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ABSTRACT. We prove that there exists a nontrivial finite energy periodic stationary weak solution to the 3D Navier-
Stokes equations (NSE). The construction relies on a convex integration scheme utilizing new stationary building blocks
designed specifically for the NSE. The constructed family of approximate stationary solutions is also used to prove the
existence of weak solutions of the NSE with energy profiles discontinuous on a dense set of positive Lebesgue measure.

1. INTRODUCTION

The 3D incompressible Navier-Stokes equations (NSE) on the torus T3 is the following systems of equations:{
∂tu−∆u+ div(u⊗ u) +∇p = 0

div u = 0,
(NSE)

where u : T3 × R→ R3 is the unknown velocity field and p : T3 × R→ R is the pressure.

Definition 1.1 (Weak solutions). A L2-weakly continuous function u ∈ Cw([0, T ];L2(T3)) with zero mean is a
weak solution of (NSE) if u(·, t) is weakly divergence-free for all t ∈ [0, T ] and satisfiesˆ

T3

u(x, 0) · ϕ(x, 0) dx+

ˆ T

0

ˆ
T3

u · (∂tϕ+ (u · ∇)ϕ+ ∆ϕ) dxdτ = 0,

for any divergence-free zero-mean test function ϕ ∈ C∞c (T3 × [0, T )).

The vector field u0(·) = u(·, 0), which is also the weak L2 limit of u(·, t) as t→ 0+, is called the initial data.
Often weak solutions with finite energy dissipation, i.e., u ∈ L2(0, T ;H1), are studied in the literature. Besides
Definition 1.1, there are numerous equivalent ways to define such solutions, e.g., using alternative spaces of test
functions (see [RRS16]).

Since the seminal work of Leray [Ler34] it has been known that any divergence-free initial data u0 ∈ L2(T3)
gives rise to a weak solution satisfying the following energy inequality:

‖u(t)‖22 + 2

ˆ t

t0

‖∇u(s)‖22 ds ≤ ‖u(t0)‖22, (E.I.)

for any t > 0 and a.e. t0 ∈ [0, t) including 0. In the literature, such solutions are referred to as the Leray-
Hopf weak solutions. There has been a long history of extensive studies of these solutions [Ler34, Hop51, Pro59,
Ser62, Lad67, CF88, Tem01, ESv03], however, the global regularity and uniqueness of Leray-Hopf weak solutions
remain among the most important unsolved questions in mathematical fluid dynamics. What is more related to
the present work, is the validity of energy equality (also known as Onsager’s conjecture in the case of the Euler
equations [CET94]). In the recent groundbreaking work [BV19] Buckmaster and Vicol proved nonuniqueness and
anomalous dissipation in the class of weak solutions, but this is still an open question for Leray-Hopf solutions.
In fact, the continuity of the energy is not known either. If the energy has a jump discontinuity from the right, this
immediately implies non-uniqueness since the solution can be restarted at that time to remove the jump. Moreover,
infinitely many solutions can be obtained via interpolation [KV07].

The focus of this paper is to prove the existence of weak solutions to the (NSE) with very pathological energy
behaviors. On one hand, we construct a finite energy stationary solution, which does not lose any energy even
though its enstrophy is positive (in fact, infinite). These solutions exhibit what we call the anomalous energy influx,
the backward energy cascade that precisely balances the energy dissipation at each scale. On the other hand, we
construct weak solutions with energy profiles discontinuous on a dense set of positive Lebesgue measure. So the
set of discontinuities of the energy can be very large at least in the class of weak solutions. Note that both results
provide alternative proofs of the Buckmaster-Vicol nonuniqueness theorem [BV19] since there are Leray-Hopf
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solutions starting from the steady state or discontinuity points. The following theorems are direct consequences
of our main results.

Theorem 1.2. There exists a nontrivial stationary weak solution u ∈ L2(T3) to the 3D NSE.

Theorem 1.3. For any ε, T > 0, there exists a weak solution u ∈ Cw([0, T ];L2(T3)) to the 3D NSE, which is
discontinuous in L2 on a set E ⊂ [0, T ], such that

(1) E in dense in [0, T ].
(2) The Lebesgue measure of Ec is less than ε.

1.1. Background. Our work is based on the technique of convex integration. Although this method has been
around since the work of Nash [Nas54], its application to fluid dynamics was brought to attention only in recent
years by the pioneering work of De Lellis and Székelyhidi Jr. [DLS09]. Since [DLS09], it was developed over a
series of works in the resolution of the Onsager’s conjecture for the 3D Euler equations [DLS09, DLS13, DLS14,
BDLIS15, BDLS16, Ise18, BLJV18]. Its extension to the NSE was done only very recently by Buckmaster-
Vicol [BV19], where non-unique weak solutions of the Navier-Stokes equations in the sense of Definition 1.1 are
constructed.

So far, the focus of the convex integration method has been to produce wild solutions that are as regular as
possible. For instance, the regularity of wild solutions of the Euler equations was pushed to the critical On-
sager’s exponent 1/3 by Isett [Ise18]. Also, the extension of [BV19] to the fractional NSE (−∆)α setting for
1 ≤ α < 5

4 was done in [LT18]. Using the smoothing effect of the Stokes semigroup, Buckmaster-Colombo-Vicol
[BCV18] were able to construct non-unique weak solutions whose singular sets have Hausdorff dimension less
than 1. Nonuniqueness of Leray-Hopf solutions has also been obtained for ipodissipative NSE and Hall-MHD
[CDLDR18, Dai18]. However, it is not clear whether a convex integration scheme could ever produce non-unique
wild solutions in a class where the Leray structure theorem would hold1, except perhaps one very specific scenario.

Finally, we mention another pathway in pursuing the possible nonuniqueness of the Leray-Hopf weak solutions
aside from using convex integration. As pointed out by Jia and Šverák in [Jv14], one can also study the nonunique-
ness issue via self-similar solutions for (−1)-homogeneous initial data. Indeed, in [Jv15] Jia and Šverák proved
nonuniqueness of Leray-Hopf weak solutions under certain assumptions for the linearized Navier-Stokes operator.
Even though a rigorous justification of those assumptions remains unavailable, very recently Guillod and Šverák
provided numerical evidence indicating that the assumptions are likely to be true [Gv17].

1.2. Motivations. In contrast to the aforementioned results, we are focusing on the opposite direction, i.e. con-
structing more pathological solutions, especially solutions with anomalous energy behaviors.

The existence of a nontrivial stationary weak solution of d-dimensional NSE for d ≥ 4 was recently proved by
the second author in [Luo19], but the recaled Mikado flows used as building blocks had intermittency dimension
D = 1, and hence could not be used for the 3D NSE. Nontrivial stationary solutions are also known to exist for
the dyadic model of the NSE [BMR11], where one can precisely control the backward energy cascade to balance
the energy dissipation, but the existence of such solutions has been an open question for the 3D NSE.

On the other hand, weak solutions (in the sense of Definition 1.1) are only lower semi-continuous in L2.
Therefore, it is natural to conjecture that there exist weak solutions that exhibit jumps in the energy. In fact, one
can ask the following questions regarding the behavior of the energy:

Can energy ‖u(t)‖22 have jumps? Can it be discontinuous on a dense subset of [0, T ]? Can it be discontinuous
almost everywhere? Can it be discontinuous everywhere?

The answer to the last question is No. Indeed, the energy of a weak solution ‖u(t)‖22 is lower semi-continuous.
Hence, by Baire’s theorem, the energy is of the first Baire class and therefore the points of continuity are dense.
Nevertheless, we believe that all the previous questions have positive answers. Theorem 1.3 is our first step in
solving this conjecture.

1.3. Main theorems. We now state the main results of this paper. In particular, Theorem 1.2 and 1.3 are simpler
versions of Theorem 1.4 and 1.6 accordingly.

The first theorem concerns the existence of stationary weak solutions for the 3D Navier-Stokes equations,
which extends the previous work [Luo19] of the second author in dimension d ≥ 4.

Theorem 1.4 (Finite energy stationary weak solution). Given any divergence-free f ∈ C∞(T3) with zero mean,
there is Mf > 0 such that for any M ≥Mf , there exists a weak solution u ∈ L2(T3) to (NSE) with forcing term
f satisfying ‖u‖22 = M .

1Note that the solutions in [CDLDR18, Dai18] do not obey the Leray structure theorem.
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The next two theorems are about weak solutions with discontinuous energy profiles.

Theorem 1.5 (Energy with dense discontinuities). Let ε, T > 0 and a ∈ C∞(T3×[0, T ]) be a smooth divergence-
free vector field with zero mean for all t ∈ [0, T ]. There exists a dense subset E ⊂ [0, T ] and a constant Ma > 0,
such that for any M ≥ Ma there exists a weak solution u ∈ Cw([0, T ];L2(T3)) to (NSE) so that the following
holds:

(1) The energy ‖u(t)‖22 is bounded by 2M :

‖u(t)‖22 ≤ 2M for any t ∈ [0, T ] , (1.1)

and has jump discontinuities on set E:

lim
s→t
‖u(s)‖22 > ‖u(t)‖22 for any t ∈ E . (1.2)

(2) u(t) coincides with a(t) at t = 0, T :

u(x, 0) = a(x, 0) and u(x, T ) = a(x, T ), (1.3)

but the energy jump is of size M :

lim
s→0+

‖u(s)‖22 − ‖u(0)‖22 = lim
s→T−

‖u(s)‖22 − ‖u(T )‖22 = M. (1.4)

(3) u is smooth on E:

u(t) ∈ C∞(T3) for all t ∈ E, (1.5)

and uniformly ε-close to a in W 1,1(T3):

‖u− a‖L∞t W 1,1 < ε. (1.6)

The set E in Theorem 1.5 is dense in [0, T ] and, in fact, countable. Using a gluing argument, we are also able
to construct weak solutions whose energy discontinuities are dense and of positive measure.

Theorem 1.6 (Energy with dense and positive measure discontinuities). Let ε > 0 and 0 < α ≤ T . There exist
a set Eα ⊂ [0, T ] with Eα = Cα ∪ Fα where Cα is a fat Cantor set on [0, T ] such that |[0, T ] \ Cα| ≤ α and Fα
is a countable dense subset of [0, T ], and a weak solution u ∈ Cw([0, T ];L2(T3)) of (NSE) so that the following
holds:

(1) The energy profile ‖u(t)‖22 is discontinuous at every t ∈ Eα. In fact,

lim sup
s→t

‖u(s)‖22 > ‖u(t)‖22 for all t ∈ Cα, (1.7)

and

lim
s→t
‖u(s)‖22 > ‖u(t)‖22 for all t ∈ Fα. (1.8)

(2) u(t) is uniformly ε-small in W 1,1(T3):

‖u‖L∞t W 1,1 < ε, (1.9)

smooth on Fα:

u(t) ∈ C∞(T3) for all t ∈ Fα, (1.10)

and vanishes on Cα:

u(t) = 0 for all t ∈ Cα. (1.11)

1.4. Some remarks on the results.

Remark 1.7. It is known that for any smooth force f (NSE) on torus T3 admits at least one smooth stationary
solution [CF88]. Theorem 1.4 shows that there are infinitely many finite energy stationary weak solutions.

Remark 1.8. As our building blocks are compactly supported, it seems likely that there also exist finite energy
stationary weak solutions in R3 with compact supports. We plan to address this problem in future works.

Remark 1.9. We note that weak solutions constructed in [BV19, LT18, BCV18] can not be stationary as the
building blocks are time-dependent and their schemes rely on fast time oscillations.

Remark 1.10. The smoothness of the vector field a in Theorem 1.5 and the force f in Theorem 1.4 can definitely
be lower, but we are not interested in this direction here. Also, Theorem 1.5 shows that any smooth initial data u0

admits infinitely many weak solutions with discontinuous energy.
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Remark 1.11. It is possible to construct a weak solution with discontinuous energy by gluing the solutions in
[BV19], see Appendix C. However, those discontinuities are not jumps. More importantly, such an argument can
not generate dense discontinuities.

Remark 1.12. In view of the theory of Baire category, the set of discontinuities of a semi lower-continuous function
is of Baire-1, which still can have full measure in [0, T ]. At the moment, our method is not able to produce such
examples.

Remark 1.13. Very recently, Luo and Titi [LT18] have extended the nonuniqueness result of [BV19] to factional
NSE with (−∆)α for any α < 5

4 , which is sharp in view of Lion’s wellposedness result [Lio59, Lio69]. Even
though our method seems to work for factional NSE for some α > 1, extensions to the full range of α < 5

4 are
unavailable at this point.

1.5. Effect of intermittency. The main technique used in the present paper is the convex integration that has been
developed over the past decade for the incompressible Euler equations to tackle the famous Onsager’s conjecture,
see [DLS09, DLS13, DLS14, BDLIS15, BDLS16, Ise18, BLJV18], also inspired by the recent extension of this
method to the Navier-Stokes equations [BV19, Luo19, BCV18].

The effect of intermittency on the regularity properties of solutions to the (NSE) and toy models has been also
studied in the past decade [CF09, CS14a, CS14b]. Discontinuous weak solutions in the largest critical space and
even supercritical spaces near L2 were obtained in [CS10, CD14] using Beltrami type flows with the intermittency
dimension D = 0. Such an extreme intermittency was achieved using Dirichlet kernels. Roughly speaking, in
order for the d-dimensional Navier-Stokes equations to develop singularities, the intermittency dimension D of
the flows should be less than d− 2, so that the Bernstein’s inequality is highly saturated. So D = 1 is critical for
the 3D NSE. It was also confirmed in [BV19, Luo19] that the main difficulty of conducting convex integration for
the Navier-Stokes equations is the intermittency of the flow. Such a constraint, however, is not presented in the
3D Euler equations: Beltrami flows and Mikado flows used in the constructions of wild solutions for the 3D Euler
equations are essentially homogeneous in space, namely the the intermittency dimension D = 3. This is also
reflected in the difference between L3 based norm in the best known energy conservation condition L3

tB
1
3

3,c0(N) in
[CCFS08] and L∞ based norm of the counterexamples (CCα for α < 1

3 in [Ise18]) for the 3D Euler equations
[Ise18, BLJV18].

To resolve the issue of intermittency when applying convex integration, Buckmaster-Vicol introduced inter-
mittent Beltrami flows in [BV19] and intermittent jets in [BCV18] as building blocks with arbitrary small inter-
mittency dimension D > 0, allowing them to successfully implement convex integration scheme in the presence
of the dissipative term ∆u. This was done by introducing a Dirichlet type kernel to the classical Beltrami flows
in [BV19] or using a space-time cutoff in [BCV18] respectively, rendering the linear term manageable. Even
though such modifications produce unwanted interactions that are too large for the convex integration scheme to
go through, they were handled with an additional “convex integration in time” with a help of very fast temporal
oscillations. We note that even though it was possible to take advantage of all the interactions between Dirichlet
kernels in [CS10, CD14], this is out of reach in the convex integration scheme at this point.

In this paper, we will design new building blocks specifically for the NSE. These vector fields, that we call
viscous eddies, will be both stationary and compactly supported in R3. The construction is partly motivated by
the geometric Lemma 3.1 used for the Mikado flows which were introduced in [DS17] and have been successfully
used for the Euler equations on the torus Tn for n ≥ 3. The Mikado flows can also be rescaled so that its
intermittency dimension becomes D = 1 as demonstrated in [Luo19] (see also [MS18, MS19] for the setting in
transport equation). This just misses the D < 1 requirement for the 3D NSE (see discussions in Section 2 of
[Luo19] and heuristics in Section 2 of [CL20]).

In order to increase concentration that decreases the intermittency dimension, we start with a pipe flow in R3,
use a lower order cutoff only in space along the direction of the flow, and add a correction profile to the existing
one so that it will take advantage of the Laplacian to balance some of the unwanted interactions. This is possible
due to the fact that the error introduced by the space cutoff along the major axis of the eddies is not a general
stress term, but basically one-dimensional. By design, viscous eddies are divergence-free up to the leading term.
Moreover, they are compactly supported approximate stationary solutions of the NSE (not the Euler equations).
See Theorem 3.13 for a precise statement. Compared with the previously used building blocks for the NSE, such
an approach mainly has two advantages. First, the new flows are time-independent and hence can be used to
construct nontrivial stationary weak solutions, which was an open question for the 3D NSE. Second, they are
compactly supported and can be used in the case of the whole space R3 in the future, whereas Beltrami flows,
Mikado flows, intermittent Beltrami flows, and intermittent jets only exist on the torus Td.

1.6. Energy pumping mechanism. In order to produce discontinuous energy we introduce a new energy pump-
ing mechanism that uses more energy than needed to cancel the stress error term in the convex integration scheme.
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In previous works, there is a correspondence between the growth of the frequency and the decay of the energy so
that the energy is not changed much along the iteration process. In other words, the high frequency part of the
solution is very small uniformly in time. This is typical and desirable in order to improve the regularity of the wild
solutions.

