attractor. Also by
analogy with conventional theory of turbulence we set for the viscous dissipation
length scale ld = � �3�Leray�1=4 ;
which is supposed to represent the smallest scale that one needs to resolve in order
to get a complete resolution for turbulent flows associated with the Leray-� model.

Theorem 3.1. The Hausdorff and fractal dimensions of the global attractor of the
Leray-� model satisfydH(A) � dF(A) � �Lld�12=7�1 + L��9=14 ;
for some universal constant, which one can estimate explicitly.
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Proof. We follow [12] (see also [13], [39], and references therein)and linearize
Leray-� model about a trajectory in the global attractorv(t) = u(t) + �2Au(t)
obtaining

(14)

8<: ddt� + �A� +B(u; �) +B(�; v) = 0� + �2A� = �;�(0) = �0:
That is, the deviation�(t), with initial deviation�(0) = �0, evolves according toddt� +�(t)� = 0;
where�(t) = A +B(u(t);  ) +B(�; v(t)); �+ �2A� =  ; u+ �2Au = v:
Let �j(t) be solutions of the above system with�j(0) = �0j , j = 1; :::; N . Assume�01 ; :::; �0N are linearly independent. LetQN (t) be theL2-orthogonal projection
fromL2(
) ontospanf�1(t); :::; �N (t)g, thenk(�1 ^ ::: ^ �N )(t)k2L2 = k(�1 ^ ::: ^ �N )(0)k2L2e� R t0 Trae[QN (�)Æ�(�)ÆQN (�)℄ d� ;
whereTrae[�℄ denotes the trace of a linear operator.

Now, letf 1(t); :::;  N (t)g be anL2-orthonormal basis ofspanf�1(t); :::; �N (t)g,
i.e., ( i;  j) = Æij , and let�j = (I � �2�)�1 j . It is clear that j 2 H1(
), forj = 1; 2; :::; N . Recall that(B(u;w); w) = 0 (equation (8)) for allu;w 2 V , then
we haveTrae[QN (t) Æ �(t) ÆQN (t)℄ = NXj=1 (�(t) j ;  j)= NXj=1 ��k jk2 + (B(u;  j);  j) + (B(�j ; v);  j)�= NXj=1 ��k jk2 + (B(�j ; v);  j)�(15) � � NXj=1 k jk2 � ������ NXj=1(B(�j ; v);  j)������ :
Notice that������ NXj=1(B(�j ; v);  j)������ = ������ NXj=1((�j � r)v;  j)������� kvkk�NkL10� NXj=1 Z
 j j(x)j2 dx1A1=2
(16) = kvkk�NkL1N1=2;
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where �2N (x) = NXj=1 j�j(x)j2:
To finish the estimate for theTrae[QN (t)Æ�(t)ÆQN (t)℄ we need the following

two propositions:

Proposition 3.2. Let = �=L. Then for every function� 2 H2(
)k�kL1 � C()(2�L)�3=2j(�+ �2A�)j;
whereC() is given below in equation (17).

Proof. We denote by �̂� = 1(2�L)3 Z
 �(x)e�i xL �� dx;
the Fourier coefficients of a function�(x). Thus we havej�j = 0�X�2Z3 j�̂�j21A (2�L)3;
and j�(x)j = ������X�2Z3 �̂�ei xL �������� � X�2Z3 j�̂�j� 0�X�2Z3 j�̂�j2 �1 + 2�2�21A1=20�X�2Z3 �1 + 2�2��21A1=2 :
It is obvious that there exists a universal constant1 > 0 (see, e.g., [13] or [39] for
explicit bounds on1) such thatX�2Z3 �1 + 2�2��2 � 1Xp=0 �1 + 212p4=3��2 :
Therefore,X�2Z3 �1 + 2�2��2 � [(1)�3=2℄Xp=0 1 + 14 + Z 1(1)�3=2 dy414y8=3� � 1212�3=4 + 54 + 35 � 1212�3=4
(17) = 54 + 85 � 1212�3=4 =: C2():
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Putting the above together we getk�kL1 � C()0�X�2Z3 j�̂�j2 �1 + 2�2�21A1=2 = C()(2�L)�3=2j(�+ �2A�)j:�
Proposition 3.3. Letf 1; :::;  Ng � H2(
) be orthonormal inL2-inner product,
i.e., ( k;  l) = Ækl. Let�� = (I + �2A)�1 �, � = 1; 2; :::; N . Let also�2N (x) =PNj=1 j�j(x)j2. Then there exists a constantCF(), independent ofN , such that

(18) k�NkL1 � CF()(2�L)�3=2:
In fact,CF() � p3C(), whereC() is given in (17).

