STATIONARY AND DISCONTINUOUS WEAK SOLUTIONS OF THE NAVIER-STOKES
EQUATIONS.

ALEXEY CHESKIDOV AND XIAOYUTAO LUO

ABSTRACT. We prove that there exists a nontrivial finite energy periodic stationary weak solution to the 3D Navier-
Stokes equations (NSE). The construction relies on a convex integration scheme utilizing new stationary building blocks
designed specifically for the NSE. The constructed family of approximate stationary solutions is also used to prove the
existence of weak solutions of the NSE with energy profiles discontinuous on a dense set of positive Lebesgue measure.

1. INTRODUCTION
The 3D incompressible Navier-Stokes equations (NSE) on the torus T? is the following systems of equations:

{@u— Au+diviu®@u)+Vp=0 (NSE)
divu = 0,

where v : T2 x R — R3? is the unknown velocity field and p : T® x R — R is the pressure.

Definition 1.1 (Weak solutions). A L?-weakly continuous function u € C, ([0, T]; L?(T?)) with zero mean is a
weak solution of (NSE) if u(-,t) is weakly divergence-free for all t € [0, T) and satisfies

T
/ u(z,0) - p(x,0) dz + / / u- (O + (u-V)p + Ap)drdr =0,
T3 o J13
for any divergence-free zero-mean test function ¢ € C°(T? x [0,T)).

The vector field ug(-) = u(-,0), which is also the weak L? limit of u(-, ) as ¢ — 07, is called the initial data.
Often weak solutions with finite energy dissipation, i.e., u € L2(0,T; H'), are studied in the literature. Besides
Definition 1.1, there are numerous equivalent ways to define such solutions, e.g., using alternative spaces of test
functions (see [RRS16]).

Since the seminal work of Leray [Ler34] it has been known that any divergence-free initial data ug € L?(T?)
gives rise to a weak solution satisfying the following energy inequality:

t
lu(®)[2 + 2 / V()2 ds < [lulto)|2 EL)

for any ¢ > 0 and a.e. ¢ty € [0,¢) including 0. In the literature, such solutions are referred to as the Leray-
Hopf weak solutions. There has been a long history of extensive studies of these solutions [Ler34, Hop51, Pro59,
Ser62, Lad67, CF88, TemO1, ESv03], however, the global regularity and uniqueness of Leray-Hopf weak solutions
remain among the most important unsolved questions in mathematical fluid dynamics. What is more related to
the present work, is the validity of energy equality (also known as Onsager’s conjecture in the case of the Euler
equations [CET94]). In the recent groundbreaking work [BV19] Buckmaster and Vicol proved nonuniqueness and
anomalous dissipation in the class of weak solutions, but this is still an open question for Leray-Hopf solutions.
In fact, the continuity of the energy is not known either. If the energy has a jump discontinuity from the right, this
immediately implies non-uniqueness since the solution can be restarted at that time to remove the jump. Moreover,
infinitely many solutions can be obtained via interpolation [KVO07].

The focus of this paper is to prove the existence of weak solutions to the (NSE) with very pathological energy
behaviors. On one hand, we construct a finite energy stationary solution, which does not lose any energy even
though its enstrophy is positive (in fact, infinite). These solutions exhibit what we call the anomalous energy influx,
the backward energy cascade that precisely balances the energy dissipation at each scale. On the other hand, we
construct weak solutions with energy profiles discontinuous on a dense set of positive Lebesgue measure. So the
set of discontinuities of the energy can be very large at least in the class of weak solutions. Note that both results
provide alternative proofs of the Buckmaster-Vicol nonuniqueness theorem [BV19] since there are Leray-Hopf
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solutions starting from the steady state or discontinuity points. The following theorems are direct consequences
of our main results.

Theorem 1.2. There exists a nontrivial stationary weak solution u € L?(T?) to the 3D NSE.

Theorem 1.3. For any €, T > 0, there exists a weak solution u € C\,([0,T]; L?(T?)) to the 3D NSE, which is
discontinuous in L* on a set E C [0, T), such that

(1) Eindensein [0,T).

(2) The Lebesgue measure of E€ is less than ¢.

1.1. Background. Our work is based on the technique of convex integration. Although this method has been
around since the work of Nash [Nas54], its application to fluid dynamics was brought to attention only in recent
years by the pioneering work of De Lellis and Székelyhidi Jr. [DLS09]. Since [DLS09], it was developed over a
series of works in the resolution of the Onsager’s conjecture for the 3D Euler equations [DLS09, DLS13, DLS14,
BDLIS15, BDLS16, Isel8, BLIV18]. Its extension to the NSE was done only very recently by Buckmaster-
Vicol [BV19], where non-unique weak solutions of the Navier-Stokes equations in the sense of Definition 1.1 are
constructed.

So far, the focus of the convex integration method has been to produce wild solutions that are as regular as
possible. For instance, the regularity of wild solutions of the Euler equations was pushed to the critical On-
sager’s exponent 1/3 by Isett [Ise18]. Also, the extension of [BV19] to the fractional NSE (—A)® setting for
1<ax< % was done in [LT18]. Using the smoothing effect of the Stokes semigroup, Buckmaster-Colombo-Vicol
[BCV18] were able to construct non-unique weak solutions whose singular sets have Hausdorff dimension less
than 1. Nonuniqueness of Leray-Hopf solutions has also been obtained for ipodissipative NSE and Hall-MHD
[CDLDRI18S, Dail8]. However, it is not clear whether a convex integration scheme could ever produce non-unique
wild solutions in a class where the Leray structure theorem would hold', except perhaps one very specific scenario.

Finally, we mention another pathway in pursuing the possible nonuniqueness of the Leray-Hopf weak solutions
aside from using convex integration. As pointed out by Jia and Sverdk in [Jv14], one can also study the nonunique-
ness issue via self-similar solutions for (—1)-homogeneous initial data. Indeed, in [Jv15] Jia and Sverak proved
nonuniqueness of Leray-Hopf weak solutions under certain assumptions for the linearized Navier-Stokes operator.
Even though a rigorous justification of those assumptions remains unavailable, very recently Guillod and Sverak
provided numerical evidence indicating that the assumptions are likely to be true [Gv17].

1.2. Motivations. In contrast to the aforementioned results, we are focusing on the opposite direction, i.e. con-
structing more pathological solutions, especially solutions with anomalous energy behaviors.

The existence of a nontrivial stationary weak solution of d-dimensional NSE for d > 4 was recently proved by
the second author in [Luo19], but the recaled Mikado flows used as building blocks had intermittency dimension
D =1, and hence could not be used for the 3D NSE. Nontrivial stationary solutions are also known to exist for
the dyadic model of the NSE [BMR11], where one can precisely control the backward energy cascade to balance
the energy dissipation, but the existence of such solutions has been an open question for the 3D NSE.

On the other hand, weak solutions (in the sense of Definition 1.1) are only lower semi-continuous in L2.
Therefore, it is natural to conjecture that there exist weak solutions that exhibit jumps in the energy. In fact, one
can ask the following questions regarding the behavior of the energy:

Can energy ||u(t)||3 have jumps? Can it be discontinuous on a dense subset of [0, T)? Can it be discontinuous
almost everywhere? Can it be discontinuous everywhere?

The answer to the last question is No. Indeed, the energy of a weak solution ||u(t)||3 is lower semi-continuous.
Hence, by Baire’s theorem, the energy is of the first Baire class and therefore the points of continuity are dense.
Nevertheless, we believe that all the previous questions have positive answers. Theorem 1.3 is our first step in
solving this conjecture.

1.3. Main theorems. We now state the main results of this paper. In particular, Theorem 1.2 and 1.3 are simpler
versions of Theorem 1.4 and 1.6 accordingly.

The first theorem concerns the existence of stationary weak solutions for the 3D Navier-Stokes equations,
which extends the previous work [Luo19] of the second author in dimension d > 4.

Theorem 1.4 (Finite energy stationary weak solution). Given any divergence-free f € C°°(T?) with zero mean,
there is My > 0 such that for any M > My, there exists a weak solution u € L?(T?) to (NSE) with forcing term
f satisfying ||ul|3 = M.

Note that the solutions in [CDLDR18, Dail8] do not obey the Leray structure theorem.
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The next two theorems are about weak solutions with discontinuous energy profiles.

Theorem 1.5 (Energy with dense discontinuities). Lete, T > 0and a € C°°(T? x [0, T]) be a smooth divergence-
free vector field with zero mean for all t € [0, T)|. There exists a dense subset E C [0,T] and a constant M, > 0,
such that for any M > M, there exists a weak solution u € C,([0,T); L?(T?)) to (NSE) so that the following
holds:

(1) The energy ||u(t)||3 is bounded by 2M :
lu(®)||3 <2M  foranyt € [0,T], (1.1)
and has jump discontinuities on set E:
lim [lu(s)[|3 > |[u(t)l|3 foranyt e E. (12)
(2) u(t) coincides with a(t) att = 0,T':
u(z,0) = a(x,0) and wu(z,T)=a(z,T), (1.3)
but the energy jump is of size M :
Jim Ju()[3 = () = lim [Ju(s)lI3 = w(T)]; = M. (1.4)

(3) wis smooth on E:
u(t) € C=(T?) forallt € E, (1.5)
and uniformly e-close to a in WH(T3):
lu—allpeewrn <e. (1.6)

The set E in Theorem 1.5 is dense in [0, 7] and, in fact, countable. Using a gluing argument, we are also able
to construct weak solutions whose energy discontinuities are dense and of positive measure.

Theorem 1.6 (Energy with dense and positive measure discontinuities). Let ¢ > 0 and 0 < oo < T'. There exist
a set B, C [0,T] with E,, = Co, U F,, where C,, is a fat Cantor set on [0, T] such that |[0,T] \ Co| < a and F,
is a countable dense subset of [0, T, and a weak solution u € C\, ([0, T]; L?(T®)) of (NSE) so that the following
holds:

(1) The energy profile ||u(t)||3 is discontinuous at every t € E,. In fact,

limsup ||u(s)||3 > |u(t)||3 forallt € C,, (1.7)
s—t
and
h{ﬂ |u(s)||3 > |[u(t)||z forallt € F,. (1.8)
S
(2) w(t) is uniformly e-small in W11(T3):
lullLeewrn <e, (1.9)
smooth on Fy:
u(t) € C®(T?) forallt € F,, (1.10)
and vanishes on C,,:
w(t) =0 forallt € Ca. (1.11)

1.4. Some remarks on the results.

Remark 1.7. It is known that for any smooth force f (NSE) on torus T° admits at least one smooth stationary
solution [CF88]. Theorem 1.4 shows that there are infinitely many finite energy stationary weak solutions.

Remark 1.8. As our building blocks are compactly supported, it seems likely that there also exist finite energy
stationary weak solutions in R? with compact supports. We plan to address this problem in future works.

Remark 1.9. We note that weak solutions constructed in [BV19, LT18, BCV18] can not be stationary as the
building blocks are time-dependent and their schemes rely on fast time oscillations.

Remark 1.10. The smoothness of the vector field a in Theorem 1.5 and the force f in Theorem 1.4 can definitely
be lower, but we are not interested in this direction here. Also, Theorem 1.5 shows that any smooth initial data ug
admits infinitely many weak solutions with discontinuous energy.



4 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

Remark 1.11. Iz is possible to construct a weak solution with discontinuous energy by gluing the solutions in
[BV19], see Appendix C. However, those discontinuities are not jumps. More importantly, such an argument can
not generate dense discontinuities.

Remark 1.12. In view of the theory of Baire category, the set of discontinuities of a semi lower-continuous function
is of Baire-1, which still can have full measure in [0, T|. At the moment, our method is not able to produce such
examples.

Remark 1.13. Very recently, Luo and Titi [LT18] have extended the nonuniqueness result of [BV19] to factional
NSE with (—A)® for any o < %, which is sharp in view of Lion’s wellposedness result [Li059, Lio69]. Even
though our method seems to work for factional NSE for some o > 1, extensions to the full range of o < g are
unavailable at this point.

1.5. Effect of intermittency. The main technique used in the present paper is the convex integration that has been
developed over the past decade for the incompressible Euler equations to tackle the famous Onsager’s conjecture,
see [DLS09, DLS13, DLS14, BDLIS15, BDLS16, Isel18, BLIV18], also inspired by the recent extension of this
method to the Navier-Stokes equations [BV19, Luo19, BCV18].

The effect of intermittency on the regularity properties of solutions to the (NSE) and toy models has been also
studied in the past decade [CF09, CS14a, CS14b]. Discontinuous weak solutions in the largest critical space and
even supercritical spaces near L? were obtained in [CS10, CD14] using Beltrami type flows with the intermittency
dimension D = 0. Such an extreme intermittency was achieved using Dirichlet kernels. Roughly speaking, in
order for the d-dimensional Navier-Stokes equations to develop singularities, the intermittency dimension D of
the flows should be less than d — 2, so that the Bernstein’s inequality is highly saturated. So D = 1 is critical for
the 3D NSE. It was also confirmed in [BV19, Luo19] that the main difficulty of conducting convex integration for
the Navier-Stokes equations is the intermittency of the flow. Such a constraint, however, is not presented in the
3D Euler equations: Beltrami flows and Mikado flows used in the constructions of wild solutions for the 3D Euler
equations are essentially homogeneous in space, namely the the intermittency dimension D = 3. This is also

1
reflected in the difference between L? based norm in the best known energy conservation condition L3 Bs co(N) in

[CCFS08] and L°° based norm of the counterexamples (CC® for a < % in [Ise18]) for the 3D Euler equations
[Ise18, BLIV18].