In contrast, to produce discontinuities in the energy, one can not adhere to such a uniformity in time in the
scheme. We need to allow high frequencies to carry sizable energy on some time intervals, so that there is energy
coming from/escaping to infinite wavenumber2. Consider the following toy model. Suppose u(t) is a function
with Fourier support in a shell of size λ(t), and λ(t) → ∞ as t → T . Then the energy remains constant for
t < T , but at t = T , the solution is zero, as all the energy has escaped to the infinite wavenumber. To reproduce
this toy model in the convex integration scheme, one needs to construct an approximate sequence of solutions
with temporal supports away from time T and sizable energy near T , such that the weak limit is 0 at t = T .
Generalizing this example, one can construct a wild solution of the Navier-Stokes equations whose energy is
constant on (0, T ) but vanishes at 0 and T .

However, if one uses solutions of such type with disjoint temporal support and glues them together, the resulting
solution will only have finitely or countably many discontinuities. The next goal is to achieve the density of
jumps. An exercise in real analysis shows that there exist unbounded L2 functions that blow up on a dense subset
of [0, 1]. Roughly speaking, we will construct solutions whose energy mimics the behavior of such functions.
More precisely, there will be infinitely many blowing-up wavenumbers λ(t) with smaller and smaller lifespan
and energy. This is also consistent with the fact that the jumps decrease to zero along the iterations, which is
anticipated as the energy, which we want to be bounded, needs some time to be transferred to lower/higher modes.
We refer to Section 2 for more technical details in this regard.

1.7. Organization of the paper. The rest of the paper is organized as follows.
• In Section 2, we introduce the notations and the generalized Navier-Stokes system, for which we state the

main proposition of the paper. Then using the main proposition, we prove Theorems 1.4, 1.5, and 1.6.
• In Section 3, we construct the building blocks for the convex integration, namely viscous eddies. We show

that they are a family of approximate solutions of the stationary NSE. Several useful estimates are also
derived.
• Section 4, Section 5 and Section 6 are devoted to proving the main proposition. Specifically, velocity

perturbation is defined in Section 4, the new Reynolds stress is estimated in Section 5 and the energy
behavior is proved in Section 6.
• In Appendix C, we show that one can use the solutions constructed by Buckmaster-Vicol to obtain dis-

continuities (but not jump-discontinuities) in the energy. Appendix D provides a proof of a technical tool,
Proposition 4.7.

2. THE MAIN PROPOSITION

The main objective of this section is to prove Theorems 1.4, 1.5, and 1.6 using Proposition 2.1, which we will
refer to as the main proposition.

2.1. Notations. Throughout the manuscript we use the following standard notations.
• ‖·‖p := ‖·‖Lp(T3) is the Lebesgue norm (in space) for any 1 ≤ p ≤ ∞ and ‖·‖Cm :=

∑
0≤i≤m ‖∇i ·‖∞

for any m is the Hölder norm. For uniform in time bounds we will use standard notations ‖ · ‖L∞t Lp and
‖ · ‖L∞t Cm .

• We say a function f is λ−1T3-periodic if f(x) = f(x + m) for any m ∈ λ−1Z3. The space C∞0 (Td)
is the set of smooth functions with zero-mean on Td.

ffl
Td = 1

|T|d
´
Td is the average integral any function

f ∈ L1(Td).
• x . y stands for the bound x ≤ Cy with some constant C which is independent of x and y but may

change from line to line. Then x ∼ y means x . y and y . x at the same time. We use x� y to indicate
x ≤ cy for some small constant 0 < c < 1.
• For vectors a, b ∈ Rd, a⊗ b is the matrix with (a⊗ b)ij = aibj . For matrix-value functions f = fij and
g = gij , div f = ∂ifij and f : g = fijgij .
• The gradient ∇ always refers to differentiation in space only. Sometimes we use ∇t,x to indicate that the

differentiation is for space-time.
• ∆q is the standard periodic Littlewood-Paley projections on to the dyadic frequency shell 2q−1 ≤ |ξ| ≤

2q+1 for any q ≥ −1 and ∆≤q =
∑
r≤q ∆r and ∆≥q =

∑
r≥q ∆r.

2Such possible scenarios are closely related to the energy balance equation for the Navier-Stokes equations. See for instance [CL20]
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2.2. Generalized Navier-Stokes system. Let a, f ∈ C∞(T3 × [0, T ]) be smooth divergence-free vector fields
with zero mean for all t ∈ [0, T ]. We consider the following generalized Navier-Stokes system:{

∂tv + Lav + div(v ⊗ v) +∇p = f

div v = 0,
(gNSE)

where
Lav = −∆v + div(v ⊗ a) + div(a⊗ v).

The reason to consider such a generalization is as follows. Suppose v is a weak solution to (gNSE) with given
vector field a and f = −∂ta + ∆a − div(a ⊗ a). Then u := v + a solves (NSE). We note that the added terms
are of lower order compared to the nonlinearity div(v ⊗ v), and thus will not be of any trouble in the proof.

To construct weak solutions to (gNSE), let us consider the approximate equations{
∂tv + Lav + div(v ⊗ v) +∇p = divR+ f

div v = 0,
(gNSR)

where R is a symmetric traceless matrix. If (v, p,R, f) is a solution to (gNSR), then we say (v,R) is a solution to
(gNSR) with data a and f . The above system is reminiscent to the so-called Navier-Stokes-Reynolds system used
in the previous works [BCV18, BV19, Luo19]. Our main proposition is to construct weak solutions to (gNSE)
using a sequence of solutions (vn, Rn) of the approximate system (gNSR) so that the stress term Rn → 0 as
n→∞ in a suitable sense.

2.3. Main proposition. In this subsection, we will introduce the main proposition of the paper, which will enable
us to prove all the main theorems listed in the introduction.

Throughout the paper we use the following notations. For any r > 0 and any finite set F ⊂ [0, T ], let

Br(F ) = {t ∈ [0, T ] : dist(t, F ) < r},
Ir(F ) = [0, T ] \Br(F ).

(2.1)

Proposition 2.1. Let c0 = 10−2, T > 0.3 Consider the system (gNSR) with given a, f ∈ C∞(T3× [0, T ]) smooth
vector fields with zero mean. There exists a small universal constant C such that the following holds.

Let ε, r > 0, 0 < e0 < e1 < ∞, and F0,F1 ⊂ [0, T ] be two finite sets such that F0 ⊂ F1. If (v0, R0) is a
smooth solution to (gNSR) on [0, T ] with data a and f so that

(1) the energy ‖v0(t)‖22 ≤ e0 for all t, and is almost constant e0 away from the set F0:∣∣‖v0(t)‖22 − e0

∣∣ ≤ c0(e1 − e0) for all t ∈ Ir(F0) ,

(2) (v0, R0) is close to a solution of (gNSE) in the sense that

δ0 ≤ C(e1 − e0),

where δ0 = ‖R0‖L∞t L1
x(T3×[0,T ]),

then there is another smooth solution (v,R) to (gNSE) with data a and f such that
(1) The energy ‖v(t)‖22 ≤ e1 for all t, and is almost constant e1 away from the set F1:∣∣‖v(t)‖22 − e1

∣∣ ≤ c0
2

(e1 − e0) for all t ∈ I4−1r(F1) .

(2) The new stress R verifies

‖R(t)‖1 ≤


ε for t ∈ I4−1r(F1)

δ0 + ε for t ∈ I4−2r(F1) \ I4−1r(F1)

δ0 for t ∈ [0, T ] \ I4−2r(F1).

(2.2)

.
Moreover, the velocity increment w = v − v0 verifies

suppt w ⊂ I4−2r(F1) and ‖w‖L∞t W 1,1 ≤ ε, (2.3)

and if F0 = F1 = ∅ and v0 is stationary4, i.e. ∂tv0 = 0, then w is also stationary: ∂tw = 0.

3Since we only use c0 to measure the approximate level of the energy to a constant, the exact value of c0 is not important.
4In this case, we of course require both a and f to be time-independent.
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0 1 t

‖ · ‖22

e1

e0

r 1− r

v0

v

FIGURE 1. Construction of v = v0 + w in Proposition 2.1.

2.4. Proof of main theorems. We first prove Theorem 1.5, it suffices to prove the following result for (gNSE):

Theorem 2.2. Let ε > 0 and a ∈ C∞(T3 × [0, T ]), T > 0 be a smooth divergence-free function with zero
mean for all t ∈ [0, T ]. Consider the associated generalized Navier-Stokes system (gNSE) with data a and
f = −∂ta + ∆a − div(a ⊗ a). There exists a dense subset E ⊂ [0, T ], a constant Ma > 0 such that for any
M ≥Ma there exists weak solution v ∈ Cw(0, T ;L2(T3)) (NSE) so that the followings hold:

(1) The energy ‖v(t)‖22 is bounded by M :

‖v(t)‖22 ≤M for any t ∈ [0, T ] , (2.4)

and has jump discontinuities on set E:

lim
s→t
‖v(s)‖22 > ‖v(t)‖22 for any t ∈ E . (2.5)

(2) v(t) vanishes at t = 0, T :

v(x, 0) = v(x, T ) = 0, (2.6)

but the energy jump is of size M :

lim
s→0+

‖v(s)‖22 − ‖v(0)‖22 = lim
s→T−

‖v(s)‖22 − ‖v(T )‖22 = M. (2.7)

(3) v(x, t) is smooth on E:

v(t) ∈ C∞(T3) for all t ∈ E, (2.8)

and is ε-small in L∞t W
1,1
x :

‖v‖L∞t W ,1 < ε. (2.9)

The implication from Theorem 2.2 to Theorem 1.5 can be obtained simply by shifting u = v + a since the
vector field a is smooth. Now we prove Theorem 2.2 with the help of Proposition 2.1.

Proof of Theorem 2.2 assuming Proposition 2.1. We first construct the set E, then a sequence of approximate
solution vn such that vn converges to the desire solution v in a suitable sense. Without loss of generality, we
assume T = 1.

Step 1: Constructing the set E. Consider the binary representation of x ∈ [0, 1]:

x =

∞∑
j=0

xj2
−j .

Now let Fn be the collection of all real numbers in [0, 1] whose binary representation has at most n digits, namely
x ∈ Fn ⊂ [0, 1] if and only if xj = 0 for all j > n. Assuming F−1 = ∅, let also En = Fn+1 \ Fn, n ≥ −1. For
instance, E−1 = {0, 1}, E0 = {1/2}, E1 = {1/4, 3/4}. Let

E = lim
n→∞

Fn =
⋃
n≥−1

En,

which is a dense subset of [0, 1].
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Denoting rn = 4−n−1, let us show the following important property of the set E for later use:

lim inf
n→∞

Brn(Fn−1) ⊂ E. (2.10)

Suppose t ∈ lim inf Brn(Fn−1), which means that there exist N and tn ∈ Fn−1 for every n ≥ N , such that

|t− tn| = dist(t, Fn−1) < rn. (2.11)

We claim that tn+1 = tn for all n ≥ N . Otherwise, for some n ≥ N there must be

|t− tn| ≥ |tn+1 − tn| − |t− tn+1| ≥ 2−n − rn+1 ≥ 2−n−1,

which contradicts (2.11):
2−n−1 < rn = 2−2n−2.

Hence, it follows from (2.11) that t = tN ∈ FN−1 which implies that t ∈ E.

Step 2: Constructing approximate solutions vn. Given smooth vector field a, we set v0 = 0 and R0 =
R
(
∂ta−∆a+ div(a⊗ a)

)
, whereR is defined in Definition 5.1. Then (v0, R0) is a smooth solution of (gNSR)

with data a and f = −∂ta+ ∆a− div(a⊗ a) on [0, 1]. We choose

Ma =
4

C
‖R0‖L∞t L1 , (2.12)

where C is the constant in Proposition 2.1.
Let rn = 4−n−1 and M ≥Ma and choose the energy level en = (1− 2−n)M for n ∈ N. Note that the choice

of en is admissible in view of (2.12).
Starting with (v0, R0), we apply Proposition 2.1 with data a and f on [0, 1] to obtain a sequence (vn, Rn)

of smooth solutions of (gNSR). More precisely, (vn+1, Rn+1) is obtained by applying Proposition 2.1 to the
previous solution (vn, Rn) with parameters

(r, e0, e1, ε,F0,F1) := (rn, en, en+1, εn, Fn−1, Fn),

where the small parameters εn are defined inductively by

εn =
2−n−1ε

1 +
∑
j≤n−1 supt ‖wj‖∞

, (2.13)

and wj := vj − vj−1 is the j-th velocity perturbation for j ≥ 1.
Clearly, each (vn, Rn) in the obtained sequence is a smooth solution of (gNSR) on [0, 1] with data a and

f = −∂ta+ ∆a− div(a⊗ a), and by Proposition 2.1 we have the following properties:
(1) For any n ∈ N ∣∣∣‖vn(t)‖22 − en

∣∣∣ ≤ c02−nM

‖Rn(t)‖1 ≤ εn
for all t ∈ Irn(Fn−1) , (2.14)

and
‖vn(t)‖22 ≤ en ≤M,

‖Rn(t)‖1 ≤ ‖R0‖L∞t L1 + ε.
for all t ∈ [0, 1]. (2.15)

(2) The velocity increment wn = vn − vn−1 verifies that∥∥wn∥∥L∞t W 1,1 ≤ εn. (2.16)

(3) If t ∈ Fn for some n ∈ N, then

vk(t) = vn(t) for all k ≥ n. (2.17)

Step 3: L2 convergence of vn. The solution v(t) is constructed as a strong L2 limit of approximate smooth
solutions vn(t),

v(t) = lim
n→∞

vn(t) =

∞∑
j=1

wj , t ∈ [0, 1].

We first prove that v is well-defined, i.e. vn converges pointwise in L2. Indeed, thanks to (2.13) and (2.16) the
velocity perturbations wk are almost orthogonal in L2:

sup
t
|〈wj , wk〉| ≤ 2−j−1ε for all j > k. (2.18)
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As a result, due to (2.15)
n∑
j=1

‖wj‖22 ≤ ‖vn‖22 + 2
∑

1≤j<k≤n

|〈wj , wk〉| < M + 2ε for all n.

So, for 0 ≤ n < m we have

‖vm − vn‖22 =
∑

n<j≤m

‖wj‖22 + 2
∑

n<j<k≤m

|〈wj , wk〉|

<
∑
j>n

‖wj‖22 + 2−n+1ε→ 0 as n,m→∞,

i.e., vn(t) is Cauchy in L2 for every t ∈ [0, 1].
Next, we show that v is a weak solution of (gNSE). Let test function ϕ ∈ C∞c (T3 × [0, 1)) be mean-free and

divergence-free for all t ∈ [0, 1]. Using the weak formulation for the solution (vn, Rn)) of (gNSR) with data a
and f = −∂ta+ ∆a− div(a⊗ a), we getˆ

T3

vn(·, 0) · ϕ(·, 0)+

ˆ
T3×[0,1]

vn · ∂tϕ+ vn · (vn · ∇)ϕ+ vn ·∆ϕ

+

ˆ
T3×[0,1]

a · (vn · ∇)ϕ+ vn · (a · ∇)ϕ =

ˆ
T3×[0,1]

Rn : ∇ϕ+ f · ϕ.
(2.19)

For simplicity of notation, let

In =
⋂
k≥n

Irk(Fk−1).

Immediately ∣∣[0, 1] \ In
∣∣ . 2−n. (2.20)

From (2.14) and (2.18) it follows that

‖v − vn‖2L∞L2(T3×In) ≤ sup
In

(
‖v(t)‖22 − ‖vn(t)‖22 − 2〈v − vn, vn〉

)
. 2−n, (2.21)

and

‖Rn‖L∞t L1(T3×In) . 2−n. (2.22)

Using the bounds (2.20), (2.21), and (2.22) together with (2.15), it is easy to check the convergence of all the
terms in (2.19) to their natural limits by splitting the domain of integrals into T3 × In and T3 × Icn.

Next, let us show that as the pointwise L2 limit of vn, the solution v is weakly continuous. Let ϕ ∈ L2(T3)
and t0 ∈ [0, 1]. Consider the following split:∣∣〈v(t)− v(t0), ϕ〉

∣∣ ≤ ∣∣〈v(t)− vn(t), ϕ〉
∣∣+
∣∣〈vn(t)− vn(t0), ϕ〉

∣∣+
∣∣〈vn(t0)− v(t0), ϕ〉

∣∣.
The first and last terms go to zero as n→∞ by the uniform W 1,1 convergence of vn. For the second term, since
vn ∈ C∞0 (T3 × [0, 1]), we get ∣∣〈vn(t)− vn(t0), ϕ〉

∣∣→ 0 as t→ t0.

So we may conclude that 〈v(t)− v(t0), ϕ〉 → 0 as t→ t0.

Step 4: Verifying properties of v. Finally, we show that v is a weak solution satisfying all the properties (1),
(2) and (3) stated in Theorem 2.2. First, ‖v(t)‖22 ≤ M for all t ∈ [0, 1] due to (2.15). Therefore, to show (1), it
remains to prove that E consists of jump discontinuities.