Proof. Let �1; :::; �N 2 R to be chosen later, such that
PN�=1 �2� = 1. Then by

Proposition 3.2����� NX�=1 ����(x)����� � C()(2�L)�3=2 ����� NX�=1 ��(�� + �2A��)�����= C()(2�L)�3=2 ����� NX�=1 �� ������= C()(2�L)�3=2  NX�=1 j��j2!1=2= C()(2�L)�3=2;
for all x 2 
, where we have used the orthogonality off �g. ¿From the above we
have NX�=1 ���1�(x)!2+ NX�=1 ���2�(x)!2+ NX�=1 ���3�(x)!2 � C()2(2�L)�3; x 2 
:
Then we choose �� = �1�(x)�PN�=1(�1�(x))2�1=2 ;
and alternatively�� = �2�(x)�PN�=1(�2�(x))2�1=2 ; �� = �3�(x)�PN�=1(�3�(x))2�1=2
to obtain j�N (x)j2 � 3C()2(2�L)�3; x 2 
:
Hence, our estimate. �
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Now we go back to estimatingTrae[QN (t) Æ�(t) ÆQN (t)℄. ¿From (15), (16),
and (18) we haveTrae[QN (t) Æ �(t) ÆQN (t)℄ � � NXj=1 k jk2 � kv(t)kk�NkL1N1=2� � NXj=1 �j � kv(t)kCF()(2�L)�3=2N1=2:
Note that in the three dimensional case we have�j � 1L�2j2=3 for some positive
universal constant1 (see, e.g., [13] and [39]). Therefore,Trae[QN (t) Æ �(t) ÆQN (t)℄ � 2�L�2N5=3 � kv(t)kCF()(2�L)�3=2N1=2;
for some positive constant2. Hence,lim infT!1 1T Z T0 Trae[QN (t) Æ �(t) ÆQN (t)℄ dt� 2�L�2N5=3 � CF()(2�L)�3=2N1=2 lim supT!1 � 1T Z T0 kv(t)k2 dt�1=2� 2�L�2N5=3 � CF()(2�L)�3=2N1=2�L3� �Leray�1=2 :
ForN � 1, such that N � �Lld�12=7 �CF()2 �6=7 ;
we have lim infT!1 1T Z T0 Trae[QN (t) Æ �(t) ÆQN (t)℄ dt > 0:
Therefore, based on the trace formula (see [9] [12], [13], or[39]), thisN is an
upper bound for the dimension of the global attractor, i.e.,dH(A) � dF(A) � �Lld�12=7�CF()2 �6=7 :
SinceCF() � 3(�3=4+1) for some universal constant3, we have the following
upper bound for the dimension of the global attractor:dH(A) � dF(A) � �Lld�12=7�1 + L��9=14 ;
for some universal constant. This concludes the proof. �
Remark. A heuristic physical argument in classical theory of turbulence suggests
that the number of degrees of freedom for the 3-D NSE is proportional to(L=ld)3.
This formula is still far from being reached rigorously for the 3-D NSE due to the
lack of a proof for the global regularity of the 3-D NSE. However, a similar formula
has been shown to be correct for the LANS-� (NS-� or viscous Camassa–Holm)



ON A LERAY-� MODEL OF TURBULENCE 13

model [18]. The above estimate, on the other hand, suggests that the number of
degrees of freedom of the Leray-� model is much smaller than that of the NSE
or the LANS-� models. This remarkable result indicates that the Leray-� model
might be much easier to compute with and that it lies, from thecomplexity point
of view, between the 2-D and 3-D cases.

