1. INTRODUCTION

The 3D incompressible Navier-Stokes equations \((\text{NSE})\) on the torus \(\mathbb{T}^3\) is the following systems of equations:

\[
\begin{aligned}
\partial_t u - \Delta u + \text{div}(u \otimes u) + \nabla p &= 0, \\
\text{div} u &= 0,
\end{aligned}
\tag{NSE}
\]

where \(u : \mathbb{T}^3 \times \mathbb{R} \rightarrow \mathbb{R}^3\) is the unknown velocity field and \(p : \mathbb{T}^3 \times \mathbb{R} \rightarrow \mathbb{R}\) is the pressure. We study weak solutions in the following sense.

Definition 1.1 (Weak solutions). A \(L^2\)-weakly continuous function \(u \in C_w([0, T]; L^2(\mathbb{T}^3))\) with zero mean is a weak solution of \((\text{NSE})\) if \(u(\cdot, t)\) is weakly divergence-free for all \(t \in [0, T]\) and satisfies

\[
\int_{\mathbb{T}^3} u(x, 0) \cdot \varphi(x, 0) \, dx + \int_0^T \int_{\mathbb{T}^3} u \cdot (\partial_t \varphi + (u \cdot \nabla) \varphi + \Delta \varphi) \, dx \, dt = 0,
\]

for any divergence-free zero-mean test function \(\varphi \in C_c^\infty(\mathbb{T}^3 \times [0, T])\).

The vector field \(u_0(\cdot) = u(\cdot, 0)\), which is also the weak \(L^2\) limit of \(u(\cdot, t)\) as \(t \rightarrow 0^+\), is called the initial data. Often weak solutions with finite energy dissipation, i.e., \(u \in L^2(0, T; H^1)\), are studied in the literature. Besides Definition 1.1, there are numerous equivalent ways to define such solutions, e.g., using alternative spaces of test functions (see [RRS16]).

Since the seminal work of Leray [Ler34] it has been known that any divergence-free initial data \(u_0 \in L^2(\mathbb{T}^3)\) gives rise to a weak solution satisfying the following energy inequality:

\[
\|u(t)\|_2^2 + 2 \int_{t_0}^t \|\nabla u(s)\|_2^2 \, ds \leq \|u(t_0)\|_2^2,
\]

(E.I.)

for any \(t > 0\) and a.e. \(t_0 \in [0, t)\) including 0. In the literature, such solutions are referred to as the Leray-Hopf weak solutions. There has been a long history of extensive studies of these solutions [Ler34, Hop51, Pro59, Ser62, Lad67, CF88, Tem01, ESv03], however, the global regularity and uniqueness of Leray-Hopf weak solutions remain among the most important unsolved questions in mathematical fluid dynamics. What is more related to the present work, is the validity of energy equality (also known as Onsager’s conjecture in the case of the Euler equations [CET94]). In the recent groundbreaking work [BV17] Buckmaster and Vicol proved nonuniqueness and anomalous dissipation in the class of weak solutions, but this is still an open question for Leray-Hopf solutions. In fact, the continuity of the energy is not known either. If the energy has a jump discontinuity from the right, this immediately implies non-uniqueness since the solution can be restarted at that time to remove the jump. Moreover, infinitely many solutions can be obtained via interpolation [KV07].

The focus of this paper is to prove the existence of weak solutions to the \((\text{NSE})\) with very pathological energy behaviors. On one hand, we construct a finite energy stationary solution, which does not lose any energy even though its enstrophy is positive (in fact, infinite). These solutions exhibit what we call the anomalous energy influx, the backward energy cascade that precisely balances the energy dissipation at each scale. On the other hand, we construct weak solutions with energy profiles discontinuous on a dense set of positive Lebesgue measure. So the set of discontinuities of the energy can be very large at least in the class of weak solutions. Note that both results provide alternative proofs of the Buckmaster-Vicol nonuniqueness theorem [BV17] since there are Leray-Hopf
solutions starting from the steady state or discontinuity points. The following theorems are direct consequences of our main results.

Theorem 1.2. There exists a nontrivial stationary weak solution \(u \in L^2(\mathbb{T}^3) \) to the 3D NSE.

Theorem 1.3. For any \(\varepsilon, T > 0 \), there exists a weak solution \(u \in C_w([0, T]; L^2(\mathbb{T}^3)) \) to the 3D NSE, which is discontinuous in \(L^2 \) on a set \(E \subset [0, T] \), such that

1. \(E \) is dense in \([0, T]\).
2. The Lebesgue measure of \(E^c \) is less than \(\varepsilon \).

1.1. Background. Our work is based on the technique of convex integration. This method has been around since the work of Nash [Nas54], its application to fluid dynamics was brought to attention only in recent years by the pioneering work of De Lellis and Székelyhidi Jr. [DLS09]. Since [DLS09], it was developed over a series of works in the resolution of the Onsager’s conjecture for the 3D Euler equations [DLS09, DLS13, DLS14, BDLIS15, BDLIS16, Ise16, BLJV18]. Its extension to the NSE was done only very recently by Buckmaster-Vicol [BV17], where non-unique weak solutions of the Navier-Stokes equations in the sense of Definition 1.1 are constructed.

So far, the focus of the convex integration method has been to produce wild solutions that are as regular as possible. For instance, the regularity of wild solutions of the Euler equations was pushed to the critical Onsager’s exponent \(\frac{1}{3} \) by Isett [Ise16]. Also, the extension of [BV17] to the fractional NSE \((-\Delta)^{\alpha}\) setting for \(1 \leq \alpha < \frac{2}{3} \) was done in [LT18]. Using the smoothing effect of the Stokes semigroup, Buckmaster-Colombo-Vicol [BCV18] were able to construct non-unique weak solutions whose singular sets have Hausdorff dimension less than 1. Nonuniqueness of Leray-Hopf solutions has also been obtained for ipodissipative NSE and Hall-MHD [CLR17, Dai18]. However, it is not clear whether a convex integration scheme could ever produce non-unique wild solutions in a class where the Leray structure theorem would hold\(^1\), except perhaps one very specific scenario.

Finally, we mention another pathway in pursuing the possible nonuniqueness of the Leray-Hopf weak solutions aside from using convex integration. As pointed out by Jia and Šverák in [Jv14], one can also study the nonuniqueness issue via self-similar solutions for \((-1)\)-homogeneous initial data. Indeed, in [Jv15] Jia and Šverák proved nonuniqueness of Leray-Hopf weak solutions under certain assumptions for the linearized Navier-Stokes operator. Even though a rigorous justification of those assumptions remains unavailable, very recently Guillod and Šverák provided numerical evidence indicating that the assumptions are likely to be true [Gv17].

1.2. Motivations. In contrast to the aforementioned results, we are focusing on the opposite direction, i.e. constructing more pathological solutions, especially solutions with anomalous energy behaviors.

The existence of a nontrivial stationary weak solution of \(d \)-dimensional NSE for \(d \geq 4 \) was recently proved by the second author in [Luo18], but the recalled Mikado flows used as building blocks had intermittency dimension \(D = 1 \), and hence could not be used for the 3D NSE. Nontrivial stationary solutions are also known to exist for the dyadic model of the NSE [BMR11], where one can precisely control the backward energy cascade to balance the energy dissipation, but the existence of such solutions has been an open question for the 3D NSE.

On the other hand, weak solutions (in the sense of Definition 1.1) are only lower semi-continuous in \(L^2 \). Therefore, it is natural to conjecture that there exist weak solutions that exhibit jumps in the energy. In fact, one can ask the following questions regarding the behavior of the energy:

- **Can energy** \(\|u(t)\|_2^2 \) **have jumps?** **Can it be discontinuous on a dense subset of** \([0, T] \)? **Can it be discontinuous almost everywhere?** **Can it be discontinuous everywhere?**

The answer to the last question is No. Indeed, the energy of a weak solution \(\|u(t)\|_2^2 \) is lower semi-continuous. Hence, by Baire’s theorem, the energy is of the first Baire class and therefore it cannot be discontinuous everywhere.

The energy is actually a pointwise limit of continuous functions and thus the points of continuity are dense. Nevertheless, we believe that all the previous questions have positive answers. Theorem 1.3 is our first step in solving this conjecture.

1.3. Main theorems. We now state the main results of this paper. In particular, Theorem 1.2 and 1.3 are simpler versions of Theorem 1.4 and 1.6 accordingly.

The first theorem concerns the existence of stationary weak solutions for the 3D Navier-Stokes equations, which extends the previous work [Luo18] of the second author in dimension \(d \geq 4 \).

Theorem 1.4 (Finite energy stationary weak solution). **Given any divergence-free** \(f \in C^\infty(\mathbb{T}^3) \) **with zero mean, there is** \(M_f > 0 \) **such that for any** \(M \geq M_f \), **there exists a weak solution** \(u \in L^2(\mathbb{T}^3) \) **to** \((\text{NSE})\) **with forcing term** \(f **satisfying** \(\|u\|_2^2 = M \).

\(^1\)Note that the solutions in [CLR17, Dai18] do not obey the Leray structure theorem.
Theorem 1.5 (Energy with dense discontinuities). Let $\varepsilon, T > 0$ and $a \in C^\infty(T^3 \times [0, T])$ be a smooth divergence-free vector field with zero mean for all $t \in [0, T]$. There exists a dense subset $E \subset [0, T]$ and a constant $M > 0$, such that for any $M \geq M_a$ there exists a weak solution $u \in C_w([0, T]; L^2(T^3))$ to (NSE) so that the following holds:

1. The energy $\|u(t)\|_2^2$ is bounded by $2M$:
 \[
 \|u(t)\|_2^2 \leq 2M \quad \text{for any } t \in [0, T],
 \]
 and has jump discontinuities on set E:
 \[
 \lim_{s \to t^-} \|u(s)\|_2^2 > \|u(t)\|_2^2 \quad \text{for any } t \in E.
 \]

2. $u(t)$ coincides with $a(t)$ at $t = 0, T$:
 \[
 u(x, 0) = a(x, 0) \quad \text{and } u(x, T) = a(x, T),
 \]
 but the energy jump is of size M:
 \[
 \lim_{s \to 0^+} \|u(s)\|_2^2 - \|u(0)\|_2^2 = \lim_{s \to T^-} \|u(s)\|_2^2 - \|u(T)\|_2^2 = M.
 \]

3. u is smooth on E:
 \[
 u(t) \in C^\infty(T^3) \quad \text{for all } t \in E,
 \]
 and uniformly ε-close to a in $W^{1,1}(T^3)$:
 \[
 \|u - a\|_{L^\infty W^{1,1}} < \varepsilon.
 \]

The set E in Theorem 1.5 is dense in $[0, T]$ and, in fact, countable. Using a gluing argument, we are also able to construct weak solutions whose energy discontinuities are dense and of positive measure.

Theorem 1.6 (Energy with dense and positive measure discontinuities). Let $\varepsilon > 0$ and $0 < \alpha < T$. There exist a set $E_\alpha \subset [0, T]$ with $E_\alpha = C_\alpha \cup F_\alpha$ where C_α is a fat Cantor set on $[0, T]$ such that $\|0, T] \setminus C_\alpha \| \leq \alpha$ and F_α is a countable dense subset of $[0, T]$, and a weak solution $u \in C_w([0, T]; L^2(T^3))$ of (NSE) so that the following holds:

1. The energy profile $\|u(t)\|_2^2$ is discontinuous at every $t \in E_\alpha$. In fact,
 \[
 \limsup_{s \to t} \|u(s)\|_2^2 > \|u(t)\|_2^2 \quad \text{for all } t \in C_\alpha,
 \]
 and
 \[
 \lim_{s \to t} \|u(s)\|_2^2 > \|u(t)\|_2^2 \quad \text{for all } t \in F_\alpha.
 \]

2. $u(t)$ is uniformly ε-small in $W^{1,1}(T^3)$:
 \[
 \|u\|_{L^\infty W^{1,1}} < \varepsilon,
 \]
 smooth on F_α:
 \[
 u(t) \in C^\infty(T^3) \quad \text{for all } t \in F_\alpha,
 \]
 and vanishes on C_α:
 \[
 u(t) = 0 \quad \text{for all } t \in C_\alpha.
 \]

1.4. Some remarks on the results.

Remark 1.7. It is known that for any smooth force f (NSE) on torus T^3 admits at least one smooth stationary solution [CF88]. Theorem 1.4 shows that there are infinitely many finite energy stationary weak solutions.

Remark 1.8. As our building blocks are compactly supported, it seems likely that there also exist finite energy stationary weak solutions in \mathbb{R}^3 with compact supports. We plan to address this problem in future works.

Remark 1.9. We note that weak solutions constructed in [BV17, LT18, BCV18] can not be stationary as the building blocks are time-dependent and their schemes rely on fast time oscillations.

Remark 1.10. The smoothness of the vector field a in Theorem 1.5 and the force f in Theorem 1.4 can definitely be lower, but we are not interested in this direction here. Also, Theorem 1.5 shows that any smooth initial data u_0 admits infinitely many weak solutions with discontinuous energy.
Remark 1.11. It is possible to construct a weak solution with discontinuous energy by gluing the solutions in [BV17], see Appendix A. However, those discontinuities are not jumps. More importantly, such an argument can not generate dense discontinuities.

Remark 1.12. In view of the theory of Baire category, the set of discontinuities of a semi lower-continuous function is of Baire-1, which still can have full measure in [0, T]. At the moment, our method is not able to produce such examples.

Remark 1.13. Very recently, Luo and Titi [LT18] have extended the nonuniqueness result of [BV17] to fractional NSE with \((-\Delta)\alpha\) for any \(\alpha < \frac{1}{2}\), which is sharp in view of Lion’s wellposedness result [Lio59, Lio69]. Even though our method seems to work for fractional NSE for some \(\alpha > 1\), extensions to the full range of \(\alpha < \frac{3}{2}\) are unavailable at this point.

1.5. Effect of intermittency. The main technique used in the present paper is the convex integration that has been developed over the past decade for the incompressible Euler equations to tackle the famous Onsager’s conjecture, see [DLS09, DLS13, DLS14, BDLIS15, BDLS16, Ise16, BLJV18], also inspired by the recent extension of this method to the Navier-Stokes equations [BV17, Luo18, BCV18].

The effect of intermittency on the regularity properties of solutions to the (NSE) and toy models has been also studied in the past decade [CF09, CS14a, CS14b]. Discontinuous weak solutions in the largest critical space and even supercritical spaces near \(L^2\) were obtained in [CS10, CD14] using Beltrami type flows with the intermittency dimension \(D = 0\). Such an extreme intermittency was achieved using Dirichlet kernels. Roughly speaking, in order for the \(d\)-dimensional Navier-Stokes equations to develop singularities, the intermittency dimension \(D\) of the flows should be less than \(d - 2\), so that the Bernstein’s inequality is highly saturated. So \(D = 1\) is critical for the 3D NSE. It was also confirmed in [BV17, Luo18] that the main difficulty of conducting convex integration for the Navier-Stokes equations is the intermittency of the flow. Such a constraint, however, is not presented in the 3D Euler equations: Beltrami flows and Mikado flows used in the constructions of wild solutions for the 3D Euler equations are essentially homogeneous in space, namely the intermittency dimension \(D = 3\). This is also reflected in the difference between \(L^3\) based norm in the best known energy conservation condition \(L^3_t B^3_{x,co}(\mathbb{T})\) in [CCFS08] and \(L^\infty\) based norm of the counterexamples \((CC^\alpha)\) for \(\alpha < \frac{1}{4}\) in [Ise16]) for the 3D Euler equations [Ise16, BLJV18].

To resolve the issue of intermittency when applying convex integration, Buckmaster-Vicol introduced intermittent Beltrami flows in [BV17] and intermittent jets in [BCV18] as building blocks with arbitrary small intermittency dimension \(D > 0\), allowing them to successfully implement convex integration scheme in the presence of the dissipative term \(\Delta u\). This was done by introducing a Dirichlet type kernel to the classical Beltrami flows in [BV17] or using a space-time cutoff in [BCV18] respectively, rendering the linear term manageable. Even though such modifications produce unwanted interactions that are too large for the convex integration scheme to go through, they were handled with an additional “convex integration in time” with a help of very fast temporal oscillations. We note that even though it was possible to take advantage of all the interactions between Dirichlet kernels in [CS10, CD14], this is out of reach in the convex integration scheme at this point.

In this paper, we will design new building blocks specifically for the NSE. These vector fields, that we call viscous eddies, will be both stationary and compactly supported in \(\mathbb{R}^3\). The construction is partly motivated by the geometric Lemma 3.1 used for the Mikado flows which were introduced in [DS17] and have been successfully used for the Euler equations on the torus \(\mathbb{T}^n\) for \(n \geq 3\). The Mikado flows can also be rescaled so that its intermittency dimension becomes \(D = 1\) as demonstrated in [Luo18] (see also [MJ17, MJ18] for the setting in transport equation). This just misses the \(D < 1\) requirement for the 3D NSE (see discussions in Section 2 of [Luo18] and heuristics in Section 2 of [CL18]).

In order to increase concentration that decreases the intermittency dimension, we start with a pipe flow in \(\mathbb{R}^3\), use a lower order cutoff only in space along the direction of the flow, and add a correction profile to the existing one so that it will take advantage of the Laplacian to balance some of the unwanted interactions. This is possible due to the fact that the error introduced by the space cutoff along the major axis of the eddies is not a general stress term, but basically one-dimensional. By design, viscous eddies are divergence-free up to the leading term. Moreover, they are compactly supported approximate stationary solutions of the NSE (not the Euler equations). See Theorem 3.9 for a precise statement. Compared with the previously used building blocks for the NSE, such an approach mainly has two advantages. First, the new flows are time-independent and hence can be used to construct nontrivial stationary weak solutions, which was an open question for the 3D NSE. Second, they are compactly supported and can be used in the case of the whole space \(\mathbb{R}^3\) in the future, whereas Beltrami flows, Mikado flows, intermittent Beltrami flows, and intermittent jets only exist on the torus \(\mathbb{T}^d\).

1.6. Energy pumping mechanism. In order to produce discontinuous energy we introduce a new energy pumping mechanism that uses more energy than needed to cancel the stress error term in the convex integration scheme.
In previous works, there is a correspondence between the growth of the frequency and the decay of the energy so that the energy is not changed much along the iteration process. In other words, the high frequency part of the solution is very small uniformly in time. This is typical and desirable in order to improve the regularity of the wild solutions.