Indeed, given t ∈ E, there exists n such that t ∈ En, which implies t ∈ Irn+1
(Fn) and v(t) = vn+1(t). Using

(2.14) we get

M − ‖v(t)‖22 ≥M − en+1 − c0M2−n−1

&M2−n.

We will show that lim
s→t
‖v(s)‖22 = M . To this end, let

Iε = {s ∈ [0, 1] : t− ε < s < t or t < s < t+ ε},

and
Nε = max{j ∈ N : Iε ∩ Fj = ∅}.
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By definitions of the sets Fn we have Nε > n provided ε ≤ 2−n−1, which implies that lim
ε→0+

Nε =∞. Moreover,

from (2.10) it follows that
Ec = [0, 1] \ E ⊂ lim sup Irj (Fj−1),

which by (2.14) and the pointwise L2 convergence of vn implies that

‖v(s)‖22 = M for all s ∈ Ec.

Thus we only need to consider s ∈ Iε ∩ E. In this case s /∈ FNε , however, s ∈ Em for some m ≥ Nε and
v(s) = vm+1(s). Then s ∈ Irm+1

(Fm), and therefore, (2.14) implies that

|‖v(s)‖22 −M | . 2−Nε .

Taking a limit ε→ 0 we obtain lims→t ‖v(s)‖22 = M . Thus statement (1) is proved. As a special case of the jump
discontinuities, statement (2) follows as well.

The smoothness of v on the set E and the uniform smallness of v in W 1,1 follow directly from (2.17) and
(2.16) respectively. So, statement (3) has been obtained as well.

�

Next, we use a gluing technique to glue pieces of weak solutions given by Theorem 1.5 to obtain Theorem 1.6.

Proof of Theorem 1.6. It is clear that Theorem 1.5 works for any interval [t0, t1]. Also, the energy level Ma

depends only on the vector field a and Ma can be any positive number when a = 0. Without loss of generality,
we assume T = 1.

Step 1: Constructing approximate sequence un. Let Cα be a fat Cantor set on [0, 1] with measure (1−α) (each
time remove the middle interval of length ( α

1+2α )n). In other words,

Cα = [0, 1] \
⋃
n≥1

⋃
1≤j≤2n−1

Iαj,n,

where Iαj,n are the open intervals removed from the fat Cantor set Cα at step n.
Let us first construct a sequence of weak solutions of (NSE) that are supported on Iαj,n. Applying Theorem

1.5 on each interval Iαj,n with (ε, a,Ma) := (ε4−n, 0, 1), we obtain a weak solution uj,n, which we then extend
trivially to the whole interval [0, 1]. The resulting sequence of weak solutions uj,n satisfy

(1) uj,n is supported on Iαj,n. Moreover,

uj,n(t) = 0, for t 6∈ Iαj,n.

(2) uj,n is small in W 1,1:

‖uj,n‖L∞W 1,1 ≤ ε4−n. (2.23)

(3) ‖uj,n‖22 is discontinuous on a dense subset Fαj,n ⊂ Iαj,n.

Since Iαj,n ∩ Iαj′,n′ = ∅ if j 6= j′ or n 6= n′, namely uj,n have disjoint temporal supports, we can construct
another sequence of weak solutions of (NSE) by defining

un =
∑

1≤k≤n

∑
1≤j≤2n−1

uj,k.

As both summations are finite, un are weakly continuous in L2 and are indeed weak solutions on T3 × [0, 1].

Step 2: Convergence and weak continuity of un. We claim that un(t) pointwise converges in L2 and define

u(t) = lim
n→∞

un(t), t ∈ [0, 1].

To prove this claim, consider two sub-cases.
(a) If t ∈ Cα, then un(t) =

∑
k≤n

∑
j uj,k(t) = 0 for all n. So, in particular, un(t)→ 0 in L2.

(b) If t ∈ [0, T ] \ Cα, then there exist j, n ∈ N such that t ∈ Iαj,n. Thus um(t) = un(t) for any m ≥ n, and
consequently u(t) = un(t).

Combining this with (2.23), it is also clear that statement (2) holds.
Next, we show that u ∈ Cw([0, 1];L2), i.e., u(t) is weakly continuous. Let ϕ ∈ L2(T3) and t0 ∈ [0, 1]. As

usual, we consider the split∣∣〈u(t)− u(t0), ϕ〉
∣∣ ≤ ∣∣〈u(t)− un(t), ϕ〉

∣∣+
∣∣〈un(t)− un(t0), ϕ〉

∣∣+
∣∣〈un(t0)− u(t0), ϕ〉

∣∣. (2.24)
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Thanks to (2.23), for any t ∈ [0, 1] we have∣∣〈u(t)− un(t), ϕ〉
∣∣ ≤ ∥∥u− un∥∥L∞W 1,1‖ϕ‖∞ ≤ ‖ϕ‖∞

∑
k>n

∑
1≤j≤2n−1

∥∥uj,k∥∥L∞W 1,1 ≤ ε2−n‖ϕ‖∞.

So the first and the last terms in (2.24) go to zero as n → ∞, which together with the weak continuity of un
implies the weak continuity of u in L2.

Finally, we show that u is a weak solution of (NSE). Let test function ϕ ∈ C∞c (T3 × [0, 1)) be mean-free and
divergence-free for all t ∈ [0, 1]. By the weak formulation of (NSE) for un we getˆ

T3

un(x, 0) · ϕ(x, 0) dx+

ˆ 1

0

ˆ
T3

un · ∂tϕ+ un · (un · ∇)ϕ+ un ·∆ϕdxdτ = 0. (2.25)

Since un(0) = u(0) = 0, the first term is zero. For the rest of the terms it suffices to show that

un → u in L2
t,x as n→∞.

Consider a remainder set
In =

⋃
m>n

⋃
1≤j≤2n−1

Iαj,m.

Since suppt uj,m ⊂ Iαj,m we know that

u(t) = un(t) for all t ∈ [0, 1] \ In.
Moreover, the set In is small by direct computation:∣∣In∣∣ . ( 2α

1 + 2α

)n
.

Thanks to the above, we have∥∥un − u∥∥L2
t,x(T3×[0,1])

=
∥∥un − u∥∥L2

t,x(T3×In)
≤
∥∥un − u∥∥L∞t L2

x

∣∣In∣∣ 12 → 0

as n→∞. So, we have proved that u ∈ Cw(0, 1;L2) is a weak solution of (NSE) satisfying statement (2).

Step 3: Discontinuities of ‖u‖22 on Eα. We first define the countable set Fα:

Fα =
⋃
j,m

Fαj,m

where recall that Fαj,m is the set of jump discontinuities of ‖uj,m‖22. From the definition of Fαj,m it follows that
Fα ∩ Cα = ∅. Moreover, it is clear that Fα is a dense subset of [0, 1].

Let us show the discontinuity on Eα = Cα ∪ Fα. Suppose t0 ∈ Fα, then t0 ∈ Iαj,m for some j,m. Moreover,
this implies that

u(s) = uj,m(s) for all s ∈ Iαj,m.
Since uj,m is a weak solution given by Theorem 1.5, ‖u‖22 is discontinuous at t0:

lim
s→t0

‖u(s)‖22 > ‖u(t0)‖22 . (2.26)

Next, suppose t0 ∈ Cα, then ‖u(t0)‖22 = 0. Let tk be a sequence such that tk → t0 as k → ∞ and each tk is
the endpoint of Iαj,k for some j = j(k). Then from Theorem 1.5 we get

lim sup
s→tk

‖u(s)‖22 ≥ lim sup
s→tk

‖uk(s)‖22 = 1.

So, for any t0 ∈ Cα we have
lim sup
s→t0

‖u(s)‖22 > ‖u(t0)‖22.

Statement (1) is now proved.
�

We finish this section by proving Theorem 1.4.

Proof of Theorem 1.4 assuming Proposition 2.1. Given any smooth force term f , let v0 = 0 and R0 = −Rf . So
(v0, R0) solves (gNSR) with data a = 0 and f . Then define

Mf =
4

C
‖R0‖L1 .

For any M ≥ Mf we can construct the solution as follows. Let the energy level en = (1 − 2−n)M for n ∈ N.
Again, the choice of en is admissible due to M ≥Mf .
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Starting with (v0, R0), we apply Proposition 2.1 to (vn, Rn) with the same parameters as in the proof of
Theorem 2.2:

(r, e0, e1, ε,F0,F1) = (4−n−1, en, en+1, εn, ∅, ∅),

where εn is the same as (2.13). It should be noted that the value of r does not matter here as all vn are stationary
and F0 = F1 = ∅. Clearly, (vn, Rn) are smooth solutions of (gNSR) with data a = 0 and f such that∣∣∣‖vn‖22 − en∣∣∣ ≤ c0M2−n−1,

‖Rn‖1 ≤ 2−n−1ε.

Using the same argument as in the proof of Theorem 2.2, one can show that vn converges to a stationary weak
solution v ∈ L2 of (gNSE) with data a = 0 and f such that ‖v‖22 = M . So v is a stationary weak solution of
(NSE) with forcing term f . �

3. STATIONARY VISCOUS EDDIES

In this section, the building blocks of the solution sequence are constructed. The entire construction is done
in the whole space R3 not on torus T3. Recall the standard stationary Mikado flows can be rescaled so that the
intermittency dimension D = 1 [Luo19], which is insufficiently intermittent to be the building blocks for the 3D
Navier-Stokes equations. Being also stationary, our viscous eddies are in the intermittency regime D < 1, but the
full range 0 < D < 1 is unattainable.

There are two main major differences between our new building blocks and previous ones used for the NSE,
intermittent jets in [BV19]. First, existing building blocks for the NSE are exact or approximate solutions of
the Euler equations. As a result, the linear term is purely a useless error in those convex integration schemes.
In contrast, viscous eddies are a family of approximate stationary solutions to the NSE, not Euler equations,
see Theorem 3.13. The Laplacian is essential as it balances the leading term in the equations. Second, viscous
eddies are time-independent, which enables us to obtain stationary weak solutions with time-independent (or
zero) external force. In other words, our scheme does not require time oscillations, which might be of interest in
improving the temporal regularity of wild solutions.

3.1. A geometric lemma. We start with a geometric lemma that dates back to the work of Nash [Nas54]. A
proof of the following version, which is essentially due to De Lellis and Székelyhidi Jr., can be found in [Sze13,
Lemma 3.3]. This lemma allows us to reconstruct any stress tensor R in a compact subset of S3×3

+ , the set of
positive definite symmetric 3× 3 matrices.

Lemma 3.1. For any compact subset N ⊂ S3×3
+ , there exists λ0 ≥ 1 and smooth functions Γk ∈ C∞(N ; [0, 1])

for any k ∈ Z3 with |k| ≤ λ0 such that

R =
∑

k∈Z3,|k|≤λ0

Γ2
k(R)

k

|k|
⊗ k

|k|
for all R ∈ N .

Lemma 3.1 is one of the reasons we choose to construct viscous eddies, which will be nonisotropic, closed to
pipe flows, and divergence-free up to the leading order terms.

Fix a compact subsetN ⊂ S3×3
+ and let K ⊂ R3 be the finite set of vectors given by Lemma 3.15, the directions

of the major axis of viscous eddies. We can then choose a collection of points pk ∈ [0, 1]3 for k ∈ K and a number
µ0 > 0 such that ⋃

k

Bµ−1
0

(pk) ⊂ [0, 1]3,

and

B2µ−1
0

(pk) ∩B2µ−1
0

(pk′) = ∅ if k 6= k′.

These points pk will be the centers of our eddies and the balls Bµ−1
0

(pk) will contain the supports of the eddies.
Let

lk := {pk + tk : t ∈ R} ⊂ R3

be the line passing through the point pk in the k direction.

5For applications in this paper, the setN ⊂ S3×3
+ is fixed. See Section 4.5.
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3.2. Velocity profiles. Let ψ ∈ C∞c (R+) be a smooth non-negative non-increasing function so that suppψ ⊂
[0, 1]. Then let

φ(r) := −1

r

ˆ ∞
r

ψ(s)s ds. (3.1)

Note that φ ∈ C∞((0,∞)), φ(r) = 0 for r > 1, and φ has a singularity r−1 near the origin due to the monotonicity
of ψ.

At this time we also assume ˆ ∞
0

(ψ2 − φψ′)r dr = 0, (3.2)

which will be verified in the next lemma.

Lemma 3.2. There exits a smooth non-negative non-increasing ψ ∈ C∞c ([0, 1]) such that (3.2) holds and ψ′ = 0
in a neighborhood of 0.

Proof. Integrating by parts we obtainˆ ∞
0

(ψ2 − φψ′) rdr =

ˆ ∞
0

rψ2dr +

ˆ ∞
0

ˆ ∞
r

ψ(s)s dsψ′(r) dr

= 2

ˆ ∞
0

rψ2dr − ψ(0)

ˆ ∞
0

rψ dr.

We first fix a non-negative non-increasing ψ ∈ C∞c ([0, 1]) such that

ψ(r) = 1 for all r ∈ [0, 1/2] and 2

ˆ ∞
0

rψ2dr −
ˆ ∞

0

rψdr > 0.

Note that the existence of such functions can be seen by taking mollification on the characteristic function χ[0,1]

Let us consider ψa = ψ + aψ(ar), a ≥ 1 to be determined, for which we need the solve the equation

F (a) := 2

ˆ ∞
0

rψ2
a dr − ψa(0)

ˆ ∞
0

rψa dr = 0.

It is clear that once a solution F (a) = 0 is found, the lemma is proven.
A direct computation yields that

F (a) = 4

(ˆ ∞
0

rψ2 dr +

ˆ ∞
0

raψ(r)ψ(ar) dr

)
− (1 + a)

(ˆ ∞
0

rψ dr +

ˆ ∞
0

raψ(ar) dr

)
. (3.3)

In particular, our assumption on ψ implies

F (1) = 8

ˆ ∞
0

rψ2 dr − 4

ˆ ∞
0

rψ dr > 0.

As a→∞ we notice in (3.3) thatˆ ∞
0

raψ(r)ψ(ar)dr ≤
ˆ ∞

0

raψ(ar)dr = a−1

ˆ ∞
0

rψdr → 0,

and thus there exist some c0, c1 > 0 depending of ψ such that

F (a) ≤ c0 − c1(1 + a) for all sufficiently large a,

which implies that there exits 1 < a <∞ such that F (a) = 0. �

Throughout this section we will work in cylindrical coordinates to simply notations. Let

zk =(x− pk) · k
|k|
, (3.4)

rk =dist(x, lk) (3.5)

be the cylindrical coordinates with respect to the basis{er, eθ, ez} centered at pk, with ez = k
|k| .

It would also be convienet to introduce the following decomposition

R3 = Ωk ⊕ lk, (3.6)

where Ωk = {x ∈ R3 : x · k = 0} is the plane orthogonal to lk.
Finally, let us fix a smooth nontrivial function η ∈ C∞c (R) such that

´
η = 0 and η = 0 for |x| ≥ 1.



14 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

Definition 3.3 (Principle profiles ψk and ηk). For k ∈ K and µ ≥ τ ≥ µ0 let ηk, ψk ∈ C∞(R3) and φk ∈
C∞(R3 \ lk) be defined by

ηk = cτ
1/2η(τzk),

ψk = µψ(µrk),

φk = φ(µrk),

(3.7)

where c is a normalizing constant such that
´
R3

∣∣ηkψk∣∣2dx = 1.

Remark 3.4. Note that ηk and ψk are smooth and compactly supported in Ωk, but not φk which still has a
compact support in Ωk but also a singularity 1/r at the origin. We can use a mollification to smear out the
singularity thanks to Proposition 3.9.

Using cylindrical coordinates we can easily prove the following simple lemma regarding the profiles ηk and
ψk.

Lemma 3.5. For any k ∈ K, the rescaled functions ψk and φk verify the identities

∂(rkφk)

∂rk
= rkψk and

ˆ ∞
0

(
ψ2
k − φk

∂ψk
∂rk

)
rk drk = 0. (3.8)

For any 1 ≤ p ≤ ∞, there hold

‖ηk‖Lp(lk) . τ
1/2−1/p,

‖ψk‖Lp(Ωk) . µ
1−2/p,

(3.9)

and

‖φk‖Lp(Ωk) .p µ
−2/p if 1 ≤ p < 2. (3.10)

Proof. The first two identities (3.8) follow from the rescalings (3.7), (3.1) as well as the zero-mean condition (3.2).
The first two estimates (3.9) follow from rescaling and the the fact that η, ψ ∈ C∞c (R+) while (3.10) follows

from rescaling and the fact that φ ∈ Lp(rdr) for any 1 ≤ p < 2.
�

Next, we introduce another family of profiles that will be used to form the Laplacian corrector part of the
eddies.