To resolve the issue of intermittency when applying convex integration, Buckmaster-Vicol introduced inter-
mittent Beltrami flows in [BV19] and intermittent jets in [BCV18] as building blocks with arbitrary small inter-
mittency dimension D > 0, allowing them to successfully implement convex integration scheme in the presence
of the dissipative term Awu. This was done by introducing a Dirichlet type kernel to the classical Beltrami flows
in [BV19] or using a space-time cutoff in [BCV18] respectively, rendering the linear term manageable. Even
though such modifications produce unwanted interactions that are too large for the convex integration scheme to
go through, they were handled with an additional “convex integration in time” with a help of very fast temporal
oscillations. We note that even though it was possible to take advantage of all the interactions between Dirichlet
kernels in [CS10, CD14], this is out of reach in the convex integration scheme at this point.

In this paper, we will design new building blocks specifically for the NSE. These vector fields, that we call
viscous eddies, will be both stationary and compactly supported in R?. The construction is partly motivated by
the geometric Lemma 3.1 used for the Mikado flows which were introduced in [DS17] and have been successfully
used for the Euler equations on the torus T™ for n > 3. The Mikado flows can also be rescaled so that its
intermittency dimension becomes D = 1 as demonstrated in [Luo19] (see also [MS18, MS19] for the setting in
transport equation). This just misses the D < 1 requirement for the 3D NSE (see discussions in Section 2 of
[Luo19] and heuristics in Section 2 of [CL20]).

In order to increase concentration that decreases the intermittency dimension, we start with a pipe flow in R3,
use a lower order cutoff only in space along the direction of the flow, and add a correction profile to the existing
one so that it will take advantage of the Laplacian to balance some of the unwanted interactions. This is possible
due to the fact that the error introduced by the space cutoff along the major axis of the eddies is not a general
stress term, but basically one-dimensional. By design, viscous eddies are divergence-free up to the leading term.
Moreover, they are compactly supported approximate stationary solutions of the NSE (not the Euler equations).
See Theorem 3.13 for a precise statement. Compared with the previously used building blocks for the NSE, such
an approach mainly has two advantages. First, the new flows are time-independent and hence can be used to
construct nontrivial stationary weak solutions, which was an open question for the 3D NSE. Second, they are
compactly supported and can be used in the case of the whole space R? in the future, whereas Beltrami flows,
Mikado flows, intermittent Beltrami flows, and intermittent jets only exist on the torus T<.

1.6. Energy pumping mechanism. In order to produce discontinuous energy we introduce a new energy pump-
ing mechanism that uses more energy than needed to cancel the stress error term in the convex integration scheme.
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In previous works, there is a correspondence between the growth of the frequency and the decay of the energy so
that the energy is not changed much along the iteration process. In other words, the high frequency part of the
solution is very small uniformly in time. This is typical and desirable in order to improve the regularity of the wild
solutions.

In contrast, to produce discontinuities in the energy, one can not adhere to such a uniformity in time in the
scheme. We need to allow high frequencies to carry sizable energy on some time intervals, so that there is energy
coming from/escaping to infinite wavenumber®. Consider the following toy model. Suppose u(t) is a function
with Fourier support in a shell of size A(¢), and A(t) — oo as ¢ — T. Then the energy remains constant for
t < T, butatt =T, the solution is zero, as all the energy has escaped to the infinite wavenumber. To reproduce
this toy model in the convex integration scheme, one needs to construct an approximate sequence of solutions
with temporal supports away from time 7" and sizable energy near 7', such that the weak limitis O at ¢t = 7.
Generalizing this example, one can construct a wild solution of the Navier-Stokes equations whose energy is
constant on (0, T") but vanishes at 0 and T'.

However, if one uses solutions of such type with disjoint temporal support and glues them together, the resulting
solution will only have finitely or countably many discontinuities. The next goal is to achieve the density of
jumps. An exercise in real analysis shows that there exist unbounded L? functions that blow up on a dense subset
of [0,1]. Roughly speaking, we will construct solutions whose energy mimics the behavior of such functions.
More precisely, there will be infinitely many blowing-up wavenumbers A(¢) with smaller and smaller lifespan
and energy. This is also consistent with the fact that the jumps decrease to zero along the iterations, which is
anticipated as the energy, which we want to be bounded, needs some time to be transferred to lower/higher modes.
We refer to Section 2 for more technical details in this regard.

1.7. Organization of the paper. The rest of the paper is organized as follows.

e In Section 2, we introduce the notations and the generalized Navier-Stokes system, for which we state the
main proposition of the paper. Then using the main proposition, we prove Theorems 1.4, 1.5, and 1.6.

e In Section 3, we construct the building blocks for the convex integration, namely viscous eddies. We show
that they are a family of approximate solutions of the stationary NSE. Several useful estimates are also
derived.

e Section 4, Section 5 and Section 6 are devoted to proving the main proposition. Specifically, velocity
perturbation is defined in Section 4, the new Reynolds stress is estimated in Section 5 and the energy
behavior is proved in Section 6.

e In Appendix C, we show that one can use the solutions constructed by Buckmaster-Vicol to obtain dis-
continuities (but not jump-discontinuities) in the energy. Appendix D provides a proof of a technical tool,
Proposition 4.7.

2. THE MAIN PROPOSITION

The main objective of this section is to prove Theorems 1.4, 1.5, and 1.6 using Proposition 2.1, which we will
refer to as the main proposition.

2.1. Notations. Throughout the manuscript we use the following standard notations.

e ||l := Il | e (r=) is the Lebesgue norm (in space) forany 1 < p < coand || - [lem = > g cicm IV [l
for any m is the Holder norm. For uniform in time bounds we will use standard notations || - || » and
I lzgecm.

e We say a function f is A™'T3-periodic if f(z) = f(x + m) for any m € A71Z3. The space C§°(T?)
is the set of smooth functions with zero-mean on T¢. de = ﬁ ra 18 the average integral any function
f e LY (T9).

e 1 < y stands for the bound z < Cy with some constant C' which is independent of = and y but may
change from line to line. Then x ~ y means z < y and y < x at the same time. We use x < y to indicate
x < cy for some small constant 0 < ¢ < 1.

e For vectors a,b € R%, a ® b is the matrix with (a ® b);; = a;b;. For matrix-value functions f = f;; and
9=gij,divf=0ifijand [ : g = fijgi;.

o The gradient V always refers to differentiation in space only. Sometimes we use V¢ , to indicate that the
differentiation is for space-time.

e A, is the standard periodic Littlewood-Paley projections on to the dyadic frequency shell 2971 < |¢] <
20t forany ¢ > —land Ac, =7  Arand Asy =30 o A,

2Such possible scenarios are closely related to the energy balance equation for the Navier-Stokes equations. See for instance [CL20]
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2.2. Generalized Navier-Stokes system. Let a, f € C°(T? x [0,77]) be smooth divergence-free vector fields
with zero mean for all ¢ € [0, T']. We consider the following generalized Navier-Stokes system:

{&v + Lov+divioev)+Vp=f

NSE
dive = 0, (eNSE)

where
Lo,v=—Av+div(v ® a) + div(a ® v).
The reason to consider such a generalization is as follows. Suppose v is a weak solution to (gNSE) with given
vector field @ and f = —0;a + Aa — div(a ® a). Then u := v + a solves (NSE). We note that the added terms

are of lower order compared to the nonlinearity div(v ® v), and thus will not be of any trouble in the proof.
To construct weak solutions to (gNSE), let us consider the approximate equations

{&gv—i—Lav—&—div(v@v) +Vp=divR+ f

NSR
dive =0, (& )

where R is a symmetric traceless matrix. If (v, p, R, f) is a solution to (gNSR), then we say (v, R) is a solution to
(gNSR) with data a and f. The above system is reminiscent to the so-called Navier-Stokes-Reynolds system used
in the previous works [BCV18, BV19, Luol19]. Our main proposition is to construct weak solutions to (gNSE)
using a sequence of solutions (v,,, R,,) of the approximate system (gNSR) so that the stress term R,, — 0 as
n — 00 in a suitable sense.

2.3. Main proposition. In this subsection, we will introduce the main proposition of the paper, which will enable
us to prove all the main theorems listed in the introduction.
Throughout the paper we use the following notations. For any > 0 and any finite set F' C [0, T, let

B.(F)={t€[0,T]:dist(t, F) < r},

I.(F) =[0,T]\ B,.(F). (2.1

Proposition 2.1. Let co = 1072, T > 0.° Consider the system (gNSR) with given a, f € C*(T? x [0, T]) smooth
vector fields with zero mean. There exists a small universal constant C such that the following holds.

Lete,r > 0,0 < eg < e1 < 00, and Fo, F1 C [0,T) be two finite sets such that Fo C F1. If (v, Ro) is a
smooth solution to (gNSR) on [0, T'| with data a and f so that

(1) the energy |[vo(t)||3 < eq for all t, and is almost constant eq away from the set Fo:
’||v0(t)||§ — eo‘ < cole; —eg) forallte I.(Fy),
(2) (vo, Ryo) is close to a solution of (gNSE) in the sense that
do < C(e1 — eo),
where o = || Rol| Lo L1 (12 x[0,7])»
then there is another smooth solution (v, R) to (gNSE) with data a and f such that

(1) The energy ||v(t)||3 < ey for all t, and is almost constant ey away from the set Fi:

C
Ilo(0)]15 — ex] < 5 (er —ea) forallt € Lims,(Fr) .

(2) The new stress R verifies

e fort € I4—1r(f1)
IRl < {do+e  fort € L2, (F1) \ Is-1,(F1) (2.2)
do fort € [0, T\ Ij—2,.(F1).

Moreover, the velocity increment w = v — vg verifies
supp, w C Ig—2,(F1) and ||Jw|peewrn <e, (2.3)

and if Fo = F1 = (0 and vy is stationary4, i.e. Oyvg = 0, then w is also stationary: Oyw = .

3Since we only use cg to measure the approximate level of the energy to a constant, the exact value of cgp is not important.
“In this case, we of course require both a and f to be time-independent.
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FIGURE 1. Construction of v = vy + w in Proposition 2.1.

2.4. Proof of main theorems. We first prove Theorem 1.5, it suffices to prove the following result for (gNSE):

Theorem 2.2. Let ¢ > 0 and a € C®(T? x [0,T]), T > 0 be a smooth divergence-free function with zero
mean for all t € [0,T]. Consider the associated generalized Navier-Stokes system (gNSE) with data a and
f = —0a+ Aa — div(a ® a). There exists a dense subset E C [0,T), a constant M, > 0 such that for any
M > M, there exists weak solution v € C,,(0,T; L?>(T?)) (NSE) so that the followings hold:

(1) The energy ||v(t)||3 is bounded by M :

lv(t)||3 < M foranyt € [0,T], (2.4)
and has jump discontinuities on set E:
tim [o()3 > (O3 foranyt € B. 23)
(2) v(t) vanishes att = 0,T:
v(z,0) =v(z,T) =0, (2.6)
but the energy jump is of size M :
Jim Jlo(s)[3 = [[0(0)15 = lim_[lo(s)]3 = [lo(T)II3 = M. 2.7
(3) v(x,t) is smooth on E:
v(t) € C®(T?) forallt € F, (2.8)
and is e-small in LW 1:1:
[EIP——— (2.9)

The implication from Theorem 2.2 to Theorem 1.5 can be obtained simply by shifting v = v + a since the
vector field a is smooth. Now we prove Theorem 2.2 with the help of Proposition 2.1.

Proof of Theorem 2.2 assuming Proposition 2.1. We first construct the set F, then a sequence of approximate
solution v,, such that v,, converges to the desire solution v in a suitable sense. Without loss of generality, we
assume 1 = 1.

Step 1: Constructing the set E. Consider the binary representation of = € [0, 1]:
oo
T = Z T 277,
§=0

Now let F}, be the collection of all real numbers in [0, 1] whose binary representation has at most n digits, namely
x € F, C [0,1]if and only if 2; = 0 for all j > n. Assuming F_; = (), let also E,, = F,,41 \ F,,,n > —1. For
instance, F_1 = {0, 1}, Ey = {Y/2}, By = {1/4,3/4}. Let

E= lim F, = U E,,

n— oo
n>—1

which is a dense subset of [0, 1].
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Denoting r,, = 4~ "~1, let us show the following important property of the set F for later use:

liminf B, (F,_1) C E. (2.10)

n—00
Suppose t € liminf B,. (F,,_1), which means that there exist N and ¢,, € F),_; for every n > N, such that

[t —tn| = dist(t, Fom1) < 7p. (2.11)
We claim that ¢,,1 = t,, for all n > N. Otherwise, for some n > N there must be

|t —tn| > [tng1 — tn| = [t = tnga| > 27" —rpyy > 27771
which contradicts (2.11):
27 <y, =272

Hence, it follows from (2.11) that t = ¢y € Fy—_1 which implies that¢ € E.
Step 2: Constructing approximate solutions v,,. Given smooth vector field a, we set v9 = 0 and Ry =

R(0ra — Aa+ div(a ® a)), where R is defined in Definition 5.1. Then (vo, R) is a smooth solution of (gNSR)
with data ¢ and f = —0;a + Aa — div(a ® a) on [0, 1]. We choose

4
My = | Rollzz s, 2.12)

where C'is the constant in Proposition 2.1.

Letr, =4 "!and M > M, and choose the energy level e,, = (1—27™)M for n € N. Note that the choice
of e,, is admissible in view of (2.12).