In contrast, to produce discontinuities in the energy, one can not adhere to such a uniformity in time in the scheme. We need to allow high frequencies to carry sizable energy on some time intervals, so that there is energy coming from/escaping to infinite wavenumber. Consider the following toy model. Suppose \(u(t) \) is a function with Fourier support in a shell of size \(\lambda(t) \), and \(\lambda(t) \to \infty \) as \(t \to T \). Then the energy remains constant for \(t < T \), but at \(t = T \), the solution is zero, as all the energy has escaped to the infinite wavenumber. To reproduce this toy model in the convex integration scheme, one needs to construct an approximate sequence of solutions with temporal supports away from time \(T \) and sizable energy near \(T \), such that the weak limit is 0 at \(t = T \). Generalizing this example, one can construct a wild solution of the Navier-Stokes equations whose energy is constant on \((0, T)\) but vanishes at \(0\) and \(T\).

However, if one uses solutions of such type with disjoint temporal support and glues them together, the resulting solution will only have finitely or countably many discontinuities. The next goal is to achieve the density of jumps. An exercise in real analysis shows that there exist unbounded \(L^2 \) functions that blow up on a dense subset of \([0, 1]\). Roughly speaking, we will construct solutions whose energy mimics the behavior of such functions. More precisely, there will be infinitely many blowing-up wavenumbers \(\lambda(t) \) with smaller and smaller lifespan and energy. This is also consistent with the fact that the jumps decrease to zero along the iterations, which is anticipated as the energy, which we want to be bounded, needs some time to be transferred to lower/higher modes. We refer to Section 2 for more technical details in this regard.

1.7. **Organization of the paper.** The rest of the paper is organized as follows.

- **In Section 2**, we introduce the notations and the generalized Navier-Stokes system, for which we state the main proposition of the paper. Then using the main proposition, we prove Theorems 1.4, 1.5, and 1.6.
- **In Section 3**, we construct the building blocks for the convex integration, namely viscous eddies. We show that they are a family of approximate solutions of the stationary NSE. Several useful estimates are also derived.
- **Section 4, Section 5 and Section 6** are devoted to proving the main proposition. Specifically, velocity perturbation is defined in Section 4, the new Reynolds stress is estimated in Section 5 and the energy behavior is proved in Section 6.
- **In Appendix A**, we show that one can use the solutions constructed by Buckmaster-Vicol to obtain discontinuities (but not jump-discontinuities) in the energy. Appendix B provides a proof of a technical tool, Proposition 4.7.

2. **The main proposition**

The main objective of this section is to prove Theorems 1.4, 1.5, and 1.6 using Proposition 2.1, which we will refer to as the main proposition.

2.1. **Notations.** Throughout the manuscript we use the following standard notations.

- \(\| \cdot \|_p := \| \cdot \|_{L^p(T^d)} \) is the Lebesgue norm (in space) for any \(1 \leq p \leq \infty \) and \(\| \cdot \|_{C^m} := \sum_{0 \leq i \leq m} \| \nabla^i \cdot \|_\infty \) for any \(m \) is the Hölder norm. For uniform in time bounds we will use standard notations \(\| \cdot \|_{L^\infty T^d} \) and \(\| \cdot \|_{L^\infty T^d C^m} \).
- We say a function \(f \) is \(\lambda^{-1} \mathbb{Z}^d \)-periodic if \(f(x) = f(x + m) \) for any \(m \in \lambda^{-1} \mathbb{Z}^d \). The space \(C_0^\infty (T^d) \) is the set of smooth functions with zero-mean on \(T^d \). \(f_{\mathbb{Z}^d} = \frac{1}{|T^d|} \int_{T^d} f \) is the average integral any function \(f \in L^1(T^d) \).
- \(x \lesssim y \) stands for the bound \(x \leq Cy \) with some constant \(C \) which is independent of \(x \) and \(y \) but may change from line to line. Then \(x \sim y \) means \(x \lesssim y \) and \(y \lesssim x \) at the same time. We use \(x \ll y \) to indicate \(x \leq cy \) for some small constant \(0 < c < 1 \).
- For vectors \(a, b \in \mathbb{R}^d \), \(a \otimes b \) is the matrix with \((a \otimes b)_{ij} = a_i b_j \). For matrix-value functions \(f = f_{ij} \) and \(g = g_{ij} \), \(\text{div} f = \partial_i f_{ij} \) and \(f : g = f_{ij} g_{ij} \).
- The gradient \(\nabla \) always refers to differentiation in space only. Sometimes we use \(\nabla_{t,x} \) to indicate that the differentiation is for space-time.
- \(\Delta_q \) is the standard periodic Littlewood-Paley projections on to the dyadic frequency shell \(2^r \leq |k| \leq 2^{r+1} \) for any \(q \geq -1 \) and \(\Delta_q = \sum_{r \leq q} \Delta_r \) and \(\Delta_{\geq q} = \sum_{r \geq q} \Delta_r \).

\(^2\)Such possible scenarios are closely related to the energy balance equation for the Navier-Stokes equations. See for instance [CL18]
2.2. Generalized Navier-Stokes system. Let $a, f \in C^\infty(\mathbb{T}^3 \times [0, T])$ be smooth divergence-free vector fields with zero mean for all $t \in [0, T]$. We consider the following generalized Navier-Stokes system:

$$\begin{align*}
\partial_t v + L_a v + \text{div}(v \otimes v) + \nabla p &= f \\
\text{div} v &= 0,
\end{align*}$$

where

$$L_a v = -\Delta v + \text{div}(v \otimes a) + \text{div}(a \otimes v).$$

The reason to consider such a generalization is as follows. Suppose v is a weak solution to (gNSE) with given vector field a and $f = -\partial_t a + \Delta a - \text{div}(a \otimes a)$. Then $u := v + a$ solves (NSE). We note that the added terms are of lower order compared to the nonlinearity $\text{div}(v \otimes v)$, and thus will not be of any trouble in the proof.

To construct weak solutions to (gNSE), let us consider the approximate equations

$$\begin{align*}
\partial_t v + L_a v + \text{div}(v \otimes v) + \nabla p &= \text{div} R + f \\
\text{div} v &= 0,
\end{align*}$$

where R is a symmetric traceless matrix. If (v, p, R, f) is a solution to (gNSE), then we say (v, R) is a solution to (gNSR) with data a and f. The above system is reminiscent to the so-called Navier-Stokes-Reynolds system used in the previous works [BCV18, BV17, Luo18]. Our main proposition is to construct weak solutions to (gNSR) using a sequence of solutions (v_n, R_n) of the approximate system (gNSR) so that the stress term $R_n \to 0$ as $n \to \infty$ in a suitable sense.

2.3. Main proposition. In this subsection, we will introduce the main proposition of the paper, which will enable us to prove all the main theorems listed in the introduction.

Throughout the paper we use the following notations. For any $r > 0$ and any finite set $F \subset [0, T]$, let

$$B_r(F) = \{ t \in [0, T] : \text{dist}(t, F) < r \},$$

$$I_r(F) = [0, T] \setminus B_r(F).$$

Proposition 2.1. Let $c_0 = 10^{-2}, T > 0$. Consider the system (gNSR) with given $a, f \in C^\infty(\mathbb{T}^3 \times [0, T])$ smooth vector fields with zero mean. There exists a small universal constant C such that the following holds.

Let $\varepsilon, r > 0$, $0 < c_0 < c_1 < \infty$, and $F_0, F_1 \subset [0, T]$ be two finite sets such that $F_0 \subset F_1$. If (v_0, R_0) is a smooth solution to (gNSR) on $[0, T]$ with data a and f so that

1. The energy $\|v_0(t)\|_2^2 \leq c_0$ for all t, and is almost constant c_0 away from the set F_0:

$$\|v_0(t)\|_2^2 - c_0 \leq c_0(e_1 - e_0) \quad \text{for all } t \in I_r(F_0),$$

2. (v_0, R_0) is close to a solution of (gNSE) in the sense that

$$\delta_0 \leq C(e_1 - e_0),$$

where $\delta_0 = \|R_0\|_{L^p_x L^1_t}$. Then there is another smooth solution (v, R) to (gNSE) with data a and f such that

1. The energy $\|v(t)\|_2^2 \leq c_1$ for all t, and is almost constant c_1 away from the set F_1:

$$\|v(t)\|_2^2 - c_1 \leq \frac{c_0}{2}(e_1 - e_0) \quad \text{for all } t \in I_{4^{-1}r}(F_1),$$

2. The new stress R verifies

$$\|R(t)\|_1 \leq \left\{ \begin{array}{ll}
\varepsilon & \text{for } t \in I_{4^{-1}r}(F_1) \\
\delta_0 + \varepsilon & \text{for } t \in I_{4^{-2}r}(F_1) \setminus I_{4^{-1}r}(F_1) \\
\delta_0 & \text{for } t \in [0, T] \setminus I_{4^{-2}r}(F_1). \end{array} \right.$$ (2.2)

Moreover, the velocity increment $w = v - v_0$ verifies

$$\supp w \subset I_{4^{-2}r}(F_1) \quad \text{and} \quad \|w\|_{L^\infty_t W^{1, 1}} \leq \varepsilon,$$ (2.3)

and if $F_0 = F_1 = \emptyset$ and v_0 is stationary\footnote{In this case, we of course require both a and f to be time-independent.}, i.e. $\partial_t v_0 = 0$, then w is also stationary: $\partial_t w = 0$.\footnote{Since we only use c_0 to measure the approximate level of the energy to a constant, the exact value of c_0 is not important.}
2.4. Proof of main theorems. We first prove Theorem 1.5, it suffices to prove the following result for (gNSE):

Theorem 2.2. Let $\varepsilon > 0$ and $a \in C^\infty(T^3 \times [0, T])$, $T > 0$ be a smooth divergence-free function with zero mean for all $t \in [0, T]$. Consider the associated generalized Navier-Stokes system (gNSE) with data a and $f = -\partial_t a + \Delta a - \text{div}(a \otimes a)$. There exists a dense subset $E \subset [0, T]$, a constant $M_a > 0$ such that for any $M \geq M_a$ there exists weak solution $v \in C_w(0, T; L^2(T^3))$ (NSE) so that the followings hold:

1. The energy $\|v(t)\|_2^2$ is bounded by M:
 \[\|v(t)\|_2^2 \leq M \text{ for any } t \in [0, T], \]
 and has jump discontinuities on set E:
 \[\lim_{s \to t} \|v(s)\|_2^2 > \|v(t)\|_2^2 \text{ for any } t \in E. \]

2. $v(t)$ vanishes at $t = 0, T$:
 \[v(x, 0) = v(x, T) = 0, \]
 but the energy jump is of size M:
 \[\lim_{s \to 0^+} \|v(s)\|_2^2 - \|v(0)\|_2^2 = \lim_{s \to T^-} \|v(s)\|_2^2 - \|v(T)\|_2^2 = M. \]

3. $v(x, t)$ is smooth on E:
 \[v(t) \in C^\infty(T^3) \text{ for all } t \in E, \]
 and is ε-small in $L^\infty_x W^{1,1}$:
 \[\|v\|_{L^\infty_x W^{1,1}} < \varepsilon. \]

The implication from Theorem 2.2 to Theorem 1.5 can be obtained simply by shifting $u = v + a$ since the vector field a is smooth. Now we prove Theorem 2.2 with the help of Proposition 2.1.

Proof of Theorem 2.2 assuming Proposition 2.1. We first construct the set E, then a sequence of approximate solution v_n such that v_n converges to the desire solution v in a suitable sense. Without loss of generality, we assume $T = 1$.

Step 1: Constructing the set E. Consider the binary representation of $x \in [0, 1]$:

\[x = \sum_{j=0}^{\infty} x_j 2^{-j}. \]

Now let F_n be the collection of all real numbers in $[0, 1]$ whose binary representation has at most n digits, namely $x \in F_n \subset [0, 1]$ if and only if $x_j = 0$ for all $j > n$. Assuming $F_{-1} = \emptyset$, let also $E_n = F_{n+1} \setminus F_n$, $n \geq -1$. For instance, $E_{-1} = \{0, 1\}$, $E_0 = \{1/2\}$, $E_1 = \{1/4, 3/4\}$. Let

\[E = \lim_{n \to \infty} F_n = \bigcup_{n \geq -1} E_n, \]

which is a dense subset of $[0, 1]$.
Denoting \(r_n = 4^{-n-1} \), let us show the following important property of the set \(E \) for later use:

\[
\liminf_{n \to \infty} B_{r_n}(F_{n-1}) \subseteq E.
\]

(2.10)

Suppose \(t \in \liminf B_{r_n}(F_{n-1}) \), which means that there exist \(N \) and \(t_n \in F_{n-1} \) for every \(n \geq N \), such that

\[
|t - t_n| = \text{dist}(t, F_{n-1}) < r_n.
\]

(2.11)

We claim that \(t_{n+1} = t_n \) for all \(n \geq N \). Otherwise, for some \(n \geq N \) there must be

\[
|t - t_n| \geq |t_{n+1} - t_n| - |t - t_{n+1}| \geq 2^{-n} - r_{n+1} \geq 2^{-n-1},
\]

which contradicts (2.11):

\[
2^{-n-1} < r_n = 2^{-2n-2}.
\]

Hence, it follows from (2.11) that \(t = t_N \in F_{N-1} \) which implies that \(t \in E \).

Step 2: Constructing approximate solutions \(v_n \). Given smooth vector field \(f \), we set \(v_0 = 0 \) and \(R_0 = \mathcal{R}(\partial_t a - \Delta a + \text{div}(a \otimes a)) \), where \(\mathcal{R} \) is defined in Definition 5.1. Then \((v_0, R_0)\) is a smooth solution of \((gNSR)\) with data \(a \) and \(f = -\partial_t a + \Delta a - \text{div}(a \otimes a) \) on \([0, 1]\). We choose

\[
M_a = \frac{4}{C} \|R_0\|_{L^\infty L^1},
\]

(2.12)

where \(C \) is the constant in Proposition 2.1.

Let \(r_n = 4^{-n-1} \) and \(M \geq M_a \) and choose the energy level \(e_n = (1 - 2^{-n})M \) for \(n \in \mathbb{N} \). Note that the choice of \(e_n \) is admissible in view of (2.12).

Starting with \((v_0, R_0)\), we apply Proposition 2.1 with data \(a \) and \(f \) on \([0, 1]\) to obtain a sequence \((v_n, R_n)\) of smooth solutions of \((gNSR)\). More precisely, \((v_{n+1}, R_{n+1})\) is obtained by applying Proposition 2.1 to the previous solution \((v_n, R_n)\) with parameters

\[
(r, e_0, c_1, \varepsilon, F_0, F_1) := (r_n, e_n, e_{n+1}, \varepsilon, F_{n-1}, F_n),
\]

where the small parameters \(e_n \) are defined inductively by

\[
e_n = \frac{2^{-n-1} \varepsilon}{1 + \sum_{j \leq n-1} \sup_{t} \|w_j\|_{\infty}},
\]

(2.13)

and \(w_j := v_j - v_{j-1} \) is the \(j\)-th velocity perturbation for \(j \geq 1 \).

Clearly, each \((v_n, R_n)\) in the obtained sequence is a smooth solution of \((gNSR)\) on \([0, 1]\) with data \(a \) and \(f = -\partial_t a + \Delta a - \text{div}(a \otimes a) \), and by Proposition 2.1 we have the following properties:

(1) For any \(n \in \mathbb{N} \)

\[
\|v_n(t)\|_{2}^{2} - e_n \leq \epsilon_0 2^{-n} M \quad \text{for all } t \in I_{r_n}(F_{n-1}),
\]

(2.14)

and

\[
\|v_n(t)\|_{2}^{2} \leq e_n \leq M, \quad \|R_n(t)\|_{1} \leq \|R_0\|_{L^\infty L^1} + \varepsilon.
\]

(2.15)

(2) The velocity increment \(w_n = v_n - v_{n-1} \) verifies that

\[
\|w_n\|_{L^\infty W^{1,1}} \leq \varepsilon.
\]

(2.16)

(3) If \(t \in F_n \) for some \(n \in \mathbb{N} \), then

\[
v_k(t) = v_n(t) \quad \text{for all } k \geq n.
\]

(2.17)

Step 3: \(L^2 \) convergence of \(v_n \). The solution \(v(t) \) is constructed as a strong \(L^2 \) limit of approximate smooth solutions \(v_n(t) \),

\[
v(t) = \lim_{n \to \infty} v_n(t) = \sum_{j=1}^{\infty} w_j, \quad t \in [0, 1].
\]

We first prove that \(v \) is well-defined, i.e. \(v_n \) converges pointwise in \(L^2 \). Indeed, thanks to (2.13) and (2.16) the velocity perturbations \(w_k \) are almost orthogonal in \(L^2 \):

\[
\sup_{t} \|\langle w_j, w_k \rangle\| \leq 2^{-j-1} \varepsilon \quad \text{for all } j > k.
\]

(2.18)
As a result, due to (2.15)
\[
\sum_{j=1}^{n} \|w_{j}\|_{2}^{2} \leq \|v_{n}\|_{2}^{2} + 2 \sum_{1 \leq j < k \leq n} |(w_{j}, w_{k})| < M + 2\varepsilon \quad \text{for all } n.
\]
So, for \(0 \leq n < m\) we have
\[
\|v_{m} - v_{n}\|_{2}^{2} = \sum_{n<j\leq m} \|w_{j}\|_{2}^{2} + 2 \sum_{n<j<k\leq m} |(w_{j}, w_{k})| < \sum_{j>n} \|w_{j}\|_{2}^{2} + 2^{-n+1}\varepsilon \to 0 \quad \text{as } n, m \to \infty,
\]
i.e., \(v_{n}(t)\) is Cauchy in \(L^{2}\) for every \(t \in [0, 1]\).

Next, we show that \(v\) is a weak solution of (gNSE). Let test function \(\varphi \in C_{c}^{\infty}(\mathbb{T}^{3} \times [0, 1])\) be mean-free and divergence-free for all \(t \in [0, 1]\). Using the weak formulation for the solution \((v_{n}, R_{n})\) of (gNSR) with data \(a\) and \(f = -\partial_{t}a + \Delta a - \text{div}(a \otimes a)\), we get
\[
\int_{\mathbb{T}^{3}} v_{n}(\cdot, 0) \cdot \varphi(\cdot, 0) + \int_{\mathbb{T}^{3} \times [0,1]} v_{n} \cdot \partial_{t}\varphi + v_{n} \cdot (v_{n} \cdot \nabla)\varphi + v_{n} \cdot \Delta \varphi
\]
\[
+ \int_{\mathbb{T}^{3} \times [0,1]} a \cdot (v_{n} \cdot \nabla)\varphi + v_{n} \cdot (a \cdot \nabla)\varphi = \int_{\mathbb{T}^{3} \times [0,1]} R_{n} : \nabla \varphi + f \cdot \varphi.
\]
(2.19)

For simplicity of notation, let
\[
I_{n} = \bigcap_{k \geq n} I_{k}(F_{k-1}).
\]
Immediately
\[
\|0, 1 \setminus I_{n}\| \lesssim 2^{-n}. \quad \text{(2.20)}
\]

From (2.14) and (2.18) it follows that
\[
\|v - v_{n}\|_{L^{\infty}(\mathbb{T}^{3} \times I_{n})} \leq \sup_{I_{n}} \left(\|v(t)\|_{2}^{2} - \|v_{n}(t)\|_{2}^{2} - 2(v - v_{n}, v_{n})\right) \lesssim 2^{-n}, \quad \text{(2.21)}
\]
and
\[
\|R_{n}\|_{L^{\infty}(\mathbb{T}^{3} \times I_{n})} \lesssim 2^{-n}. \quad \text{(2.22)}
\]
Using the bounds (2.20), (2.21), and (2.22) together with (2.15), it is easy to check the convergence of all the terms in (2.19) to their natural limits by splitting the domain of integrals into \(\mathbb{T}^{3} \times I_{n}\) and \(\mathbb{T}^{3} \setminus I_{n}\).