Thanks to the zero-mean condition (3.8) and the vanishing of ψ′ near the origin obtained in Lemma 3.2,
Lemma B.1 implies that there exists h ∈ C∞(R+), such that h(| · |) ∈ C∞(R2)∩W 1,p(R2) for 1 < p ≤ ∞, and

∆h(|x|) = (ψ(|x|))2 − φ(|x|)ψ′(|x|). (3.11)

Then define Ψk ∈ C∞(R3) by

Ψk := h(µrk), (3.12)

for which we have

∆
(
Ψk

)
= ψ2

k − φk
∂ψk
∂rk

. (3.13)

.
Let us fix some nonnegative function ϕ ∈ C∞c (R+), such that φ(r) = 1 for r ≤ 1, suppϕ ∈ [0, 2], and´∞

0
ϕ r dr = 1. This function will be used as a cutoff in Definition 3.6 below and a radial mollification in

Definition 3.7.
Now we define another two profile functions, ψ̃k and η̃k, which will constitute an important part of our eddies.

Definition 3.6 (Viscous profiles ψ̃k and η̃k). For k ∈ K and µ ≥ τ ≥ µ0, define

ψ̃k = ϕ(τrk)Ψk,

and

η̃k =
1

2

∂(η2
k)

∂zk
.

Note that the extra mild cutoff φ(τrk) is to make sure the support of ψ̃k is contained in a cylinder centered at
the line lk in R3 so that η̃kψ̃k is compactly supported.
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3.3. Vector fields Wk and Vk. Let us first introduce vector fields Wk and Vk, which corresponds to the principle
part and respectively the Laplacian correction part of the eddies.

Definition 3.7. Let K ⊂ R3 be a finite set and γ > 0 be a small constant. For each k ∈ K and µ ≥ τ ≥ µ0, the
vector fields Wk : R3 → R3 and Vk : R3 → R3 are defined by

Wk = (Wz +Wr)γ and Vk = η̃kψ̃kez, (3.14)

where the vector fields Wz and Wr are respectively defined by

Wz = ηkψkez, Wr = −∂ηk
∂zk

φker. (3.15)

Here (·)γ := ϕγ∗ indicates a radial mollification at scale µ−1−γ in the Ωk-plane via the kernel

ϕγ = 1
2πµ

2+2γϕ(µ1+γrk).

In addition, let Wk be the non-smooth counterpart of Wk defined by

Wk = Wz +Wr. (3.16)

The role of each parameter is as follows.

• µ−1 parametrizes the concentration level of eddies.
• τ−1 measures the closeness of eddies to the pipe flows
• γ is a small constant that we use to achieve the smoothness of the eddies.

We will choose the parameters so that ‖Vk‖2 � ‖Wk‖2 and ‖Wr‖2 � ‖Wz‖2. Hence, viscous eddies are
quantitatively determined by Wz .

Note that Wk is divergence-free. Indeed, using standard vector calculus (see Appendix A) we compute

div(Wk) = div

(
ηkψkez −

∂ηk
∂zk

φker

)
γ

=

(
∂ηk
∂zk

ψk −
∂ηk
∂zk

1

r

∂(rφk)

∂rk

)
γ

=0,

thanks to (3.8).
Note that for Wk we can choose γ � 1 and τ � µ so that it has any small intermittency D > 0:

‖∇mWk‖p .m µm(1+γ)µ1−2/pτ
1/2−1/p, (3.17)

however, besides being much smaller than Wk, the viscous part Vk will impose other restrictions on admissible
choices of τ, µ, as indicated by Proposition 3.11.

As a direct consequence of Definition 3.3 and 3.6 we obtain

Lemma 3.8 (Compact support of Wk and Vk). For any µ ≥ τ ≥ µ0, the supports set of Wk and Vk verify

suppWk ∪ suppVk ⊂ [0, 1]3 for any k ∈ K,

suppWk ∩ suppWk′ = ∅ and suppVk ∩ suppVk′ = ∅ if k 6= k′,

and the estimate

| suppWk| . τ−1µ−2.

Moreover, the vector fields Wk have zero mean
ˆ
R3

Wk = 0. (3.18)

Proof. The compactness and disjointness of the support follow from the definitions. The estimate of the support
set follows from the fact that µ−1-mollification only alter the diameter of the support set by µ−1 and τ ≤ µ.

The zero-mean property (3.18) follows from integrating in cylindrical coordinates with basis {er, eθ, ez} and
the fact that the profile function η ∈ C∞c (R) used in (3.7) has zero mean. �
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3.4. Definition of viscous eddies. We will show that Wk and Vk can be used to form stationary solutions of the
Navier-Stokes equations. The choice of Vk is inspired by the following results.

The first estimate shows that the leading order term in div(Wk ⊗Wk) is div(Wk ⊗Wz).

Proposition 3.9. Suppose τ ≤ µ1−γ . Then the following estimate holds∥∥Wk ⊗Wk −Wk ⊗Wz

∥∥
p
.p µ

−γ
[
µ2−2/pτ1−1/p

]
,

for all 1 ≤ p < 2.

The next two results show a precise structure of the error term div(Wk ⊗ Wz). In particular, it has a fixed
direction ez and zero mean over the Ωk-plane thanks to Lemma 3.5. Hence, it can be balanced by adding a
Laplacian term.

Lemma 3.10. There holds

div(Wk ⊗Wz) =
1

2

∂(η2
k)

∂zk

(
ψ2
k − φk

∂ψk
∂rk

)
ez. (3.19)

Proof. Since Wk = Wz + Wr is divergence-free, by a direct computation using cylindrical coordinates (cf.
Appendix A) we conclude

div(Wk ⊗Wz) =
(
(Wz +Wr) · ∇

)
Wz

= −∂ηk
∂zk

φkηk
∂ψk
∂rk

ez + ηkψk
∂ηk
∂zk

ψk ez

=
1

2

∂(η2
k)

∂zk

(
ψ2
k − φk

∂ψk
∂rk

)
ez.

�

Proposition 3.11. Suppose τ ≤ µ. Then the following important estimate holds:∥∥ div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

.p τ
2µ−1

[
µ2−2/pτ1−1/p

]
, (3.20)

for all 1 < p ≤ ∞.

While Lemma 3.10 follows from a direct computation using cylindrical coordinates, we postpone the proofs of
Proposition 3.9 and Proposition 3.11 to the end of this section. With these results at hand, it is natural to consider
the following family of vector fields.

Definition 3.12 (Viscous eddies). Viscous eddies are vector fields of the form

u =
∑
k

akWk − a2
kVk, (3.21)

where coefficients ak ∈ R for each k ∈ K.

One of the advantages of viscous eddies is that they are approximate solutions of the stationary Navier-Stokes
equations.

Theorem 3.13 (Approximate stationary solutions in R3). Let K ⊂ R3 be finite and u be a viscous eddy:

u =
∑
k

akWk − a2
kVk,

where constants ak ∈ R for each k ∈ K.
Then u ∈ C∞c (R3) is an approximate solution of the stationary Navier-Stokes equations in the following sense.

There exist a stress R ∈ C∞c (R3×3) and a vector field r ∈ C∞c (R3) so that

∆u+ div(u⊗ u) = divR+ r.

Moreover, for any ε > 0, one can choose τ, µ > 0 such that

‖R‖L1(R3) + ‖r‖L1(R3) ≤ ε.

For simplicity of presentation we include the pressure in the stress term R and do not assume R is symmetric
traceless. It might be possible to write the vector field r in the divergence form, gaining an additional one deriva-
tive. Such a method will require the use of inverse divergence operator on R3. However, the inverse divergenceR
in defined in 5.1 does not preserve compact support on R3.

As one can see, u is an approximate stationary solution to the NSE for an arbitrary direction k, whereas both
intermittent jets in [BCV18] and Mikado flows in [Luo19] must have lattice directions to be periodic.



STATIONARY AND DISCONTINUOUS WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS. 17

Proof of Theorem 3.13. Denote u1 =
∑
k akWk and u2 = −

∑
k a

2
kVk then define the stress term R by

R = ∇u1 + u1 ⊗ u2 + u2 ⊗ u1 + u2 ⊗ u2.

and the vector field r as
r = ∆u2 + div(u1 ⊗ u1).

Immediately, by direct computation

∆u+ div(u⊗ u) = divR+ r.

As a result,

‖R‖L1(R3) . ‖∇u1‖1 + ‖u1‖2‖u2‖2 + ‖u2‖22, (3.22)

and
‖r‖Lp(R3) .

∑
k

∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

+
∥∥div(Wk ⊗Wk −Wk ⊗Wz)

∥∥
Lp(R3)

.

By Propositions 3.9 and 3.11, it is easy to choose p > 1 sufficiently close to 1 and τ, µ sufficiently large
depending on ak such that

‖R‖L1(R3) + ‖r‖L1(R3) ≤ ‖R‖L1(R3) + ‖r‖Lp(R3) ≤ ε.

�

3.5. Estimates for the viscous eddies.

Proposition 3.14. For any τ ≤ µ1−γ and µ sufficiently large, the following estimates hold:

µ−m(1+γ)
∥∥∇mWk

∥∥
Lp(R3)

.m µ1−2/pτ
1/2−1/p, 1 ≤ p ≤ ∞,

µ−m(1+γ)
∥∥∇mVk

∥∥
Lp(R3)

.m,p µ
−1τ

3/2
[
µ1−2/pτ

1/2−1/p
]
, 1 < p ≤ ∞.

Proof. By a dimensional analysis and smoothness of Wk and Vk, it suffices to prove the estimates for m = 0.
Let us first estimate Wk. Definitions 3.3, 3.7 and Lemma 3.5 immediately imply that

‖Wz‖Lp . µ1−2/pτ
1/2−1/p, 1 ≤ p ≤ ∞, (3.23)

and
‖Wr‖Lp .p µ−

2/pτ
3/2−1/p, 1 ≤ p < 2. (3.24)

Note that Wr /∈ L2, and hence the implicit constant in (3.24) blows up as p → 2−. Now we will show that the
mollified radial component of the eddy satisfies

‖(Wr)γ‖Lp . µγ−
2/pτ

3/2−1/p, 1 ≤ p ≤ ∞, (3.25)

provided µ is large enough.
Indeed, due to Lemma 3.2, there exist constants c1 ∈ R and 0 < α0 < 1, such that ψ(r) = c1 for all r ≤ α0.

By definition (3.1), for all r ≤ α0 we have

φ(r) = −1

r

ˆ ∞
r

ψ(s)s ds

= − 1

rk

(ˆ α

r

c1s ds+

ˆ ∞
α

ψ(s)s ds

)
= c1

r

2
+ c2

1

r
,

for some constant c2 ∈ R. Clearly there exists α ≤ α0, such that |φ(r)| is decreasing for all r ≤ α, and
|φ(α)| ≥ |φ(r)| for all r ≥ α. Therefore,

∣∣(φk)γ
∣∣ attains a global maximum at rk = 0, provided 2µ−γ ≤ α. A

direct computation shows that ∣∣(φk)γ(0)
∣∣ =

∣∣∣∣∣
ˆ µ−1−γ

0

ϕγ(r)φk(r)r dr

∣∣∣∣∣
=

∣∣∣∣∣
ˆ µ−1−γ

0

µ2+2γϕ(µ1+γr)
1

µr
r dr

∣∣∣∣∣
. µγ .
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Now using the fact that | supp(Wr)γ | . µ−2τ−1, we can conclude that

‖(Wr)γ‖Lp . µ−
2/pτ−

1/p‖(Wr)γ‖L∞

. µ−2/pτ−
1/p

∥∥∥∥∂ηk∂zk

∥∥∥∥
L∞

∥∥(φk)γ
∥∥
L∞

. µ−2/pτ−
1/pτ

3/2µγ ,

provided µ is large enough (so that 2µ−γ ≤ α).
Now we can easily estimate viscous eddies using (3.23) and (3.25):

‖Wk‖Lp ≤ ‖(Wz)γ‖Lp + ‖(Wr)γ‖Lp . (1 + τµγ−1)
[
µ1−2/pτ

1/2−1/p
]
.
[
µ1−2/pτ

1/2−1/p
]
,

due to the assumption τ ≤ µ1−γ .
Next, we estimate ‖Vk‖Lp in cylindrical coordinates. Since Vk is axisymetric, using the decomposition R3 =

Ωk ⊕ lk, we obtain

‖Vk‖Lp(R3) . ‖η̃k‖Lp(lk)‖ψ̃k‖Lp(Ωk).

By Definitions 3.3 snd 3.6,

‖η̃k‖Lp(lk) .

∥∥∥∥∂(η2
k)

∂zk

∥∥∥∥
Lp(lk)

. τ2− 1
p . (3.26)

Then for p > 1 we have
‖ψ̃k‖Lp(Ωk) ≤ ‖ϕ‖L∞(Ωk)

∥∥Ψk

∥∥
Lp(Ωk)

.p
( ˆ ∣∣h(µrk)

∣∣prkdrk) 1
p

. µ−2/p,

(3.27)

where in the last estimate we have used the fact that h ∈ Lp(R2) for any 1 < p ≤ ∞.
Putting together (3.26) and (3.27) we obtain the desired estimate

‖Vk‖Lp .p τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]

for any 1 < p ≤ ∞.

�

Using the above estimates, we prove Proposition 3.9 and Proposition 3.11.

Proof of Proposition 3.9. We start with the decomposition

Wk ⊗Wk = Wk ⊗Wz +
(
Wk −Wk

)
⊗Wz + Wk ⊗

(
(Wz)γ −Wz

)
+ Wk ⊗ (Wr)γ .

So by Hölder’s inequality we will focus on the following∥∥Wk ⊗Wk −Wk ⊗Wz

∥∥
p
.
∥∥Wk −Wk

∥∥
p
‖Wz‖∞ + ‖Wk‖∞

∥∥(Wz)γ −Wz

∥∥
p

+ ‖Wk‖∞
∥∥(Wr)γ

∥∥
p

. X1 +X2 +X3

(3.28)

Let us first estimate X1. We start with the definition of Wk and obtain

X1 .
(
‖Wz − (Wz)γ‖p + ‖Wr − (Wr)γ‖p

)
‖Wz‖L∞

.
(
‖Wz − (Wz)γ‖p + ‖Wr‖p

)
‖Wz‖L∞ .

(3.29)

To estimate the above terms, we first notice that by a standard approach to mollification,

‖Wz − (Wz)γ‖p . ‖Wz‖W 1,pµ−1−γ . (3.30)

Moreover, by Lemma 3.5 (cf. (3.23) and (3.24)), we have

‖Wz‖W 1,p . µµ1−2/pτ
1/2−1/p, ‖Wz‖L∞ . µτ

1/2, (3.31)

and, since 1 ≤ p < 2,
‖Wr‖Lp .p µ−1τµ1−2/pτ

1/2−1/p. (3.32)
Substituting bounds (3.30), (3.31), and (3.32) into (3.29) gives

X1 . (µ−γ + µ−1τ)
[
µ2−2/pτ1−1/p

]
, (3.33)

which is the desired estimate since τ ≤ µ1−γ .
Next, we estimate X2. By Proposition 3.14 we have∥∥Wk

∥∥
∞ . µτ

1/2, (3.34)
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which together with (3.30) and (3.31) implies that

X2 . µ
−γ[µ2−2/pτ1−1/p

]
. (3.35)

Finally, we need to bound X3. All the estimates for X3 have been obtained before. In particular, since 1 ≤ p <
2, (3.32) and (3.34) imply

X3 .
∥∥Wk

∥∥
∞

∥∥Wr

∥∥
p

. µ−1τ
[
µ2−2/pτ1−1/p

]
,

which is what we need due to the assumption τ ≤ µ1−γ .
�

Proof of Proposition 3.11. By a direct computation,

∆Vk = ∆(η̃kϕ)Ψkez + 2∇(η̃kϕ)∇Ψkez + η̃kϕ∆Ψkez, (3.36)

where we write ϕ = ϕ(τrk) for short. Recall from (3.13) that

∆
(
Ψk

)
= ψ2

k − φk
∂ψk
∂rk

,

and, in particular, ∆Ψk = 0 for rk ≥ µ−1. Since τ ≤ µ, we have that ϕ(τrk) = 1 on supp ∆Ψk. Then using
Definition 3.6 and Lemma 3.10, we obtain

η̃kϕ∆Ψkez =
1

2

∂(η2
k)

∂zk

(
ψ2
k − φk

∂ψk
∂rk

)
ez

= div(Wk ⊗Wz).

Combining this with (3.36), we get∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

.
∥∥∆(η̃kϕ)Ψk

∥∥
Lp(R3)

+
∥∥∇(η̃kϕ)∇Ψk

∥∥
Lp(R3)

. (3.37)

Since τ ≤ µ, it suffices to bound the second term in (3.37). By Definition 3.6, we have a pointwise bound∣∣∇(η̃kϕ)
∣∣ . ∣∣∇2(η2

k)
∣∣+ τ

∣∣∇(η2
k)
∣∣.