Starting with (v, Rg), we apply Proposition 2.1 with data ¢ and f on [0, 1] to obtain a sequence (v, R;,)
of smooth solutions of (gNSR). More precisely, (v, 41, Rn+1) is obtained by applying Proposition 2.1 to the
previous solution (v, R, ) with parameters

(Ta €0, €1,¢, 'FOa ]:1) = (’I"n, €ny€nt1,En, F’!L—17 Fn)7
where the small parameters ¢, are defined inductively by
2 "1l
= b
1+ ngnfl sup; ||w;||oo

and w; := v; — v;_1 is the j-th velocity perturbation for j > 1.
Clearly, each (v,, R,) in the obtained sequence is a smooth solution of (gNSR) on [0, 1] with data ¢ and
f=—-0:a+ Aa — div(a ® a), and by Proposition 2.1 we have the following properties:

(1) Forany n € N

En (2.13)

[on (@15 — en| < 027" M

forallt € I, (Fo_1), (2.14)
[Rn(t)]1 < éen
and
lon(£)]5 < en < M,
forall ¢t € [0, 1]. (2.15)
[Rn(®)]l1 < | Rollzorr + e
(2) The velocity increment w,, = v,, — v,,—1 verifies that
[[nl] ey < €n. (2.16)
(3) Ift € F,, for some n € N, then
vg(t) = v, (t) forallk > n. (2.17)

Step 3: L? convergence of v,,. The solution v(¢) is constructed as a strong L? limit of approximate smooth
solutions vy, (t),

n—oo

o(t) = lim v,(t) = iwj, t e [0,1].

We first prove that v is well-defined, i.e. v,, converges pointwise in L2. Indeed, thanks to (2.13) and (2.16) the
velocity perturbations wy, are almost orthogonal in L?:

sup [(wj,wi)| <2797 forall j > k. (2.18)
t
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As a result, due to (2.15)

n
Solwillz < llwall3+2 Y [wj,wi)| < M +2¢ forall n.
j=1 1<j<k<n

So, for 0 < n < m we have
lom —valld = D lwsllz+2 Y [{wj,w)]
n<j<m n<j<k<m
< Z |wjl3+27" e =0 asn,m — oo,
j>n
i.e., vy (t) is Cauchy in L? for every ¢t € [0, 1].
Next, we show that v is a weak solution of (gNSE). Let test function ¢ € C°(T? x [0, 1)) be mean-free and

divergence-free for all ¢ € [0, 1]. Using the weak formulation for the solution (v,,, R,)) of (gNSR) with data a
and f = —0ia + Aa — div(a ® a), we get

/vn<-,o>-@<-,o>+/ O - Do+ - (v - V) 4+ tn - Ap
’]1‘3

T3%[0,1]

(2.19)
+/ a-(vn-V)¢+vn~(a~V)<p=/ R, :Vo+f-o
T3 x[0,1] T3 x[0,1]
For simplicity of notation, let
L= ) In.(Fi-1).
k>n
Immediately
10,1\ I| S 27" (2.20)
From (2.14) and (2.18) it follows that
0 = vl 2o,y < sp (0O = Ioa (B = 240 = vaa) S 277 (2.21)
and
[RollLeepr(rsxr,)y S 27 (2.22)

Using the bounds (2.20), (2.21), and (2.22) together with (2.15), it is easy to check the convergence of all the
terms in (2.19) to their natural limits by splitting the domain of integrals into T2 x I,, and T3 x I¢.

Next, let us show that as the pointwise L? limit of v,,, the solution v is weakly continuous. Let ¢ € L?(T?)
and ¢y € [0, 1]. Consider the following split:

‘<U(t) - U(t0)7 <)0>‘ < ‘<U(t) - Un(t)a 30>’ + ‘<Un(t) - Un(tO)a §0>‘ + |<Un(t0) - U(to)a §0>|
The first and last terms go to zero as n — oo by the uniform W' convergence of v,,. For the second term, since
v, € O5°(T3 x [0, 1]), we get
‘(vn(t) — vn(to), <p>} — 0 ast—ty.

So we may conclude that (v(t) — v(to), ) — 0ast — to.
Step 4: Verifying properties of v. Finally, we show that v is a weak solution satisfying all the properties (1),
(2) and (3) stated in Theorem 2.2. First, |[v(¢)||3 < M for all t € [0, 1] due to (2.15). Therefore, to show (1), it
remains to prove that E' consists of jump discontinuities.

Indeed, given ¢ € E, there exists n such that ¢ € E,,, which implies ¢ € I, (F},) and v(t) = vy, 11(t). Using
(2.14) we get

M —|lo@®)|3>M —epp1 — coM27 71
2 M27".
We will show that 11H%||11(5)||§ = M. To this end, let
s—

I ={se0,1]:t—e<s<tort<s<t+e},

and
N, =max{j e N: . N F; = 0}.
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By definitions of the sets F), we have N, > n provided ¢ < 2—7=1 which implies that El_igf(lgl+ N, = oo. Moreover,
from (2.10) it follows that

E¢=[0,1]\ £ C limsup I, (Fj_1),
which by (2.14) and the pointwise L? convergence of v,, implies that

llv(s)||2 = M forall s € E°.

Thus we only need to consider s € I. N E. In this case s ¢ Fy_, however, s € E,, for some m > N, and
v(8) = Vm1(s). Then s € T, (Fyn), and therefore, (2.14) implies that

Tm+41
llo(s)ll5 — M| S 27

Taking a limit ¢ — 0 we obtain lim,_,; ||v(s)||3 = M. Thus statement (1) is proved. As a special case of the jump
discontinuities, statement (2) follows as well.
The smoothness of v on the set £ and the uniform smallness of v in W 1! follow directly from (2.17) and
(2.16) respectively. So, statement (3) has been obtained as well.
O

Next, we use a gluing technique to glue pieces of weak solutions given by Theorem 1.5 to obtain Theorem 1.6.

Proof of Theorem 1.6. Tt is clear that Theorem 1.5 works for any interval [tg,¢1]. Also, the energy level M,
depends only on the vector field a and M, can be any positive number when a = 0. Without loss of generality,
we assume 7" = 1.

Step 1: Constructing approximate sequence u,,. Let C,, be a fat Cantor set on [0, 1] with measure (1 — «) (each

time remove the middle interval of length (1%, )"). In other words,

Co= [O’ 1] \ U U I]“)fnv

n>11<j<2n—1

where 7, are the open intervals removed from the fat Cantor set C, at step n.
Let us first construct a sequence of weak solutions of (NSE) that are supported on IJTH Applying Theorem
1.5 on each interval I, with (e, a, M,) := (¢47",0,1), we obtain a weak solution u; ,,, which we then extend

in
trivially to the whole interval [0, 1]. The resulting sequence of weak solutions u,; ,, satisfy

(1) w;n is supported on I, . Moreover,
ujn(t) =0, fortdg I,
(2) uj, is small in W1
[wjnllLoowrn < ed™". (2.23)

(3) [[ujnl3 is discontinuous on a dense subset ', C Ig,.

Since I, N I3 ., = 0if j # j' or n # n/, namely u; , have disjoint temporal supports, we can construct
another sequence of weak solutions of (NSE) by defining

Up = E E Uj k-
1<k<n 1<j<2n—1

As both summations are finite, u,, are weakly continuous in L? and are indeed weak solutions on T2 x [0, 1].

Step 2: Convergence and weak continuity of u,,. We claim that u,, (¢) pointwise converges in L? and define
u(t) = lim u,(t), t €[0,1].
n—oo

To prove this claim, consider two sub-cases.
(@) If t € Cq, then un(t) =37, ., > ujk(t) = 0 for all n. So, in particular, u, () — 0in L2
(b) Ift € [0,T] \ Cq, then there exist j,n € N such that ¢t € I, Thus U (t) = uy,(t) for any m > n, and
consequently u(t) = uy,(t).
Combining this with (2.23), it is also clear that statement (2) holds.
Next, we show that u € Cy, ([0, 1]; L?), i.e., u(t) is weakly continuous. Let p € L?(T3) and to € [0,1]. As
usual, we consider the split

[(u(t) — ulto), )| < [(u(t) — un(t), 0)] + [(un(t) — un(to), @)] + |[(un(to) — u(to), ¥)|- (2.24)
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Thanks to (2.23), for any ¢ € [0, 1] we have

|(u(t) = un(t), ©)] < [Ju—tn| peoppri 1l S Nlloe D D Nkl poyprn < €27 10]loo-
k>n1<j<on-1

So the first and the last terms in (2.24) go to zero as n — oo, which together with the weak continuity of u,,
implies the weak continuity of v in L2.

Finally, we show that u is a weak solution of (NSE). Let test function ¢ € C2°(T? x [0, 1)) be mean-free and
divergence-free for all ¢ € [0, 1]. By the weak formulation of (NSE) for u,, we get

1
/ un(z,0) - ¢(z,0) dz + / / Up - 0o+ Up - (U - V) + Uy - Apdzdr = 0. (2.25)
T3 0 T3

Since u,, (0) = u(0) = 0, the first term is zero. For the rest of the terms it suffices to show that

Up — U in Lil as n — oo.

L= U .

m>n1<j<an—1

Consider a remainder set

Since supp, uj,,» C I3, we know that
u(t) = upn(t) forallt € [0,1]\ I.

Moreover, the set [,, is small by direct computation:

20 \"™
|In| S (1+2a) '
Thanks to the above, we have
1
[[un — UHL?J(’WX[OJ]) = [|un - uHLf,I(TSXI,L) < |Jun - “||L§°L§|In| *=0

as n — o0o. So, we have proved that u € Cy,(0, 1; L?) is a weak solution of (NSE) satisfying statement (2).

Step 3: Discontinuities of ||u||% on E,. We first define the countable set F,:
Fo=JFp
j,m

where recall that F?, is the set of jump discontinuities of || ,,||3. From the definition of F*,, it follows that
F, NC, = 0. Moreover, it is clear that F,, is a dense subset of [0, 1].
Let us show the discontinuity on F, = C, U F,. Suppose ty € F,, thenty € I jam for some j, m. Moreover,
this implies that
u(s) = ujm(s) forallse 7, .
Since u;, ,, is a weak solution given by Theorem 1.5, ||ul|3 is discontinuous at ¢y:

lim [lu(s)|3 > [[u(to) 3 (2.26)
s—to

Next, suppose tg € Cq, then |lu(to)||3 = 0. Let ¢, be a sequence such that t, — to as k — oo and each ¢y, is
the endpoint of I, for some j = j(k). Then from Theorem 1.5 we get

limsup [[u(s)[|3 > limsup [luk(s)]3 = 1.
s—tk s—tk

So, for any ty € C, we have

limsup [lu(s)[|3 > [[u(to)]3-
s—to

Statement (1) is now proved.

We finish this section by proving Theorem 1.4.

Proof of Theorem 1.4 assuming Proposition 2.1. Given any smooth force term f, let vg = 0 and Ry = —R f. So
(vo, Ro) solves (gNSR) with data @ = 0 and f. Then define

4
My = S Rolos.

For any M > M/ we can construct the solution as follows. Let the energy level e,, = (1 —27")M forn € N.
Again, the choice of e,, is admissible due to M > M.
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Starting with (vg, Ro), we apply Proposition 2.1 to (v,, R,) with the same parameters as in the proof of
Theorem 2.2:

(7“, €Oa61a5»f0;f1) - (47”71761176714»1»5717@7@);

where ¢, is the same as (2.13). It should be noted that the value of r does not matter here as all v,, are stationary
and Fy = F; = 0. Clearly, (v, R,,) are smooth solutions of (gNSR) with data a = 0 and f such that

—n-1
SCOM2 " )

[lonl3 = en

IRnlly < 27" e

Using the same argument as in the proof of Theorem 2.2, one can show that v,, converges to a stationary weak
solution v € L? of (gNSE) with data @ = 0 and f such that |[v||3 = M. So v is a stationary weak solution of
(NSE) with forcing term f. [l

3. STATIONARY VISCOUS EDDIES

In this section, the building blocks of the solution sequence are constructed. The entire construction is done
in the whole space R? not on torus T3. Recall the standard stationary Mikado flows can be rescaled so that the
intermittency dimension D = 1 [Luo19], which is insufficiently intermittent to be the building blocks for the 3D
Navier-Stokes equations. Being also stationary, our viscous eddies are in the intermittency regime D < 1, but the
full range 0 < D < 1 is unattainable.

There are two main major differences between our new building blocks and previous ones used for the NSE,
intermittent jets in [BV19]. First, existing building blocks for the NSE are exact or approximate solutions of
the Euler equations. As a result, the linear term is purely a useless error in those convex integration schemes.
In contrast, viscous eddies are a family of approximate stationary solutions to the NSE, not Euler equations,
see Theorem 3.13. The Laplacian is essential as it balances the leading term in the equations. Second, viscous
eddies are time-independent, which enables us to obtain stationary weak solutions with time-independent (or
zero) external force. In other words, our scheme does not require time oscillations, which might be of interest in
improving the temporal regularity of wild solutions.

3.1. A geometric lemma. We start with a geometric lemma that dates back to the work of Nash [Nas54]. A
proof of the following version, which is essentially due to De Lellis and Székelyhidi Jr., can be found in [Szel3,
Lemma 3.3]. This lemma allows us to reconstruct any stress tensor R in a compact subset of Siw, the set of
positive definite symmetric 3 X 3 matrices.

Lemma 3.1. For any compact subset N' C Si’_x;}, there exists A\g > 1 and smooth functions T'y, € C*(N;[0,1])
for any k € 73 with |k| < \o such that

ko k
R= ) Fﬁ(R)?QQ? forall R € N.
kEZ3,|k|<)Xo | | | ‘

Lemma 3.1 is one of the reasons we choose to construct viscous eddies, which will be nonisotropic, closed to
pipe flows, and divergence-free up to the leading order terms.