Next, let us show that as the pointwise \(L^{2}\) limit of \(v_{n}\), the solution \(v\) is weakly continuous. Let \(\varphi \in L^{2}(\mathbb{T}^{3})\) and \(t_{0} \in [0, 1]\). Consider the following split:
\[
|(v(t) - v(t_{0}), \varphi)| \leq |(v(t) - v_{n}(t), \varphi)| + |(v_{n}(t) - v_{n}(t_{0}), \varphi)| + |(v_{n}(t_{0}) - v(t_{0}), \varphi)|.
\]
The first and last terms go to zero as \(n \to \infty\) by the uniform \(W^{1,1}\) convergence of \(v_{n}\). For the second term, since \(v_{n} \in C_{0}^{\infty}(\mathbb{T}^{3} \times [0,1])\), we get
\[
|(v_{n}(t) - v_{n}(t_{0}), \varphi)| \to 0 \quad \text{as } t \to t_{0}.
\]
So we may conclude that \(|(v(t) - v(t_{0}), \varphi)| \to 0\) as \(t \to t_{0}\).

Step 4: Verifying properties of \(v\). Finally, we show that \(v\) is a weak solution satisfying all the properties (1), (2) and (3) stated in Theorem 2.2. First, \(\|v(t)\|_{2}^{2} \leq M\) for all \(t \in [0,1]\) due to (2.15). Therefore, to show (1), it remains to prove that \(E\) consists of jump discontinuities.

Indeed, given \(t \in E\), there exists \(n\) such that \(t \in E_{n}\), which implies \(t \in I_{n+1}(F_{n})\) and \(v(t) = v_{n+1}(t)\). Using (2.14) we get
\[
M - \|v(t)\|_{2}^{2} \geq M - e_{n+1} - c_{0}M2^{-n-1} \geq M2^{-n}.
\]
We will show that \(\lim_{s \to t} \|v(s)\|_{2}^{2} = M\). To this end, let
\[
I_{\varepsilon} = \{s \in [0,1] : t - \varepsilon < s < t \text{ or } t < s < t + \varepsilon\},
\]
and
\[
N_{\varepsilon} = \max\{j \in \mathbb{N} : I_{\varepsilon} \cap F_{j} = \emptyset\}.
\]
By definitions of the sets F_ε we have $N_\varepsilon > n$ provided $\varepsilon \leq 2^{-n-1}$, which implies that $\lim_{\varepsilon \to 0^+} N_\varepsilon = \infty$. Moreover, from (2.10) it follows that
\[E^c = [0, 1] \setminus E \subset \limsup I_{r_j}(F_{j-1}), \]
which by (2.14) and the pointwise L^2 convergence of v_n implies that
\[\|v(s)\|_2^2 = M \quad \text{for all} \ s \in E^c. \]
Thus we only need to consider $s \in I_r \cap E$. In this case $s \notin F_{N_\varepsilon}$, however, $s \in E_m$ for some $m \geq N_\varepsilon$ and $v(s) = v_m(t)$, then $s \in I_{r_m+1}(F_m)$, and therefore, (2.14) implies that
\[\|v(s)\|_2^2 - M \leq 2^{-N_\varepsilon}. \]
Taking a limit $\varepsilon \to 0$ we obtain $\lim_{\varepsilon \to 0^+} \|v(s)\|_2^2 = M$. Thus statement (1) is proved. As a special case of the jump discontinuities, statement (2) follows as well.

The smoothness of v on the set E and the uniform smallness of v in $W^{1,1}$ follow directly from (2.17) and (2.16) respectively. So, statement (3) has been obtained as well.

Next, we use a gluing technique to glue pieces of weak solutions given by Theorem 1.5 to obtain Theorem 1.6.

Proof of Theorem 1.6. It is clear that Theorem 1.5 works for any interval $[t_0, t_1]$. Also, the energy level M_ε depends only on the vector field a and M_ε can be any positive number when $a = 0$. Without loss of generality, we assume $T = 1$.

Step 1: Constructing approximate sequence u_n. Let C_α be a fat Cantor set on $[0, 1]$ with measure $(1 - \alpha)$ (each time remove the middle interval of length $(\frac{\alpha}{1+2\alpha})^n$). In other words,
\[C_\alpha = [0, 1] \setminus \bigcup_{n \geq 1} \bigcup_{1 \leq j \leq 2^{n-1}} I_{j,n}^\alpha, \]
where $I_{j,n}^\alpha$ are the open intervals removed from the fat Cantor set C_α at step n.

Let us first construct a sequence of weak solutions of (NSE) that are supported on $I_{j,n}^\alpha$. Applying Theorem 1.5 on each interval $I_{j,n}^\alpha$ with $(\varepsilon, a, M_\varepsilon) := (\varepsilon 4^{-n}, 0, 1)$, we obtain a weak solution $u_{j,n}$, which we then extend trivially to the whole interval $[0, 1]$. The resulting sequence of weak solution $u_{j,n}$ satisfy

1. $u_{j,n}$ is supported on $\overline{I_{j,n}^\alpha}$. Moreover,
\[u_{j,n}(t) = 0, \quad \text{for} \ t \notin I_{j,n}^\alpha. \]

2. $u_{j,n}$ is small in $W^{1,1}$,
\[\|u_{j,n}\|_{W^{1,1}} \leq \varepsilon 4^{-n}. \]

3. $\|u_{j,n}\|_2^2$ is discontinuous on a dense subset $F_{j,n}^\alpha \subset \overline{I_{j,n}^\alpha}$.

Since $\overline{I_{j,n}^\alpha} \cap \overline{I_{j,n'}^\alpha} = \emptyset$ if $j \neq j'$ or $n \neq n'$, namely $u_{j,n}$ have disjoint temporal supports, we can construct another sequence of weak solutions of (NSE) by defining
\[u_n = \sum_{1 \leq k \leq n} \sum_{1 \leq j \leq 2^{n-1}} u_{j,k}. \]

As both summations are finite, u_n are weakly continuous in L^2 and are indeed weak solutions on $T^3 \times [0, 1]$.

Step 2: Convergence and weak continuity of u_n. We claim that $u_n(t)$ pointwise converges in L^2 and define
\[u(t) = \lim_{n \to \infty} u_n(t), \quad t \in [0, 1]. \]

To prove this claim, consider two sub-cases.

(a) If $t \in C_\alpha$, then $u_n(t) = \sum_{k \leq n} \sum_{j} u_{j,k}(t) = 0$ for all n. So, in particular, $u_n(t) \to 0$ in L^2.

(b) If $t \in [0, T] \setminus C_\alpha$, then there exist $j, n \in \mathbb{N}$ such that $t \in I_{j,n}^\alpha$. Thus $u_{j,n}(t) = u_n(t)$ for any $m \geq n$, and consequently $u_n(t) = u_n(t)$.

Combining this with (2.23), it is also clear that statement (2) holds.

Next, we show that $u \in C_\alpha([0, 1]; L^2)$, i.e., $u(t)$ is weakly continuous. Let $\varphi \in L^2(T^3)$ and $t_0 \in [0, 1]$. As usual, we consider the split
\[|u(t) - u(t_0),\varphi| \leq |u(t) - u_n(t),\varphi| + |u_n(t) - u_n(t_0),\varphi| + |u_n(t_0) - u(t_0),\varphi|. \]
Thanks to (2.23), for any \(t \in [0,1] \) we have
\[
|\langle u(t) - u_n(t), \varphi \rangle| \leq \| u - u_n \|_{L^\infty W^{1,1}} \| \varphi \| \leq \| \varphi \| \sum_{k>n} \sum_{1 \leq j \leq 2^{n-1}} \| u_{j,k} \|_{L^\infty W^{1,1}} \leq \varepsilon 2^{-n} \| \varphi \| \infty.
\]

So the first and the last terms in (2.24) go to zero as \(n \to \infty \), which together with the weak continuity of \(u_n \) implies the weak continuity of \(u \) in \(L^2 \).

Finally, we show that \(u \) is a weak solution of (NSE). Let test function \(\varphi \in C_c^\infty (T^3 \times [0,1]) \) be mean-free and divergence-free for all \(t \in [0,1] \). By the weak formulation of (NSE) for \(u_n \) we get
\[
\int_{T^3} u_n(x,0) \cdot \varphi(x,0) \, dx + \int_0^1 \int_{T^3} u_n \cdot \partial_t \varphi + u_n \cdot (\nabla \varphi) \varphi + u_n \cdot \Delta \varphi \, dx \, d\tau = 0.
\]

Since \(u_n(0) = u(0) = 0 \), the first term is zero. For the rest of the terms it suffices to show that
\[
u_n \to u \quad \text{in } L^2_{t,x} \quad \text{as } n \to \infty.
\]

Consider a remainder set
\[
I_n = \bigcup_{m>n} \bigcup_{1 \leq j \leq 2^{n-1}} I^\alpha_{j,m}.
\]

Since \(\text{supp}_t u_{j,m} \subset I^\alpha_{j,m} \) we know that
\[
u(t) = u_n(t) \quad \text{for all } t \in [0,1] \setminus I_n.
\]

Moreover, the set \(I_n \) is small by direct computation:
\[
|I_n| \lesssim \left(\frac{2 \alpha}{1 + 2 \alpha} \right)^n.
\]

Thanks to the above, we have
\[
\| u_n - u \|_{L^2_{t,x}(T^3 \times [0,1])} = \| u_n - u \|_{L^2_{t,x}(T^3 \times I_n)} \leq \| u_n - u \|_{L^\infty_{t,x} I_n} |I_n|^2 \to 0
\]
as \(n \to \infty \). So, we have proved that \(u \in C_w(0,1; L^2) \) is a weak solution of (NSE) satisfying statement (2).

Step 3: Discontinuities of \(\| u \|_2^2 \) on \(E_\alpha \). We first define the countable set \(F_\alpha \):
\[
F_\alpha = \bigcup_{j,m} F^\alpha_{j,m}
\]
where recall that \(F^\alpha_{j,m} \) is the set of jump discontinuities of \(\| u_{j,m} \|_2^2 \). From the definition of \(F^\alpha_{j,m} \) it follows that \(F_\alpha \cap C_\alpha = \emptyset \). Moreover, it is clear that \(F_\alpha \) is a dense subset of \([0,1] \).

Let us show the discontinuity on \(E_\alpha = C_\alpha \cup F_\alpha \). Suppose \(t_0 \in F_\alpha \), then \(t_0 \in I^\alpha_{j,m} \) for some \(j, m \). Moreover, this implies that
\[
u(s) = u_{j,m}(s) \quad \text{for all } s \in I^\alpha_{j,m}.
\]

Since \(u_{j,m} \) is a weak solution given by Theorem 1.5, \(\| u \|_2^2 \) is discontinuous at \(t_0 \):
\[
\lim_{s \to t_0} \| u(s) \|_2^2 > \| u(t_0) \|_2^2.
\]

Next, suppose \(t_0 \in C_\alpha \), then \(\| u(t_0) \|_2^2 = 0 \). Let \(t_k \) be a sequence such that \(t_k \to t_0 \) as \(k \to \infty \) and each \(t_k \) is the endpoint of \(I^\alpha_{j,k} \) for some \(j = j(k) \). Then from Theorem 1.5 we get
\[
\limsup_{s \to t_k} \| u(s) \|_2^2 \geq \limsup_{s \to t_k} \| u_k(s) \|_2^2 = 1.
\]

So, for any \(t_0 \in C_\alpha \) we have
\[
\limsup_{s \to t_0} \| u(s) \|_2^2 > \| u(t_0) \|_2^2.
\]

Statement (1) is now proved.

We finish this section by proving Theorem 1.4.

Proof of Theorem 1.4 assuming Proposition 2.1. Given any smooth force term \(f \), let \(v_0 = 0 \) and \(R_0 = -R f \). So \((v_0, R_0)\) solves (gNSR) with data \(a = 0 \) and \(f \). Then define
\[
M_f = \frac{4}{C} \| R_0 \|_{L^1}.
\]

For any \(M \geq M_f \) we can construct the solution as follows. Let the energy level \(e_n = (1 - 2^{-n})M \) for \(n \in \mathbb{N} \). Again, the choice of \(e_n \) is admissible due to \(M \geq M_f \).
Starting with \((v_0, R_0)\), we apply Proposition 2.1 to \((v_n, R_n)\) with the same parameters as in the proof of Theorem 2.2:
\[
(r, e_0, e_1, e, \mathcal{F}_0, \mathcal{F}_1) = (4^{-n-1}, e_n, e_{n+1}, e_n, 0, 0),
\]
where \(e_n\) is the same as (2.13). It should be noted that the value of \(r\) does not matter here as all \(v_n\) are stationary and \(\mathcal{F}_0 = \mathcal{F}_1 = \emptyset\). Clearly, \((v_n, R_n)\) are smooth solutions of (gNSR) with data \(a = 0\) and \(f\) such that
\[
\left\|v_n\right\|^2 - e_n \leq c_0 M 2^{-n-1},\]
\[
\left\|R_n\right\|_1 \leq 2^{-n-1} e.
\]

Using the same argument as in the proof of Theorem 2.2, one can show that \(v_n\) converges to a stationary weak solution \(v \in L^2\) of (gNSE) with data \(a = 0\) and \(f\) such that \(\left\|v\right\|^2 = M\). So \(v\) is a stationary weak solution of (NSE) with forcing term \(f\).

\[\square\]

3. Viscous Eddies

In this section, the building blocks of the solution sequence are constructed. The entire construction is done in the whole space \(\mathbb{R}^3\) not on torus \(\mathbb{T}^3\). Recall the standard stationary Mikado flows can be rescaled so that the intermittency dimension \(D = 1\) [Luo18], which is insufficiently intermittent to be the building blocks for the 3D Navier-Stokes equations. Being also stationary, our viscous eddies are in the intermittency regime \(D < 1\), but the full range \(0 < D < 1\) is unattainable.

There are two main major differences between our new building blocks and previous ones used for the NSE, intermittent jets in [BV17]. First, existing building blocks for the NSE are exact or approximate solutions of the Euler equations. As a result, the linear term is purely a useless error in those convex integration schemes. In contrast, viscous eddies are a family of approximate stationary solutions to the NSE, not Euler equations, see Theorem 3.9. The Laplacian is important as it will balance the leading term in the equations. Second, viscous eddies are time-independent, which enables us to obtain stationary weak solutions with time-independent external force. In other words, we do not need time oscillations in the scheme, which might be of interest in improving the temporal regularity of wild solutions.

3.1. A geometric lemma. We start with a geometric lemma that dates back to the work of Nash [Nas54]. A proof of the following version, which is essentially due to De Lellis and Székelyhidi Jr., can be found in [Sze13, Lemma 3.3]. This lemma allows us to reconstruct any stress tensor \(R\) in a compact subset of \(S^3_{+}^\times3\), the set of positive definite symmetric \(3 \times 3\) matrices.

Lemma 3.1. For any compact subset \(\mathcal{N} \subset S^3_{+}^\times3\), there exists \(\lambda_0 \geq 1\) and smooth functions \(\Gamma_k \in C^\infty(\mathcal{N}; [0, 1])\) for any \(k \in \mathbb{Z}^3\) with \(|k| \leq \lambda_0\) such that
\[
R = \sum_{k \in \mathbb{Z}^3, |k| \leq \lambda_0} \Gamma_k^2(R)k \otimes k \quad \text{for all } R \in \mathcal{N}.
\]

Lemma 3.1 is one of the reasons we choose to construct viscous eddies, which will be nonisotropic, closed to pipe flows, and divergence-free up to the leading order terms.

Fix a compact subset \(\mathcal{N} \subset S^3_{+}^\times3\) and let \(\mathbb{K} \subset \mathbb{R}^3\) be the finite set of vectors given by Lemma 3.1\(^5\), the directions of the major axis of viscous eddies. We can then choose a collection of points \(p_k \in [0, 1]^3\) for \(k \in \mathbb{K}\) and a number \(\mu_0 > 0\) such that
\[
\bigcup_k B_{\mu_0^{-1}}(p_k) \subset [0, 1]^3,
\]
and
\[
B_{2\mu^{-1}}(p_k) \cap B_{2\mu^{-1}}(p_{k'}) = \emptyset \quad \text{if } k \neq k'.
\]
These points \(p_k\) will be the centers of our eddies and the balls \(B_{\mu_0^{-1}}(p_k)\) will contain the supports of eddies. Let \(l_k := \{p_k + tk : t \in \mathbb{R}\} \subset \mathbb{R}^3\) be the line passing through the point \(p_k\) in the \(k\) direction.

\(^5\)For applications in this paper, the set \(\mathcal{N} \subset S^3_{+}^\times3\) is fixed. See Section 4.5.
3.2. **Velocity profiles.** Fix a smooth function $h \in C_c^\infty(\mathbb{R})$ so that $\text{supp } h \subset [1/2, 1]$. Then let

$$\phi = \frac{h'}{x} + h''.$$ \hspace{1cm} (3.1)

Also let us fix a nonnegative cutoff function $\eta \in C_c^\infty(\mathbb{R})$ such that $\eta = 1$ for $|x| \leq \frac{3}{4}$ and $\eta = 0$ for $|x| \geq 1$.

Definition 3.2 (Principle profiles ψ^μ_k and η^μ_k). For $k \in \mathbb{K}$ and $\mu \geq \tau \geq \mu_0$ let $\eta^\mu_k, \psi^\mu_k \in C^\infty(\mathbb{R}^3)$ be smooth functions defined by

$$\eta^\mu_k(x) = c\tau^{1/2} \eta(\tau(x - p_k) \cdot k) \quad \psi^\mu_k(x) = \mu \phi(\mu \text{dist}(x, l_k)),$$ \hspace{1cm} (3.2)

where c is a normalizing constant such that $\int_{\mathbb{R}^3} |\eta^\mu_k \psi^\mu_k|^2 \, dx = 1$.