Thus for the second term in (3.37) we have∥∥∇(η̃kϕ)∇Ψkez
∥∥
Lp(R3)

.
∥∥∇2(η2

k)
∥∥
Lp(lk)

∥∥∇Ψk

∥∥
Lp(Ωk)

+ τ
∥∥∇(η2

k)
∥∥
Lp(lk)

∥∥∇Ψk

∥∥
Lp(Ωk)

. (3.38)

Now by rescaling (3.12) and Definition 3.3,∥∥∇Ψk

∥∥
Lp(Ωk)

.p µ
1−2/p for 1 < p ≤ ∞, and

∥∥∇n(η2
k)
∥∥
Lp(lk)

.n τ
nτ1−1/p for 1 ≤ p ≤ ∞,

so we get ∥∥∇(η̃kϕ)∇Ψkez
∥∥
Lp(R3)

.p τ
2µ−1

[
µ2−2/pτ1−1/p

]
,

which implies the desired bound:∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

.p τ
2µ−1

[
µ2−2/pτ1−1/p

]
for 1 < p ≤ ∞. (3.39)

�

4. PROOF OF MAIN PROPOSITION:VELOCITY PERTURBATION

In this section, we start proving Proposition 2.1. The main objective of the section is to define and estimate
the velocity perturbation. More specifically, we will carefully design the velocity perturbation w so that the new
solution v = v0 +w has the desired properties listed in Proposition 2.1. The key is to reduce the size of the stress
error term and make sure w carries a precise amount of energy on the intervals I4−1r(F1) at the same time.

The rest of this section is organized as follows. We first give a general introduction of the proof, and then
introduce all the necessary preparation work to define w, namely, fix constants τ and µ appeared in the viscous
eddies, choose suitable cutoff functions in space and time, and introduce the Leray projection and a fast oscillation
operator Pσ . Finally, we define the velocity perturbation w and derive various estimates needed in the next two
sections.
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4.1. General introduction. To better illustrate the idea, we provide some heuristics and try to outline the general
idea of the proof here. To the leading order, the velocity perturbation w consists of finitely many highly oscillating
viscous eddies:

w =
∑
k

akPσWk + a2
kPσVk := w(p) + w(l),

where coefficients ak are determined by the old Reynolds stress R0, and Pσ is a fast oscillation operator (see
Definition 4.4).

On one hand, we nee to control the new stress term, which, according to (gNSR), is implicitly defined by

divR = ∂tw + Law + div(w ⊗ v0 + v0 ⊗ w) + div(R0 + w ⊗ w)−∇p1.

The old Reynolds stress R0 will be canceled by the interaction w(p) ⊗ w(p) together with w(l). More precisely,

div(w(p) ⊗ w(p)) + divR0 + ∆w(l) = High frequency errors + Lower order terms.

On the left hand side, R0 will be canceled by the high-high interaction of w(p)⊗w(p), and ∆w(l) will balance the
error essentially introduced by the unwanted div(Wk ⊗Wk) as shown in Theorem 3.13. On the right hand side,
lower order terms are automatically small, but high frequency errors will gain a factor of σ−1 after inverting the
divergence. This will be shown in Lemma 5.8, Section 5.

On the other hand, we need to make sure the new solution v has the desired energy profile. This is in fact
mostly compatible with the above effort of controlling the new stress error. Heuristically, to balance the stress
term R0, one must spend the energy of size at least ∼ ‖R0‖1. In other words,

‖w(t)‖22 & ‖R0(t)‖1 for all t.

There is a lot of flexibility in choosing the size of w though, as one can use more energy than needed to balance
the old stress term R0. In our scheme, the size of ‖w‖2 is determined by the given energy levels e0 and e1 on the
intervals I4−1r(F1), where the old stress error term is already quite small (the second condition for (v0, R0) in
Proposition 2.1). This makes control of the stress and pumping of the energy compatibility. See (4.3) and Section
6 for more details.

4.2. Setup of constants. First, we set up the constants appeared in the definition of the vector fields Wτ,µ
k and

the viscous eddies.
The major parameter λ, the (spacial) frequency of the perturbation, will be a sufficiently large. The parameters

µ and τ in the viscous eddies are defined explicitly as powers of λ while γ is taken to be small. Moreover, we also
define an integer σ to parametrize the oscillations of the eddies.

In the sequel, we fix 
σ = λ1/30

µ = λ14/15

τ = λ2/5

γ = 1
28

(4.1)

Clearly, it holds that µγ = σ and σµ1+γ = λ. We also have the following hierarchy of constants:

σ � τ � µ� λ.

For periodicity, we also require σ to be an integer. Let us briefly discuss the scales involved in the definition of
w. In essence, the choice of parameters ensures that by raising the value of λ, the new stress term R0 introduced
by w on I4−1r(F1) can be as small as we want, and, at the same time, the energy of new solution ‖v(t)‖22 can be
controlled precisely.

There are mainly four constraints in choosing the scales:
• The first constraint is due to the small intermittency requirement. Since λ is the frequency of w which

consists of oscillation σ and concentration τ and µ, then for w to be small in W 1,1 it requires (see (3.9))

λτ−
1
2µ−1 � 1.

• The second constraint is needed to achieve the correct energy level. Since ‖w(p)‖2 controls the energy
level of the new solution v, we need ‖w(l)‖2 � ‖w(p)‖2 and ‖w(c)‖2 � ‖w(p)‖2. According to defini-
tions of w(l) and w(c), i.e. (4.12) and (4.13), this implies

τ
3
2 � µ.

• The previous two constraints are due to the viscous part w(l). There is a new error introduced by ∆,
namely Rlow in Lemma 5.8. To make sure Rlow is small, we need

τ2 � µ.
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• We use a mollification in the scale µ−1−γ to remove 1/r singularity of a viscous eddy in the radial
direction. This singularity is needed so that we can take advantage of the Laplacian. In order to control
norms of the viscous eddy, we need an upper bound on γ. More precisely, as we have seen in the previous
section, we need the following condition:

τ ≤ µ1−γ .

It is easy to verify that our choice of constants (4.1) satisfies all the above constraints.
Next, we introduce a constant M , whose role is to limit the order of the derivative that we will be taking so that

the implicit constants stay bounded.

Definition 4.1 (The constant M ). Let N = 300 and θ = 1/2. We define M to be the constant obtained from
applying Proposition 4.7 with such θ and N .

4.3. Cut-offs in space and time. Let χ : R3×3 → R+ be a positive smooth function so that it is monotone
increasing with respect to |x| and

χ2(x) =

{
1, 0 ≤ |x| ≤ 1

|x|, |x| ≥ 2
(4.2)

where | · | denotes the Euclidean matrix norm. Note that by definition

‖∇mχ‖∞ .m 1.

Now we choose a proper threshold ρ0(t) to control how much energy is added. Given an solution (v0, R0) and
energy level e1 as in the statement of Proposition 2.1, let

ρ0(t) =
1

12
(ẽ1 − ‖v0(t)‖22), (4.3)

where ẽ1 = e1 − 10−6(e1 − e0) is to leave room for future corrections. Note that ρ0 is bounded from below:

ρ0(t) & e1 − e0 & C
−1δ0, (4.4)

due to the assumptions (1) and (2) in Proposition 2.1, where δ0 = ‖R0‖L∞t L1
x(T3×[0,T ]) and the universal constant

C in Proposition 2.1 will be specified in Section 6.
To deal with the issue of the Reynolds stress R0 having large magnitudes, we introduce a divisor as follows.

Define ρ : T3 × [0, T ]→ R+ to be

ρ(x, t) = 4ρ0χ
2(ρ−1

0 R0). (4.5)

It follows from the above definitions that
|R0|
ρ

=
|R0|

4ρ0χ2(ρ−1
0 R0)

≤ 1/2 for all (x, t) ∈ T3 × [0, T ].

Next, we introduce a cutoff in time so that the energy profile of the new solution satisfies all the required
properties. For the exceptional set F1 (cf. (2.1)), let θ : R→ R+ be a smooth cut-off function such that

θ(t) =

{
1, t ∈ I4−1r(F1)

0, t /∈ I4−2r(F1),
(4.6)

and
‖θ(n)‖∞ .n r−n for all n ∈ N. (4.7)

Remark 4.2. When F1 = ∅, we take θ = 1, so there is no cutoff in time. This will ensure that if F0 = F1 = ∅
and the solution v0 is stationary, then the velocity perturbation w is also stationary.

4.4. Leray projection and fast periodization operator. To define the velocity perturbation, we recall the defi-
nition of Leray projection.

Definition 4.3 (Leray projection). Let v ∈ C∞(T3,R3) be a smooth vector field. Define the operator Q as

Qv := ∇f +

 
T3

v,

where f ∈ C∞(T3) is the smooth zero-mean solution of

∆f = div v, x ∈ T3.

Furthermore, let P = Id−Q be the Leray projection onto divergence-free vector fields with zero mean.
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To avoid potential abuse of notation, we will utilize the following fast periodization operator Pσ for functions
whose support sets are contained in [0, 1]3. We will apply Pσ to the viscous eddies so that they oscillate at a
frequency much higher than that of the solution (v0, R0).

Definition 4.4 (Fast periodization operator Pσ). Let σ ∈ N. Suppose f ∈ C∞c (R3) and supp f ⊂ [0, 1]3, define
the fast periodization operator Pσ by

Pσf(x) =
∑
m∈Z3

f(σx+m). (4.8)

By definition Pσf is σ−1T3-periodic, and for any differentiation∇n, we have

∇nPσf = σnPσ∇nf (4.9)

which will be used without mentioning in the future.

4.5. Definitions of the perturbation. With all the preparations in hand, we can define the velocity perturbation
w.

We first apply Lemma 3.1 for B = {R ∈ S3×3
+ : | Id−R| ≤ 1/2} to obtain smooth functions Γk : B → R for

k ∈ Z3, |k| ≤ λ0. Then the coefficients for the viscous eddies are defined by

ak(x, t) = ρ
1/2(x, t)Γk

(
Id−R0

ρ

)
for k ∈ Z3, |k| ≤ λ0. (4.10)

In view of Theorem 3.13, define vector fields

w(p) = θ
∑
k

akPσWk = w(p)
z + w(p)

r , (4.11)

where
w(p)
z = θ

∑
k

akPσ(Wz)γ , and w(p)
r = θ

∑
k

akPσ(Wr)γ ,

and

w(l) = −θ2σ−1
∑
k

a2
kPσVk. (4.12)

Also define a divergence-free correction term

w(c) = −Qw(p) −Qw(l). (4.13)

Finally, the velocity increment w is defined by

w = θ
∑
k

akPσWk − θ2σ−1
∑
k

a2
kPσVk + w(c). (4.14)

which also reads

w = w(p) + w(l) + w(c). (4.15)

Thanks to Lemma 3.8, Pσ may be applied and w is well-defined. It is clear that w is periodic due to the
periodicity of coefficients ak and the periodization operator Pσ . By design w is divergence-free. Also since the
operator P removes the mean, w has zero mean as well.

Next, we show the smoothness ofw, for which it suffices to show the following simple result for the coefficients
ak.

Lemma 4.5 (Properties of coefficients ak). The coefficients ak defined by (4.10) are smooth on T3× [0, T ]. There
exist a number κ = κ(e1, v0, R0) ≥ r−1 such that

max
k
‖ak‖Cmt,x ≤ κ

m+1, for any integer 0 ≤ m ≤ 4M ;

the following bounds hold
‖ρ(t)‖L1 . ρ0(t),

‖ak(t)‖L2 . ρ0(t)
1/2;

(4.16)

and we have the identity ∑
k

a2
k

 
T3

Pσ (Wk ⊗Wz) = ρ Id−R0. (4.17)
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Proof. Recall that

ak = 2ρ
1/2
0 χ(ρ−1

0 R0)Γk

(
Id−R0

ρ

)
. (4.18)

To show that ak has bounded space-time Hölder norms of order 4M , it suffices to check that each factor above is
smooth as the domain T3 × [0, T ] is compact. Since

ρ
1/2
0 =

1

2
√

3
(ẽ1 − ‖v0(t)‖22)

1/2,

which is bounded from below by (4.4), the function ρ
1/2
0 is smooth on [0, T ]. By the same argument and the

definition of χ in (4.2), we may also conclude that χ(ρ−1
0 R0) ∈ C∞x,t(T3 × [0, T ]). Since Γk ∈ C∞(B), the last

term in (4.18) is also in C∞t,x.
Next, let us prove (4.16). Since 0 ≤ θ ≤ 1, by definition of ρ in (4.5), we have

‖ρ(t)‖L1 ≤
ˆ
|R0|≤ρ0

ρ(x, t)dx+

ˆ
|R0|≥ρ0

ρ(x, t)dx

. ρ0

( ˆ
|R0|≤ρ0

1dx+

ˆ
|R0|≥ρ0

|R0|dx
)
. ρ0,

where we have used ‖R0‖L∞t L1 = δ0 . ρ0 due to (4.4).
For the second bound in (4.16), we can directly compute to obtain:

‖ak(t)‖22 . ρ0θ
2

ˆ
T3

χ2(ρ−1
0 R0)dx . ρ0θ

2.

To show the last identity, thanks to Lemma 3.1, it suffices to show 
T3

Pσ (Wk ⊗Wz) =
k

|k|
⊗ k

|k|
.

Since

Wr ⊗Wz =
∂ηk
∂zk

φkηkψk er ⊗ ez.

where profile function ∂ηk
∂zk

φkηkψk is axisymmetric, we have 
T3

Pσ (Wr ⊗Wz) = 0.

Then by Definitions 4.4 and 3.3, 
T3

Pσ (Wk ⊗Wz) =

 
T3

Pσ (Wz ⊗Wz) =

ˆ
R3

Wz ⊗Wz

=

ˆ
R3

|ηkψk|2ez ⊗ ez

=
k

|k|
⊗ k

|k|
.

Hence, the identity (4.17) follows from (4.10) and Lemma 3.1. �

4.6. Estimates for the perturbations. This subsection is devoted to various estimates for the perturbation w.
We start with decomposing the corrector w(c) using standard vector calculus. Here the inverse Laplacian ∆−1 on
torus T3 is defined via a multiplier with symbol −|k|−2 for k 6= 0 and 0 for k = 0.

Lemma 4.6 (Structure of the corrector). The corrector w(c) verifies

w(c) = w(cp) + w(cl)

where w(cp) and w(cl) are respectively

w(cp) = θ
∑
k

∇∆−1
(
∇ak ·PσWk

)
−
 
T3

w(p),

and

w(cl) = θ2σ−1Q
(∑

k

a2
kPσVk

)
.

Proof. Noticing that divWk = 0, these formulae immediately follow from Definition 4.3. �
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We recall the following improved Hölder’s inequality for functions with fast oscillation proven in [Luo19],
which is crucial in obtaining the L2 decay of the perturbation w. For convenience we include a proof in Appendix
D.

Proposition 4.7. For any small θ > 0 and any large N > 0 there exist M ∈ N and λ0 ∈ N so that for any µ > 0,
σ ∈ N satisfying λ0 ≤ σ and µ ≤ σ1−θ the following holds. Suppose a ∈ C∞(T3) and let Ca > 0 be such that

‖∇ia‖∞ ≤ Caµi for any 0 ≤ i ≤M.

Then for any σ−1T3 periodic function f ∈ Lp(T3), 1 < p <∞, the following estimates are satisfied.
• If p ≥ 2 is even, then

‖af‖p .p,θ,N ‖a‖p‖f‖p + Ca‖f‖pσ−N . (4.19)

• If
ffl
Td f = 0 then for 0 ≤ s ≤ 1∥∥|∇|−1(af)

∥∥
p
.p,s,θ,N σ−1+s

∥∥|∇|−s(af)
∥∥
p

+ Ca‖f‖pσ−N . (4.20)

All the implicit constants appeared in the statement are independent of a, µ and σ.

Remark 4.8. Throughout the paper, we will always apply Proposition 4.7 for θ = 1
2 and N = 300. These two

fixed constants determine the constant M .

With the help of Proposition 4.7, we are in the position to derive useful estimates for the velocity perturbation
w.

Proposition 4.9 (Spacial frequency estimates). For any λ sufficiently large and integer 0 ≤ m ≤M the following
estimates hold:

λ−m‖∇mw(p)(t)‖p . ρ
1/2
0 (t)

[
µ1−2/pτ

1/2−1/p
]
, 1 ≤ p ≤ 2, (4.21)

λ−m‖∇mw(p)
r (t)‖p . ρ

1/2
0 (t)τµ2γ−1

[
µ1−2/pτ

1/2−1/p
]
, 1 ≤ p ≤ 2, (4.22)

λ−m‖∇mw(l)(t)‖p .p τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]
, 1 < p ≤ 2, (4.23)

λ−m‖∇mw(c)(t)‖p . σ−1
[
µ1−2/pτ

1/2−1/p
]
, 1 ≤ p ≤ 2. (4.24)

Proof. Bounds for w(p):
Since by Lemma 3.8 ∣∣T3 ∩ suppPσWk

∣∣ . τ−1µ−2, (4.25)

it suffices to show (4.21) for p = 2.
By product rule, ∣∣∇mw(p)

∣∣ .m∑
k

∑
0≤i≤m

σm−i
∣∣∇iak∣∣∣∣∇m−iPσWk

∣∣. (4.26)

As PσWk is σ−1T3-periodic and, thanks to Lemma 4.5,

‖∇iak‖Cmx ≤ ‖ak‖Cm+i
x
≤ κi+1+m for all 0 ≤ m ≤M.