Fix a compact subset A/ C Sixg and let K C R? be the finite set of vectors given by Lemma 3.1°, the directions
of the major axis of viscous eddies. We can then choose a collection of points py, € [0, 1]3 for k € K and a number
o > 0 such that

UBuo—l(pk) c[o, 1]37
k

and
BQ#«El(pk) n leig_l(pk/) = (Z) if k # k/.

These points p; will be the centers of our eddies and the balls Buo—l (pr) will contain the supports of the eddies.
Let

I :={pp +tk:t cR} CR?
be the line passing through the point pj, in the % direction.

SFor applications in this paper, the set N' C SiX3 is fixed. See Section 4.5.
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3.2. Velocity profiles. Let ¢ € C°(R™) be a smooth non-negative non-increasing function so that supp ¢ C
[0, 1]. Then let

o(r) = —%/ P(s)sds. 3.1)

Note that ¢ € C*°((0,00)), ¢(r) = 0forr > 1, and ¢ has a singularity r ~! near the origin due to the monotonicity

of 1.

At this time we also assume
/ (p* — ¢ )rdr =0, (3.2)
0
which will be verified in the next lemma.

Lemma 3.2. There exits a smooth non-negative non-increasing 1) € C°([0, 1]) such that (3.2) holds and 7)’ = 0
in a neighborhood of 0.

Proof. Integrating by parts we obtain

/OOOW — o) rdr = /Ooorwzdr T /Om /roo b(s)s ds ! (r) dr
= 2/0oo ri*dr — 4(0) /Ooorwdr.

We first fix a non-negative non-increasing ¢ € C2°([0, 1]) such that

P(r)=1 forallr €[0,1/2] and 2/ Tder—/ ribdr > 0.
0 0

Note that the existence of such functions can be seen by taking mollification on the characteristic function xo, 1]
Let us consider ¥, = ¥ + atp(ar), a > 1 to be determined, for which we need the solve the equation

F(a) ::Z/OOOrwgdr—wa(O)/omrwadrzo.

It is clear that once a solution F'(a) = 0 is found, the lemma is proven.
A direct computation yields that

F(a) =4 (/OOO rip? dr+/ooo ray(r)y(ar) dr) —(1+a) </OOO r¢dr+/ooo rap(ar) dr) : (3.3)

In particular, our assumption on ¢ implies

F(l):8/ooorw2dr—4/oocrwdr>0.

As a — oo we notice in (3.3) that
/ ray(r)yY(ar)dr §/ rayp(ar)dr = a_l/ ripdr — 0,
0 0 0
and thus there exist some cg, ¢c; > 0 depending of v such that

F(a) <c¢p—c1(l+a) forall sufficiently large a,
which implies that there exits 1 < a < oo such that F'(a) = 0. O

Throughout this section we will work in cylindrical coordinates to simply notations. Let

k
zp =(v — pr) - m, (3.4
ri, =dist(zx, l) (3.5)

be the cylindrical coordinates with respect to the basis{e,, eq, e} centered at pj, with e, = %

It would also be convienet to introduce the following decomposition

R3 = Qi @ Iy, (3.6)

where Qi = {x € R® : 2 - k = 0} is the plane orthogonal to .
Finally, let us fix a smooth nontrivial function 7 € C2°(R) such that [ = 0 and = 0 for |z| > 1.
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Definition 3.3 (Principle profiles v and n;). For k € K and i > 7 > g let ng, v € C®°(R3) and ¢y €
C>(R3\ l1,) be defined by

N = C’Tl/zn(TZk),

Ui = p(pre), 3.7

br = d(pury),

. . 2
where c is a normalizing constant such that fR3 ‘nki/zk| dr = 1.

Remark 3.4. Note that 1, and 1y, are smooth and compactly supported in Qy, but not ¢, which still has a
compact support in Qy but also a singularity 1/r at the origin. We can use a mollification to smear out the
singularity thanks to Proposition 3.9.

Using cylindrical coordinates we can easily prove the following simple lemma regarding the profiles 7 and

Py

Lemma 3.5. For any k € K, the rescaled functions 1y, and ¢y, verify the identities

8(%?) =Yy and /000 (%% - ¢k(?;f:> T drg = 0. (3.9)
For any 1 < p < oo, there hold
il oy S 772777,
el @) S 12 )
and
IpnllLon Sp ™7 ifl<p<2. (3.10)

Proof. The first two identities (3.8) follow from the rescalings (3.7), (3.1) as well as the zero-mean condition (3.2).
The first two estimates (3.9) follow from rescaling and the the fact that n,¢» € C°(R™) while (3.10) follows

from rescaling and the fact that ¢ € L?(rdr) forany 1 < p < 2.
O

Next, we introduce another family of profiles that will be used to form the Laplacian corrector part of the
eddies.

Thanks to the zero-mean condition (3.8) and the vanishing of ¢’ near the origin obtained in Lemma 3.2,
Lemma B.1 implies that there exists h € C>°(R"), such that a(| - |) € C>°(R?) N W1P(R?) for 1 < p < oo, and

Ah(lz]) = (¥(|x])? = o(|2)¢’ (|])- (3.11)
Then define ¥, € C°°(R?) by
Uy, = h(ure), (3.12)
for which we have
2 Oy,

Let us fix some nonnegative function ¢ € C°(R™), such that ¢(r) = 1 for r < 1, suppy € [0,2], and
fooo @rdr = 1. This function will be used as a cutoff in Definition 3.6 below and a radial mollification in
Definition 3.7. _

Now we define another two profile functions, 1, and 77, which will constitute an important part of our eddies.

Definition 3.6 (Viscous profiles i/:k and 7). Fork € Kand p > 7 > o, define

Yp = o(1ry) Vg,

and
o Lo0)
k 2 0z,

Note that the extra mild cutoff ¢ (77 ) is to make sure the support of 12;C is contained in a cylinder centered at
the line [, in R? so that 7j,1)), is compactly supported.
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3.3. Vector fields W;, and V. Let us first introduce vector fields Wy, and V, which corresponds to the principle
part and respectively the Laplacian correction part of the eddies.

Definition 3.7. Let K C R? be a finite set and -y > 0 be a small constant. For each k € K and pn > 7 > pig, the
vector fields Wy, : R? — R? and V}, : R? — R3 are defined by

Wy, = (W, +W,), and V= e, (3.14)
where the vector fields W, and W, are respectively defined by

o
W, = netwe,, W, = fa—nkqbker. (3.15)
Zk

Here ()., := @~x indicates a radial mollification at scale w7 in the Qy-plane via the kernel

Oy = 1P T ().

In addition, let W}, be the non-smooth counterpart of Wy, defined by
Wi =W, +W,. (3.16)

The role of each parameter is as follows.

o 1~ ! parametrizes the concentration level of eddies.
o 7! measures the closeness of eddies to the pipe flows
e -y is a small constant that we use to achieve the smoothness of the eddies.

We will choose the parameters so that ||[Vi|2 < [|[Wy|l2 and |[W,.||2 < ||W,]||2. Hence, viscous eddies are
quantitatively determined by W,.
Note that Wy, is divergence-free. Indeed, using standard vector calculus (see Appendix A) we compute

div(Wy) = div <nk¢kez — 87”“¢ker)
azk y

_(9m,, _ Ok 10(rér)
0z, k Oz r Ory .
:O,

thanks to (3.8).
Note that for W}, we can choose v < 1 and 7 < p so that it has any small intermittency D > 0:

97 Wil S 000 1= 2, (317

however, besides being much smaller than Wy, the viscous part V; will impose other restrictions on admissible
choices of T, p, as indicated by Proposition 3.11.
As a direct consequence of Definition 3.3 and 3.6 we obtain

Lemma 3.8 (Compact support of Wy, and V). For any u > 7 > pyg, the supports set of Wy, and Vi, verify

supp Wy, Usupp Vi, € [0,1]*  forany k € K,
supp Wi Nsupp Wy =0 and suppVi Nsupp Vi =0 ifk £k,

and the estimate

| supp Wi| S 7 1p2.

Moreover, the vector fields Wy, have zero mean

Wy = 0. (3.18)
RS
Proof. The compactness and disjointness of the support follow from the definitions. The estimate of the support
set follows from the fact that 11~ !-mollification only alter the diameter of the support set by x~! and 7 < p.
The zero-mean property (3.18) follows from integrating in cylindrical coordinates with basis {e,, ey, e,} and
the fact that the profile function 7 € C'2°(R) used in (3.7) has zero mean. O
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3.4. Definition of viscous eddies. We will show that W;, and V;, can be used to form stationary solutions of the
Navier-Stokes equations. The choice of V is inspired by the following results.
The first estimate shows that the leading order term in div(W; @ Wy,) is div(IWy @ W,).

Proposition 3.9. Suppose 7 < ' ~7. Then the following estimate holds
Wk @ Wi = Wi @ We|, Sp o™ [M272/p7171/p}7
foralll <p <2

The next two results show a precise structure of the error term div(Wj, ® W,). In particular, it has a fixed
direction e, and zero mean over the {);-plane thanks to Lemma 3.5. Hence, it can be balanced by adding a
Laplacian term.

Lemma 3.10. There holds

10(ng 0
div(Wy ® W2) = o é i) (w,% o w’“) e.. (3.19)
Proof. Since W, = W, + W, is divergence-free, by a direct computation using cylindrical coordinates (cf.

Appendix A) we conclude
div(We @ W) = (W, + W,.) - V)W,

8
= nk@m ﬂez + kwkfiﬁk e,

toud (i-02) o

2 32’k a’l"k
(|
Proposition 3.11. Suppose 7 < u. Then the following important estimate holds:
|| div(Wi @ W) = AVi| , o) Sp 7207 {Mz_z/pﬂ_l/p}, (3.20)

forall1 < p < oo

While Lemma 3.10 follows from a direct computation using cylindrical coordinates, we postpone the proofs of
Proposition 3.9 and Proposition 3.11 to the end of this section. With these results at hand, it is natural to consider
the following family of vector fields.

Definition 3.12 (Viscous eddies). Viscous eddies are vector fields of the form

u=> aW; —aiVy, (3.21)

where coefficients ay, € R for each k € K.

One of the advantages of viscous eddies is that they are approximate solutions of the stationary Navier-Stokes
equations.

Theorem 3.13 (Approximate stationary solutions in R?). Let K C R? be finite and u be a viscous eddy:
u = Zakwk — ain,
k

where constants ay, € R for each k € K.
Then u € C°(R3) is an approximate solution of the stationary Navier-Stokes equations in the following sense.
There exist a stress R € C2°(R3**3) and a vector field r € C>°(R?) so that

Au+div(u @ u) = div R + 7.
Moreover, for any € > 0, one can choose T, i > 0 such that
IRl 1 (ms) + 17l L1 ey < e

For simplicity of presentation we include the pressure in the stress term R and do not assume R is symmetric
traceless. It might be possible to write the vector field r in the divergence form, gaining an additional one deriva-
tive. Such a method will require the use of inverse divergence operator on R?. However, the inverse divergence R
in defined in 5.1 does not preserve compact support on R3,

As one can see, u is an approximate stationary solution to the NSE for an arbitrary direction %, whereas both
intermittent jets in [BCV 18] and Mikado flows in [Luo19] must have lattice directions to be periodic.
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Proof of Theorem 3.13. Denote u; = Y, ayWj, and ug = — >, a2V, then define the stress term R by
R=Vu; +u; ®us +us ® u; + us ® us.
and the vector field r as
r = Aug + div(u; ® uq).
Immediately, by direct computation
Au+div(u @ u) = div R + 7.
As aresult,
IRl ey S IVl + Junll2lluzllz + [Juz3, (3.22)

and
Il o sy S D || divWi ® Wa) = AV gay + [ div(We @ Wi — Wi © Wo)| g -
k

By Propositions 3.9 and 3.11, it is easy to choose p > 1 sufficiently close to 1 and T, ¢ sufficiently large
depending on ay, such that

IRl sy + 7o @sy < IR[1gsy + |I7]lzrms) < e

3.5. Estimates for the viscous eddies.
Proposition 3.14. For any 7 < p' =" and y sufficiently large, the following estimates hold:

p DWWy sy S it 72TV 1< p < oo,
M—nL(l-&-’y) vaVkHLp(]Ra) Sm,p N_173/2 |:M1—2/p7_1/2—1/p . 1<p<oo.