Thanks to (3.1) we can use cylindrical coordinates to obtain

$$\Delta [\mu^{-1} h(\mu \text{dist}(x, l_k))] = \psi^\mu_k(x).$$

Therefore, we define the inverse Laplacian of ψ^μ_k as

$$\Delta^{-1} \psi^\mu_k(x) := \mu^{-1} h(\mu \text{dist}(x, l_k)).$$ \hspace{1cm} (3.3)

To simplify notation, let $\psi \in C^\infty(\mathbb{R}^2)$ be

$$\psi := \phi(\mu|x|).$$

With this definition, we can easily prove the following simple lemma regarding the geometry of the principle profiles η^μ_k and ψ^μ_k.

Lemma 3.3. For any $k \in \mathbb{K}$, there is an isomorphism $T_k : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that

$$\eta^\mu_k(y) = \tau^2 \eta(\tau x_3) \quad \text{and} \quad \psi^\mu_k(y) = \mu \psi(\mu x_1, \mu x_2) \quad y = T_k x \quad \text{for all } y \in \mathbb{R}^3.$$

Proof. This follows from Definition 3.2 by using cylindrical coordinates (z, r, θ) centered at p_k with z-axis being parallel with k. \hfill \square

Thanks to Lemma 3.3, we know that

$$\psi^\mu_k(T_k x) = \mu \psi(\mu x_1, \mu x_2) \quad \text{for all } x \in \mathbb{R}^3.$$

So, due to the rotational invariance of the Laplacian in \mathbb{R}^n, we define inverse Laplacian of $(\psi^\mu_k)^2$ as follows.

Let $h_2 \in C^\infty(\mathbb{R}^2)$ be the solution of $\Delta h_2 = (\psi^2)$ by means of the Newtonian potential in \mathbb{R}^2. Then define the inverse Laplacian of $(\psi^\mu_k)^2$ by

$$\Delta^{-1}(\psi^\mu_k)^2(x) := h_2(\mu T_k^{-1} x),$$ \hspace{1cm} (3.4)

such that $\Delta(\Delta^{-1}(\psi^\mu_k)^2) = \psi^\mu_k^2$.

Now we define another two profile functions, $\tilde{\psi}_k^\tau$ and $\tilde{\eta}_k^\tau$, which will constitute an important part of our eddies.

Definition 3.4 (Viscous profiles $\tilde{\psi}_k^\tau$ and $\tilde{\eta}_k^\tau$). For $k \in \mathbb{K}$ and $\mu \geq \tau \geq \mu_0$, define

$$\tilde{\psi}_k^{\tau} = \eta(\tau \text{dist}(x, l_k)) \Delta^{-1}(\psi^\mu_k)^2$$

and

$$\tilde{\eta}_k^\tau = \text{div}(\eta^2_k).$$

Note that the extra mild cutoff $\eta(\tau \text{dist}(x, l_k))$ is to make sure the support of $\tilde{\psi}_k^{\tau}$ is contained in a cylinder centered at the line l_k in \mathbb{R}^3 so that $\tilde{\eta}_k^\tau \tilde{\psi}_k^{\tau}$ is compactly supported.

In what follows, we will suppress the parameters τ, μ and use the shorthands $\eta_k = \eta^\mu_k$, $\psi_k = \psi^\mu_k$, $\tilde{\psi}_k = \tilde{\psi}_k^{\tau}$ and $\tilde{\eta}_k = \tilde{\eta}_k^\tau$.

3.3. **Vector fields \mathbb{W}_k and \mathbb{V}_k.** Let us first introduce vector fields \mathbb{W}_k and \mathbb{V}_k, both of which are essentially truncated pipe flows in \mathbb{R}^3.

Definition 3.5. Let $\mathbb{K} \subset \mathbb{R}^3$ be a finite set, so for each $k \in \mathbb{K}$ and $\mu \geq \tau \geq \mu_0$, the vector fields $\mathbb{W}_k : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ and $\mathbb{V}_k : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ are defined by

$$\mathbb{W}_k = \eta_k \psi_k k \quad \text{and} \quad \mathbb{V}_k = \tilde{\eta}_k \tilde{\psi}_k k.$$ \hspace{1cm} (3.5)

The role of each parameter is as follows.

- μ^{-1} parametrizes the concentration level of eddies.
- τ^{-1} measures the closeness of eddies to the pipe flows.
We assume the parameters are chosen such that \(\| W_k \|_2 \ll \| W \|_2 \). Hence, viscous eddies are quantitatively determined by \(W_k \). Let us show that \(W_k \) is divergence free to the leading order. Using \(\text{div} \psi_k = 0 \), we compute using standard vector calculus

\[
\nabla \times \nabla \times (\eta_k \Delta^{-1} \psi_k) = -\eta_k \psi_k + \nabla \eta_k \times (\nabla \times \Delta^{-1} \psi_k) + \nabla \times (\nabla \eta_k \times \Delta^{-1} \psi_k).
\]

(3.6)

And hence

\[
\text{div}(W_k) = \text{div} \left[\nabla \eta_k \times (\nabla \times \Delta^{-1} \psi_k) \right].
\]

If \(\eta_k \) has smaller frequency than \(\psi_k \), the above error is small. In particular, in our application \(\tau \ll \mu \) ensures this.

Note that for \(W_k \) we can choose \(\tau \ll \mu \) so that it has any small intermittency \(D > 0 \):

\[
\| \nabla \eta_k \|_p \lesssim \mu^{3/2} \tau^{-1/p} r^{1-1/p},
\]

(3.7)

however, besides being much smaller than \(W_k \), the viscous part \(V_k \) will impose other restrictions on admissible choices of \(\tau, \mu \), as indicated by Proposition 3.7.

As a direct consequence of Definition 3.2 and 3.4 we obtain

Lemma 3.6 (Compact support of \(W_k \) and \(V_k \)). For any \(\mu \geq \tau \geq \mu_0 \), the supports set of \(W_k \) and \(V_k \) verify

\[
\sup \sup \mathbb{R}^3 \mathbb{R}^3 \quad \text{for any } k \in \mathbb{K},
\]

\[
\sup \sup \emptyset \mathbb{R}^3 \mathbb{R}^3 \quad \text{if } k \neq k',
\]

and the estimate

\[
\| \text{supp } W_k \| \lesssim \tau^{-1} \mu^{-2}.
\]

3.4. **Definition of viscous eddies.** We will show that \(W_k \) and \(V_k \) can be used to form stationary solutions of the Navier-Stokes equations. The choice of \(V_k \) is inspired by the following computation:

\[
\text{div} \left(W_k \otimes W_k \right) = \text{div} \left((\eta_k)^2 \psi_k^2 \otimes k \right) = \nabla (\eta_k)^2 \cdot k (\psi_k)^2 k + 0 = \text{div} (\eta_k^2 k) \psi_k^2 k.
\]

(3.8)

The key observation here is that the direction of this term is \(k \), which makes it possible to be balanced via the Laplacian, hence the presence of \(V_k \).

Proposition 3.7. The following important estimate holds

\[
\left\| \text{div} (W_k \otimes W_k) - \Delta V_k \right\|_{L^p[\mathbb{R}^3]} \lesssim \tau^{2} \mu^{-1} \left[\mu^{2-2/p} r^{1-1/p} \right].
\]

(3.9)

We postpone the proof of Proposition 3.7 to the end of this section. With this estimate, it is natural to consider the following family of vector fields.

Definition 3.8 (Viscous eddies). Viscous eddies are vector fields of the form

\[
u = \sum_k a_k W_k - a_k^2 V_k,
\]

(3.10)

where coefficients \(a_k \in \mathbb{R} \) for each \(k \in \mathbb{K} \).

One of the advantages of using viscous eddies is that they are approximate solutions of the stationary Navier-Stokes equations.

Theorem 3.9 (Approximate stationary solutions in \(\mathbb{R}^3 \)). Let \(\mathbb{K} \subset \mathbb{R}^3 \) be finite and \(u \) be a viscous eddy:

\[
u = \sum_k a_k W_k - a_k^2 V_k,
\]

where constants \(a_k \in \mathbb{R} \) for each \(k \in \mathbb{K} \).

Then \(u \in C^\infty (\mathbb{R}^3) \) is an approximate solution of the stationary Navier-Stokes equations in the following sense. There exist a stress \(R \in C^\infty (\mathbb{R}^3) \) and a vector field \(r \in C^\infty (\mathbb{R}^3) \) so that

\[
\Delta u + \text{div} (u \otimes u) = \text{div} R + r.
\]

Moreover, for any \(\varepsilon > 0 \), one can choose \(\tau, \mu > 0 \) such that

\[
\| R \|_{L^1[\mathbb{R}^3]} + \| r \|_{L^1[\mathbb{R}^3]} \leq \varepsilon.
\]
For simplicity of presentation we include the pressure in the stress term R and do not assume R is symmetric traceless. It might be possible to write the vector field r in the divergence form, gaining an additional one derivative. Such a method will require the use of inverse divergence operator on \mathbb{R}^3. However, our inverse divergence R in defined in 5.1 does not preserve compact support on \mathbb{R}^3.

As one can see, the direction k is not important for u being an approximate stationary solution to the NSE, whereas both intermittent jets in [BCV18] and Mikado flows in [Luo18] must have lattice directions to be periodic.

Proof of Theorem 3.9. Denote $u_1 = \sum_k a_k \mathbb{W}_k$ and $u_2 = -\sum_k a_k^2 \mathbb{W}_k$ then define the stress term R by

$$R = \nabla u_1 + u_1 \otimes u_2 + u_2 \otimes u_1 + u_2 \otimes u_2.$$

and the vector field r as

$$r = \Delta u_2 + \text{div}(u_1 \otimes u_1).$$

Immediately, by direct computation

$$\Delta u + \text{div}(u \otimes u) = \text{div} R + r.$$

As a result,

$$\|R\|_{L^1(\mathbb{R}^3)} \lesssim \|\nabla u_1\|_1 + \| u_1 \|_2 \| u_2 \|_2^2 + \| u_2 \|_2^2,$$

(3.11)

and

$$\|r\|_{L^1(\mathbb{R}^3)} \lesssim \sum_k \| \text{div}(\mathbb{W}_k \otimes \mathbb{W}_k) - \Delta \mathbb{W}_k \|_{L^1(\mathbb{R}^3)}.$$

By Proposition 3.7, it is easy to choose τ, μ depending on a_k such that

$$\|R\|_{L^1(\mathbb{R}^3)} + \|r\|_{L^1(\mathbb{R}^3)} \leq \epsilon.$$

□

3.5. Estimates for the viscous eddies.

Proposition 3.10. For any $\tau \leq \mu$ and $1 \leq p \leq \infty$ the following estimates hold

$$\mu^{-m} \| \nabla^m \mathbb{W}_k \|_{L^p(\mathbb{R}^3)} \lesssim m \mu^{1-2/p} \tau^{1/2-1/p},$$

$$\mu^{-m} \| \nabla^m \mathbb{V}_k \|_{L^p(\mathbb{R}^3)} \lesssim m \tau^{3/2} \mu^{-1} \left[\mu^{1-2/p} \tau^{1/2-1/p} \right],$$

$$\tau^{m} \mu^{-n} \| \nabla^m \eta_k \|_{L^p(\mathbb{R}^3)} \lesssim m \mu^{-2} \tau^{1-2/p} \mu^{1-2/p}.$$

Proof. We prove the estimates for $p < \infty$. The limit case $p = \infty$ can be obtained with minor changes. Let us first estimate \mathbb{W}_k. By the product rule, we have

$$\| \nabla^m \mathbb{W}_k \|_{L^p} \lesssim m \sum_{0 \leq i, j \leq m} \left(\int_{\mathbb{R}^3} |\nabla^i \eta_k|^p |\nabla^m-i \psi_k|^p \, dx \right)^{1/p}. $$

(3.12)

Thanks to Lemma 3.3, by the change of variable $y = T_k x$ we have

$$\left(\int_{\mathbb{R}^3} |\nabla^i \eta_k|^p |\nabla^m-i \psi_k|^p \, dx \right)^{1/p} \lesssim \tau^{1/2} \mu^{1/2} \mu^{-i} \left(\int_{\mathbb{R}} |\nabla^i \eta(x, 1)|^p \, dx \right)^{1/p} \int_{\mathbb{R}^2} |\nabla^{m-i} \psi(\mu x_2, \mu x_3)|^p \, dx_2 dx_3 \right)^{1/p}.$$

Since $\tau \leq \mu$, it follows from the above estimates and (3.12) that

$$\| \nabla^m \mathbb{W}_k \|_{L^p} \lesssim m \mu^{-2} \tau^{1/2} \mu^{1-2/p}. $$

It remains to prove the last two inequalities. The estimate for \mathbb{W}_k can be obtained in almost the same way. By the product rule

$$\| \nabla^m \mathbb{V}_k \| \lesssim m \sum_{0 \leq i, j \leq m} |\nabla^{i+1} \eta_k|^2 |\nabla^j \eta| |\nabla^{m-i-j} \Delta^{-1} \psi_k|^2.$$

(3.13)

where for simplicity we write $\eta = \eta(\tau \text{dist}(x, l_k))$. Observing that

$$|\nabla^j \eta(\tau \text{dist}(x, l_k))| \lesssim j \tau^j \text{ for all } j \in \mathbb{N},$$

we get

$$\| \nabla^m \mathbb{V}_k \| \lesssim m \sum_{0 \leq i, j \leq m} \tau^j |\nabla^{i+1} \eta_k|^2 |\nabla^{m-i-j} \Delta^{-1} \psi_k|^2.$$

(3.14)
Consulting (3.4), we can use a change of variable $y = T_k^{-1} x$ to obtain
\[
\left\| \nabla^{m} \mathcal{V}_k \right\|_{L^p} \lesssim_m \sum_{0 \leq i, j \leq m} \mu^{1+i+j} \mu_{m-i-j} \left(\int_{\mathbb{R}^3} |\nabla^{i+1} \eta(x)|^p \, dx \right) \left(\int_{\mathbb{R}^2} |\nabla^{m-i-j} h_2(\mu x_1, \mu x_2)|^p \, dx_1 \, dx_2 \right)^{1/p}
\lesssim_m \sum_{0 \leq i, j \leq m} \tau^{i+j} \mu_{m-i-j} \tau^{-\frac{1}{p}} \mu^{-\frac{j}{p}}.
\]
By the standing assumption $\tau \leq \mu$ and simplifying, we get
\[
\left\| \nabla^{m} \mathcal{V}_k \right\|_{L^p} \lesssim_m \mu^{m+\frac{3}{2}} \mu^{-1} \left[\mu^{1-\frac{1}{2p}} \tau^{1/2-1/p} \right].
\]
Finally, we show the last estimate. We only prove the bound for $m = 0$, since other cases follow similarly from using product rule.

From (3.3) and Lemma 3.3 it follows that
\[
\Delta^{-1} \psi_k^p(T_k x) = \mu^{-1} h(\mu x_1, \mu x_2).
\]
And hence we can use a change of variable $y = T_k^{-1} x$ to obtain that
\[
\| \eta_k \Delta^{-1} \psi_k^p \|_{L^p} \lesssim \mu^{-1} \tau^{1/2} \left(\int_{\mathbb{R}^3} |\eta(\tau x_3)|^p |h(\mu x_1, \mu x_2)|^p \, dx \right)^{1/p}
\lesssim \mu^{-2} \tau^{1/2-1/p} \mu^{-1/2}.
\]

Using the above estimates, we prove Proposition 3.7

Proof of Proposition 3.7. By direct computation,
\[
\Delta \mathcal{W}_k = \Delta(\tilde{\eta}_k \eta) \Delta^{-1} \psi_k^2 + 2 \nabla(\tilde{\eta}_k \eta) \nabla \Delta^{-1} \psi_k^2 + \eta_k \psi_k^2
\]
where we write $\eta = \eta(\tau(\text{dist}(x, l_k)))$ for short. Using $\eta(\tau(\text{dist}(x, l_k))) = 1$ for $x \in \text{supp} \psi_k$ and Definition 3.4, we have
\[
\eta_k \psi_k^2 = \text{div}((\eta_k^2) \psi_k^2).
\]

Using the above and (3.8)
\[
\text{div}(\mathcal{W}_k \otimes \mathcal{W}_k) - \Delta \mathcal{W}_k = -\Delta(\tilde{\eta}_k \eta) \Delta^{-1} (\psi_k^2)^2 - 2 \nabla(\tilde{\eta}_k \eta) \nabla \Delta^{-1} (\psi_k^2)^2.
\]

Since $\tau \leq \mu$, it suffices to bound the second term in (3.16). By Definition 3.4, we have the pointwise bound
\[
|\nabla(\tilde{\eta}_k \eta)| \lesssim |\nabla^2(\eta_k^2)| + \tau |\nabla(\eta_k^2)|.
\]

And for the second term in (3.16) we have
\[
\left\| \nabla(\tilde{\eta}_k \eta) \nabla \Delta^{-1} (\psi_k^2)^2 \right\|_{L^p(\mathbb{R}^3)} \lesssim \left\| \nabla^2(\eta_k^2) \nabla \Delta^{-1} (\psi_k^2)^2 \right\|_{L^p(\mathbb{R}^3)} + \tau \left\| \nabla^2(\eta_k^2) \nabla \Delta^{-1} (\psi_k^2)^2 \right\|_{L^p(\mathbb{R}^3)}.
\]

Observing that the terms above have been estimated in the proof of Proposition 3.10, the desire bound follows:
\[
\left\| \text{div}(\mathcal{W}_k \otimes \mathcal{W}_k) - \Delta \mathcal{W}_k \right\|_{L^p(\mathbb{R}^3)} \lesssim \tau^2 \mu^{-1} \left[\mu^{2-2\frac{1}{2p}} \tau^{1-1/p} \right].
\]

4. PROOF OF MAIN PROPOSITION: VELOCITY PERTURBATION

In this section, we start proving Proposition 2.1. The main objective of the section is to define and estimate the velocity perturbation. More specifically, we will carefully design the velocity perturbation w so that the new solution $v = v_0 + w$ has the desired properties listed in Proposition 2.1. The key is to reduce the size of the stress error term and make sure w carries a precise amount of energy on the intervals $I_{-1}^+ \cup (\mathcal{F}_1) \cup \mathcal{F}_2$ at the same time.