We observe that for = �=L large enough one can easily show, using energy
estimates, that the dynamics of the Leray-� model is trivial and the attractor is
a single stable steady state. Hence, the dimension of the global attractor tends
to zero. While deriving the above estimate for the dimensionof the attractor we
assumed to be a positive finite number. In fact, we implicitly kept in mind that is a small number in order to stay “close” to the 3-D NSE. See [29] for related
results concerning the dependence of the global attractor on� for the 2-D LANS-�
or the NS-� model.

4. ENERGY SPECTRUM

Following the work of [16] and [17] (see also [19]) we providehere physical
arguments for studying the energy spectrum of the Leray-� model, equations (3).
Let u� = X��jjj<2� ûjeij� xL ; v� = X��jjj<2� v̂jeij� xL ;
here again�̂j = 1(2�L)3 R
 �(x)e�ij� xL dx denote the Fourier coefficients of the

function�(x). The energy balance forv� is given by

(19)
12 ddt(v�; v�) + �(��v�; v�) = T� � T2�;

where T� = �((u�< � r)v�; v�) + (((u� + u�>) � r)(v� + v�>); v�<) ;
and u�< =Xj<� uj ; u�> = Xj�2�uj:
Taking an ensemble average of (19), e.g., long time average,we obtain�h(��v�; v�)i = hT�i � hT2�i:
In terms of the energy spectrumEv�(�) of the variablev we have��3Ev�(�) � � Z 2�� �2Ev�(�) d� � hT�i � hT2�i:
As long as ��3Ev�(�)� hT�i;
i.e., hT�i � hT2�i (there is no leakage of energy due to dissipation), the wave
number� belongs to the inertial range.

As before, let~�Leray represent the mean rate of dissipation of energy:~�Leray := � �L3 Z
(��v) � v dx� ;
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which in principle should be comparable with�Leray, which was introduced earlier
in equation (13). The average velocity of an eddy of spatial size of the order of1=�
can be evaluated in three different ways:U0� = � 1L3 Z
 v� � v� dx�1=2 = �Z 2�� Ev�(�) d��1=2 � �1=2Ev�(�)1=2;U1� = � 1L3 Z
 u� � v� dx�1=2 = �Z 2�� Ev�(�)(1 + �2�2) d��1=2 � �1=2Ev�(�)1=2(1 + �2�2)1=2 ;U2� = � 1L3 Z
 u� � u� dx�1=2 = �Z 2�� Ev�(�)(1 + �2�2)2 d��1=2 � �1=2Ev�(�)1=2(1 + �2�2) ;
i.e., Un� � �1=2E�(�)1=2(1 + �2�2)n=2 ; n = 0; 1; 2:
It is not clear, based on physical grounds, which one of thesedifferent expressions
is the right one. As we see below each expression will lead to adifferent power law
in the energy spectrum. A careful study on the power laws in the energy spectra
will shed some light on which of the above expressions is the right one, a subject
of future and on going research. In the inertial range, according to the Kraichnan
mechanism of energy cascade [31] (see also [16], [17], [19]), the turn over time of
eddies of the spatial size1=� is the time it takes for the eddies of spatial size1=�
to transfer their energy to the eddies of smaller size1=(2�), which is about�n� := 1�Un� ; n = 0; 1; 2:
Then for the different definitions ofUn� , n = 0; 1; 2, we have�n� � (1 + �2�2)n=2�3=2Ev�(�)1=2 :
Therefore ~�Leray = 1�n� Z 2�� Ev�(�) d� � �5=2Ev�(�)3=2(1 + �2�2)n=2 ;
which implies the following spectral scaling law:Ev�(�) � (~�Leray)2=3��5=3(1 + �2�2)n=3:
Consequently, the translational kinetic energy spectrum of the variableu is given
by Eu�(�) = Ev�(�)(1 + �2�2)2 � (~�Leray)2=3��5=3(1 + �2�2)n�63 :