Proof. By a dimensional analysis and smoothness of W, and Vy, it suffices to prove the estimates for m = 0.
Let us first estimate Wy. Definitions 3.3, 3.7 and Lemma 3.5 immediately imply that

Wl S pt=7rr'27 e, 1< p< oo, (3.23)
and
Willoe $pp p~ e 4e, 1<p<2. (3.24)
~Pp
Note that W,. ¢ L2, and hence the implicit constant in (3.24) blows up as p — 2—. Now we will show that the
mollified radial component of the eddy satisfies
I(Wollee S 2= 7rr*27 e, 1< p < oo, (3.25)

provided  is large enough.
Indeed, due to Lemma 3.2, there exist constants ¢; € R and 0 < ag < 1, such that 1)(r) = ¢; for all r < ay.
By definition (3.1), for all » < oy we have

o) == [ wlsas
1

([ [

T 1

=y + €2
for some constant co € R. Clearly there exists @ < «g, such that |¢(r)| is decreasing for all » < «, and
|o(a)| > |@(r)]| for all » > «. Therefore, ((bk),yf attains a global maximum at 7, = 0, provided 277 < . A

direct computation shows that
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2

Now using the fact that | supp(W,.),| < p=2771, we can conclude that

W)y loe S w= e | (W), | o

an
o P P

Su e e

Su el

provided  is large enough (so that 2~ < ).
Now we can easily estimate viscous eddies using (3.23) and (3.25):

Willze < I(Wa)yllize + [[(We)yllze S

~

due to the assumption 7 < g =7,

Next, we estimate ||Vy||z» in cylindrical coordinates. Since V, is axisymetric, using the decomposition R? =

Q. @ [, we obtain

IVillLe sy S NkllLe @) 19kl e ) -

By Definitions 3.3 snd 3.6,

A(nz)

~ 21
il < |52 e,

~

LP(lk)

Then for p > 1 we have _
Iellzr) < Ielze el o,

1
Sp (/ |h(w“k)|p7“kd7“k)p
S,

where in the last estimate we have used the fact that h € LP(R?) forany 1 < p < oo.
Putting together (3.26) and (3.27) we obtain the desired estimate

Vil Sp 772u! [,ulﬂ/prl/zfl/”} forany 1 < p < oo.

Using the above estimates, we prove Proposition 3.9 and Proposition 3.11.

Proof of Proposition 3.9. We start with the decomposition
Wi @Wi =W, @ W, + (W, = Wi) @ W, + Wi @ (W), — W2) + Wi, @ (W),

So by Holder’s inequality we will focus on the following

SXp+Xo+ X3
Let us first estimate X;. We start with the definition of W, and obtain
X1 S (”Wz - (WZ)’YHP + ||Wr - (VVT)VHP)HVVzHLOC
5 (”Wz - (WZ)’YHP + ||WTHP)HWz||L°°-
To estimate the above terms, we first notice that by a standard approach to mollification,
IWe = (Wa)yllp S IWellwrwp ™77
Moreover, by Lemma 3.5 (cf. (3.23) and (3.24)), we have
IWellwrw S =720 W lpee S 2,
and, since 1 < p < 2,
IWellee Sp = trpt = ler 27,
Substituting bounds (3.30), (3.31), and (3.32) into (3.29) gives
X1 S (w4 pm ) [
which is the desired estimate since 7 < p!' 7.
Next, we estimate X5. By Proposition 3.14 we have

Wil <

P

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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which together with (3.30) and (3.31) implies that
Xo Sp Y[ et =), (3.35)

Finally, we need to bound X3. All the estimates for X3 have been obtained before. In particular, since 1 < p <
2, (3.32) and (3.34) imply

X S Wil o W],

Sutr[pr et
which is what we need due to the assumption 7 < u'~7.
O
Proof of Proposition 3.11. By a direct computation,
AV = A(rp)Vre: + 2V (k) Ve, +ipAlge., (3.36)

where we write ¢ = ¢(77r},) for short. Recall from (3.13) that

0
A1) = - o,

and, in particular, AU, = 0 for r;, > p~!. Since 7 < u, we have that o(7rr) = 1 on supp A¥y. Then using
Definition 3.6 and Lemma 3.10, we obtain

~ 1O (2, O
WkSOA\I/kez == 5 aZk (djk ¢k67rk)ez
=div(W, @ W,).
Combining this with (3.36), we get
| div(We @ W) = AVe[| 1, sy S [AORL) Tk o @y + [V O00) Vx| 259 (3.37)

Since 7 < u, it suffices to bound the second term in (3.37). By Definition 3.6, we have a pointwise bound
[V (e)| < [V20i)| + 7|V ()]
Thus for the second term in (3.37) we have

||v(ﬁk9")vqlk62||m(ﬂa3) S ||v2(77]%)HLP(lk,)HV\IIkHLP(Qk) +THV(WI%)HLP(M)HV\IJ’CHLP(Q,C)‘ (3.38)

Now by rescaling (3.12) and Definition 3.3,

HV\IIICHLp(Qk) Sp /1'172/17 for1<p<oo, and an(ni)HLp(lk) Sn =Y for 1 < p < oo,

So we get
Hv(ﬁksp)v\:[jkez HLP(R:;) ,S,p 7_2“71 |:Iu272/PT171/P:| ,
which implies the desired bound:

H diviW, @ W,) — AVkHLp(Rg) <p 2t {,ub%rlfl/p} forl < p < . (3.39)

4. PROOF OF MAIN PROPOSITION:VELOCITY PERTURBATION

In this section, we start proving Proposition 2.1. The main objective of the section is to define and estimate
the velocity perturbation. More specifically, we will carefully design the velocity perturbation w so that the new
solution v = vy + w has the desired properties listed in Proposition 2.1. The key is to reduce the size of the stress
error term and make sure w carries a precise amount of energy on the intervals I;—1,.(F7) at the same time.

The rest of this section is organized as follows. We first give a general introduction of the proof, and then
introduce all the necessary preparation work to define w, namely, fix constants 7 and y appeared in the viscous
eddies, choose suitable cutoff functions in space and time, and introduce the Leray projection and a fast oscillation
operator P,. Finally, we define the velocity perturbation w and derive various estimates needed in the next two
sections.
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4.1. General introduction. To better illustrate the idea, we provide some heuristics and try to outline the general
idea of the proof here. To the leading order, the velocity perturbation w consists of finitely many highly oscillating
viscous eddies:
w = Z arP,W + a%Png = w® 4 w(l)7
k

where coefficients a) are determined by the old Reynolds stress Ry, and P, is a fast oscillation operator (see
Definition 4.4).
On one hand, we nee to control the new stress term, which, according to (gNSR), is implicitly defined by

div R = Qyw + Low + div(w ® vg + vp @ w) + div(Ry + w ® w) — Vpy.
The old Reynolds stress R, will be canceled by the interaction w®) @ w(P) together with w("). More precisely,

div(w® @ w) + div Ry + AwY = High frequency errors + Lower order terms.

On the left hand side, R, will be canceled by the high-high interaction of w® ® w(®), and Aw® will balance the
error essentially introduced by the unwanted div(Wj ® Wy) as shown in Theorem 3.13. On the right hand side,
lower order terms are automatically small, but high frequency errors will gain a factor of o~ ! after inverting the
divergence. This will be shown in Lemma 5.8, Section 5.

On the other hand, we need to make sure the new solution v has the desired energy profile. This is in fact
mostly compatible with the above effort of controlling the new stress error. Heuristically, to balance the stress
term Ry, one must spend the energy of size at least ~ || Rg||1. In other words,

lw@®l3 2 [[Ro(t)lly  forall t.

There is a lot of flexibility in choosing the size of w though, as one can use more energy than needed to balance
the old stress term Ry. In our scheme, the size of ||w/|2 is determined by the given energy levels e and e; on the
intervals I,-1,.(F1), where the old stress error term is already quite small (the second condition for (vg, Rg) in
Proposition 2.1). This makes control of the stress and pumping of the energy compatibility. See (4.3) and Section
6 for more details.

4.2. Setup of constants. First, we set up the constants appeared in the definition of the vector fields W,* and
the viscous eddies.

The major parameter A, the (spacial) frequency of the perturbation, will be a sufficiently large. The parameters
w and 7 in the viscous eddies are defined explicitly as powers of A while + is taken to be small. Moreover, we also
define an integer o to parametrize the oscillations of the eddies.

In the sequel, we fix

o= \/®
— \¥1s
e 4.1
=\
Y=
28

Clearly, it holds that ¥ = o and o't = X. We also have the following hierarchy of constants:
CKLTL LN

For periodicity, we also require o to be an integer. Let us briefly discuss the scales involved in the definition of
w. In essence, the choice of parameters ensures that by raising the value of A, the new stress term R introduced
by w on I;-1,(F7) can be as small as we want, and, at the same time, the energy of new solution v (t)||3 can be
controlled precisely.
There are mainly four constraints in choosing the scales:
o The first constraint is due to the small intermittency requirement. Since A is the frequency of w which
consists of oscillation o and concentration 7 and y, then for w to be small in W ! it requires (see (3.9))

Mol < 1
e The second constraint is needed to achieve the correct energy level. Since ||w(®)||5 controls the energy
level of the new solution v, we need ||w® ||z < |[w® |y and |[w 9|5 < ||wP)||5. According to defini-
tions of w®) and w(®), i.e. (4.12) and (4.13), this implies
T% < W
e The previous two constraints are due to the viscous part w(). There is a new error introduced by A,

namely R),y in Lemma 5.8. To make sure R, is small, we need

< .
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e We use a mollification in the scale =1~ to remove 1/r singularity of a viscous eddy in the radial
direction. This singularity is needed so that we can take advantage of the Laplacian. In order to control
norms of the viscous eddy, we need an upper bound on . More precisely, as we have seen in the previous
section, we need the following condition:

T < ,ul_“’.

It is easy to verify that our choice of constants (4.1) satisfies all the above constraints.
Next, we introduce a constant M, whose role is to limit the order of the derivative that we will be taking so that
the implicit constants stay bounded.

Definition 4.1 (The constant M). Let N = 300 and 6 = /2. We define M to be the constant obtained from
applying Proposition 4.7 with such 6 and N.

4.3. Cut-offs in space and time. Let y : R**3 — R be a positive smooth function so that it is monotone

increasing with respect to |x| and
1 0< 2] <1
2 ’ = =
x) = 4.2
x() Lm o] 2 43
where | - | denotes the Euclidean matrix norm. Note that by definition
IV™Xloe Sim 1.

Now we choose a proper threshold pg(t) to control how much energy is added. Given an solution (v, Ry) and
energy level e; as in the statement of Proposition 2.1, let

1
polt) = 15 (€1~ oo (£)]13), (4.3)
where e; = e — 10*6(61 — ) is to leave room for future corrections. Note that pg is bounded from below:
po(t) Z er —eo 2 C™ 1, (4.4)

due to the assumptions (1) and (2) in Proposition 2.1, where 6o = || Ro|| e 11 (13 x 0,77y and the universal constant
C in Proposition 2.1 will be specified in Section 6.
To deal with the issue of the Reynolds stress Ry having large magnitudes, we introduce a divisor as follows.
Define p : T2 x [0,T] — RT to be
p(a,t) = 4pox*(py ' Ro). (4.5)
It follows from the above definitions that
R R
[Hol = % <12 forall (z,t) € T x [0,T].
p 4pox*(po Ro)
Next, we introduce a cutoff in time so that the energy profile of the new solution satisfies all the required
properties. For the exceptional set F; (cf. (2.1)), let § : R — R* be a smooth cut-off function such that

_ 1, t e I4—1T(f1)
““‘{u 1¢ e (), “o

and
100 |oo S~ forallm € N. (4.7)

Remark 4.2. When F; = (), we take 0 = 1, so there is no cutoff in time. This will ensure that if Fo = F; = ()
and the solution v is stationary, then the velocity perturbation w is also stationary.

4.4. Leray projection and fast periodization operator. To define the velocity perturbation, we recall the defi-
nition of Leray projection.

Definition 4.3 (Leray projection). Let v € C> (T3, R3) be a smooth vector field. Define the operator Q as

Quv:=Vf+ ][ v,
T3
where f € C°°(T3) is the smooth zero-mean solution of
Af =divo, r €T3

Furthermore, let P = Id —Q be the Leray projection onto divergence-free vector fields with zero mean.
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To avoid potential abuse of notation, we will utilize the following fast periodization operator P, for functions
whose support sets are contained in [0, 1]3. We will apply P,, to the viscous eddies so that they oscillate at a
frequency much higher than that of the solution (vg, Rp).

Definition 4.4 (Fast periodization operator P,,). Let o € N. Suppose f € C2°(R?) and supp f C [0,1]3, define
the fast periodization operator P, by

P,f(x)= Y floz+m). (4.8)
meZ3
By definition P, f is ¢~ 1 T3-periodic, and for any differentiation V", we have
V*'"P,f=0c"P,V"f (4.9)
which will be used without mentioning in the future.
4.5. Definitions of the perturbation. With all the preparations in hand, we can define the velocity perturbation
w

We first apply Lemma 3.1 for B = {R € S3** : |Id —R| < 1/2} to obtain smooth functions I'y, : B — R for
ke 73, |k| < Ao. Then the coefficients for the viscous eddies are defined by

R
ap(z,t) = pl/z(:v,t)l"k(ld——o> for k € Z2, k| < Ao. (4.10)
p
In view of Theorem 3.13, define vector fields
w? =0 aP, Wy = w? +w), (4.11)
k
where
w? =03 ayPe(W.)y, and  w) =0 axP,(W,),,
k k
and
wh = —p%c1 Z a2P,V}. 4.12)
k
Also define a divergence-free correction term
w® = —Quw® — Quw®, (4.13)
Finally, the velocity increment w is defined by
w=20 Z arP, W, — 0%c7! Z ainV;C + w(®), (4.14)
k k
which also reads
w=w® 4 w® ), (4.15)

Thanks to Lemma 3.8, P, may be applied and w is well-defined. It is clear that w is periodic due to the
periodicity of coefficients aj and the periodization operator P,. By design w is divergence-free. Also since the
operator P removes the mean, w has zero mean as well.

Next, we show the smoothness of w, for which it suffices to show the following simple result for the coefficients
ag.