The rest of this section is organized as follows. We first give a general introduction of the proof, and then introduce necessary preparation works for defining w, namely fixing constants τ and μ appeared in the *viscous eddies*, choosing suitable cutoff functions in space and time and introducing Leray projection and fast oscillation operator P_σ. Finally, we define the velocity perturbation w and derive various estimates needed in the next two sections.
4.1. General introduction. To better illustrate the idea, we provide some heuristics and try to outline the general idea of the proof here. To the leading order, the velocity perturbation \(w \) consists of finitely many highly oscillating viscous eddies:
\[
 w = \sum_k a_k P_\sigma \mathbb{W}_k + a_k^2 \mathbb{P}_\nu v_k := w^{(p)} + w^{(l)}
\]
where coefficients \(a_k \) are determined by the old Reynolds stress \(R_0 \) and \(P_\sigma \) is a fast oscillation operator (see Definition 4.4).

On one hand, to control the new stress term, using \((gNSR)\) the new stress error term is then implicitly defined by
\[
 \text{div} R = \partial_t w + L_\omega w + \text{div}(w \otimes v_0 + v_0 \otimes w) + \text{div}(R_0 + w \otimes w) - \nabla p_1.
\]
The old Reynolds stress \(R_0 \) will be canceled by the interaction \(w^{(p)} \otimes w^{(p)} \) together with \(w^{(l)} \). More precisely,
\[
 \text{div}(w^{(p)} \otimes w^{(p)}) + \text{div} R_0 + \Delta w^{(l)} = \text{High frequency errors + Lower order terms.}
\]
On the left hand side, \(R_0 \) will be canceled by the high-high interaction of \(w^{(p)} \otimes w^{(p)} \) and \(\Delta w^{(l)} \) will balance the error essentially introduced by the unwanted \(\text{div}(\mathbb{W}_k \otimes \mathbb{W}_k) \) as shown in Theorem 3.9, while on the right hand side, high frequency errors will gain a factor of \(\sigma^{-1} \) when inverting the divergence and lower order terms are small even without such a gain. This will be shown by Lemma 5.8 in Section 5.

On the other hand, we need to make sure the new solution \(v \) has the desire energy profile. This is in fact mostly compatible with the above effort of controlling the new stress error. Heuristically, to balance the stress term \(R_0 \), one must at least spend energy of size \(\sim \| R_0 \|_t \). In other words,
\[
 \| w(t) \|_2^2 \gtrsim \| R_0(t) \|_v \text{ for all } t.
\]
However there is a lot of flexibility in choosing the size of \(w \), as one can use more energy than needed to balance the old stress term \(R_0 \). In our scheme, the size of \(\| w \|_2 \) on the intervals \(I_{4^{-r},(F_1)} \) is determined by the given energy levels \(e_0 \) and \(e_1 \), where the old stress error term is already quite small (the second condition for \((v_0, R_0)\) in Proposition 2.1). This ensures the controllability of matching the stress and pumping the energy at the same time. See (4.3) and Section 6 for more details.

4.2. Setup of constants. First, we set up the constants appeared in the definition of the vector fields \(\mathbb{W}_k^{\tau,\mu} \) and the viscous eddies.

The major parameter \(\lambda \) will be a sufficiently large parameter that is the (spacial) frequency of the perturbation. The parameters \(\tau, \mu \) in the viscous eddies are defined explicitly as powers of \(\lambda \). Moreover, we also define an integer \(\sigma \) to parametrize the oscillation of the eddies.

In the sequel, we fix
\[
\begin{cases}
 \sigma = \lambda^{1/15} \\
 \mu = \lambda^{14/15} \\
 \tau = \lambda^{2/5}.
\end{cases}
\]

(4.1)

Apparently, we have the following hierarchy of constants:
\[
 \sigma \ll \tau \ll \mu \ll \lambda.
\]

For periodicity, we require that \(\sigma \) is always an integer. Let us briefly discuss the scales involved in the definition of \(w \). In essence, by raising the value of \(\lambda \) the choice of parameters ensure that the new stress term \(R_0 \) introduced by \(w \) can be as small as we want on \(I_{4^{-1},(F_1)} \) and the energy of new solution \(\| v(t) \|_2^2 \) can be controlled precisely.

There are mainly three constraints in choosing the scales:

- The first constraint is due to the small intermittency requirement. Since \(\lambda \) is the frequency of \(w \) which consists of oscillation \(\sigma \) and concentration \(\tau \) and \(\mu \), for \(w \) to be small in \(W^{1,1} \) it requires
\[
 \lambda \tau^{-\frac{1}{2}} \mu^{-1} \ll 1.
\]
- The second constraint is due to the correct energy level. Since \(\| w^{(l)} \|_2 \) controls the energy level of the new solution \(v \), we need \(\| w^{(l)} \|_2 \ll \| w^{(p)} \|_2 \) and \(\| w^{(c)} \|_2 \ll \| w^{(p)} \|_2 \). From the definition of \(w^{(l)} \) and \(w^{(c)} \), i.e. (4.12) and (4.13), this implies
\[
 \tau^2 \ll \mu.
\]
- The last two constraints are for the viscous part \(w^{(l)} \). There will be a new error introduced by \(\Delta \), namely \(R_{low} \) in Lemma 5.8. To make sure \(R_{low} \) is small, we need
\[
 \tau^2 \ll \mu.
\]
It is easy to verify that our choice of constants (4.1) satisfies all the above constraints.

Next, we introduce a constant M, whose role is to limit the order of derivative that we will take so that the implicit constants stay bounded.

Definition 4.1 (The constant M). Let $N = 150$ and $\theta = 1/2$. We define M to be the constant obtained from applying Proposition 4.7 with θ and N.

4.3. Cut-offs in space and time

Let $\chi : \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^+$ be a positive smooth function so that it is monotone increasing with respect to $|x|$ and

$$\chi^2(x) = \begin{cases} 1, & 0 \leq |x| \leq 1 \\ |x|, & |x| \geq 2 \end{cases} \quad (4.2)$$

where $|\cdot|$ denotes the Euclidean matrix norm. Note that by definition

$$\|\nabla^m \chi\|_{\infty} \lesssim m. 1.$$

Now we choose a proper threshold $\rho_0(t)$ to control how much energy is added. Given an solution (v_0, R_0) and energy level e_1 as in the statement of Proposition 2.1, let

$$\rho_0(t) = \frac{1}{12} (\tilde{e}_1 - \|v_0(t)\|_2^2), \quad (4.3)$$

where $\tilde{e}_1 = e_1 - 10^{-6}(e_1 - e_0)$ is to leave room for future corrections. Note that ρ_0 is bounded from below:

$$\rho_0(t) \gtrsim e_1 - e_0 \geq C^{-1} \delta_0, \quad (4.4)$$

due to the assumptions (1) and (2) in Proposition 2.1, where $\delta_0 = \|R_0\|_{L^\infty L^1_t([0,T])}$ and the universal constant C in Proposition 2.1 will be specified in Section 6.

To deal with the issue of the Reynolds stress R_0 having large magnitudes, we introduce a divisor as follows. Define $\rho : \mathbb{T}^3 \times [0, T] \rightarrow \mathbb{R}^+$ to be

$$\rho(x, t) = 4\rho_0 \chi^2(\rho_0^{-1} R_0). \quad (4.5)$$

It follows from the above definitions that

$$\frac{|R_0|}{\rho} = \frac{|R_0|}{4\rho_0 \chi^2(\rho_0^{-1} R_0)} \leq \frac{1}{2} \quad \text{for all } (x, t) \in \mathbb{T}^3 \times [0, T].$$

Next, we introduce a cutoff in time so that the energy profile of the new solution satisfies all the required properties. For the exceptional set F_1 (cf. (2.1)), let $\theta : \mathbb{R} \rightarrow \mathbb{R}^+$ be a smooth cut-off function such that

$$\theta(t) = \begin{cases} 1, & t \in I_{-1}^{-1}(F_1) \\ 0, & t \notin I_{-1}^{-1}(F_1) \end{cases}, \quad (4.6)$$

and

$$\|\theta^{(n)}\|_{\infty} \lesssim n^{-n} \quad \text{for all } n \in \mathbb{N}. \quad (4.7)$$

Remark 4.2. When $F_1 = \emptyset$, we take $\theta = 1$, so there is no cutoff in time. This will ensure that if $F_0 = F_1 = \emptyset$ and the solution v_0 is stationary, then the velocity perturbation w is also stationary.

4.4. Leray projection and fast periodization operator

To define the velocity perturbation, we recall the definition of Leray projection.

Definition 4.3 (Leray projection). Let $v \in C^\infty(\mathbb{T}^3, \mathbb{R}^3)$ be a smooth vector field. Define the operator Q as

$$Qv := \nabla f + \int_{\mathbb{T}^3} v$$

where $f \in C^\infty(\mathbb{T}^3)$ is the smooth solution of

$$\Delta f = \text{div } v \quad \text{for all } x \in \mathbb{T}^3.$$

Furthermore, let $\mathcal{P} = \text{Id} - Q$ be the Leray projection onto divergence-free vector fields with zero mean.

To avoid potential abuse of notation, we will utilize the following fast periodization operator P_σ for functions whose support sets are contained in $[0, 1]^3$. We will apply P_σ to the viscous eddies so that they oscillate at a frequency much higher than the that of the solution (v_0, R_0).

Definition 4.4 (Fast periodization operator P_σ). Let $\sigma \in \mathbb{N}$. Suppose $f \in C^\infty_c(\mathbb{R}^3)$ and supp $f \subset [0, 1]^3$, define the fast periodization operator P_σ by

$$P_\sigma f(x) = \sum_{m \in \mathbb{Z}^3} f(\sigma x + m). \quad (4.8)$$
By definition \(P_\sigma f \) is \(\sigma^{-1}\mathbb{T}^3 \)-periodic, and for any differentiation \(\nabla^n \), we have

\[
\nabla^n P_\sigma f = \sigma^n P_\sigma \nabla^n f
\]

which will be used without mentioning in the future.

4.5. Definitions of the perturbation. With all the preparations in hand, we can define the velocity perturbation \(w \).

We first apply Lemma 3.1 for \(\mathcal{B} = \{ R \in \mathcal{S}_4^{3 \times 3} : |1d - R| \leq 1/2 \} \) to obtain smooth functions \(\Gamma_k : \mathcal{B} \to \mathbb{R} \) for \(k \in \mathbb{Z}^3, |k| \leq \lambda_0 \). Then the coefficients for the viscous eddies are defined by

\[
a_k(x, t) = \rho^{1/2}(x, t)\Gamma_k \left(1d - \frac{R_0}{\rho} \right) \quad \text{for } k \in \mathbb{Z}^3, |k| \leq \lambda_0.
\]

In view of Theorem 3.9, define vector fields

\[
w^{(p)} = \theta \sum_k a_k P_\sigma W_k,
\]

and

\[
w^{(l)} = -\theta^2 \sigma^{-1} \sum_k a_k^2 P_\sigma V_k.
\]

Also define a divergence-free correction term

\[
w^{(c)} = -\sigma^{-2} \nabla \times \nabla \times (\theta \sum_k a_k P_\sigma \eta_k \Delta^{-1} \psi_k k) - w^{(p)} - Qw^{(l)}.
\]

Finally, the velocity increment \(w \) is defined by

\[
w = \theta \sum_k a_k P_\sigma W_k - \theta^2 \sigma^{-1} \sum_k a_k^2 P_\sigma V_k + w^{(c)}.
\]

which also reads

\[
w = w^{(p)} + w^{(l)} + w^{(c)}.
\]

From Definition 3.2 and (3.3) it follows that

\[
\text{supp } \eta_k \Delta^{-1} \psi_k \subset [0, 1]^3 \quad \text{and} \quad \text{supp } V_k \subset [0, 1]^3,
\]

and thus \(P_\sigma \) may be applied and \(w \) is well-defined. It is clear that \(w \) is periodic due to the periodicity of coefficients \(a_k \) and the periodization operator \(P_\sigma \). As \(w \) is the sum of a double curl and a divergence-free term \(Pw^{(l)} \), it is also divergence-free. Also since the operator \(P \) removes mean, \(w \) has zero mean as well.

Next, we show the smoothness of \(w \), for which it suffices to show the following simple result for the coefficients \(a_k \).

Lemma 4.5 (Properties of coefficients \(a_k \)). The coefficients \(a_k \) defined by (4.10) are smooth on \(\mathbb{T}^3 \times [0, T] \). There exist a number \(\kappa = \kappa(e_1, v_0, R_0) \geq \sigma^{-1} \) such that

\[
\max_k \|a_k\|_{C^m_{t,x}} \leq \kappa^{m+1} \quad \text{for any integer} \quad 0 \leq m \leq 4M;
\]

the following bounds hold

\[
\|\rho(t)\|_{L^1} \lesssim \rho_0(t), \quad \|a_k(t)\|_{L^2} \lesssim \rho_0(t)^{1/2};
\]

and we have the identity

\[
\sum_k a_k^2 \int_{\mathbb{T}^3} W_k \otimes W_k = \rho \text{Id} - R_0.
\]

Proof. Recall that

\[
a_k = 2\rho_0^{1/2} \chi(\rho_0^{-1}R_0)\Gamma_k \left(1d - \frac{R_0}{\rho} \right).
\]

To show that \(a_k \) has bounded space-time Hölder norms of order \(4M \), it suffices to check that each factor above is smooth as the domain \(\mathbb{T}^3 \times [0, T] \) is compact. Since

\[
\rho_0^{1/2} = \frac{1}{2\sqrt{3}}(\tilde{e}_1 - \|\rho_0(t)\|^{1/2})^{1/2},
\]
which is bounded from below by (4.4), the function $\rho_0^{1/2}$ is smooth on $[0, T]$. By the same argument and the definition of χ in (4.2), we may also conclude that $\chi(\rho_0^{-1} R_0) \in C_{x,t}^{\infty}(T^3 \times [0, T])$. Since $\Gamma_k \in C_{x,t}^{\infty}(B)$, the last term in (4.18) is also in $C_{t,x}^{\infty}$.

Next, let us prove (4.16). Since $0 \leq \theta \leq 1$, by definition of ρ in (4.5), we have

$$\|\rho(t)\|_{L^1} \leq \int_{|R_0| \leq \rho_0} \rho(x,t)dx + \int_{|R_0| \geq \rho_0} \rho(x,t)dx \leq \rho_0 \left(\int_{|R_0| \leq \rho_0} 1dx + \int_{|R_0| \geq \rho_0} |R_0|dx \right) \lesssim \rho_0,$$

where we have used $\|R_0\|_{L^1_{x,t}} = \delta_0 \lesssim \rho_0$ due to (4.4).

For the second bound in (4.16), we can directly compute to obtain:

$$\|a_k(t)\|^2 \lesssim \rho_0 \theta^2 \int_{T^3} \chi^2(\rho_0^{-1} R_0)dx \lesssim \rho_0 \theta^2.$$

Finally, by using (4.18), the identity (4.17) follows from Lemma 3.1.

4.6. Estimates for the perturbations. This subsection is devoted to various estimates for the perturbation w. We start with computing the corrector $w^{(c)}$ using standard vector calculus.

Lemma 4.6 (Structure of the corrector). The corrector $w^{(c)}$ verifies

$$w^{(c)} = w^{(cp_0)} + w^{(cp_1)} + w^{(cp_2)} + w^{(cl)}$$

where $w^{(cp_0)}$, $w^{(cp_1)}$, and $w^{(cp_2)}$ are respectively

$$w^{(cp_0)} = \theta \sum_k \left[-a_k \mathbf{P}_\sigma \left(\nabla \eta_k \times (\nabla \times \Delta^{-1} \psi_k) - \nabla \times (\nabla \eta_k \times \Delta^{-1} \psi_k) \right) \right],$$

$$w^{(cp_1)} = \sigma^{-1} \theta \sum_k \left[-\nabla a_k \times \mathbf{P}_\sigma \left(\nabla \times (\eta_k \Delta^{-1} \psi_k) \right) + \nabla a_k \mathbf{P}_\sigma \nabla (\eta_k \Delta^{-1} \psi_k) + \nabla a_k \mathbf{P}_\sigma \text{div}(\eta_k \Delta^{-1} \psi_k) \right],$$

$$w^{(cp_2)} = \sigma^{-2} \theta \sum_k \left[-\nabla^2 a_k \mathbf{P}_\sigma (\eta_k \Delta^{-1} \psi_k) + \Delta a_k \mathbf{P}_\sigma (\eta_k \Delta^{-1} \psi_k) \right],$$

and $w^{(cl)}$ verifies

$$w^{(cl)} = \theta^2 Q \left(\sum_k a_k^2 \mathbf{P}_\sigma \psi_k \right).$$

Proof. The last formula is trivial considering Definition 4.3. Let us show the first three. Without loss of generality, we assume $\sigma = 1$ and drop \mathbf{P}_σ in the computation for simplicity of notations, as the general case follows by keeping track of σ when commuting \mathbf{P}_σ with differentiation. We further assume $\theta = 1$ and omit the summation in k.

Under these simplifications, we need to show that

$$w^{(cp_0)} + w^{(cp_1)} + w^{(cp_2)} = -\nabla \times \nabla \times (a_k \eta_k \Delta^{-1} \psi_k) - w^{(p)}.$$

By the vector identity $\nabla \times (\phi F) = \phi (\nabla \times F) + \nabla \phi \times F$ we have

$$-\nabla \times \nabla \times (a_k \eta_k \Delta^{-1} \psi_k) - w^{(p)} := X_1 + X_2 + X_3,$$

where X_1, X_2, X_3 verify respectively

$$X_1 = -a_k \nabla \times \nabla \times (\eta_k \Delta^{-1} \psi_k) - w^{(p)},$$

$$X_2 = -\nabla a_k \times \nabla \times (\eta_k \Delta^{-1} \psi_k),$$

$$X_3 = -\nabla \times (\nabla a_k \times \eta_k \Delta^{-1} \psi_k).$$

Terms with no derivative on a_k are all in the first term X_1:

$$X_1 - w^{(p)} = -a_k \left[\nabla \eta_k \times (\nabla \times \Delta^{-1} \psi_k) + \nabla \times (\nabla \eta_k \times \Delta^{-1} \psi_k) \right],$$

which means that the formula for $w^{(cp_0)}$ is obtained.

As the first term in $w^{(cp_1)}$ is just X_2, all we need to do is to compute X_3 to obtain $w^{(cp_1)}$ and $w^{(cp_2)}$. Thanks to the vector identity $\nabla \times (F \times G) = (G \cdot \nabla)F - (F \cdot \nabla)G + F(\text{div} G) - G(\text{div} F)$, we have

$$X_3 = -\nabla^2 a_k (\eta_k \Delta^{-1} \psi_k) + \nabla a_k \cdot \nabla (\eta_k \Delta^{-1} \psi_k) - \nabla a_k \cdot \text{div}(\eta_k \Delta^{-1} \psi_k) + \Delta a_k (\eta_k \Delta^{-1} \psi_k).$$
Thus the identities for \(w^{(ep1)} \) and \(w^{(ep2)} \) are also proved.