Notice that for�� � 1 the energy spectrum is the usual��5=3 power law as
for the Navier–Stokes equations. But for��� 1 we have a faster decaying power
law � 2n�173 , for n = 0; 1; 2. This indicates that the Leray-� model can serve as
a very good sub-grid scale model. Similar results concerning the LANS-� (NS-�
or viscous Camassa–Holm equations) has been reported in [17], based on the eddy
turn over time�2� , i.e.,n = 2. It has been shown there that the power laws for the
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energy spectra in the initial range are��5=3, for �� � 1, and��3 for �� � 1.
Notice, that for the Leray-� model we also have��5=3 for �� � 1, while we
have��13=3 for �� � 1, when we taken = 2. Therefore, the Leray-� model
decays even faster than the LANS-� (NS-�) model for �� � 1. Preliminary
computational results which compare the energy spectra of the NSE, LANS-� and
the Leray-� support this observation, see Fig. 1.

5. NUMERICAL SIMULATIONS

Numerical simulations of flows with high-symmetry were conducted to compare
the energy spectra of the Leray-� and LANS-� models to the the incompressible
Navier–Stokes equations. Flows with high-symmetry were first studied by Kida
in [30]. All computations were carried out using a modified version of the FOR-
TRAN code of [37], see also [15]. Changes were made to implement the Leray-�
and LANS-� models. The actual calculations were done at the Departmentof
Mathematics, University of California, Irvine using IntelXeon dual 1.8Ghz P4
Beowulf compute nodes.

Fourier transforms were performed on a1283 grid using the 2/3 rule to avoid
aliasing. Due to the high-symmetry of the flow, the spatial resolution of our cal-
culation is comparable to turbulence in a periodic box usingFourier transforms
of size5123. Time was integrated using a second order Adams–Bashforth method
with a step size of0:0005. We took viscosity� = 0:001 and� = 0:05. The forcing
function f was designed so that forjkj � 4 the Fourier modeŝuk of the solution
remained constant in time. The initial value was taken to beu0(x; y; z) = �U0(x; y; z); U0(y; z; x); U0(z; x; y)�
where U0(x; y; z) = 0:40031233 sin x(os 3y os z � os y os 3z)+ 0:22272469 sin 3x(os 3y os z � os y os 3z)+ 0:07043173 sin 4x(os 2y + os 2z)� 0:14086346 sin 2x(os 4y + os 4z):

We calculated the translational energy spectrumEu�(�) for the three-dimensional
Leray-�, LANS-� and incompressible Navier–Stokes equations by averaging in
time fromt = 33 to 100. It is evident from Figure 1 that LANS-� has a more com-
pact spectrum than the Navier–Stokes equations. This is consistent with results
reported earlier in [6] and [36]. Note also that Leray-� has an even more compact
spectrum than LANS-�. This is consistent with our analysis, which estimates a
faster rate of decay for the energy spectrum of the Leray-�.

Our analytical estimate on the dimension of the global attractor indicates that
the degrees of freedom of Leray-� is significantly less than would be expected for
extensive three-dimensional turbulence. Therefore, the relative compactness of the
energy spectrum for Leray-� should increase at higher Reynold’s numbers.
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FIGURE 1. Comparison of the average energy spectra of the
Navier–Stokes equations to the LANS and Leray models of tur-
bulence for� = 0:001 and� = 0:05.

6. BOUNDARY LAYER APPROXIMATION

Following [7] and [8] we derive here a boundary layer approximation of the
Leray-� model for a stationary two-dimensional flow near a surface, and then re-
duce it to an extension of the Blasius equation in the case of azero pressure gradient
flow near a flat plate. Letx be the coordinate along the surface,y the coordinate
normal to the surface, andu = (U; V ) the mean velocity of the flow.

Consider the stationary two dimensional Leray-� model:

(20)

� (u � r)v = ��v �rpr � u = 0;
wherev = (; �) = u�r� (�2(x)ru): We supplement system (20) with non-slip
boundary conditionsujy=0 = 0, as well aslimy!1u(x; y) = (Ue; 0)
for all x > 0, where(Ue; 0) is the mean external velocity of the flow. In addition,
we assume here that�(�) is a function ofx variable.