Lemma 4.5 (Properties of coefficients ay,). The coefficients aj, defined by (4.10) are smooth on T3 x [0, T). There
exist a number k = k(eq, vy, Ry) > r~1 such that

m+1
3

max larllom <K for any integer 0 <'m < 4M;

the following bounds hold
lo@llrr < po(t), @i
lax(®)]lz2 S po(t)”*; '

and we have the identity

Zai][ P, Wy @ W,) = pId —R,. 4.17)
& T3
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Proof. Recall that

B R
ar = 20 x(p; 1R0)Fk<ld —70). (4.18)

To show that a; has bounded space-time Holder norms of order 4/, it suffices to check that each factor above is
smooth as the domain T3 x [0, 7] is compact. Since

1, 1
Po 2\/§
which is bounded from below by (4.4), the function pz)/ ? is smooth on [0, 7. By the same argument and the
definition of  in (4.2), we may also conclude that x(p; ' Ro) € C5(T? x [0,T1). Since I'y € C°°(B), the last
term in (4.18) is also in CFY.
Next, let us prove (4.16). Since 0 < 6 < 1, by definition of p in (4.5), we have

o)l < / pla, t)dz + / ple, )de
|Ro|<po |Ro|>po

< po(/ 1dz +/ |R0\dx> < po,
|Ro|<po [Ro|>po

where we have used || Rol[Lee 1 = o S po due to (4.4).
For the second bound in (4.16), we can directly compute to obtain:

lax (D)3 < pob? /TB X2 (po ' Ro)dzx < pob?.

To show the last identity, thanks to Lemma 3.1, it suffices to show

(@1 — oo (®)2)"7,

k k
P, (We@W,)=— & —.
]{1‘3 k[ (K]
Since

P
W, @ W, = —8"’“ DEmk € @ €.
2k

. n . . .
where profile function az: OrMr Yk 1s axisymmetric, we have

][ P, (W, ®W.) = 0.
'Jr3
Then by Definitions 4.4 and 3.3,

][ Pg(Wk®Wz):][ P, (W.oW.)= [ W.eoWw.
T3 T3

Rfi

= | Pe. ® e,
3
-

_kk
k| |kl

Hence, the identity (4.17) follows from (4.10) and Lemma 3.1. O

4.6. Estimates for the perturbations. This subsection is devoted to various estimates for the perturbation w.
We start with decomposing the corrector w(®) using standard vector calculus. Here the inverse Laplacian A~! on
torus T? is defined via a multiplier with symbol —|k|~2 for k # 0 and 0 for k = 0.

Lemma 4.6 (Structure of the corrector). The corrector w'®) verifies
w(©) = (eP) 4 (e

where w(°P) and w°V) are respectively

(ep) _ -1 . N )
w(eP 9%:VA <Vak Pgwk) ]{rgwh

and

w) = 251 Q( Z aiPUVk) .
k

Proof. Noticing that div Wj, = 0, these formulae immediately follow from Definition 4.3. O
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We recall the following improved Holder’s inequality for functions with fast oscillation proven in [Luol9],
which is crucial in obtaining the L? decay of the perturbation w. For convenience we include a proof in Appendix
D.

Proposition 4.7. For any small 6 > 0 and any large N > 0 there exist M € N and )y € N so that for any p > 0,
o € N satisfying \g < o and p < o'~ the following holds. Suppose a € C>(T?) and let C, > 0 be such that

[Vial|oo < Cop® forany0 <i < M.

Then for any o ~'T3 periodic function f € LP(T?), 1 < p < oo, the following estimates are satisfied.
o [fp > 2is even, then

laflly Spo.v lallpllfllp + Call fllpo™™. (4.19)
o If fra f =0thenfor0 <s<1
V17 @A), Spsen o T2V @A, + Call fllpo ™. (4.20)

All the implicit constants appeared in the statement are independent of a, u and o.

Remark 4.8. Throughout the paper, we will always apply Proposition 4.7 for 6 = % and N = 300. These two
fixed constants determine the constant M.

With the help of Proposition 4.7, we are in the position to derive useful estimates for the velocity perturbation
w.

Proposition 4.9 (Spacial frequency estimates). For any A sufficiently large and integer 0 < m < M the following
estimates hold:

AP Wl S o (0[] 1<p<e, (421)
NP Wl S o (O ] 1< <, (4.22)
AT Vw0 ()], S 7P | pt T e e l<p<?2 (4.23)
[ p ~p o p )
AT @), S o e 1 <p <2, (424)
Proof. Bounds for w®:
Since by Lemma 3.8
‘T?’ N supp Png| <7 lut2 (4.25)
it suffices to show (4.21) for p = 2.
By product rule,
’vnlw(p)’ Sm Z Z O_TYL—i‘viakanl—iPUWk . (426)
k 0<i<m
As P,W,, is 0! T3-periodic and, thanks to Lemma 4.5,

V" ax]

om < ||ak||0;n,+i < g™ forall0 < m < M.

Since for large enough A we have k> < o € N, we can apply Proposition 4.7 with § = % N = 300, and

C, = k' (cf. Definition 4.1) to obtain that
[IVar| [PV Wi ||, S [V arll2|Pe V" Wil2 + £ [P V™ Wi 20—, (4.27)
Let us consider two sub-cases: m = 0 and m > 1. When m = 0, it follows that
laxPoWills S pi* + ro ™V
Aso™N = A"1%and py > e; — o > 0, we can make sure for any sufficiently large A(eg, €1, ) that
laxPoWell2 < pg”,
from which we immediately get
[w® (®)]l2 S oo

When m > 1, we consider the split:

> o IViak] [PV T W[, < 0 akPo VI Willa + Y0 o[V ar] [P 9T, (428)

0<i<m 1<i<m
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We will bound these two terms separately. For the first term in (4.28), we use (4.27), Lemma 4.5, and Proposi-
tion 3.14 to obtain

"k PoV Willa S o (o [PV Will2 + 0N k|[P T Wi )
< o™yt (p(l)/2 + U_NI€>.
Since 07N = A710, gp!tY = X\ and py > e1 — e, for X sufficiently large we get
o™ arP o V"W l2 < pd*A™. (4.29)
For the second term in (4.28), we simply use Holder’s inequality, Lemma 4.5, and Proposition 3.14 to obtain

S o IViaR|Po VT W[, < DD o™V ak]| L, [P VT W
1<i<m 1<i<m
< Z O_m—iﬁi-&-lu(m—i)(l-l-'y) < ﬁQO,m—lu(m—l)(l-&-'y)’
1<i<m
where we have also used x < p in the last inequality. Then again, for X sufficiently large, we get
ST o IViak] [P VI, S pd A (4.30)
1<i<m
So for A(po, k, €1, €o) sufficiently large, putting together (4.29) and (4.30), we can bound (4.28) as
ST o IViak] [P VT W], S pg A
0<i<m
which implies that
[V w®) 1)y < pd*A™,  forany 1 <m < M .

Since for any integer 0 < m < M the desire estimate holds for p = 2, by Holder’s inequality and (4.25), for
1 <p <2 wehave
AP (@) S p T
().

Bounds for w,™":

In light of estimate (3.25), the above argument also gives the desired bound for wf!’ ). In particular, for m = 0,

thanks to Proposition 4.7 we have
lakPo(Wo)oll2 S [V akl2Po (W )oll2 + &P o (Wi )oll2o ™
< (o 4 w0 N yrptr !
< pd T

Bounds for w®:

Without loss of generality, we prove this bound for m = 0 as well, since general cases for 0 < m < M follow
from applying an additional product rule, which can be seen in the estimates for w(®).

Recall the definition (4.12) that

w® = —57192 Z ainVk.
k

By Holder’s inequality, Lemma 4.5, and Proposition 3.14, we have
1@l S 071D llakllzs, IPo Vil
< KQU_fTM_ZTl_I/pMZ_Q/p.
Therefore, for sufficiently large A(x), we can use 0! to absorb the factor with x to obtain
Hw(l)Hp < 7'3/2;171 [ulfz/prl/zfl/” . (4.31)

Bounds for w(©):
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Again, we only prove the bound for m = 0.Thanks to Lemma 4.6, we need to estimate ||w(P) ||, and |[w (D ||,,.
It suffices to estimate the following term:

H zk:VA‘l(Vak P,V

= H zk:mvrl (Vak : PUWk) )
< H Ek: |V|*1(Vak .Pgwk)\ )

where R is the Riesz transform. R and |V|~! are defined via multipliers with symbols —

)

\kl and |k|~! respec-

tively for k # 0, and zero for k = 0. Recall that P, W, is o~ ' T3-periodic and of zero mean. Moreover, due to
Lemma 4.5,
||Vak||(;;n < ||akHC;n+1 < k™2 forall 0 <m<M.

Once again we can apply Proposition 4.7 with C, = x? to obtain the bound
H V| (Vak : Png) <ot H (Va,c : P(,Wk> " I€2H (P(,Wk)
p

(0 Varlloo + &%) [P W],
SOO)Ml_%TI/Z_l/p

O_—N

p

P
S
< (07 'R? + Ko
< o2 [l e

Finally, since

< pd AT,

][ |w®|
T3

[, < o~ [

we have
1*2/P71/2*1/PL

provided A(k, eq1) is large enough.
To estimate the term w(<Y, let us introduce pe =p—+e¢,fore > 0,suchthat 1 < p. < 2and
T /2#,—1 [ 1—2/p57_1/2—1/p5:| S O_—l I:’ul—z/p,rl/2—1/p:| .
Note that the operator Q is bounded on LP (T?), and hence we have
1wl < lwDlp, S IOy S 77207 [t~ Frer BV ] < o7 [t e 22 0] 0 (4.32)

due to the choice of constants (4.1).
O

Using the choice of constants (4.1) and the established bounds (4.21), (4.24), and (4.23), we get the next useful
corollary.

Corollary 4.10 (Estimates with explicit exponents). For any X sufficiently large we have

[ ® 1l + A~ [V, € p A, 1<p <2
lw® [, + X VP, < pg A" A 1<p<2
[0l + A VD S A A%“*% L<p<2,
[w |, + A Va @, S ABATOD 1<p<a,
and consequently
lwll, + A [ Vel, S pATD, 1<p<al 4.33)

In particular, given any € > 0, for \ sufficiently large,
||wHLOOW1 1 < e. (4.34)

The last estimate concerns the time derivative of the perturbation w. Since the velocity profiles in Wy, and V,
are stationary, time derivative only falls on the slow variables a and 6.

Proposition 4.11 (Temporal frequency estimates). For any X sufficiently large, 1 < p < 2, and integer 0 < m <
M, the following estimate holds:

KO W] peepp S pt e 2T (4.35)

Moreover, if (vo, Ry) is stationary and Fo = F1 = (), then v = vy + w is also stationary.
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Proof. The last statement follows from (4.6) and the definition of ag, namely (4.10). Let us show (4.35). In view
of Lemma 4.5, it suffices to prove the bound for m = 1. Thanks to Lemma 4.6, we can use the decomposition

Oyw = O,w® + 9w (P + 9w 4 9, Pw®.

We first bound the term 9,w(®). By its definition, Lemma 4.5, Holder’s inequality and Proposition 3.14 we
have that

100w |, < > [10arlcy [PoWel],
k
< K2 [l o),
which is exactly the bound that we need.
Next, we show the same estimate holds for the term 8t73w(l). As done in the proof of Proposition 4.9, let
Pe = p + € with € > 0 chosen small enough such that 1 < p. < 2 and

‘u1*2/r's7-1/2*1/175 < 111*2/137-1/2*1/1701/27

which is possible thanks to (4.1). Then, using the LP< boundedness of the Leray projection, Holder’s inequality,
Proposition 3.14 and the above choice of p, for any 1 < p < 2 it follows that

[oPu®], < [Pow®], < o], <o 3 0%2 s [PV

De
T L P e s O
Due to our choice of constants, (4.1), for any sufficiently large \(x) we have 30~ /27%2~1 < x? and hence
l 27, 1-2/p_1/2—1/,
H@,ﬂ?w( )||p Sk fogt/2=Y ].

Finally, it remains to bound the terms ;w(°?) and d;w ). As in the proof of Proposition 4.9, we have the
following estimates:

H Zk:at(eak)vxl (Vak : Pgwk) Hp S [18ax]c,

VAl (Vak : PUWk)

P
< 201 [ﬂ172/p7,1/271/p]
< w2 [ud o],
which is the desired bound. |

5. PROOF OF ITERATION LEMMA: NEW REYNOLDS STRESS

In this section, we construct a new Reynolds stress R such that (2.2) holds. The majority of this section
is devoted to obtaining bounds on the new Reynolds stress R using the established estimates for the velocity
perturbations in Section 4. We split R into four parts and then estimate them separately.

To do this, one needs to obtain a symmetric traceless matrix R as the new stress term. Since the underde-
termined system (gNSR) only provides an implicit definition of R, i.e. its divergence, the divergence has to be
“inverted”. This is a standard technique in elliptic PDEs. Here, we follow the one used in [BLIV18].

Definition 5.1 (Inverse divergence). Let f € C°°(T?) be a smooth vector field. The inverse divergence operator
R : C*°(T3,R3) — R3*3 is defined by
(Rf)ij = Rijk e,

1 1 5.1)
Rijk = *§A72aiajak — iA’lak(L-j —+ A’l&-éjk + A718j5ik.

Remark 5.2. We note that in the definition, the inverse Laplacian A~ is defined on T? and gives functions with
zero mean. So R f is always well-defined and mean free.

With the above definition, a simple exercise leads to the following.

Lemma 5.3. The operator R defined by (5.1) has the following properties. For any vector field f € C>(T?) the
matrix R f is symmetric trace-free, and
divRf = f. (5.2)
If additionally div f = 0, then
RAf=Vf+ (VT (5.3)

With this inverse divergence operator, we are ready to give the definition of the new Reynolds stress.