Since for large enough λ we have κ2 < σ ∈ N, we can apply Proposition 4.7 with θ = 1
2 , N = 300, and

Ca = κi+1 (cf. Definition 4.1) to obtain that∥∥|∇iak||Pσ∇m−iWk|
∥∥

2
. ‖∇iak‖2‖Pσ∇m−iWk‖2 + κi+1‖Pσ∇m−iWk‖2σ−N . (4.27)

Let us consider two sub-cases: m = 0 and m ≥ 1. When m = 0, it follows that

‖akPσWk‖2 . ρ
1/2
0 + κσ−N .

As σ−N = λ−10 and ρ0 & e1 − e0 > 0, we can make sure for any sufficiently large λ(e0, e1, κ) that

‖akPσWk‖2 . ρ
1/2
0 ,

from which we immediately get
‖w(p)(t)‖2 . ρ

1/2
0 .

When m ≥ 1, we consider the split:∑
0≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
≤ σm‖akPσ∇mWk‖2 +

∑
1≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
. (4.28)
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We will bound these two terms separately. For the first term in (4.28), we use (4.27), Lemma 4.5, and Proposi-
tion 3.14 to obtain

σm‖akPσ∇mWk‖2 . σm
(
ρ

1/2
0 ‖Pσ∇mWk‖2 + σ−Nκ‖Pσ∇mWk‖2

)
. σmµm(1+γ)

(
ρ

1/2
0 + σ−Nκ

)
.

Since σ−N = λ−10, σµ1+γ = λ, and ρ0 & e1 − e0, for λ sufficiently large we get

σm‖akPσ∇mWk‖2 . ρ
1/2
0 λm. (4.29)

For the second term in (4.28), we simply use Hölder’s inequality, Lemma 4.5, and Proposition 3.14 to obtain∑
1≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
≤

∑
1≤i≤m

σm−i‖∇iak‖L∞x,t‖Pσ∇
m−iWk‖2

.
∑

1≤i≤m

σm−iκi+1µ(m−i)(1+γ) . κ2σm−1µ(m−1)(1+γ),

where we have also used κ� µ in the last inequality. Then again, for λ sufficiently large, we get∑
1≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
. ρ

1/2
0 λm. (4.30)

So for λ(ρ0, κ, e1, e0) sufficiently large, putting together (4.29) and (4.30), we can bound (4.28) as∑
0≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
. ρ

1/2
0 λm,

which implies that

‖∇mw(p)(t)‖2 . ρ
1/2
0 λm, for any 1 ≤ m ≤M .

Since for any integer 0 ≤ m ≤ M the desire estimate holds for p = 2, by Hölder’s inequality and (4.25), for
1 ≤ p ≤ 2 we have

λ−m‖∇mw(p)(t)‖p . ρ
1/2
0 µ1−2/pτ

1/2−1/p.

Bounds for w(p)
r :

In light of estimate (3.25), the above argument also gives the desired bound for w(p)
r . In particular, for m = 0,

thanks to Proposition 4.7 we have

‖akPσ(Wr)σ‖2 . ‖∇iak‖2‖Pσ(Wr)σ‖2 + κ‖Pσ(Wr)σ‖2σ−N

. (ρ
1/2
0 + κσ−N )τµ2γ−1

. ρ
1/2
0 τµ2γ−1.

Bounds for w(l):
Without loss of generality, we prove this bound for m = 0 as well, since general cases for 0 ≤ m ≤M follow

from applying an additional product rule, which can be seen in the estimates for w(p).
Recall the definition (4.12) that

w(l) = −σ−1θ2
∑
k

a2
kPσVk.

By Hölder’s inequality, Lemma 4.5, and Proposition 3.14, we have

‖w(l)‖p . σ−1
∑
k

‖a2
k‖L∞t,x‖PσVk‖p

. κ2σ−1τµ−2τ1−1/pµ2−2/p.

Therefore, for sufficiently large λ(κ), we can use σ−1 to absorb the factor with κ to obtain

‖w(l)‖p . τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]
. (4.31)

Bounds for w(c):
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Again, we only prove the bound for m = 0.Thanks to Lemma 4.6, we need to estimate ‖w(cp)‖p and ‖w(cl)‖p.
It suffices to estimate the following term:∥∥∥∑

k

∇∆−1
(
∇ak ·PσWk

)∥∥∥
p

=
∥∥∥∑

k

R|∇|−1
(
∇ak ·PσWk

)∥∥∥
p

.
∥∥∥∑

k

|∇|−1
(
∇ak ·PσWk

)∥∥∥
p
,

where R is the Riesz transform. R and |∇|−1 are defined via multipliers with symbols −i k|k| and |k|−1 respec-
tively for k 6= 0, and zero for k = 0. Recall that PσWk is σ−1T3-periodic and of zero mean. Moreover, due to
Lemma 4.5,

‖∇ak‖Cmx ≤ ‖ak‖Cm+1
x
≤ κm+2 for all 0 ≤ m ≤M.

Once again we can apply Proposition 4.7 with Ca = κ2 to obtain the bound∥∥∥|∇|−1
(
∇ak ·PσWk

)∥∥∥
p
. σ−1

∥∥∥(∇ak ·PσWk

)∥∥∥
p

+ κ2
∥∥∥(PσWk

)∥∥∥
p
σ−N

.
(
σ−1‖∇ak‖∞ + κ2σ−N

)
‖PσW‖p

. (σ−1κ2 + κ2σ−300)µ1−2/pτ
1/2−1/p

. σ−1κ2
[
µ1−2/pτ

1/2−1/p
]
.

Finally, since ∣∣∣∣ 
T3

|w(p)|
∣∣∣∣ . ρ1/2

0 λ−
17/15,

we have
‖w(cp)‖p . σ−1

[
µ1−2/pτ

1/2−1/p
]
,

provided λ(κ, e1) is large enough.
To estimate the term w(cl), let us introduce pε = p+ ε, for ε ≥ 0, such that 1 < pε ≤ 2 and

τ
3/2µ−1

[
µ1−2/pετ

1/2−1/pε
]
≤ σ−1

[
µ1−2/pτ

1/2−1/p
]
.

Note that the operator Q is bounded on Lpε(T3), and hence we have

‖w(cl)‖p ≤ ‖w(cl)‖pε . ‖w(l)‖p . τ
3/2µ−1

[
µ1−2/pετ

1/2−1/pε
]
≤ σ−1

[
µ1−2/pτ

1/2−1/p
]
, (4.32)

due to the choice of constants (4.1).
�

Using the choice of constants (4.1) and the established bounds (4.21), (4.24), and (4.23), we get the next useful
corollary.

Corollary 4.10 (Estimates with explicit exponents). For any λ sufficiently large we have

‖w(p)‖p + λ−1‖∇w(p)‖p . ρ
1/2
0 λ

17
15 (1− 2

p ), 1 ≤ p ≤ 2

‖w(p)
r ‖p + λ−1‖∇w(p)

r ‖p . ρ
1/2
0 λ−

7
15λ

17
15 (1− 2

p ), 1 ≤ p ≤ 2

‖w(l)‖p + λ−1‖∇w(l)‖p .p λ−
1
3λ

17
15 (1− 2

p ), 1 < p ≤ 2,

‖w(c)‖p + λ−1‖∇w(c)‖p . λ−
1
30λ

17
15 (1− 2

p ), 1 ≤ p ≤ 2,

and consequently

‖w‖p + λ−1‖∇w‖p . ρ
1/2
0 λ

17
15 (1− 2

p ), 1 ≤ p ≤ 2. (4.33)

In particular, given any ε > 0, for λ sufficiently large,

‖w‖L∞t W 1,1
x
≤ ε. (4.34)

The last estimate concerns the time derivative of the perturbation w. Since the velocity profiles in Wk and Vk
are stationary, time derivative only falls on the slow variables ak and θ.

Proposition 4.11 (Temporal frequency estimates). For any λ sufficiently large, 1 ≤ p ≤ 2, and integer 0 ≤ m ≤
M , the following estimate holds:

κ−m−1‖∂mt w‖L∞t Lpx . µ
1−2/pτ

1/2−1/p. (4.35)

Moreover, if (v0, R0) is stationary and F0 = F1 = ∅, then v = v0 + w is also stationary.
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Proof. The last statement follows from (4.6) and the definition of ak, namely (4.10). Let us show (4.35). In view
of Lemma 4.5, it suffices to prove the bound for m = 1. Thanks to Lemma 4.6, we can use the decomposition

∂tw = ∂tw
(p) + ∂tw

(cp) + ∂tw
(cl) + ∂tPw(l).

We first bound the term ∂tw
(p). By its definition, Lemma 4.5, Hölder’s inequality and Proposition 3.14 we

have that ∥∥∂tw(p)
∥∥
p
.
∑
k

∥∥θak∥∥C1
t,x

∥∥PσWk

∥∥
p

. κ2
[
µ1−2/pτ

1/2−1/p
]
,

which is exactly the bound that we need.
Next, we show the same estimate holds for the term ∂tPw(l). As done in the proof of Proposition 4.9, let

pε = p+ ε with ε ≥ 0 chosen small enough such that 1 < pε ≤ 2 and

µ1−2/pετ
1/2−1/pε ≤ µ1−2/pτ

1/2−1/pσ
1/2,

which is possible thanks to (4.1). Then, using the Lpε boundedness of the Leray projection, Hölder’s inequality,
Proposition 3.14 and the above choice of pε, for any 1 ≤ p ≤ 2 it follows that∥∥∂tPw(l)

∥∥
p
≤
∥∥P∂tw(l)

∥∥
pε
.
∥∥∂tw(l)

∥∥
pε
. σ−1

∑
k

∥∥θ2a2
k

∥∥
C1
t,x

∥∥PσVk∥∥pε
. κ3σ−1τ

3/2µ−1µ1−2/pετ
1/2−1/pε . κ3σ−

1/2τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]
.

Due to our choice of constants, (4.1), for any sufficiently large λ(κ) we have κ3σ−1/2τ 3/2µ−1 ≤ κ2 and hence∥∥∂tPw(l)
∥∥
p
. κ2

[
µ1−2/pτ

1/2−1/p
]
.

Finally, it remains to bound the terms ∂tw(cp) and ∂tw(cl). As in the proof of Proposition 4.9, we have the
following estimates:∥∥∥∑

k

∂t(θak)∇∆−1
(
∇ak ·PσWk

)∥∥∥
p
.
∥∥θak∥∥C1

t,x

∥∥∥∇∆−1
(
∇ak ·PσWk

)∥∥∥
p

. κ2σ−1
[
µ1−2/pτ

1/2−1/p
]

. κ2
[
µ1−2/pτ

1/2−1/p
]
,

which is the desired bound. �

5. PROOF OF ITERATION LEMMA: NEW REYNOLDS STRESS

In this section, we construct a new Reynolds stress R such that (2.2) holds. The majority of this section
is devoted to obtaining bounds on the new Reynolds stress R using the established estimates for the velocity
perturbations in Section 4. We split R into four parts and then estimate them separately.

To do this, one needs to obtain a symmetric traceless matrix R as the new stress term. Since the underde-
termined system (gNSR) only provides an implicit definition of R, i.e. its divergence, the divergence has to be
“inverted”. This is a standard technique in elliptic PDEs. Here, we follow the one used in [BLJV18].

Definition 5.1 (Inverse divergence). Let f ∈ C∞(T3) be a smooth vector field. The inverse divergence operator
R : C∞(T3,R3)→ R3×3 is defined by

(Rf)ij = Rijkfk,

Rijk = −1

2
∆−2∂i∂j∂k −

1

2
∆−1∂kδij + ∆−1∂iδjk + ∆−1∂jδik.

(5.1)

Remark 5.2. We note that in the definition, the inverse Laplacian ∆−1 is defined on T3 and gives functions with
zero mean. SoRf is always well-defined and mean free.

With the above definition, a simple exercise leads to the following.

Lemma 5.3. The operatorR defined by (5.1) has the following properties. For any vector field f ∈ C∞(T3) the
matrixRf is symmetric trace-free, and

divRf = f. (5.2)
If additionally div f = 0, then

R∆f = ∇f + (∇f)T . (5.3)

With this inverse divergence operator, we are ready to give the definition of the new Reynolds stress.
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Definition 5.4 (New Reynolds stress R). Define the new Reynolds stress by

R =R
(
∂tw + Law + div(w ⊗ v0 + v0 ⊗ w) + div(θ2R0 + w ⊗ w)−∇p1

)
+ (1− θ2)R0 (5.4)

where the pressure term p1 = θ2ρ and ρ is defined in (4.5).

It is immediate that the new Reynold stress R verifies the following equation thanks to Lemma 5.3

divR =∂tw + Law + div(w ⊗ v0 + v0 ⊗ w) + divR0 + div(w ⊗ w)−∇p1.

Consequently, since (v0, R0) is a solution of (gNSR), there exists a uniquely determined zero-mean pressure P
such that the new solution v = v0 + w verifies

∂tv + Lav + div(v ⊗ v) +∇P = divR.

In view of w = w(p) + w(l) + w(c), the new Reynolds stress can be rewritten as

R = Rlin +Rcor +Rosc +Rrem, (5.5)

where the linear part Rlin, the correction part Rcor, oscillation part Rosc and the reminder part Rrem are respec-
tively defined by

Rlin = R
(
∂tw + Law −∆w(l) + div(w ⊗ v0 + v0 ⊗ w)

)
,

Rcor = R
(

div
(
(w(c) + w(l))⊗ w + w(p) ⊗ (w(c) + w(l))

))
,

Rosc = R
(

div(θ2R0 + w(p) ⊗ w(p)) + ∆w(l) −∇p1

)
,

Rrem = (1− θ2)R0.

In the remainder of this section, we will estimate R via the decomposition ‖R‖1 ≤ ‖Rlin‖1 + ‖Rcor‖1 +
‖Rosc‖1 + ‖Rrem‖1 and show the following.

Lemma 5.5 (Estimates for R). The new Reynolds stress R obeys the estimates:

‖R(t)‖1 ≤


ε for t ∈ I4−1r(F1)

δ0 + ε for t ∈ I4−2r(F1) \ I4−1r(F1)

δ0 for t ∈ [0, T ] \ I4−2r(F1).

(5.6)

Since suppt w ⊂ I4−2r(F1), it is sufficient to show that∥∥Rlin

∥∥
L∞t L

1
x

+
∥∥Rcor

∥∥
L∞t L

1
x

+ ‖Rosc‖L∞t L1
x
≤ ε.

We first estimate the linear part. For this term, the smallness of the intermittency plays a key role.

Lemma 5.6 (Linear error). For any λ sufficiently large,∥∥Rlin

∥∥
L∞t L

1
x
≤ ε

4
. (5.7)

Proof. Considering the fact that

‖R‖Lp(T3)→Lp(T3) . 1 for any 1 < p <∞ (5.8)

due to the Hardy-Littlewood-Sobolev inequality, and that

‖Rdiv ·‖Lp(T3)→Lp(T3) . 1 for any 1 < p <∞ (5.9)

due to the boundedness of the Riesz transform, throughout the proof we fix p > 1 close to 1 such that

µ1−2/pτ
1/2−1/p = λ

17
15 (1−2/p) ≤ λ−16/15. (5.10)

Split the linear errorRlin = Rt+Rd, where the first partRt is the error caused by time derivativeRt = R∂tw,
and the second part Rd consists of the dissipative and drifts errors

Rd = R∆(w(p) + w(c)) +R div
(
w ⊗ (a+ v0)

)
+Rdiv

(
(a+ v0)⊗ w

)
.

For the liner error caused by time derivative, by (5.8) and Proposition 4.11 we have∥∥Rt∥∥1
≤
∥∥R∂tw∥∥p . ∥∥∂tw∥∥p . κ2µ1−2/pτ

1/2−1/p ≤ κ2λ−
16
15 . (5.11)

We turn to estimate the liner error caused by drifts and the Laplacian. So using Lemma 5.3, (5.9) and Hölder’s
inequality we get∥∥Rd∥∥1

≤ ‖R∆(w(p) + w(c))‖1 +
∥∥R div

(
w ⊗ (a+ v0)

)∥∥
p

+
∥∥Rdiv

(
(a+ v0)⊗ w

)∥∥
p

. ‖∇(w(p) + w(c))‖1 + ‖w‖p
[
‖a‖∞ + ‖v0‖∞

]
. (5.12)
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By Corollary 4.10 and using (5.10) we have

‖∇(w(p) + w(c))‖1 .
[
ρ

1/2
0 + λ−

1/3
]
λ−

2/15

‖w‖p . ρ
1/2
0 λ−

16/15.