Let us fixl on thex-axis and define�(l) in the following way:�(l) := 1pRl =r �Uel :
We change variables:x1 = xl ; y1 = y�l ; U1 = UUe ; V1 = V�Ue ; p1 = pU2e ; �1 = ��l :



ON A LERAY-� MODEL OF TURBULENCE 17

Note that the new variables are dimensionless. Recall that�1 is a function ofx
only. Then we obtain1Ue (x; y) = U1(x1; y1)� �2�21 �2�x21U1 � �21 �2�y21U1 � �2 ��x1�21 � ��x1U1;1Ue �(x; y) = �V1(x1; y1)� �3�21 �2�x21V1 � ��21 �2�y21 V1 � �3 ��x1�21 � ��x1V1:
Neglecting the terms in equation (20) with high powers of�, dropping subscripts
and denoting W = �1� �2 �2�y2�U;
we arrive at the following Prandtl-like boundary layer approximation of the Leray-� model:

(21)

8><>: U ��xW + V ��yW = �2�y2W � ��xp��yp = 0��xU + ��yV = 0:
For � small enough we haveU(x; y) � UeU1�xl ; ypl � le� ; V (x; y) � UepRlV1�xl ; ypl � le� ;

wherele is a length associated with the external flowle = �=Ue and(U1; V1) is
a solution of (21).

Next we simplify (21) using Blasius’ similarity variable inthe case of a zero
pressure gradient, i.e., we assume that��xp = 0;
and the exterior velocityUe is constant. We will study the flow near some fixed
point x0 on the plate. Let us chose the origin on the plate so that the point x0
has the coordinates(l; 0), wherel is a parameter of the boundary layer. Now, we
assume that� is proportional to

px, i.e.,� = px�;
where� is another parameter of the boundary layer. In addition, we will study the
solutions(U1; V1) of (21) that on some adequate intervall � � < x < l + � are
of the form

(22) U1 = f(�); V1 = 1pxg(�); � = ypx:
Now we obtain the following equations forf andg:� �12ff 0� + �2f(12f 000� + f 00)� �2ff 00 + gf 0 � �2gf 000 = f 00 � �2f 0000g0 � 12�f 0 = 0:

Let h(�) = Z �0 f(�) d�:
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FIGURE 2. Comparison with experimental data of the Rolls-
Royce applied science laboratory, ERCOFTAC t3b test case forf = 0:00401; R� = 1436.

Theng = 12�h0 � 12h, and we have the following equation forh:

(23) h000 + 12hh00 � �2�h00000 + 12h0000� = 0:
The boundary conditionU jy=0 = 0 requiresf(0) = 0 and thush(0) = h0(0) = 0.
In addition, the physical interpretation of� ��yU for y = 0 as the shear stress on the
wall imposes the conditionf 0(0) > 0, that is,h00(0) > 0. Moreover,U(x; y)! Ue
asy !1 requires thath0(�)! 1 as� !1.

Note that ifĥ(�) is a solution of (23), thenh(x) := �ĥ(�x) is a solution of

(24) �h00000 � 12hh0000 + h000 + 12hh00 = 0:
This equation can be also written as

(25)

� m000 + 12hm00 = 0m = h� h00:
Here againh(0) = h0(0) = 0, h00(0) > 0. In addition,U(x; y) ! Ue asy ! 1
requires thath0(�)! �2 as� !1.

Notice that the equation (24) is the same as the corresponding equation for the
LANS-� (NS-�) model. In [8] it was proved that the solutions of this equation
satisfying the above physical boundary conditions form a two-parameter family.
These two parameters are the skin friction coefficientf , and the Reynolds number
based on momentum thicknessR�, and they determine the velocity profile for each
horizontal coordinate. The family of of velocity profilesfuR� ;fg match experi-
mental data for a wide range of Reynolds numbers (see Fig. 2).Another version
on the boundary layer approximation of the LANS-� (NS-� or viscous Camassa–
Holm) model and its applications to turbulent jets and wakesare presented in [28]
and [38].
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