28 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

Definition 5.4 (New Reynolds stress R). Define the new Reynolds stress by
R :R(atw + Low + div(w @ vg + vo @ w) + div(0* Ry + w ® w) — Vpl) + (1 - 0*)Ry (5.4)
where the pressure term p,; = 02 p and p is defined in (4.5).
It is immediate that the new Reynold stress R verifies the following equation thanks to Lemma 5.3
div R =0;yw + L,w + div(w ® vy + v @ w) + div Ry 4+ div(w ® w) — Vpy.

Consequently, since (vg, Rp) is a solution of (gNSR), there exists a uniquely determined zero-mean pressure P
such that the new solution v = vy + w verifies

0w + Lov 4+ div(v ® v) + VP = div R.
In view of w = w® + w® + (9, the new Reynolds stress can be rewritten as
R= Rlin + Rcor + Rosc + chma (55)

where the linear part Ry, the correction part R, oscillation part R,s. and the reminder part R,.,, are respec-
tively defined by

R = {0+ Lt = B0 i 0+ 0.0
Reor = R(div (0@ + w®) @ w+w® @ ' +wh))),
Rose = R(div(0?Ry + w® @ w®) + Aw® — Vpy),
Riem = (1= 6)Ro.

In the remainder of this section, we will estimate R via the decomposition ||R||1 < || Rin|l1 + ||Reorll1 +
[|Rosc|l1 + || Rrem]|1 and show the following.

Lemma 5.5 (Estimates for R). The new Reynolds stress R obeys the estimates:
€ SJort € Ij—1,.(F1)
[R(@)|ly < {do+e fort € Li-2.(F1) \ Ly-1,(F1) (5.6)
do SJort € [0, T)\ Iy-2,.(F1).
Since supp, w C I4-2,(F1), it is sufficient to show that
HR“HHL,?OL; + HRCOYHL;”L; + ”ROSC”L?"L% <e
We first estimate the linear part. For this term, the smallness of the intermittency plays a key role.

Lemma 5.6 (Linear error). For any X sufficiently large,

| Riall ey < 5 (57
Proof. Considering the fact that
IRILe(13)—Lr(rsy S 1 forany 1 <p < oo (5.8)
due to the Hardy-Littlewood-Sobolev inequality, and that
IR div || Lp(rsyrr(rsy S 1 forany 1 < p < oo (5.9)

due to the boundedness of the Riesz transform, throughout the proof we fix p > 1 close to 1 such that

- MoV 2=1p _ \15(1=%/p) <\, (5.10)

Split the linear error Ry;,, = R; + Ry, where the first part R, is the error caused by time derivative R; = Ro;w,
and the second part Ry consists of the dissipative and drifts errors

Ry = RA(w® +w'®) + Rdiv (w® (a+wvp)) +Rdiv ((a+vy) @w).
For the liner error caused by time derivative, by (5.8) and Proposition 4.11 we have
[1Be, < [ROwwl], < [|Or], < w2pt=/rr27r < w2A7HE (5.11)

We turn to estimate the liner error caused by drifts and the Laplacian. So using Lemma 5.3, (5.9) and Holder’s
inequality we get

|Rd|l, < IIRA@® +w@)||y + |R div (w & (a +v0))]|p +||R div ((a + vo) ®w)||p
SIV® + w1y + [[wllp [lalls + l[vollso]- (5.12)
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By Corollary 4.10 and using (5.10) we have
IV (@® + 0l < [of* + AN
leollp < pg* A7,
It follows from the above and (5.12) that
[Rally < 23X~ + pg" A7 (oo + Ileolloc)- (5.13)
Combining (5.11) and (5.13), for any sufficiently large A(a, €, e1, k, vg) it holds

| Riin |, < || B[, + || Ra (5.14)

<&
O

Next, we turn to estimating the correction part of the new Reynolds stress R. This part is essentially caused by
w(® and w® which are both much smaller than w(®).

Lemma 5.7 (Correction error). For any X sufficiently large,
€
[ Reor | e 1 < 3 (5.15)
Proof. In view of Corollary 4.10, fix a p > 1 close to 1 such that
O ,, < )\"30
[ @] 2 < A5,
lw®| 2 S A750.
p—2

By the L? boundedness of R div and Holder’s inequality, we have

IReorlli S [ Reorlly Sp | (0 +w00) @ wlly, + [l @ (@@ +w @), (5.16)
< (1] zg, + 1w 22)) w2 (5.17)
<A (p /2+)\ 54 ATE), (5.18)

Due to the negative exponent in A on the right hand side, for any sufficiently large A(e, e, €1, x) we have

HRcorHl 8

O

Finally, we turn to estimating the oscillation error R,s., where we will utilize the fact that viscous eddies are
approximate stationary solutions of the NSE.

Lemma 5.8 (Decomposition of Rys.). The oscillation error Ros. can be decomposed into two parts:
Rose = Rhigh + Riow + Rerh (5.19)

where Rygy, is the high frequency part

Ruign = 0°R Y V(ax)* PPy (Wi @ W), (5.20)
k

Ryow consists of lower order terms

Rigw =06°R Y~ aiP, (div(Wi @ W2) — AV})
k

(5.21)
o RS [Aaipavk +2VaZ - PJVVk] :

and R, is the symmetry breaking error

err—92Rd1vZak( (Wi @ Wy) = Py (Wi 2 112) ).
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Proof. Since W, has disjoint support in space, we have

w® @ w® =023 () Py (Wi © Wy),
k

which in view of Lemma 4.5 gives

w(p) ® w(p) — 9?2 Zaﬁ (Pa (Wk ® Wk) - P, (Wk ® Wz))
k

= Rere + 02(1) Zai][ P, (Wi @ W.) + 62> af (P, (W @ W2) - ][ P, (W2 7.))
k T k T
= 6%p1d —6°Ry + 6% (ax)*P 1P, (Wk ® Wz). (5.22)
k

Upon taking the divergence on both sides of (5.22) we have for the oscillation error
Rose = Rerr + R(div 02 Rg + div(w® @ w®) — Vp; + Aw®)
= Rewr + 7-‘)'(92 div Z(%)QP;AOPJ (W @ W) + Aw(l)>.
k

By the product rule we may obtain

Rose = Rere + Riign + R(06% Y af P, div (Wi, @ W2) + Aw®). (5.23)
k

It remains to compute the second term in (5.23). Using the definition of w("), a routine computation gives

Awl) = ~06% 3" aP AV, — 623 [0 AP, V) + 2VaiP, VY, |,
k k

which implies exactly

(6% Py div (Wi @ W.) + Aw®) = Rigy.
k

Hence the oscillation error verifies the identity Rosc = Rhigh + Riow + Rerr-
O

Remark 5.9. The term Ryigy is typical in convex integration, where the derivative falls on “slow variable” ay,
and the term P_oP, (Wk ® Wk) has fast oscillation and zero mean. The presence of Riow and Re,, is one the
fundamental differences between our scheme and previous ones.

We are ready to estimate the oscillation error. The term Ry, will be able to gain a factor of o~ via the inverse
divergence R, while the term R, is already quite small thanks to the inverse Laplacian. In other words, Ry, is
of high frequency, while R, is not of high frequency but instead lower order.

Lemma 5.10 (Oscillation error: Ryigh). For any X sufficiently large,

||Rhigh||LgoL; < Z (5.24)

Proof. Throughout the proof, let us fix two parameters 0 < o < 1 and 1 < p < 2, such that the Sobolev
embedding W1 (T?) — LP(T?) holds.
It follows from the L? boundedness of the Riezs transform that

| Ruignllzr(r3y < || Ruignllzr(13) S Z H|V|’1(V(ai)P¢OPU (Wi @ W.)) Hp (5.25)
k

Obviously PP, (W), ® W.) is o~ 'T3-periodic and has zero mean, and by Lemma 4.5
IV < Nl s < 5755 forall0 < m < 01
Thus we may apply Proposition 4.7 with C,, = &2 to obtain that

(19171 (V (@} P 2P (We @ W2)) || S0t
p

V| ~(V(ar)?P 2P, (Wi, @ W2)) H
P (5.26)
+ ko P, (Wi o W) -
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The first term in (5.26) can be estimated by the Sobolev embedding W1 (T3) — LP(T?), and Lemma 4.5 as
follows:

0_—1+a

V]~ (V (ax) 2P 2P, (Wi, @ W) Hp <o ol [P0 (Wi © W), 52,
Som R |Po (W + W) @ W2)

Now recall that W,. ¢ L? due to the 1/ singularity on the Q-plane, but W,. € LP since 1 < p < 2 (see (3.24)).
Hence, Holder’s inequality, (3.23), and (3.24) imply

[Po (W, + W) @ W) ||, S (IWellzes) + Well o)) IWell 1 v gs)
<p (lu1,2/,,7_1/2,1/p + M*Q/P7—3/2*1/P)M*1+2/P7—*1/2+1/P

~.

-

(5.28)
— 1070 4 st
<1
The second term in (5.26) can be handled easily using Proposition 3.14 and N = 300,
Ko N|[Po (We @ W2) || S KA (IWell o (rs) + 1Well o o)) | Well Lo ms) S £2AT (5:29)
Collecting (5.25), (5.26), (5.27), (5.28), and (5.29) we arrive at
| Ruign|, < (5° 4 £*)o™ e

As 0 < a < 1, for all A(e, k) sufficiently large we can conclude that

€
HRhig‘hHLgoL; < 8
O
Lemma 5.11 (Oscillation error: Ry ). For any A sufficiently large
HRIOWHL;XALHID < % (5.30)
Proof. Letus fix p > 1 such that
or?u H(ri ey < A, (5.31)
So by the boundedness of R on L? and Hélder’s inequality, we have
| Riowll 320y < B | sy S Do o] [P (iv(Wi @ W) — AW |
. ,
+o  ailles 1PVl + o7 aklly [PoV V],
Thanks to Proposition 3.11,
[Po (div(Wi @ W) = AV | S 72 (712 ),
P
Combining this with the estimates in Proposition 3.14 and Lemma 4.5, it follows that
Rl S (P07 4 Ko~ ru= 4 Ko =1ryin=1) (7= 5
< (H2 + K3+ /14)07'2[171 (7_1,1/17#272/,0)’ .
where we used ;1Y = o < o7 for the third term.
Using (5.31) and taking A(k, €) sufficiently large, the desired bound follows:
€
B, < &
]
Lemma 5.12 (Symmetry breaking error: Rey;).
€
||RGHHL;>°L; < 8

Proof. We fix 1 < p < 2 so that =7 p2=*/»71="/» < ;,=7/> Recall that R div is bounded on L”. Then

| Rerell sy < 1 Rerel| sy S 2o Mo e, [P (Wi © W) = B (Wi © W)
k

‘ p
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Now using Lemma 4.5 and Proposition 3.9, we obtain
| Rere| |, S w22 ort e
S HQ'uf’v/z
€
§7
for A(e, k) large enough. O

<

Note that Lemma 5.5 is proved, as it follows directly from Lemma 5.6, 5.7, 5.10, 5.11, and 5.12.

6. PROOF OF ITERATION LEMMA: ENERGY LEVEL

In this section, we prove properties related to the energy in the main proposition. To show the correct energy

level of the solution v, let us first show that the energy in the perturbation w is dominated by w,(zp ), which is
anticipated in view of the estimates in Proposition 4.9.

Lemma 6.1. For any X sufficiently large
Ho@)113 = llvo(®)lI5 = [lwl” (#)]5] <1077 (e —eo) forall t € [0,T]. (6.1)

Proof. Since w = w? +wP +w® 4 w©), we have
[v(®)13 = llvo(®)13 = WP )15 = Eenor
where the error term Fero 1S
Eetror = 2(w, vo) + 2<w£p)7w$p) +w© 4 w(l)> + ||w,(}’) + w4 w(l)H%-
Fix any 1 < p < 2. By Holder’s inequality, we have
| Eerror| S 1w (@) llpllvo()| 25 + ([w® lla + 1w [la + [[w®[|2) 1wl (|2 + [wP |5 + [l 5 + [[w]3.
Thanks to Corollary 4.10, for any sufficiently large A(ey, &, vo) we have
w3 + w3 S A,
[l lla < pg* A" AR,
w2 £ T ® 2 + w02 £ oo
el < (g + A7 3)ATIT5),
Since po(t) < ey, for any sufficiently large A(eq, eq, K, Vo), we can make sure that
’Eermr’ <107 7(e1 — e).
[l

Next, we estimate the energy of w(®) more precisely than Proposition 4.9. Note that the choice of py, namely
(4.3), is crucial in the proof. Recall that ¢, = e; — 107 %(e; — ¢g).