We recall the following improved Hölder’s inequality for functions with fast oscillation proven in \([\text{Luo18}]\), which is crucial in obtaining the \(L^2 \) decay of the perturbation \(w \). For convenience we include a proof in Appendix \(B \).

Proposition 4.7. For any small \(\theta > 0 \) and any large \(N > 0 \) there exist \(M \in \mathbb{N} \) and \(\lambda_0 \in \mathbb{N} \) so that for any \(\mu, \sigma \in \mathbb{N} \) satisfying \(\lambda_0 \leq \mu \leq \sigma^{1-\theta} \) the following holds. Suppose \(a \in C^\infty(\mathbb{T}^3) \) and let \(C_\alpha > 0 \) be such that
\[
\|\nabla a\|_\infty \leq C_\alpha \mu^i \text{ for any } 0 \leq i \leq M.
\]
Then for any \(\sigma^{-1}\mathbb{T}^3 \) periodic function \(f \in L^p(\mathbb{T}^3), \ 1 < p < \infty \), the following estimates are satisfied.

- If \(p \geq 2 \) is even, then
 \[
 \|af\|_p \lesssim_{p,\theta,N} \|a\|_p \|f\|_p + C_\alpha \|f\|_p \sigma^{-N}.
 \]
- If \(f_{\mathbb{T}^3} f = 0 \) then for \(0 \leq s \leq 1 \):
 \[
 \||\nabla|^{-1}(af)|\|_p \lesssim_{p,s,\theta,N} \sigma^{-1+s} \|\nabla|^{-s}(af)|\|_p + C_\alpha \|f\|_p \sigma^{-N}.
 \]

All the implicit constants appeared in the statement are independent of \(\alpha, \mu \) and \(\sigma \).

Remark 4.8. Throughout the paper, we will always apply Proposition 4.7 for \(\theta = \frac{1}{4} \) and \(N = 150 \). These two fixed constants determine the constant \(M \).

With the help of Proposition 4.7, we are in the position to derive useful estimates for the velocity perturbation \(w \).

Proposition 4.9 (Spacial frequency estimates). For any \(\lambda \) sufficiently large , \(1 \leq p \leq 2 \), and integer \(0 \leq m \leq M \) the following estimates hold:
\[
\lambda^{-m} \|\nabla^m w^{(p)}(t)\|_p \lesssim_\theta \rho_0^{i/2} \left(\mu^{1-\frac{2}{p}} + \sigma^{1-\theta} \right),
\]
\[
\lambda^{-m} \|\nabla^m w^{(1)}(t)\|_p \lesssim_\theta \sigma \left(\mu^{1-\frac{2}{p}} + \sigma^{1-\theta} \right),
\]
\[
\lambda^{-m} \|\nabla^m w^{(c)}(t)\|_p \lesssim_\theta \sigma \left(\mu^{1-\frac{2}{p}} + \sigma^{1-\theta} \right).
\]

Proof. Bounds for \(w^{(p)} \): By Lemma 3.3,
\[
|\mathbb{T}^3 \cap \text{supp } P_\sigma \mathcal{W}_k| \lesssim \sigma^{-1} \mu^{-2},
\]
it suffices to show (4.21) for \(p = 2 \).

By product rule,
\[
\|\nabla^m w^{(p)}\| \lesssim_\theta \sum_{k} \sum_{0 \leq i \leq m} \sigma^{m-i} \|\nabla^i ak\| \|\nabla^m P_\sigma \mathcal{W}_k\|.
\]
As \(P_\sigma \mathcal{W}_k \) is \(\sigma^{-1}\mathbb{T}^3 \)-periodic, thanks to Lemma 4.5, for sufficiently large \(\lambda(\kappa) \) such that \(\kappa^2 \leq \sigma \) we can apply Proposition 4.7 with \(\theta = \frac{1}{2} \), \(N = 150 \) and \(C_\alpha = \kappa^{1+1} \) (cf. Definition 4.1) to obtain that
\[
\|\nabla^i ak\|_{L^2} \|P_\sigma \nabla^m - i \mathcal{W}_k\|_2 \lesssim \|\nabla^i ak\|_2 \|P_\sigma \nabla^m \mathcal{W}_k\|_2 + \kappa^{i+1} \|P_\sigma \nabla^m - i \mathcal{W}_k\|_2 \sigma^{-N}.
\]

Let us consider two sub-cases: \(m = 0 \) and \(m \geq 1 \). When \(m = 0 \), it follows that
\[
\|ak P_\sigma \mathcal{W}_k\|_2 \lesssim \rho_0^{i/2} + \kappa \sigma^{-N}.
\]
As \(\sigma^{-N} = \lambda^{-100} \) and \(\rho_0 \gtrsim e_1 - e_0 > 0 \), we can make sure for any sufficiently large \(\lambda(e_0, e_1, \kappa) \) that
\[
\|ak P_\sigma \mathcal{W}_k\|_2 \lesssim \rho_0^{i/2},
\]
from which we immediately get
\[
\|w^{(p)}(t)\|_2 \lesssim \rho_0^{i/2}.
\]
When \(m \geq 1 \), we consider the split:
\[
\sum_{0 \leq i \leq m} \sigma^{m-i} \|\nabla^i ak\|_{L^2} \|P_\sigma \nabla^m - i \mathcal{W}_k\|_2 \lesssim \sigma^m \|ak P_\sigma \nabla^m \mathcal{W}_k\|_2 + \sum_{1 \leq i \leq m} \sigma^{m-i} \|\nabla^i ak\|_{L^2} \|P_\sigma \nabla^m - i \mathcal{W}_k\|_2.
\]
We will bound these two terms separately. For the first term in (4.27), we use (4.26), Lemma 4.5, and Proposition 3.10 to obtain
\[
\sigma^m \| a_k P \sigma \nabla^m \nabla k \|_2 \lesssim \sigma^m \left(\rho_0^{1/2} \| P \sigma \nabla^m \nabla k \|_2 + \sigma^{-N} \kappa \| P \sigma \nabla^m \nabla k \|_2 \right) \\
\lesssim \sigma^m \mu^m \left(\rho_0^{1/2} + \sigma^{-N} \kappa \right).
\]
Since \(\sigma^{-N} = \lambda^{-10} \) and \(\rho_0 \gtrsim e_1 - e_0 \), for \(\lambda \) sufficiently large we get
\[
\sigma^m \| a_k P \sigma \nabla^m \nabla k \|_2 \lesssim \rho_0^{1/2} \lambda^m. \quad (4.28)
\]
For the second term in (4.27), we simply use Hölder’s inequality, Lemma 4.5, and Proposition 3.10 to obtain
\[
\sum_{1 \leq i \leq m} \sigma^{m-i} \| \nabla^i a_k \|_{\nabla^m \nabla k, L_{x,t}^\infty} \leq \sum_{1 \leq i \leq m} \sigma^{m-i} \| \nabla^i a_k \|_{L_{x,t}^\infty} \| P \sigma \nabla^m \nabla k \|_2 \\
\lesssim \sum_{1 \leq i \leq m} \sigma^{m-i} \kappa^{i+1} \mu^{m-i} \lesssim \kappa^2 \sigma^{m-1} \mu^{m-1}
\]
where we have also used \(\kappa \ll \mu \) in the last inequality. Then again, for \(\lambda \) sufficiently large, we get
\[
\sum_{1 \leq i \leq m} \sigma^{m-i} \| \nabla^i a_k \|_{\nabla^m \nabla k, L_{x,t}^\infty} \lesssim \rho_0^{1/2} \lambda^m. \quad (4.29)
\]
So for \(\lambda(\rho_0, \kappa, e_1, e_0) \) sufficiently large, putting together (4.28) and (4.29), we can bound (4.27) as
\[
\sum_{0 \leq i \leq m} \sigma^{m-i} \| \nabla^i a_k \|_{\nabla^m \nabla k, L_{x,t}^\infty} \lesssim \rho_0^{1/2} \lambda^m
\]
which implies that
\[
\| \nabla^m w^{(p)}(t) \|_2 \lesssim \rho_0^{1/2} \lambda^m \quad \text{for any } 1 \leq m \leq M.
\]
Since for any integer \(0 \leq m \leq M \) the desire estimate holds for \(p = 2 \), by Hölder’s inequality and (4.24), for \(1 \leq p \leq 2 \) we have
\[
\lambda^{-m} \| \nabla^m w^{(p)}(t) \|_p \lesssim \rho_0^{1/2} \mu^{1-2/p} \tau^{1/2-1/p}.
\]

Bounds for \(w^{(l)} \):

Without loss of generality, we prove the bound for \(m = 0 \), since general cases for \(0 \leq m \leq M \) follows from applying an additional product rule, which can be seen in the estimates for \(w^{(p)} \).

Recall the definition (4.12) that
\[
w^{(l)} = -\sigma^{-1} \theta^2 \sum_k a_k^2 P \sigma \nabla k.
\]
By Hölder’s inequality, Lemma 4.5, and Proposition 3.10, we have
\[
\| w^{(l)} \|_p \lesssim \sigma^{-1} \sum_k \| a_k^2 \|_{L_{x,t}^\infty} \| P \sigma \nabla k \|_p \\
\lesssim \kappa^2 \sigma^{-1} \tau \mu^{-2} \tau^{1-1/p} \mu^{2-2/p}.
\]
Therefore, for sufficiently large \(\lambda(\kappa) \), we can use \(\sigma^{-1} \) to absorb the factor with \(\kappa \) to obtain
\[
\| w^{(l)} \|_p \lesssim \tau^{1/2} \mu^{-1} \left[\mu^{1-2/p} \tau^{1-1/p} \right]. \quad (4.30)
\]

Bounds for \(w^{(c)} \):

Again, we only prove the bound for \(m = 0 \). Thanks to Lemma 4.6, we need to estimate \(\| w^{(c p 0)} \|_p, \| w^{(c p 1)} \|_p, \| w^{(c p 2)} \|_p \) and \(\| w^{(c l)} \|_p \). Due to the bounds \(\kappa \ll \sigma \ll \tau \ll \mu \), for \(\| w^{(c p 0)} \|_p, \| w^{(c p 1)} \|_p \) and \(\| w^{(c p 2)} \|_p \) it suffices to estimate the following term:
\[
X_p := \| a_k P \sigma \left(\nabla \eta_k || \nabla \Delta^{-1} \psi k \right) \|_p, \quad 1 \leq p \leq 2.
\]
Let us estimate \(X_2 \), i.e. \(p = 2 \). By Lemma 4.5, for sufficiently large \(\lambda(\kappa) \) such that \(\kappa^2 \leq \sigma \) we can apply Proposition 4.7 to obtain that
\[
X_2 \lesssim \| a_k \|_2 \| P \sigma \left(\nabla \eta_k || \nabla \Delta^{-1} \psi k \right) \|_2 + \kappa \sigma^{-N} \| P \sigma \left(\nabla \eta_k || \nabla \Delta^{-1} \psi k \right) \|_2.
\]
By Lemma 4.5 once more and Proposition 3.10, it follows that
\[
X_2 \lesssim \left(\rho_0^{1/2} + \kappa \sigma^{-N} \right) \tau \mu^{-1}.
\]
Since $\sigma^{-N} \leq \lambda^{-10}$, for sufficiently large $\lambda(\rho_0, \kappa)$ we can get rid of the small error as before:

$$X_2 \lesssim \rho_0 \frac{1}{\sqrt{\tau}} \mu^{-1}. \leqno{(4.31)}$$

With the bound for X_2, we can use the small support set argument to get X_p for any $1 \leq p \leq 2$ as follows. Since

$$\|T \cap \text{supp } P_x \| \nabla \eta_k \| \nabla \Delta^{-1} \psi_k k \| \lesssim \tau^{-1} \mu^{-2},$$

by Hölder’s inequality we get

$$X_p \lesssim X_2 \left(\mu^{1-2/p} \sigma^{1/2} \right) \quad \text{for all } 1 \leq p \leq 2,$$

which implies

$$\sum_{0 \leq i \leq 2} \| w^{(e)p} \|_p \lesssim \rho_0 \frac{1}{\sqrt{\tau}} \mu^{-1} \left[\mu^{1-2/p} \sigma^{1/2} \right] \quad \text{for all } 1 \leq p \leq 2. \leqno{(4.32)}$$

Now for the term $w^{(e)}$, let us introduce $p_e = p + \epsilon$ where $0 < \epsilon << 1$ is a small constant such that in view of (4.1)

$$\mu^{1-2/p_e} \sigma^{1/2} \leq \mu^{1-2/p} \sigma^{1/2} \leq 2.$$

Then the operator Q is bounded on $L^{p_e}(\mathbb{T}^3)$ for $1 \leq p \leq 2$, and we have

$$\| w^{(e)} \|_{p_e} \lesssim \| w^{(e)} \|_{p} \lesssim \epsilon \| w^{(f)} \|_{p_e} \leqno{(4.33)}$$

where the last term has been estimated in the first part of (4.30):

$$\| w^{(f)} \|_{p_e} \lesssim \kappa^2 \sigma^{-1/2} \mu^{-1} \left[\mu^{1-2/p} \sigma^{1/2} \right] \lesssim \tau^{3/2} \mu^{-1} \left[\mu^{1-2/p} \sigma^{1/2} \right].$$

Combining (4.32) and (4.33) gives

$$\| w^{(e)} \|_p \lesssim \left[\rho_0 \frac{1}{\sqrt{\tau}} \mu^{-1} + \tau^{3/2} \mu^{-1} \right] \left[\mu^{1-2/p} \sigma^{1/2} \right] \quad \text{for all } 1 \leq p \leq 2. \leqno{(4.34)}$$

Considering the choice of constants (4.1), for all sufficiently large $\lambda(\rho_0, \kappa)$, combining (4.31) and (4.34) we have

$$\| w^{(e)} \|_p \lesssim \tau^{3/2} \mu^{-1} \left[\mu^{1-2/p} \sigma^{1/2} \right] \quad \text{for all } 1 \leq p \leq 2. \leqno{(4.35)}$$

Using the choice of constants (4.1) and the established bounds (4.21), (4.23), and (4.22), we get the next useful corollary.

Corollary 4.10 (Estimates with explicit exponents). For any λ sufficiently large and $1 \leq p \leq 2$, we have

$$\| w^{(e)} \|_p + \lambda^{-1} \| \nabla w^{(e)} \|_p \lesssim \rho_0 \frac{1}{\sqrt{\tau}} \lambda^{1/2} \left(1 - \frac{1}{\mu} \right)$$

$$\| w^{(f)} \|_p + \lambda^{-1} \| \nabla w^{(f)} \|_p \lesssim \lambda - \frac{1}{2} \lambda^{1/2} \left(1 - \frac{1}{\mu} \right)$$

$$\| w^{(e)} \|_p + \lambda^{-1} \| \nabla w^{(e)} \|_p \lesssim \lambda - \frac{1}{2} \lambda^{1/2} \left(1 - \frac{1}{\mu} \right)$$

and

$$\| w \|_p + \lambda^{-1} \| \nabla w \|_p \lesssim \rho_0 \frac{1}{\sqrt{\tau}} \lambda^{1/2} \left(1 - \frac{1}{\mu} \right). \leqno{(4.36)}$$

In particular, given any $\epsilon > 0$, for λ sufficiently large

$$\| w \|_{L^p W^{1,1}_2} \lesssim \epsilon. \leqno{(4.37)}$$

The last estimate concerns the time derivative of the perturbation w. Since the velocity profiles in W_k and V_k are stationary, time derivative only falls on the slow variables ω_k and θ.

Proposition 4.11 (Temporal frequency estimates). For any λ sufficiently large, $1 \leq p \leq 2$, and integer $0 \leq m \leq M$ the following estimates hold:

$$\kappa^{-m-1} \| \partial_t^m w \|_{L^p L^p} \lesssim \mu^{1-2/p} \sigma^{1/2} \left(1 - \frac{1}{\mu} \right) \leqno{(4.38)}$$

Moreover, if (v_0, R_0) is stationary and $F_0 = F_1 = \emptyset$, then $v = v_0 + w$ is also stationary.
Proof. The last statement follows from (4.6) and the definition of a_k, namely (4.10). Let us show (4.38). In view of Lemma 4.5, it suffices to prove the bound for $m = 1$. Thanks to Lemma 4.6, we can use the decomposition

$$\partial_t w = \partial_t u^{(p)} + \partial_t u^{(cp)} + \partial_t w^{(cp1)} + \partial_t w^{(cp2)} + \partial_t P w^{(f)}.$$

We first bound the term $\partial_t u^{(p)}$. By its definition, Lemma 4.5, Hölder’s inequality and Proposition 3.10 we have that

$$\left\| \partial_t u^{(p)} \right\|_p \lesssim \sum_k \left\| \theta \alpha_k \right\|_{C_{t,x}^1} \left\| P \varphi \psi_k \right\|_p \lesssim \kappa^2 \mu^{1-2/p + 1/2 - 1/p},$$

which is exactly the bound that we need.

Next, we show the same estimate holds for the term $\partial_t P w^{(f)}$. As done in the proof of Proposition 4.9, let $p = p + \varepsilon$ with $\varepsilon > 0$ chosen small enough such that

$$\mu^{1-2/p + 1/2 - 1/p} \lesssim \mu^{1-2/p + 1/2 - 1/p} \sigma^{1/2}$$

which is possible thanks to (4.1). Then, using the L^p boundedness of the Leray projection, Hölder’s inequality, Proposition 3.10 and the above choice of p, for any $1 \leq p \leq 2$ it follows that

$$\left\| \partial_t P w^{(f)} \right\|_p \lesssim \left\| P \partial_t w^{(f)} \right\|_p \lesssim \left\| \partial_t w^{(f)} \right\|_p \lesssim \sigma^{-1} \sum_k \left\| \theta \alpha_k \right\|_{C_{t,x}^1} \left\| P \varphi \psi_k \right\|_p \lesssim \kappa^3 \sigma^{1/2} \mu^{1-2/p + 1/2 - 1/p} \mu^{1-2/p + 1/2 - 1/p} \mu^{1-2/p + 1/2 - 1/p} \sigma^{1/2}.$$

Due to our choice of constants, (4.1), for any sufficiently large $\lambda(\kappa)$ we have $\kappa^3 \sigma^{1/2} \mu^{1-2/p + 1/2 - 1/p} \leq \kappa^2$ and hence

$$\left\| \partial_t P w^{(f)} \right\|_p \lesssim \kappa^2 \mu^{1-2/p + 1/2 - 1/p}.$$

Finally, it remains to bound the terms $\partial_t u^{(cp)}$, $\partial_t u^{(cp1)}$, and $\partial_t u^{(cp2)}$. As in the proof of Proposition 4.9, due to the bounds $\kappa \ll \tau \ll \mu$, it suffices to obtain the following estimate

$$\left\| \partial_t \left(\theta \alpha_k \right) \right\|_p \lesssim \kappa^3 \tau \mu^{-1} \mu^{1-2/p + 1/2 - 1/p},$$

which easily follows from Lemma 4.5, Hölder’s inequality and Proposition 3.10. Therefore, considering that $\kappa^3 \tau \mu^{-1} \leq \kappa^2$, the above implies the desire bound:

$$\sum_{0 \leq \tau \leq 2} \left\| \partial_t u^{(cp)} \right\|_p \lesssim \kappa^2 \mu^{1-2/p + 1/2 - 1/p}$$

for all $1 \leq p \leq 2$.

\[\square\]

5. Proof of iteration lemma: new Reynolds stress

In this section, we construct a new Reynolds stress R such that (2.2) holds. The majority of this section is devoted to estimating the new Reynolds stress R using the established estimates for the velocity perturbations in Section 4. We split the Reynolds stress R into four parts and estimates them separately.