It follows from the above and (5.12) that∥∥Rd∥∥1
. ρ

1/2
0 λ−

2/15 + ρ
1/2
0 λ−

16/15
(
‖a‖∞ + ‖v0‖∞

)
. (5.13)

Combining (5.11) and (5.13), for any sufficiently large λ(a, ε, e1, κ, v0) it holds∥∥Rlin

∥∥
1
≤
∥∥Rt∥∥1

+
∥∥Rd∥∥1

≤ ε

4
. (5.14)

�

Next, we turn to estimating the correction part of the new Reynolds stress R. This part is essentially caused by
w(c) and w(l) which are both much smaller than w(p).

Lemma 5.7 (Correction error). For any λ sufficiently large,∥∥Rcor

∥∥
L∞t L

1
x
≤ ε

8
. (5.15)

Proof. In view of Corollary 4.10, fix a p > 1 close to 1 such that

‖w(c)‖ 2p
p−2
. λ−

1
30 ,

‖w(l)‖ 2p
p−2
. λ−

1
30 .

By the Lp boundedness ofRdiv and Hölder’s inequality, we have

‖Rcor‖1 . ‖Rcor‖p .p ‖
(
(w(c) + w(l))⊗ w‖p + ‖w(p) ⊗ (w(c) + w(l))‖p (5.16)

.
(
‖w(c)‖ 2p

p−2
+ ‖w(l)‖ 2p

p−2

)
‖w‖2 (5.17)

. λ−
1
30

(
ρ

1/2
0 + λ−

1
3 + λ−

1
30

)
. (5.18)

Due to the negative exponent in λ on the right hand side, for any sufficiently large λ(ε, e0, e1, κ) we have

‖Rcor‖1 ≤
ε

8
.

�

Finally, we turn to estimating the oscillation error Rosc, where we will utilize the fact that viscous eddies are
approximate stationary solutions of the NSE.

Lemma 5.8 (Decomposition of Rosc). The oscillation error Rosc can be decomposed into two parts:

Rosc = Rhigh +Rlow +Rerr, (5.19)

where Rhigh is the high frequency part

Rhigh = θ2R
∑
k

∇(ak)2P6=0Pσ
(
Wk ⊗Wz

)
, (5.20)

Rlow consists of lower order terms

Rlow =σθ2R
∑
k

a2
kPσ

(
div(Wk ⊗Wz)−∆Vk

)
− σ−1θ2R

∑
k

[
∆a2

kPσVk + 2∇a2
k ·Pσ∇Vk

]
,

(5.21)

and Rerr is the symmetry breaking error

Rerr = θ2R div
∑
k

a2
k

(
Pσ
(
Wk ⊗Wk

)
−Pσ

(
Wk ⊗Wz

))
.
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Proof. Since Wk has disjoint support in space, we have

w(p) ⊗ w(p) = θ2
∑
k

(ak)2Pσ
(
Wk ⊗Wk

)
,

which in view of Lemma 4.5 gives

w(p) ⊗ w(p) − θ2
∑
k

a2
k

(
Pσ
(
Wk ⊗Wk

)
−Pσ

(
Wk ⊗Wz

))
= Rerr + θ2(t)

∑
k

a2
k

 
T3

Pσ
(
Wk ⊗Wz

)
+ θ2

∑
k

a2
k

(
Pσ
(
Wk ⊗Wz

)
−
 
T3

Pσ
(
Wk ⊗Wz

))
= θ2ρ Id−θ2R0 + θ2

∑
k

(ak)2P6=0Pσ

(
Wk ⊗Wz

)
. (5.22)

Upon taking the divergence on both sides of (5.22) we have for the oscillation error

Rosc = Rerr +R
(

div θ2R0 + div(w(p) ⊗ w(p))−∇p1 + ∆w(l)
)

= Rerr +R
(
θ2 div

∑
k

(ak)2P 6=0Pσ
(
Wk ⊗Wz

)
+ ∆w(l)

)
.

By the product rule we may obtain

Rosc = Rerr +Rhigh +R
(
σθ2

∑
k

a2
kPσ div

(
Wk ⊗Wz

)
+ ∆w(l)

)
. (5.23)

It remains to compute the second term in (5.23). Using the definition of w(l), a routine computation gives

∆w(l) = −σθ2
∑
k

a2
kPσ∆Vk − θ2

∑
k

[
σ−1∆a2

kPσVk + 2∇a2
kPσ∇Vk

]
,

which implies exactly

R
(
σθ2

∑
k

a2
kPσ div

(
Wk ⊗Wz

)
+ ∆w(l)

)
= Rlow.

Hence the oscillation error verifies the identity Rosc = Rhigh +Rlow +Rerr.
�

Remark 5.9. The term Rhigh is typical in convex integration, where the derivative falls on “slow variable” ak
and the term P6=0Pσ

(
Wk ⊗Wk

)
has fast oscillation and zero mean. The presence of Rlow and Rerr is one the

fundamental differences between our scheme and previous ones.

We are ready to estimate the oscillation error. The termRhigh will be able to gain a factor of σ−1 via the inverse
divergenceR, while the term Rlow is already quite small thanks to the inverse Laplacian. In other words, Rhigh is
of high frequency, while Rlow is not of high frequency but instead lower order.

Lemma 5.10 (Oscillation error: Rhigh). For any λ sufficiently large,∥∥Rhigh

∥∥
L∞t L

1
x
≤ ε

4
. (5.24)

Proof. Throughout the proof, let us fix two parameters 0 < α < 1 and 1 < p < 2, such that the Sobolev
embedding Wα,1(T3) ↪→ Lp(T3) holds.

It follows from the Lp boundedness of the Riezs transform that

‖Rhigh‖L1(T3) ≤ ‖Rhigh‖Lp(T3) .
∑
k

∥∥∥|∇|−1
(
∇(a2

k)P 6=0Pσ
(
Wk ⊗Wz

))∥∥∥
p
. (5.25)

Obviously P 6=0Pσ
(
Wk ⊗Wz

)
is σ−1T3-periodic and has zero mean, and by Lemma 4.5∥∥∇a2
k

∥∥
Cmx
≤
∥∥a2

k

∥∥
Cm+1
x
≤ κm+3 for all 0 ≤ m ≤M.

Thus we may apply Proposition 4.7 with Ca = κ3 to obtain that∥∥∥|∇|−1
(
∇(a2

k)P 6=0Pσ
(
Wk ⊗Wz

))∥∥∥
p
.σ−1+α

∥∥∥|∇|−α(∇(ak)2P 6=0Pσ
(
Wk ⊗Wz

))∥∥∥
p

+ κ3σ−N
∥∥Pσ(Wk ⊗Wz

)∥∥
p
.

(5.26)
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The first term in (5.26) can be estimated by the Sobolev embedding Wα,1(T3) ↪→ Lp(T3), and Lemma 4.5 as
follows:

σ−1+α
∥∥∥|∇|−α(∇(ak)2P6=0Pσ

(
Wk ⊗Wz

))∥∥∥
p
. σ−1+α

∥∥a2
k

∥∥
C1
t,x

∥∥Pσ(Wk ⊗Wz)
∥∥

1

. σ−1+ακ4
∥∥Pσ((Wz +Wr)⊗Wz

)∥∥
1
.

(5.27)

Now recall that Wr /∈ L2 due to the 1/r singularity on the Ωk-plane, but Wr ∈ Lp since 1 ≤ p < 2 (see (3.24)).
Hence, Hölder’s inequality, (3.23), and (3.24) imply∥∥Pσ((Wz +Wr)⊗Wz

)∥∥
1
.
(
‖Wz‖Lp(R3) + ‖Wr‖Lp(R3)

)
‖Wz‖L1−1/p(R3)

.p
(
µ1−2/pτ

1/2−1/p + µ−
2/pτ

3/2−1/p
)
µ−1+2/pτ−

1/2+1/p

= µ0τ0 + µ−1τ1

. 1.

(5.28)

The second term in (5.26) can be handled easily using Proposition 3.14 and N = 300,

κ3σ−N
∥∥Pσ(Wk ⊗Wz

)∥∥
p
. κ3λ−10

(
‖Wz‖Lp(R3) + ‖Wr‖Lp(R3)

)
‖Wz‖L∞(R3) . κ

3λ−1. (5.29)

Collecting (5.25), (5.26), (5.27), (5.28), and (5.29) we arrive at∥∥Rhigh

∥∥
1
. (κ3 + κ4)σ−1+α.

As 0 < α < 1, for all λ(ε, κ) sufficiently large we can conclude that∥∥Rhigh

∥∥
L∞t L

1
x
≤ ε

8
.

�

Lemma 5.11 (Oscillation error: Rlow). For any λ sufficiently large∥∥Rlow

∥∥
L∞t L

1
x
≤ ε

8
. (5.30)

Proof. Let us fix p > 1 such that
στ2µ−1

(
τ1−1/pµ2−2/p

)
≤ λ− 1

30 . (5.31)

So by the boundedness ofR on Lp and Hölder’s inequality, we have∥∥Rlow

∥∥
L1(T3)

≤
∥∥Rlow

∥∥
Lp(T3)

.
∑
k

σ
∥∥a2

k

∥∥
L∞t,x

∥∥∥Pσ( div(Wk ⊗Wz)−∆Vk
)∥∥∥
p

+ σ−1
∥∥a2

k

∥∥
C2
t,x

∥∥PσVk∥∥p + σ−1
∥∥a2

k

∥∥
C1
t,x

∥∥Pσ∇Vk∥∥p
Thanks to Proposition 3.11,∥∥∥Pσ(div(Wk ⊗Wz)−∆Vk

)∥∥∥
p
. τ2µ−1

(
τ1−1/pµ2−2/p

)
.

Combining this with the estimates in Proposition 3.14 and Lemma 4.5, it follows that∥∥Rlow

∥∥
1
.
(
κ2στ2µ−1 + κ4σ−1τµ−2 + κ3σ−1τµγ−1

)(
τ1−1/pµ2−2/p

)
.
(
κ2 + κ3 + κ4

)
στ2µ−1

(
τ1−1/pµ2−2/p

)
,

(5.32)

where we used µγ = σ ≤ σ2τ for the third term.
Using (5.31) and taking λ(κ, ε) sufficiently large, the desired bound follows:∥∥Rlow

∥∥
1
≤ ε

8
.

�

Lemma 5.12 (Symmetry breaking error: Rerr).∥∥Rerr

∥∥
L∞t L

1
x
≤ ε

8
.

Proof. We fix 1 < p < 2 so that µ−γµ2−2/pτ1−1/p ≤ µ−γ/2. Recall thatR div is bounded on Lp. Then∥∥Rerr

∥∥
L1(T3)

≤
∥∥Rerr

∥∥
Lp(T3)

.
∑
k

∥∥a2
k

∥∥
L∞t,x

∥∥∥Pσ(Wk ⊗Wk

)
−Pσ

(
Wk ⊗Wz

)∥∥∥
p
.
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Now using Lemma 4.5 and Proposition 3.9, we obtain∥∥Rerr

∥∥
1
. κ2µ−γµ2−2/pτ1−1/p

. κ2µ−
γ/2

≤ ε

8
,

for λ(ε, κ) large enough. �

Note that Lemma 5.5 is proved, as it follows directly from Lemma 5.6, 5.7, 5.10, 5.11, and 5.12.

6. PROOF OF ITERATION LEMMA: ENERGY LEVEL

In this section, we prove properties related to the energy in the main proposition. To show the correct energy
level of the solution v, let us first show that the energy in the perturbation w is dominated by w(p)

z , which is
anticipated in view of the estimates in Proposition 4.9.

Lemma 6.1. For any λ sufficiently large∣∣‖v(t)‖22 − ‖v0(t)‖22 − ‖w(p)
z (t)‖22

∣∣ ≤ 10−7(e1 − e0) for all t ∈ [0, T ]. (6.1)

Proof. Since w = w
(p)
z + w

(p)
r + w(l) + w(c), we have

‖v(t)‖22 − ‖v0(t)‖22 − ‖w(p)
z (t)‖22 = Eerror

where the error term Eerror is

Eerror = 2〈w, v0〉+ 2〈w(p)
z , w(p)

r + w(c) + w(l)〉+ ‖w(p)
r + w(c) + w(l)‖22.

Fix any 1 < p < 2. By Hölder’s inequality, we have∣∣Eerror
∣∣ . ‖w(t)‖p‖v0(t)‖ p

p−1
+
(
‖w(p)

r ‖2 + ‖w(c)‖2 + ‖w(l)‖2
)
‖w(p)

z ‖2 + ‖w(p)
r ‖22 + ‖w(c)‖22 + ‖w(l)‖22.

Thanks to Corollary 4.10, for any sufficiently large λ(e1, κ, v0) we have

‖w(c)‖22 + ‖w(l)‖22 . λ−
3
10 ,

‖w(p)
r ‖2 . ρ

1/2
0 λ−

7
15λ

17
15 (1− 2

p ),

‖w(p)
z ‖2 . ‖w(p)‖2 + ‖w(p)

r ‖2 . ρ
1/2
0 ,

‖w‖p . (ρ
1/2
0 + λ−

1
30 )λ

17
15 (1− 2

p ).

Since ρ0(t) . e1, for any sufficiently large λ(e1, e0, κ, v0), we can make sure that∣∣Eerror
∣∣ ≤ 10−7(e1 − e0).

�

Next, we estimate the energy of w(p) more precisely than Proposition 4.9. Note that the choice of ρ0, namely
(4.3), is crucial in the proof. Recall that ẽ1 = e1 − 10−6(e1 − e0).

Lemma 6.2. Suppose that the constantC in the statement of Proposition 2.1 is small enough. For any λ sufficiently
large, the energy of w(p) verifies∣∣‖w(p)

z ‖22 − θ2(ẽ1 − ‖v0‖22)
∣∣ ≤ 10−7(e1 − e0) for all t ∈ [0, T ].

Proof. First, note that as in (3.30) and (3.31),

‖Wz − (Wz)γ‖2 . µ−1−γ‖Wz‖H1 . µ−2−γτ = λ−
1/3.

Hence, thanks to Lemma 4.5,∣∣∣∣∣‖w(p)
z ‖2 −

∥∥∥θak∑
k

PσWz

∥∥∥
2

∣∣∣∣∣ . ∥∥∥θak∑
k

Pσ(Wz − (Wz)γ)
∥∥∥

2
. κλ−1/3,

and consequently ∣∣∣∣∣‖w(p)
z ‖2 −

∥∥∥θak∑
k

PσWz

∥∥∥
2

∣∣∣∣∣ ≤ 10−8(e1 − e0) (6.2)

for λ(e0, e1, κ) large enough. Now recall that 
T3

Pσ
(
Wk ⊗Wz

)
=

 
T3

Pσ
(
Wz ⊗Wz

)
.
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Thus, similarly to (5.22), we obtain

θ2
∑
k

a2
k

 
T3

Pσ
(
Wz ⊗Wz

)
= θ2

∑
k

a2
k

 
T3

Pσ
(
Wz ⊗Wz

)
+
∑
k

a2
k

(
Pσ
(
Wz ⊗Wz

)
−
 
T3

Pσ
(
Wz ⊗Wz

))
= θ2ρ Id−θ2R0 + θ2

∑
k

(ak)2P6=0Pσ

(
Wz ⊗Wz

)
.