Lemma 6.2. Suppose that the constant C' in the statement of Proposition 2.1 is small enough. For any X sufficiently
large, the energy of w®) verifies

lw® 5 = 0% = |lwol3)] <1077 (ex —eo) forallt € [0,T).
Proof. First, note that as in (3.30) and (3.31),
W = (Wo)slla S ™ 7 IWelln S o270 = A7,

Hence, thanks to Lemma 4.5,

2 2

[l | 0ax Y- Powr.
k

< [0ar Yo Powz = (W) | s ma,
k
and consequently

<107 %(ey — ep) (6.2)

||w,(zp)||2 - Heak ZPUWZ
k

2

for A(eg, e1, k) large enough. Now recall that

][ P, (W, ®W,) :f P,(W.@W.).
T3 T3
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Thus, similarly to (5.22), we obtain
922%]1 c(W.W,) = QZak][ (W2 W,) +Zak( (W.@W,) - ]{TSP"(W”@WZ))
= 02pTd—0%Ro + 62> (k) "PoPo (W2 @ W2 ).
k
Upon taking the trace and integrating in space, it follows that
| —302/ p(x,t) +92Z/ ax)2P4oP, Tr (W, @ W),

Using the definition of po (4.3), we can consider the split

2
2|, 0°(e1 — [[voll3) = Xi + Xn, (6.3)

where X is the low frequency error term
X =30 [ plo.t) = 0@ = ). (6.4
and X, is the high frequency error term
X, = 6? /TS (ar)’PoPo Tr (W, @ W), (6.5)
The goal is to show that | X;| 4+ |X,| < 1077(e; — eg). Let us first estimate the term X,. Using a standard

integration by parts argument, we have®

1Xn| S lazllcpe [|IV]~MP 2Py Tr (W, @ W) (6.6)
k

I+

where M is as defined in Definition 4.1. Since PoP, Tr (W), @ Wy,) is o' T-periodic and of zero mean, we
have
|IVI"MPsoPy Tr (W, @ W2) ||, S o MT3|||V| P Pro Py Tr (W, @ W)
B P, T (W, W)
_ 2
o M+3||WZHL2(R3)

—M+3
3

I, [

N AN N N
Q

where the second inequality follows from the Sobolev embedding H ~3(T?) < L!(T?), and the last inequality
follows from Proposition 3.14. Combining this with (6.6) and using Lemma 4.5, we get
[ Xn| S laillgp o™ M3 < pMH2g= M3, (6.7)
Hence for sufficiently large A(eg, e1, <), we can ensure that
| Xn| <107%(er — eg). (6.8)

On the other hand, for the term X using the definitions of p and py (namely (4.5) and (4.3)) we get

Xy = ~120%py (1 - / X2(P01R0)>
First, Let us split the integral

/XQ(PalRo) = </Ro§po +/|R0|2p0> X*(pg ' Ro)-

Next, by the above split we have

| Xi| < po +po (6.9)

1f/ (0 " Ro) / (o5 Ro))| .
|Ro|<po [Ro|>po

Since dg = || Rol| 5= 1 , thanks to the Chebyshev inequality we have

)
[{z € T® : |[Ro| > po}| < p—z

Recall that ”akHCtmz < k™1 is only valid for 0 < m < 4M.



34 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

which together with the definition of  in (4.2) and the fact that | T3| = 1 implies that

1—/ 1da +po/ Py |Rol
|Ro|<po |Ro|>po

/ ldz| + / | Ro
|Ro|>po [Ro|=po

Note that in the estimates for X, all implicit constants are universal. In view of the assumption 6y < C(e; — eg)
in the statement of Proposition 2.1, we may choose the constant C' small enough such that

| X1| < po

< po

< do.

| X <107%(e1 — eo). (6.10)

Combining (6.2), (6.8), and (6.10) with (6.3) we obtain
103 — 0@ — [Jeo]3)] < 1077 (ex — eo). 6.11)
O

With the help of Lemma 6.1 and 6.2, we obtain the desire energy level of the new solution v as a corollary.

Corollary 6.3. Suppose that the constant C' in the statement of Proposition 2.1 is small enough. For any A
sufficiently large, the energy of new solution v(t) verifies

sup [u(t)} < ex,

and

C
[lo@)I3 — e1| < 50(61 —eg) forallt € Iy-1,.(F).

Proof. Both bounds immediately follow from Lemma 6.1, 6.2 and the facts that e; = e; — 10’6(61 — eg) and
0 =1onI—1,.(F7). O

APPENDIX A. DEL FORMULAE IN CYLINDRICAL COORDINATES

In this appendix, we collect some useful vector calculus identities concerning the cylindrical coordinates (see
for example [Ach90]).
Let f be a scaler function. The gradient of f
af 10f of

Vf = Eer + ;%er + aez. (Al)

For vector field A = A,e, + Agey + A.e., its divergence

10(rA,) 104y 0A.
== +=+

divA r Or r 00 0z’

(A.2)

and curl

r o0 0z
(8AT B 8Az)e
0z or ]°°
1/0(rA,) 0A,
+ 7< or W)ez'
For two vector field A and B, the material derivative
B 0B, Ay 0B, 0B, AypBy
639 Ag 339 aBG AGBT
o T T T )
0B, Ay 0B, 6‘BZ>
e,.

or v o T,

v xA:(laAz aAG)e,,

(A.3)

r

+ (4, eo (A4)

+ (AT
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APPENDIX B. DECAY ESTIMATES FOR THE POSSION EQUATION

Here we derive some decay estimates for solutions of the planar Poisson equation. Let f € C'°(IR?) be radially
symmetric with zero mean

fda = 0. (B.1)
]R2
‘We show that

Lemma B.1. Let h be the solution of
Ah=f onR? (B.2)
such that |h| — 0 as x — oo. Then h is radially symmetric and h € W1P(R?) for 1 < p < oc.

Proof. Since the solution h is given explicitly by the Newton potential

W) = - / Il y) () dy, (B.3)

we only need to verify the decay estimates.
The first decay |h| — 0 as x — oo follows from removing the mean

a) = =5 [ (nllo = y) = () F(5) dy,

and the Mean Value Theorem.
To show that h € WP (R?) for 1 < p < oo, let us consider the Taylor expansion of In(|z — y|)

(|2 — yl) = In(jz|) - % + > Ra(w,m)y’, (B4)
|8]1=2

where the remainder is given by

1
Rolo,y) = [ (10D g(a ~ ty) . ®.5)
0
with g(x) = In(|z|) and |[V?g| < ﬁ

Let us show that h € L? for 1 < p < co. Since f has zero mean and zero first moment due to radial symmetry,
combining (B.4) and (B.3) we have

1
h(z) = -5 Z/Rﬂ(fc,y)yﬁf(y) dy. (B.6)
B=2
Then by Minkowski’s inequality, we have

p 3 5
Iilsse) 5 2 [ ([ s @) 1wl ®.7)

To estimate Rg(x,y), we use Minkowski’s inequality once again

/‘Rg(x,y)‘pdxg [/01 (/‘Dﬁg(x—ty)‘pdx);dt}

Dige —ty)| S ——
’ g(l’ y) ~pB \m—ty|2

p

Note that from definition,
(B.8)
and we get
/‘R/j(m,y)‘pdw Spl, forl <p < oo,
which implies
|2l zr @2y < 00, forl < p < oo.

The claim that Vi € L? for 1 < p < oo is easier since differentiating (B.3) already gives a decay of 1/|z| in the
kernel, and in this case just removing the mean is sufficient.
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APPENDIX C. ESSENTIAL DISCONTINUITIES BY BUCKMASTER-VICOL SOLUTIONS

In this section, we show that it is possible to use the weak solution constructed in [BV19] to obtained essential
discontinuities of positive measure in the energy profile. First, recall

Theorem C.1 (Theorem 1.2 of [BV19]). There exists 5 > 0, such that for any nonnegative smooth function
e(t) : [0,T] — RY, there exists v € C([0,T); H®(T?)) a weak solution of the Navier-Stokes equations, such that
Jps lo(x, t)|?de = e(t) forall t € [0, T).

Let e(t) be a nonnegative bump function supported on (1/2,1) such that max; e(t) = 1. Consider a weak
solution u € C((0, 1]; L?(T?)) such that on each interval [27"~! 27", w(t) is the Buckmaster-Vicol solution
with energy profile e(2"t). As a consequence, we have

liminf ||u(t)|2 =0,  limsup|ju(t)||? = 1.
t—0— t—0—

Such an example does not extend to the whole interval [0, 1] as Theorem C.1 on its own does not guarantee
the existence of the weak limit as ¢ — 0+ since there are no other available bounds as opposed to in the proof of
Theorem 1.6 where we used (2.24).

However, we can modify this construction in the following way. Consider a Buckmaster-Vicol solution wu,,(t)
on [1/2, 1] with the energy profile e, (t) = 272"¢(t) and define (on T?)

u(t) = Z 2"y, (2", 2271).

n=0

Then u(t) is weakly continuous at ¢ = 0, as the weak limit is zero. And it is a weak solution on [0, 1] with energy
bounded by 1. Moreover,

lim inf ||u(t)||2 = 0, limsup [|u(t)|2 = 1.
t—0+ t—0+

Using a similar argument in the proof of Theorem 1.6, one can also use Buckmaster-Vicol solutions to obtain
weak solutions whose discontinuities have positive measure in time. Note that this method does not produce jump
discontinuities nor density of the set of discontinuities since the resulting solution is “intermittent” on the time
interval.

APPENDIX D. PROOF OF PROPOSITION 4.7

We include a proof of Proposition 4.7 . Let us recall the following result on the Holder norms of composition
of functions. A proof using the multivariable chain rule can be found in [DLS14].

Proposition D.1. Let F : Q — R be a smooth function with Q2 C R%. For any smooth function u : R — Q and
any 1 < m € N we have

IV™(Fow)loo S IV™ulloe D IV Flloolullis’ (D.1)
1<i<m

where the implicit constant depends on m, d.

o, . . . . . ~ 1 .
Proof of Proposition 4.7. We present a proof in the d-dimensional case. By considering a := &a it suffices to

prove both of the results for C, = 1. Notice that since p > 2 is even, the function |a|?, which is aacomposition of
a: T4 — [~1,1] and 2P, is smooth. Therefore, applying Proposition D.1 we see that

V™ al?lloo Sp IV alloe + D [ Valli!
i<m for any m € N.

gp "

We can now introduce the split:
lafll = [ (@ =T (7P = TP do -+ al 11,

where = denotes the integral over T?. By Parseval’s theorem, we get’

Josll < | [ 1914 =PIV = T7P)ds| + a1,

"The nonlocal operators | V|* and |V|~* are defined respectively by multipliers with symbols |k|* and |k|~* for k % 0 and zero for k = 0.
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We need show the first term is very small. By Holder’s inequality:
[ 9P @ =TS = Tde] S 9@ 9 - TP ©2)
By the L? boundedness of Riesz transform we can replace the nonlocal |V [ by V to obtain
IIv1*a?ll, S [1v* ],
<[ vMa?|| (D.3)
< MJV[.

We turn to estimate the second factor in (D.2). Considering the fact that the function (| f|P — | f|P) is zero-mean
and o~ ! T?-periodic we have

w1 = 177)

S oM |9 £ = TFP)

S o (s =17,

So M,

2

where the first inequality is a direct consequence of the Littlewood-Paley theory and the second inequality follows
from the Sobolev embedding L!(T9) < H(T?).
Combining this with estimates (D.2) and (D.3) we find that

19 = TaIe 1 = T o

By the assumption 1 < o' ~?, there exists a number Mp ,, .4 € N sufficiently large so that

0_7]\/I+d1u]\/[ g O_pr. (D4)

So MM fp

~

Then we have

S o MPIIfIE,

[0 T g - T do

which finishes the proof of (4.19) due to the elementary inequality (a? + b?) < (a + b)P.
To prove (4.20) let us first recall the wavenumber projection. For any A € R define P<) = 4:20< A, and
P>y = Id —P<», where A is the Littlewood-Paley projection. Consider the following decomposition:

VI af) = \V\71+S|V|7S(Pg2f4aa)f + ‘v|*1+5|v|*5(p22,40a)f
= V[T A 4 VT4,

For the term Ay, since f is J’le-periodic and zero-mean, it follows that
P22_10'f = f

and then by the support of Fourier modes of (PSQ—A&U(I) f we have

IP)<2—2‘7 [P<274Uaf} =0 and 7[ P<274O-le =0
< < I
which implies that
V|71 Ay = V|1 Ps g0, Ay
By the Littlewood-Paley theory, we have

H|V|71+S]P)22—20. <p 0'71+S7 1< P < 00.

Lr—Lr ™

So, we have

IV A, <p o7

V17 (Pez-<oaf)|
To get the exact form of the estimate, noticing that |V|~* is bounded on L?, 1 < p < oo, we conclude that
19175, < oIV @D, + o=+ 1917 B2 o],
ST IV @], + 0T [Paz-soal| - (D.5)

p

Similarly for As, since |V|~! is bounded on L?, we have
V[T A ||, = IVI7 (Po2-spa) f||, S [Po2-s0af]], < [[Poo-10all [ £llp-
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So it suffices to show || A al|ee < 27V9 for all 27 > 2744 Recall from the definition of the periodic Littlewood-
Paley projection that

Aga = /Td pq(z —y)aly)dy,
where the frequency cutoffs satisfy
V1™ gl < 27 llpgll2 S 279+ (D.6)
By Parseval’s theorem and Young’s inequality,
L9 = v at) |

< V17"l [ V1™ all,-

HAqa”oo =

o0

From L? boundedness of Riesz transform and the assumption on a it follows
I1V[*allz < IV7all2 S IVMallee < 6™, (D.7)
where we used C;, = 1. Thus, combining estimates (D.7) and (D.6) we find
12gall0e < 290 pM 279
< 91dy(1-0)M9—qM
where we used the fact that 1 < ¢'~?. Now choosing )¢ large enough so that ¢?/2 > 24(1=9/2) for all ¢ > A,

we obtain
HAqa”oo < 2qd0_(170/2)M274(170/2)2qu

S 2qd2—q0M/27 (Dg)
provided 2¢ > 274, Choosing any M > 2(N — d)/0, in view of (D.8), we have
A a]le0 S 27N forall 27 > 274,
After taking a summation in ¢ for 29 > 2~%¢ we obtain
”]P)Z2*4UG’HOO 5 U_N'
Then collecting all the estimates, we have
-1+ -1+ — 14
VI @], < IV Au]], + [[[V]7H Ao,
ST VI @) + oV -
O
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