To do this, one needs to obtain a symmetric traceless matrix R as the new stress term. Since the underdetermined system (gNSR) only provides an implicit definition of R, one has to somehow “invert” the divergence. This is a standard technique in elliptic PDEs. Here, we follow the one used in [BLJY18].

Definition 5.1 (Inverse divergence). Let $f \in C^\infty(T^3)$ be a smooth vector field. The inverse divergence operator $\mathcal{R} : C^\infty(T^3, \mathbb{R}^3) \rightarrow \mathbb{R}^{3 \times 3}$ is defined by

$$\mathcal{R} f)_{ij} = \mathcal{R}_{ijk} f_k,$$

$$\mathcal{R}_{ijk} = -\frac{1}{2} \Delta^{-2} \partial_i \partial_j \partial_k - \frac{1}{2} \Delta^{-1} \partial_i \delta_{jk} + \Delta^{-1} \partial_i \delta_{jk} + \Delta^{-1} \partial_j \delta_{ik}. \quad (5.1)$$

Remark 5.2. We note that in the definition, the inverse Laplacian Δ^{-1} is defined on T^3 and gives functions with zero mean. So $\mathcal{R} f$ is always well-defined and mean free.

With the above definition, a simple exercise leads to the following.

Lemma 5.3. The operator \mathcal{R} defined by (5.1) has the following properties. For any vector field $f \in C^\infty(T^3)$ the matrix $\mathcal{R} f$ is symmetric trace-free, and

$$\text{div} \mathcal{R} f = f. \quad (5.2)$$

If additionally $\text{div} f = 0$ then

$$\mathcal{R} \Delta f = \nabla f + (\nabla f)^T. \quad (5.3)$$
With this inverse divergence operator, we are ready to give the definition of the new Reynolds stress.

Definition 5.4 (New Reynolds stress R). Define the new Reynolds stress by

\[R = \mathcal{R} \left(\partial_t w + L_\alpha w + \nabla (w \otimes v_0 + v_0 \otimes w) + \nabla (\theta^2 R_0 + w \otimes w) - \nabla p_1 \right) + (1 - \theta^2) R_0 \]

where the pressure term \(p_1 = \theta^2 \rho + \rho \) is defined in (4.5).

It is immediate that the new Reynold stress \(R \) verifies the following equation thanks to Lemma 5.3

\[\text{div } R = \partial_t w + L_\alpha w + \nabla (w \otimes v_0 + v_0 \otimes w) + \text{div} R_0 + \text{div} (w \otimes w) - \nabla p_1. \]

Consequently, since \((v_0, R_0)\) is a solution of \((gNSR)\), there exists a uniquely determined zero-mean pressure \(P \) such that the new solution \(v = v_0 + w \) verifies

\[\partial_t v + L_\alpha v + \text{div} (v \otimes v) + \nabla P = \text{div } R. \]

In view of \(w = w^{(p)} + w^{(c)} \), the new Reynolds stress can be rewritten as

\[R = R_{\text{lin}} + R_{\text{cor}} + R_{\text{osc}} + R_{\text{rem}}, \]

where the linear part \(R_{\text{lin}} \), the correction part \(R_{\text{cor}} \), oscillation part \(R_{\text{osc}} \) and the reminder part \(R_{\text{rem}} \) are respectively defined by

\[
\begin{align*}
R_{\text{lin}} &= \mathcal{R} \left(\partial_t w + L_\alpha w - \Delta w^{(f)} + \nabla (w \otimes v_0 + v_0 \otimes w) \right), \\
R_{\text{cor}} &= \mathcal{R} \left(\text{div} \left((w^{(c)} + w^{(f)}) \otimes w + w^{(p)} \otimes (w^{(c)} + w^{(f)}) \right) \right), \\
R_{\text{osc}} &= \mathcal{R} \left(\text{div} (\theta^2 R_0 + w^{(p)} \otimes w^{(p)}) + \Delta w^{(f)} - \nabla p_1 \right), \\
R_{\text{rem}} &= (1 - \theta^2) R_0.
\end{align*}
\]

In the remainder of this section, we will estimate \(R \) via the decomposition \(\|R\|_1 \leq \|R_{\text{lin}}\|_1 + \|R_{\text{cor}}\|_1 + \|R_{\text{osc}}\|_1 + \|R_{\text{rem}}\|_1 \) and show the following.

Lemma 5.5 (Estimates for \(R \)). The new Reynolds stress \(R \) obeys the estimates:

\[
\|R(t)\|_1 \leq \begin{cases}
\varepsilon & \text{for } t \in I_{4-1\varepsilon}(\mathcal{F}_1) \\
\delta_0 + \varepsilon & \text{for } t \in I_{4-2\varepsilon}(\mathcal{F}_1) \setminus I_{4-1\varepsilon}(\mathcal{F}_1) \\
\delta_0 & \text{for } t \in [0,T] \setminus I_{4-2\varepsilon}(\mathcal{F}_1)
\end{cases}
\]

(5.6)

Since \(\text{supp}_t w \subset I_{4-2\varepsilon}(\mathcal{F}_1) \), it is sufficient for us to show that

\[
\|R_{\text{lin}}\|_{L^\infty_t L^1_x} + \|R_{\text{cor}}\|_{L^p_t L^1_x} + \|R_{\text{osc}}\|_{L^p_t L^1_x} \leq \varepsilon.
\]

We first estimate the linear part. For this term, small intermittency plays a key role.

Lemma 5.6 (Linear error). For any \(\lambda \) sufficiently large

\[
\|R_{\text{lin}}\|_{L^\infty_t L^1_x} \leq \frac{\varepsilon}{4}
\]

(5.7)

Proof. Considering the fact that

\[
\|\mathcal{R}\|_{L^p(\mathbb{T}^3) \to L^p(\mathbb{T}^3)} \lesssim 1 \quad \text{for any } 1 < p < \infty
\]

due to the Hardy-Littlewood-Sobolev inequality, and that

\[
\|\mathcal{R} \text{div } L^p(\mathbb{T}^3) \to L^p(\mathbb{T}^3) \lesssim 1 \quad \text{for any } 1 < p < \infty
\]

due to the boundedness of Riesz transform, throughout the proof we fix \(p > 1 \) close to 1 such that

\[
\mu^{1-2/p} \leq \lambda^{\frac{1}{15}} (1-\lambda^{1/15}).
\]

(5.10)

Split the linear error \(R_{\text{lin}} = R_t + R_d \), where the first part \(R_t \) is the error caused by time derivative \(R_t = \mathcal{R} \partial_t w \), and the second part \(R_d \) consists of the dissipative and drifts errors

\[
R_d = \mathcal{R} \Delta (w^{(p)} + w^{(c)}) + \mathcal{R} \text{div } (w \otimes (a + v_0)) + \mathcal{R} \text{div } ((a + v_0) \otimes w).
\]

For the linear error caused by time derivative, by (5.8) and Proposition 4.11 we have

\[
\|R_t\|_p \lesssim \|\mathcal{R} \partial_t w\|_p \lesssim \kappa^2 \mu^{1-2/p} \lesssim \kappa^2 \lambda^{\frac{1}{15}}.
\]

(5.11)
We turn to estimate the linear error caused by drifts and the Laplacian. So using Lemma 5.3, (5.9) and Hölder’s inequality we get
\[\| R_d \|_1 \leq \| \mathcal{R} \Delta (w^{(p)} + w^{(e)}) \|_1 + \| \mathcal{R} \text{ div} \left(w \otimes (a + v_0) \right) \|_p + \| \mathcal{R} \text{ div} \left((a + v_0) \otimes w \right) \|_p \]
\[\lesssim \| \nabla (w^{(p)} + w^{(e)}) \|_1 + \| w \|_p \| a \|_\infty + \| v_0 \|_\infty \]. \tag{5.12} \]
By Corollary 4.10 and using (5.10) we have
\[\| \nabla (w^{(p)} + w^{(e)}) \|_1 \lesssim \left[\rho_0^{1/2} + \lambda^{-1/5} \right] \lambda^{-2/15} \]
\[\| w \|_p \lesssim \rho_0^{1/2} \lambda^{-16/15}. \]
It follows from the above and (5.12) that
\[\| R_d \|_1 \lesssim \rho_0^{1/2} \lambda^{-2/15} + \rho_0^{1/2} \lambda^{-16/15} (\| a \|_\infty + \| v_0 \|_\infty). \tag{5.13} \]
Combining (5.11) and (5.13), for any sufficiently large \(\lambda(a, \epsilon, e_1, \kappa, v_0) \) it holds
\[\| R_{\text{lin}} \|_1 \leq \| R_\epsilon \|_1 + \| R_d \|_1 \leq \frac{\epsilon}{4}. \tag{5.14} \]

Next, we turn to dealing with the correction part of the new Reynolds stress \(R \). This part is essentially caused by \(w^{(e)} \) and \(w^{(c)} \) which are both much smaller than \(w^{(p)} \).

Lemma 5.7 (Correction error). For any \(\lambda \) sufficiently large
\[\| R_{\text{cor}} \|_{L^p_\infty L^2_\infty} \leq \frac{\epsilon}{4}. \tag{5.15} \]

Proof. In view of Corollary 4.10, fix a \(p > 1 \) close to 1 such that
\[\| w^{(e)} \|_{\frac{p}{p-2}} \lesssim \lambda^{-\frac{2}{p}} \]
\[\| w^{(l)} \|_{\frac{p}{p-2}} \lesssim \lambda^{-\frac{2}{p}}. \]

By the \(L^p \) boundedness of \(\mathcal{R} \text{ div} \) and Hölder’s inequality, we have
\[\| R_{\text{cor}} \|_p \lesssim \| ((w^{(e)} + w^{(l)}) \otimes w) \|_p + \| w^{(l)} \otimes (w^{(e)} + w^{(l)}) \|_p \]
\[\lesssim (\| w^{(e)} \|_{\frac{2p}{p-2}} + \| w^{(l)} \|_{\frac{2p}{p-2}}) \| w \|_2 \tag{5.16} \]
from which it follows that
\[\| R_{\text{cor}} \|_1 \lesssim \lambda^{-\frac{1}{2}} (\rho_0^{1/2} + \lambda^{-\frac{2}{p}}). \]
Due to the negative exponent in \(\lambda \) on the right hand side, for any sufficiently large \(\lambda(e, e_0, e_1) \) we have
\[\| R_{\text{cor}} \|_1 \leq \frac{\epsilon}{4}. \tag{5.17} \]

Finally, we turn to estimate the oscillation error \(R_{\text{osc}} \), where we will utilize the fact that viscous eddies are approximate stationary solutions of NSE.

Lemma 5.8 (Decomposition of \(R_{\text{osc}} \)). The oscillation error \(R_{\text{osc}} \) can be decomposed into two parts:
\[R_{\text{osc}} = R_{\text{high}} + R_{\text{low}} \tag{5.18} \]
where \(R_{\text{high}} \) is the high frequency part
\[R_{\text{high}} = \theta^2 \mathcal{R} \sum_k \nabla (a_k)^2 \mathcal{P}_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k), \tag{5.19} \]
and \(R_{\text{low}} \) consists of lower order terms
\[R_{\text{low}} = \sigma \theta^2 \mathcal{R} \sum_k a_k^2 \mathcal{P}_\sigma (\text{div} (\mathcal{W}_k \otimes \mathcal{W}_k) - \Delta V_k) \]
\[- \sigma^{-1} \theta^2 \mathcal{R} \sum_k \Delta a_k^2 \mathcal{P}_\sigma \mathcal{V}_k + 2 \nabla a_k^2 \cdot \mathcal{P}_\sigma \nabla \mathcal{V}_k. \tag{5.20} \]
Proof. Since \mathcal{W}_k has disjoint support in space, we have

$$w^{(p)} \otimes w^{(p)} = \theta^2 \sum_k (a_k)^2 P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k)$$

which in view of Lemma 4.5 gives

$$w^{(p)} \otimes w^{(p)} = \theta^2 (t) \sum_k a_k^2 \int_{\mathbb{T}^3} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) + \theta^2 \sum_k a_k^2 \left(P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) - \int_{\mathbb{T}^3} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) \right)$$

$$= \theta^2 \rho \text{Id} - \theta^2 R_0 + \theta^2 \sum_k (a_k)^2 P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k).$$

(5.21)

Upon taking divergence on both sides of (5.21) we have for the oscillation error

$$R_{osc} = \mathcal{R} \left(\text{div} \theta^2 R_0 + \text{div}(w^{(p)} \otimes w^{(p)}) - \nabla p_1 + \Delta w^{(l)} \right)$$

$$= \mathcal{R} \left(\theta^2 \text{div} \sum_k (a_k)^2 P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) + \Delta w^{(l)} \right).$$

By the product rule we may obtain

$$R_{osc} = R_{high} + \mathcal{R} \left(\sigma \theta^2 \sum_k a_k^2 P_\sigma \text{div} (\mathcal{W}_k \otimes \mathcal{W}_k) + \Delta w^{(l)} \right).$$

(5.22)

It remains to compute the second term in (5.22). Using the definition of $w^{(l)}$, a routine computation gives

$$\Delta w^{(l)} = -\sigma \theta^2 \sum_k a_k^2 P_\sigma \Delta V_k - \theta^2 \sum_k \left[\sigma^{-1} \Delta a_k^2 P_\sigma V_k + 2 \nabla a_k^2 P_\sigma \nabla V_k \right],$$

which implies exactly

$$\mathcal{R} \left(\sigma \theta^2 \sum_k a_k^2 P_\sigma \text{div} (\mathcal{W}_k \otimes \mathcal{W}_k) + \Delta w^{(l)} \right) = R_{low}.$$

Hence the oscillation error verifies the identity $R_{osc} = R_{high} + R_{low}$. □

Remark 5.9. The term R_{high} is typical in convex integration, where the derivative falls on “slow variable” a_k and the term $P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k)$ has fast oscillation and zero mean. The presence of R_{low} is one the fundamental differences between our scheme and previous ones.

We are ready to estimate the oscillation error. The term R_{high} will be able to gain a factor of σ^{-1} via the inverse divergence \mathcal{R}, while the term R_{low} is already quite small thanks to the inverse Laplacian. In other words, R_{high} is of high frequency while R_{low} is of not high frequency but instead lower order.

Lemma 5.10 (Oscillation error: R_{high}). For any λ sufficiently large

$$\|R_{high}\|_{L^p(\mathbb{T}^3)} \leq \frac{\lambda}{4}.$$

(5.23)

Proof. Throughout the proof, let us fix two small parameters $\alpha > 0$ and $p > 1$ such that $\alpha < 1$ and the Sobolev embedding $W^{\alpha,1}(\mathbb{T}^3) \hookrightarrow L^p(\mathbb{T}^3)$ holds.

It follows the L^p boundedness of the Riesz transform that

$$\|R_{high}\|_{L^p(\mathbb{T}^3)} \leq \|R_{high}\|_{L^p(\mathbb{T}^3)} \lesssim \sum_k \left\| \nabla^{-1} \left(\nabla (a_k^2) P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) \right) \right\|_p.$$

(5.24)

Obviously $P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k)$ is $\sigma^{-1}\mathbb{T}^3$-periodic and has zero mean, and by Lemma 4.5

$$\|\nabla a_k^2\|_{C^{m+1}_c} \leq \|a_k^2\|_{C^{m+1}_c} \leq \kappa^{m+3} \quad \text{for all } 0 \leq m \leq M.$$

Thus we may apply Proposition 4.7 with $C_\alpha = \kappa^{-1}$ to obtain that

$$\|\nabla^{-1} \left(\nabla (a_k^2) P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) \right)\|_p \lesssim \sigma^{-1+\alpha} \left\| \nabla^{-1} \left(\nabla (a_k^2)^2 P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) \right) \right\|_p$$

$$+ \kappa^3 \sigma^{-N} \|P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k)\|_p.$$

(5.25)

The first term in (5.25) can be estimated by the Sobolev embedding $W^{\alpha,1}(\mathbb{T}^3) \hookrightarrow L^p(\mathbb{T}^3)$, Hölder’s inequality, Lemma 4.5, Proposition 3.10 as follows:

$$\sigma^{-1+\alpha} \left\| \nabla^{-1} \left(\nabla (a_k^2)^2 P_{\sigma \neq 0} P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k) \right) \right\|_p \lesssim \sigma^{-1+\alpha} \|a_k^2\|_{C^{1+\alpha}_c} \|P_\sigma (\mathcal{W}_k \otimes \mathcal{W}_k)\|_1$$

$$\lesssim \sigma^{-1+\alpha} \kappa^4.$$

(5.26)
The second term in (5.25) can be handled easily using Proposition 3.10 and $N = 150$,
$$k^3 \sigma^{-N} \left\| P_\sigma (W_k \otimes W_k) \right\|_p \lesssim k^3 \lambda^{-10} \left\| W_k \right\|_\infty^2 \lesssim k \lambda^{-1} \tag{5.27}$$
Collecting (5.24), (5.25), (5.26) and (5.27) we arrive at
$$\| R_{\text{high}} \|_1 \lesssim k^2 \sigma^{1-\alpha}.$$
As $0 < \alpha < 1$, for all $\lambda(\varepsilon, \kappa)$ sufficiently large we can conclude that
$$\| R_{\text{high}} \|_{L^p L^1_1} \leq \varepsilon.$$
\[\square \]

Lemma 5.11 (Oscillation error: R_{low}). For any λ sufficiently large
$$\| R_{\text{low}} \|_{L^p L^1_1} \leq \frac{\varepsilon}{4}. \tag{5.28}$$

Proof. Let us fix $p > 1$ such that
$$\sigma^2 \mu^{-1} \tau^{-1/\rho} \mu^{2-2/\rho} \lesssim \lambda^{-\frac{1}{2}}. \tag{5.29}$$
So by the boundedness of R on L^p and Hölder’s inequality, we have
$$\| R_{\text{low}} \|_{L^1(\mathbb{R}^3)} \leq \| R_{\text{low}} \|_{L^p(\mathbb{R}^3)} \lesssim \sum_k \sigma \| \sigma_k \|_{L^1(\mathbb{R}^3)} \left\| P_\sigma \left(\text{div}(W_k \otimes W_k) - \Delta V_k \right) \right\|_p + \| \sigma_k \|_{L^p(\mathbb{R}^3)} \left\| P_\sigma \nabla V_k \right\|_p \tag{6.1}.$$
Thanks to Proposition 3.7, 3.10, and Lemma 4.5 it follows from above that
$$\| R_{\text{low}} \|_1 \lesssim (k^2 \sigma \tau^2 \mu^{-1} + k^4 \sigma^{-1} \tau \mu^{-2} + k^3 \sigma^{-1} \tau \mu^{-1} \tau^{-1/\rho} \mu^{2-2/\rho}) \lesssim k^2 \sigma^2 \mu^{-1} \tau^{-1/\rho} \mu^{2-2/\rho}. \tag{5.30}$$
Using (5.29) and taking $\lambda(\kappa, \varepsilon)$ sufficiently large, the desired bound follows:
$$\| R_{\text{low}} \|_1 \lesssim \frac{\varepsilon}{8}. \tag{5.28}$$
\[\square \]

Note that Lemma 5.5 is proved, as it follows directly from Lemma 5.6, 5.7, 5.10, and 5.11.