Upon taking the trace and integrating in space, it follows that∥∥∥θak∑
k

PσWz

∥∥∥2

2
= 3θ2

ˆ
T3

ρ(x, t) + θ2
∑
k

ˆ
T3

(ak)2P 6=0Pσ Tr
(
Wz ⊗Wz

)
,

Using the definition of ρ0 (4.3), we can consider the split∥∥∥θak∑
k

PσWz

∥∥∥2

2
− θ2(ẽ1 − ‖v0‖22) = Xl +Xh, (6.3)

where Xl is the low frequency error term

Xl = 3θ2

ˆ
T3

ρ(x, t)− θ2(ẽ1 − ‖v0‖22), (6.4)

and Xh is the high frequency error term

Xh = θ2

ˆ
T3

(ak)2P6=0Pσ Tr
(
Wz ⊗Wz

)
. (6.5)

The goal is to show that |Xl| + |Xh| ≤ 10−7(e1 − e0). Let us first estimate the term Xh. Using a standard
integration by parts argument, we have6∣∣Xh

∣∣ .∑
k

‖a2
k‖CMt,x

∥∥|∇|−MP6=0Pσ Tr
(
Wz ⊗Wz

)∥∥
2
, (6.6)

where M is as defined in Definition 4.1. Since P6=0Pσ Tr
(
Wk ⊗Wk

)
is σ−1T-periodic and of zero mean, we

have ∥∥|∇|−MP6=0Pσ Tr
(
Wz ⊗Wz

)∥∥
2
. σ−M+3

∥∥|∇|−3P6=0Pσ Tr
(
Wz ⊗Wz

)∥∥
2

. σ−M+3
∥∥P6=0Pσ Tr

(
Wz ⊗Wz

)∥∥
1

. σ−M+3
∥∥Wz

∥∥2

L2(R3)

. σ−M+3,

where the second inequality follows from the Sobolev embedding H−3(T3) ↪→ L1(T3), and the last inequality
follows from Proposition 3.14. Combining this with (6.6) and using Lemma 4.5, we get∣∣Xh

∣∣ . ‖a2
k‖CMt,xσ

−M+3 . κM+2σ−M+3. (6.7)

Hence for sufficiently large λ(e0, e1, κ), we can ensure that∣∣Xh

∣∣ ≤ 10−8(e1 − e0). (6.8)

On the other hand, for the term Xl using the definitions of ρ and ρ0 (namely (4.5) and (4.3)) we get

Xl = −12θ2ρ0

(
1−

ˆ
χ2(ρ−1

0 R0)

)
First, Let us split the integral

ˆ
χ2(ρ−1

0 R0) =

(ˆ
|R0|≤ρ0

+

ˆ
|R0|≥ρ0

)
χ2(ρ−1

0 R0).

Next, by the above split we have∣∣Xl

∣∣ . ρ0

∣∣∣∣∣1−
ˆ
|R0|≤ρ0

χ2(ρ−1
0 R0)

∣∣∣∣∣+ ρ0

∣∣∣∣∣
ˆ
|R0|≥ρ0

χ2(ρ−1
0 R0)

∣∣∣∣∣ . (6.9)

Since δ0 = ‖R0‖L∞t L1
x
, thanks to the Chebyshev inequality we have∣∣{x ∈ T3 : |R0| ≥ ρ0}

∣∣ ≤ δ0
ρ0
,

6Recall that ‖ak‖Cmt,x ≤ κ
m+1 is only valid for 0 ≤ m ≤ 4M .
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which together with the definition of χ in (4.2) and the fact that |T3| = 1 implies that

∣∣Xl

∣∣ . ρ0

∣∣∣∣∣1−
ˆ
|R0|≤ρ0

1dx

∣∣∣∣∣+ ρ0

ˆ
|R0|≥ρ0

ρ−1
0 |R0|

. ρ0

∣∣∣∣∣
ˆ
|R0|>ρ0

1dx

∣∣∣∣∣+

ˆ
|R0|≥ρ0

|R0|

. δ0.

Note that in the estimates for Xl, all implicit constants are universal. In view of the assumption δ0 ≤ C(e1 − e0)
in the statement of Proposition 2.1, we may choose the constant C small enough such that∣∣Xl

∣∣ ≤ 10−8(e1 − e0). (6.10)

Combining (6.2), (6.8), and (6.10) with (6.3) we obtain∣∣‖w(p)‖22 − θ2(ẽ1 − ‖v0‖22)
∣∣ ≤ 10−7(e1 − e0). (6.11)

�

With the help of Lemma 6.1 and 6.2, we obtain the desire energy level of the new solution v as a corollary.

Corollary 6.3. Suppose that the constant C in the statement of Proposition 2.1 is small enough. For any λ
sufficiently large, the energy of new solution v(t) verifies

sup
t
‖v(t)‖22 ≤ e1,

and ∣∣‖v(t)‖22 − e1

∣∣ ≤ c0
2

(e1 − e0) for all t ∈ I4−1r(F1).

Proof. Both bounds immediately follow from Lemma 6.1, 6.2 and the facts that ẽ1 = e1 − 10−6(e1 − e0) and
θ = 1 on I4−1r(F1). �

APPENDIX A. DEL FORMULAE IN CYLINDRICAL COORDINATES

In this appendix, we collect some useful vector calculus identities concerning the cylindrical coordinates (see
for example [Ach90]).

Let f be a scaler function. The gradient of f

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
er +

∂f

∂z
ez. (A.1)

For vector field A = Arer +Aθeθ +Azez , its divergence

divA =
1

r

∂(rAr)

∂r
+

1

r

∂Aθ
∂θ

+
∂Az
∂z

, (A.2)

and curl

∇×A =
(1

r

∂Az
∂θ
− ∂Aθ

∂z

)
er

+
(∂Ar
∂z
− ∂Az

∂r

)
eθ

+
1

r

(∂(rAr)

∂r
− ∂Ar

∂θ

)
ez.

(A.3)

For two vector field A and B, the material derivative

(A · ∇)B =
(
Ar

∂Br
∂r

+
Aθ
r

∂Br
∂θ

+Az
∂Br
∂z
− AθBθ

r

)
er

+
(
Ar

∂Bθ
∂r

+
Aθ
r

∂Bθ
∂θ

+Az
∂Bθ
∂z

+
AθBr
r

)
eθ

+
(
Ar

∂Bz
∂r

+
Aθ
r

∂Bz
∂θ

+Az
∂Bz
∂z

)
ez.

(A.4)
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APPENDIX B. DECAY ESTIMATES FOR THE POSSION EQUATION

Here we derive some decay estimates for solutions of the planar Poisson equation. Let f ∈ C∞c (R2) be radially
symmetric with zero mean ˆ

R2

f dx = 0. (B.1)

We show that

Lemma B.1. Let h be the solution of
∆h = f on R2, (B.2)

such that |h| → 0 as x→∞. Then h is radially symmetric and h ∈W 1,p(R2) for 1 < p ≤ ∞.

Proof. Since the solution h is given explicitly by the Newton potential

h(x) = − 1

2π

ˆ
R2

ln(|x− y|)f(y) dy, (B.3)

we only need to verify the decay estimates.
The first decay |h| → 0 as x→∞ follows from removing the mean

h(x) = − 1

2π

ˆ
(ln(|x− y|)− ln(x))f(y) dy,

and the Mean Value Theorem.
To show that h ∈W 1,p(R2) for 1 < p ≤ ∞, let us consider the Taylor expansion of ln(|x− y|)

ln(|x− y|) = ln(|x|)− x · y
|x|2

+
∑
|β|=2

Rβ(x, y)yβ , (B.4)

where the remainder is given by

Rβ(x, y) =

ˆ 1

0

(1− t)Dβg(x− ty) dt, (B.5)

with g(x) = ln(|x|) and |∇2g| . 1
|x|2 .

Let us show that h ∈ Lp for 1 < p ≤ ∞. Since f has zero mean and zero first moment due to radial symmetry,
combining (B.4) and (B.3) we have

h(x) = − 1

2π

∑
β=2

ˆ
Rβ(x, y)yβf(y) dy. (B.6)

Then by Minkowski’s inequality, we have

‖h‖Lp(R2) .
∑
β=2

ˆ (ˆ ∣∣∣Rβ(x, y)
∣∣∣pdx) 1

p |f(y)||y|2dy. (B.7)

To estimate Rβ(x, y), we use Minkowski’s inequality once again
ˆ ∣∣∣Rβ(x, y)

∣∣∣pdx . [ˆ 1

0

(ˆ ∣∣∣Dβg(x− ty)
∣∣∣pdx) 1

p

dt

]p
.

Note that from definition, ∣∣∣Dβg(x− ty)
∣∣∣ .β 1

|x− ty|2
(B.8)

and we get ˆ ∣∣∣Rβ(x, y)
∣∣∣pdx .p 1, for 1 < p ≤ ∞,

which implies

‖h‖Lp(R2) <∞, for 1 < p ≤ ∞.

The claim that ∇h ∈ Lp for 1 < p ≤ ∞ is easier since differentiating (B.3) already gives a decay of 1/|x| in the
kernel, and in this case just removing the mean is sufficient. �
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APPENDIX C. ESSENTIAL DISCONTINUITIES BY BUCKMASTER-VICOL SOLUTIONS

In this section, we show that it is possible to use the weak solution constructed in [BV19] to obtained essential
discontinuities of positive measure in the energy profile. First, recall

Theorem C.1 (Theorem 1.2 of [BV19]). There exists β > 0, such that for any nonnegative smooth function
e(t) : [0, T ]→ R+, there exists v ∈ C([0, T ];Hβ(T3)) a weak solution of the Navier-Stokes equations, such that´
T3 |v(x, t)|2dx = e(t) for all t ∈ [0, T ].

Let e(t) be a nonnegative bump function supported on (1/2, 1) such that maxt e(t) = 1. Consider a weak
solution u ∈ C((0, 1];L2(T3)) such that on each interval [2−n−1, 2−n], u(t) is the Buckmaster-Vicol solution
with energy profile e(2nt). As a consequence, we have

lim inf
t→0−

‖u(t)‖22 = 0, lim sup
t→0−

‖u(t)‖22 = 1.

Such an example does not extend to the whole interval [0, 1] as Theorem C.1 on its own does not guarantee
the existence of the weak limit as t → 0+ since there are no other available bounds as opposed to in the proof of
Theorem 1.6 where we used (2.24).

However, we can modify this construction in the following way. Consider a Buckmaster-Vicol solution un(t)
on [1/2, 1] with the energy profile en(t) = 2−2ne(t) and define (on T3)

u(t) =

∞∑
n=0

2nun(2nx, 22nt).

Then u(t) is weakly continuous at t = 0, as the weak limit is zero. And it is a weak solution on [0, 1] with energy
bounded by 1. Moreover,

lim inf
t→0+

‖u(t)‖2 = 0, lim sup
t→0+

‖u(t)‖2 = 1.

Using a similar argument in the proof of Theorem 1.6, one can also use Buckmaster-Vicol solutions to obtain
weak solutions whose discontinuities have positive measure in time. Note that this method does not produce jump
discontinuities nor density of the set of discontinuities since the resulting solution is “intermittent” on the time
interval.

APPENDIX D. PROOF OF PROPOSITION 4.7

We include a proof of Proposition 4.7 . Let us recall the following result on the Hölder norms of composition
of functions. A proof using the multivariable chain rule can be found in [DLS14].

Proposition D.1. Let F : Ω → R be a smooth function with Ω ⊂ Rd. For any smooth function u : Rd → Ω and
any 1 ≤ m ∈ N we have

‖∇m(F ◦ u)‖∞ . ‖∇mu‖∞
∑

1≤i≤m

‖∇iF‖∞‖u‖i−1
∞ (D.1)

where the implicit constant depends on m, d.

Proof of Proposition 4.7. We present a proof in the d-dimensional case. By considering ã := 1
Ca
a it suffices to

prove both of the results for Ca = 1. Notice that since p ≥ 2 is even, the function |a|p, which is a composition of
a : Td → [−1, 1] and xp, is smooth. Therefore, applying Proposition D.1 we see that

‖∇m|a|p‖∞ .p ‖∇ma‖∞ +
∑
i≤m

‖∇a‖i−1
∞

.p µ
m

for any m ∈ N.

We can now introduce the split:

‖af‖pp =

ˆ
Td

(ap − |a|p)(|f |p − |f |p) dx+ ‖a‖pp‖f‖pp,

where · denotes the integral over Td. By Parseval’s theorem, we get7

‖af‖pp ≤
∣∣∣∣ˆ

Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p)dx

∣∣∣∣+ ‖a‖pp‖f‖pp.

7The nonlocal operators |∇|s and |∇|−s are defined respectively by multipliers with symbols |k|s and |k|−s for k 6= 0 and zero for k = 0.
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We need show the first term is very small. By Hölder’s inequality:∣∣∣∣ˆ
Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p)dx

∣∣∣∣ . ∥∥|∇|Map∥∥2

∥∥|∇|−M (|f |p − |f |p)
∥∥

2
. (D.2)

By the L2 boundedness of Riesz transform we can replace the nonlocal |∇|M by∇M to obtain∥∥|∇|Map∥∥
2
.
∥∥∇Map∥∥

2

≤
∥∥∇Map∥∥∞

. µM .

(D.3)

We turn to estimate the second factor in (D.2). Considering the fact that the function (|f |p−|f |p) is zero-mean
and σ−1Td-periodic we have∥∥∥|∇|−M (|f |p − |f |p)

∥∥∥
2
. σ−M+d

∥∥∥|∇|−d(|f |p − |f |p)∥∥∥
2

. σ−M+d
∥∥∥(|f |p − |f |p)

∥∥∥
1

. σ−M+d‖f‖pp,
where the first inequality is a direct consequence of the Littlewood-Paley theory and the second inequality follows
from the Sobolev embedding L1(Td) ↪→ Hd(Td).

Combining this with estimates (D.2) and (D.3) we find that∣∣∣∣ˆ
Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p) dx

∣∣∣∣ . σ−M+dµM‖f‖pp.

By the assumption µ ≤ σ1−θ, there exists a number Mθ,p,N,d ∈ N sufficiently large so that

σ−M+dµM ≤ σ−Np. (D.4)

Then we have ∣∣∣∣ˆ
Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p) dx

∣∣∣∣ . σ−Np‖f‖pp,
which finishes the proof of (4.19) due to the elementary inequality (ap + bp) ≤ (a+ b)p.

To prove (4.20) let us first recall the wavenumber projection. For any λ ∈ R define P≤λ =
∑
q:2q≤λ ∆q and

P≥λ = Id−P≤λ, where ∆q is the Littlewood-Paley projection. Consider the following decomposition:

|∇|−1(af) = |∇|−1+s|∇|−s
(
P≤2−4σa

)
f + |∇|−1+s|∇|−s

(
P≥2−4σa

)
f

:= |∇|−1+sA1 + |∇|−1+sA2

For the term A1, since f is σ−1Td-periodic and zero-mean, it follows that

P≥2−1σf = f

and then by the support of Fourier modes of
(
P≤2−4σa

)
f we have

P≤2−2σ

[
P≤2−4σaf

]
= 0 and

 
Td

P≤2−4σaf = 0

which implies that
|∇|−1+sA1 = |∇|−1+sP≥2−2σA1.

By the Littlewood-Paley theory, we have∥∥∥|∇|−1+sP≥2−2σ

∥∥∥
Lp→Lp

.p σ
−1+s, 1 < p <∞.

So, we have ∥∥|∇|−1+sA1

∥∥
p
.p σ

−1+s
∥∥∥|∇|−s(P≤2−4σaf

)∥∥∥
p
.

To get the exact form of the estimate, noticing that |∇|−s is bounded on Lp, 1 < p <∞, we conclude that∥∥|∇|−1+sA1

∥∥
p
≤ σ−1+s

∥∥|∇|−s(af)
∥∥
p

+ σ−1+s
∥∥|∇|−s(P≥2−4σaf

)∥∥
p

. σ−1+s
∥∥|∇|−s(af)

∥∥
p

+ σ−1+s
∥∥P≥2−4σa

∥∥
∞‖f‖p. (D.5)

Similarly for A2, since |∇|−1 is bounded on Lp, we have∥∥|∇|−1+sA2

∥∥
p

=
∥∥|∇|−1

(
P≥2−4σa

)
f
∥∥
p
.
∥∥P≥2−4σaf

∥∥
p
≤
∥∥P≥2−4σa

∥∥
∞‖f‖p.
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So it suffices to show ‖∆qa‖∞ . 2−Nq for all 2q ≥ 2−4σ. Recall from the definition of the periodic Littlewood-
Paley projection that

∆qa =

ˆ
Td
ϕq(x− y)a(y)dy,

where the frequency cutoffs satisfy∥∥|∇|−Mϕq∥∥2
. 2−qM‖ϕq‖2 . 2−qM+qd. (D.6)

By Parseval’s theorem and Young’s inequality,

‖∆qa‖∞ =

∥∥∥∥ˆ
Td
|∇|−Mϕq(· − y)|∇|Ma(y) dy

∥∥∥∥
∞

≤
∥∥|∇|−Mϕq∥∥2

∥∥|∇|Ma∥∥
2
.

From L2 boundedness of Riesz transform and the assumption on a it follows

‖|∇|Ma‖2 . ‖∇Ma‖2 . ‖∇Ma‖∞ ≤ µM , (D.7)

where we used Ca = 1. Thus, combining estimates (D.7) and (D.6) we find

‖∆qa‖∞ . 2qdµM2−qM

≤ 2qdσ(1−θ)M2−qM ,

where we used the fact that µ ≤ σ1−θ. Now choosing λ0 large enough so that σθ/2 ≥ 24(1−θ/2) for all σ ≥ λ0,
we obtain

‖∆qa‖∞ ≤ 2qdσ(1−θ/2)M2−4(1−θ/2)2−qM

≤ 2qd2−qθM/2,
(D.8)

provided 2q ≥ 2−4σ. Choosing any M ≥ 2(N − d)/θ, in view of (D.8), we have

‖∆qa‖∞ . 2−Nq for all 2q ≥ 2−4σ.

After taking a summation in q for 2q ≥ 2−4σ we obtain

‖P≥2−4σa‖∞ . σ−N .
Then collecting all the estimates, we have∥∥|∇|−1+s(af)

∥∥
p
≤
∥∥|∇|−1+sA1

∥∥
p

+
∥∥|∇|−1+sA2

∥∥
p

. σ−1+s‖|∇|−s(af)‖p + σ−N‖f‖p.
�
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