6. Proof of Iteration Lemma: Energy Level

In this section, we prove properties related to the energy in the main proposition. To show the correct energy level of the solution v, let us first show that the energy in the perturbation w is dominated by $w^{(p)}$, which is anticipated in view of the estimates in Proposition 4.9.

Lemma 6.1. For any λ sufficiently large
$$\left\| \| v(t) \|_2^2 - \| v_0(t) \|_2^2 - \| w^{(p)}(t) \|_2^2 \right\| \leq 10^{-7} (e_1 - e_0) \quad \text{for all } t \in [0, T]. \tag{6.1}$$

Proof. Since $w = w^{(p)} + w^{(l)} + w^{(c)}$, we have
$$\| v(t) \|_2^2 - \| v_0(t) \|_2^2 - \| w^{(p)}(t) \|_2^2 = E_{\text{error}}$$
where the error term E_{error} is
$$E_{\text{error}} = 2 \langle w, v_0 \rangle + 2 \langle w^{(p)}, w^{(c)} + w^{(l)} \rangle + \| w^{(c)} + w^{(l)} \|_2^2.$$
By Hölder’s inequality we have
$$|E_{\text{error}}| \lesssim \| w(t) \|_1 \| v_0(t) \|_{\infty} + (\| w^{(c)} \|_2 + \| w^{(l)} \|_2) \| w^{(p)} \|_2 + \| w^{(c)} \|_2^2 + \| w^{(l)} \|_2^2.$$
Thanks to Corollary 4.10, for any sufficiently large $\lambda(e_1, \kappa, v_0)$ we have
$$\| w^{(c)} \|_2^2 + \| w^{(l)} \|_2^2 \lesssim \lambda^{-\frac{3}{2}},$$
$$\| w^{(p)} \|_2 \lesssim \rho_0^{1/2},$$
$$\| w \|_1 \lesssim \rho_0^{1/2} \lambda^{-\frac{3}{2}}.$$
Since $\rho_0(t) \lesssim e_1$, for any sufficiently large $\lambda(e_1, e_0, \kappa, v_0)$, we can make sure that
$$|E_{\text{error}}| \leq 10^{-7} (e_1 - e_0).$$
\[\square \]
Next, we estimate the energy of \(w^{(p)} \) more precisely than Proposition 4.9. Note that the choice of \(\rho_0 \), namely \((4.3)\), is crucial in the proof.

Lemma 6.2. Suppose that the constant \(C \) in the statement of Proposition 2.1 is small enough. For any \(\lambda \) sufficiently large, the energy of \(w^{(p)} \) verifies that

\[
\| w^{(p)} - \theta^2 (\tilde{c}_1 - \| v_0 \|_2^2) \| \leq 10^{-7} (e_1 - e_0) \quad \text{for all} \ t \in [0, T].
\]

Proof. Recall from (5.21) that

\[
w^{(p)}(t) \otimes w^{(p)} = \theta^2 \rho \text{Id} - \theta^2 R_0 + \theta^2 \sum_k (a_k)^2 P_{\neq 0} P_\sigma \left(\mathcal{W}_k \otimes \mathcal{W}_k \right).
\]

Upon taking trace and integrating in space, it follows that

\[
\| w^{(p)} \|_2^2 = 3\theta^2 \int_{\mathbb{T}^3} \rho(x, t) + \theta^2 \sum_k (a_k)^2 P_{\neq 0} P_\sigma \text{Tr} \left(\mathcal{W}_k \otimes \mathcal{W}_k \right).
\]

Using the definition of \(\rho_0 \), we can consider the split

\[
\| w^{(p)} \|_2^2 - \theta^2 (\tilde{c}_1 - \| v_0 \|_2^2) = X_l + X_h,
\]

where \(X_l \) is the low frequency error term

\[
X_l = 3\theta^2 \int_{\mathbb{T}^3} \rho(x, t) - \theta^2 (\tilde{c}_1 - \| v_0 \|_2^2),
\]

and \(X_h \) is the high frequency error term

\[
X_h = \theta^2 \int_{\mathbb{T}^3} (a_k)^2 P_{\neq 0} P_\sigma \text{Tr} \left(\mathcal{W}_k \otimes \mathcal{W}_k \right).
\]

The goal is to show that \(|X_l| + |X_h| \leq 10^{-7} (e_1 - e_0) \). Let us first estimate the term \(X_h \). Using a standard integration by parts argument, we have\(^6\)

\[
|X_h| \lesssim \sum_k \| a_k \|^2_{C^0_{\mathbb{T}^3}} \left\| |\nabla|^{-M} P_{\neq 0} P_\sigma \text{Tr} \left(\mathcal{W}_k \otimes \mathcal{W}_k \right) \right\|_2
\]

where \(M \) is as defined in Definition 4.1. Since \(P_{\neq 0} P_\sigma \text{Tr} (\mathcal{W}_k \otimes \mathcal{W}_k) \) is \(\sigma^{-1} \mathbb{T} \)-periodic and of zero mean, we have

\[
\left\| |\nabla|^{-M} P_{\neq 0} P_\sigma \text{Tr} \left(\mathcal{W}_k \otimes \mathcal{W}_k \right) \right\|_2 \lesssim \sigma^{-M+3} \left\| |\nabla|^{-3} P_{\neq 0} P_\sigma \text{Tr} \left(\mathcal{W}_k \otimes \mathcal{W}_k \right) \right\|_1
\]

where the second inequality follows from the Sobolev embedding \(H^{-3}(\mathbb{T}^3) \hookrightarrow L^4(\mathbb{T}^3) \). Putting together (6.6) and the above, and using Lemma 4.5, we get

\[
|X_h| \lesssim \sum_k \| a_k \|^2_{C^0_{\mathbb{T}^3}} \sigma^{-M+3} \lesssim \kappa^{M+2} \sigma^{-M+3}.
\]

Hence for sufficiently large \(\lambda(e_0, e_1, \kappa) \), we can ensure that

\[
|X_h| \leq 10^{-8} (e_1 - e_0).
\]

On the other hand, for the term \(X_l \) using the definitions of \(\rho \) and \(\rho_0 \) (namely \((4.5)\) and \((4.3)\)) we get

\[
X_l = -12\theta^2 \rho_0 \left(1 - \int \chi^2 (\rho_0^{-1} R_0) \right)
\]

First, let us split the integral

\[
\int \chi^2 (\rho_0^{-1} R_0) = \left(\int_{|R_0| \leq \rho_0} + \int_{|R_0| \geq \rho_0} \right) \chi^2 (\rho_0^{-1} R_0).
\]

Next, by the above split we have

\[
|X_l| \lesssim \rho_0 \left| 1 - \int_{|R_0| \leq \rho_0} \chi^2 (\rho_0^{-1} R_0) \right| + \rho_0 \int_{|R_0| \geq \rho_0} \chi^2 (\rho_0^{-1} R_0).
\]

Since \(\delta_0 = \| R_0 \|_{L^\infty L^1} \), thanks to the Chebyshev inequality we have

\[
\left| \{ x \in \mathbb{T}^3 : |R_0| \geq \rho_0 \} \right| \leq \frac{\delta_0}{\rho_0},
\]

\(^6\)Recall that \(\| a_k \|_{C^0_{\mathbb{T}^3}} \leq \kappa^{m+1} \) is only valid for \(0 \leq m \leq 4M \).
which together with the definition of χ in (4.2) and the fact that $|T^3| = 1$ implies that

$$|X_t| \lesssim \rho_0 \left[1 - \int_{|R_n| \leq \rho_0} 1 \, dx + \int_{|R_n| \geq \rho_0} \rho_0^{-1} |R_0| \right] \lesssim \rho_0 \int_{|R_n| > \rho_0} 1 \, dx + \int_{|R_n| > \rho_0} |R_0| \lesssim \delta_0.$$

Note that in the estimates for X_t, all implicit constants are universal. In view of the assumption $\delta_0 \leq C(e_1 - e_0)$ in the statement of Proposition 2.1, we may choose the constant C small enough such that

$$|X_t| \leq 10^{-8}(e_1 - e_0).$$

(6.10)

Combining (6.8) and (6.10) with (6.3) we have

$$\|u(t, x, y, z, u_0)\|_{2} - \theta^2(\tilde{e_1} - \|u_0\|^2_2) \leq 10^{-7}(e_1 - e_0).$$

(6.11)

With the help of Lemma 6.1 and 6.2, we obtain the desire energy level of the new solution v as a corollary.

Corollary 6.3. Suppose that the constant C in the statement of Proposition 2.1 is small enough. For any λ sufficiently large, the energy of new solution $v(t)$ verifies that

$$\sup_t \|v(t)\|^2_2 \leq e_1,$$

and

$$\|v(t)\|^2_2 - \|e_1 - e_0\| \leq \frac{\delta_0}{2} (e_1 - e_0) \quad \text{for all } t \in I_{4^{-1}, \rho}(F_1).$$

Proof. Both bounds immediately follow from Lemma 6.1, 6.2 and the facts that $\tilde{e}_1 = e_1 - 10^{-6}(e_1 - e_0)$ and $\theta = 1$ on $I_{4^{-1}, \rho}(F_1)$. □

Appendix A. Essential discontinuities by Buckmaster-Vicol solutions

In this section, we show that it is possible to use the weak solution constructed in [BV17] to obtained essential discontinuities of positive measure in the energy profile. First, recall

Theorem A.1 (Theorem 1.2 of [BV17]). There exists $\beta > 0$, such that for any nonnegative smooth function $e(t) : [0, T] \to \mathbb{R}^+$, there exists $v \in C([0, T]; H^2(T^3))$ a weak solution of the Navier-Stokes equations, such that $\int_{T^3} |v(x, t)|^2 \, dx = e(t)$ for all $t \in [0, T]$.

Let $e(t)$ be a nonnegative bump function supported on $(1/2, 1)$ such that $\max_{t} e(t) = 1$. Consider a weak solution $u \in C((0, 1]; L^2(T^3))$ such that on each interval $[2^{-n-1}, 2^{-n}]$, $u(t)$ is the Buckmaster-Vicol solution with energy profile $e(2^n t)$. As a consequence, we have

$$\lim_{t \to 0^-} \|u(t)\|^2_2 = 0, \quad \lim_{t \to 0^+} \|u(t)\|^2_2 = 1.$$

Such an example does not extend to the whole interval $[0, 1]$ as Theorem A.1 on its own does not guarantee the existence of the weak limit as $t \to 0^+$ since there are no other available bounds as opposed to in the proof of Theorem 1.6 where we used (2.24).

However, we can modify this construction in the following way. Consider a Buckmaster-Vicol solution $u_n(t)$ on $[1/2, 1]$ with the energy profile $e_n(t) = 2^{-2n} e(t)$ and define (on T^3)

$$u(t) = \sum_{n=0}^{\infty} 2^n u_n(2^n x, 2^{2n} t).$$

Then $u(t)$ is weakly continuous at $t = 0$, as the weak limit is zero. And it is a weak solution on $[0, 1]$ with energy bounded by 1. Moreover,

$$\lim_{t \to 0^-} \|u(t)\|_2 = 0, \quad \lim_{t \to 0^+} \|u(t)\|_2 = 1.$$

Using a similar argument in the proof of Theorem 1.6, one can also use Buckmaster-Vicol solutions to obtain weak solutions whose discontinuities have positive measure in time. Note that this method does not produce jump discontinuities nor density of the set of discontinuities since the resulting solution is “intermittent” on the time interval.
APPENDIX B. PROOF OF PROPOSITION 4.7

We include a proof of Proposition 4.7. Let us recall the following result on the Hölder norms of composition of functions. A proof using the multivariable chain rule can be found in [DLS14].

Proposition B.1. Let \(F : \Omega \to \mathbb{R} \) be a smooth function with \(\Omega \subset \mathbb{R}^d \). For any smooth function \(u : \mathbb{R}^d \to \Omega \) and any \(1 \leq m \leq N \) we have

\[
\| \nabla^m (F \circ u) \|_{\infty} \lesssim \| \nabla^m u \|_{\infty} \sum_{1 \leq i \leq m} \| \nabla^i F \|_{\infty} \| u \|_{\infty}^{i-1}
\]

(B.1)

where the implicit constant depends on \(m, d \).

Proof of Proposition 4.7. By considering \(\tilde{a} := \frac{1}{\| \sigma \|_{\infty}} a \) it suffices to prove both of the results for \(C_\alpha = 1 \). Notice that since \(p \geq 2 \) is even, the function \(a^p \) as a composition of \(a : \mathbb{T}^d \to [-1, 1] \) and \(x^p \) is smooth. Therefore, applying Proposition B.1 we see that

\[
\| \nabla^m |a|^p \|_{\infty} \lesssim_p \| \nabla^m a \|_{\infty} + \sum_{i \leq m} \| \nabla a \|_{\infty}^{i-1}
\]

for any \(m \in \mathbb{N} \).

We can now introduce the split:

\[
\| a f \|_p^p \leq \left| \int_{\mathbb{T}^d} (a^p - |a|^p)(|f|^p - |f|^p) \, dx \right| + 2\|a\|_p^p \| f \|_p^p.
\]

We will apply a standard integration by parts argument to get\(^7\)

\[
\| a f \|_p^p \leq \left| \int_{\mathbb{T}^d} |\nabla|^M (a^p - |a|^p) |\nabla|^{-M} (|f|^p - |f|^p) \, dx \right| + 2\|a\|_p^p \| f \|_p^p.
\]

We need show the first term is very small. By Hölder’s inequality:

\[
\left| \int_{\mathbb{T}^d} |\nabla|^M (a^p - |a|^p) |\nabla|^{-M} (|f|^p - |f|^p) \, dx \right| \lesssim \| |\nabla|^M a^p \|_2 \| |\nabla|^{-M} (|f|^p - |f|^p) \|_2
\]

(B.2)

By the \(L^2 \) boundedness of Riesz transform we can replace the nonlocal \(|\nabla|^M \) by \(\nabla^M \) to obtain

\[
\| |\nabla|^M a^p \|_2 \lesssim \| \nabla^M a^p \|_2
\]

(B.3)

Since the domain is \(\mathbb{T}^d \), due to the estimate (B.2) we see that

\[
\| \nabla^M a^p \|_2 \lesssim \| \nabla^M a^p \|_{\infty} \lesssim \mu^M.
\]

(B.4)

Thus, putting together (B.3), (B.4) we get

\[
\| |\nabla|^M a^p \|_2 \lesssim \mu^M.
\]

(B.5)

We turn to estimate the second factor in (B.2). Considering the fact that the function \((|f|^p - |f|^p) \) is zero-mean and \(\sigma^{-1} \mathbb{T}^d \)-periodic we have

\[
\| |\nabla|^{-M} (|f|^p - |f|^p) \|_2 \lesssim \sigma^{-M+d} \| |\nabla|^{-d} (|f|^p - |f|^p) \|_2
\]

\[
\lesssim \sigma^{-M+d} \| (|f|^p - |f|^p) \|_1
\]

\[
\lesssim \sigma^{-M+d} \| f \|_p^p
\]

where the first inequality is a direct consequence of Littlewood-Paley theory and the second inequality follows from the Sobolev embedding \(L^1 (\mathbb{T}^d) \hookrightarrow H^{-d} (\mathbb{T}^d) \).

So with this and the estimate (B.5) we find that

\[
\left| \int_{\mathbb{T}^d} |\nabla|^M (a^p - |a|^p) |\nabla|^{-M} (|f|^p - |f|^p) \, dx \right| \lesssim \sigma^{-M+d} \mu^M \| f \|_p^p.
\]

By the assumption that \(\mu \leq \sigma^{1-\theta} \), there exists a number \(M_{\theta, p, N} \in \mathbb{N} \) sufficiently large so that

\[
\sigma^{-M+d} \mu^M \leq \sigma^{-N_p}.
\]

(B.6)

\(^7\)The nonlocal operators \(|\nabla|^s \) and \(|\nabla|^{-s} \) are defined respectively by multipliers with symbols \(|k|^s \) and \(|k|^{-s} \) for \(k \neq 0 \).
Then, we have
\[
\int_{\mathbb{T}^d} |\nabla|^{-M} (a^p - a^\rho) |\nabla|^{-M} (|f|^p - |f|\rho) \, dx \lesssim \sigma^{-Np} \|f\|_p^p
\]
which finishes the proof of (4.19) due to the elementary inequality \((a^p + b^p) \leq (a + b)^p\).

To prove (4.20) let us first recall the wavenumber projection. For any \(\lambda \in \mathbb{R}\) define \(P_{\leq \lambda} = \sum_{\sigma \geq 2^s \leq \lambda} \Delta_\sigma\) and \(P_{\geq \lambda} = \text{Id} - P_{\leq \lambda}\). Consider the following decomposition:
\[
|\nabla|^{-1+s} (a, f) = |\nabla|^{-1+s} |\nabla|^{-s} (P_{\leq 2^{-s} \sigma} a) f + |\nabla|^{-1+s} |\nabla|^{-s} (P_{\geq 2^{-s} \sigma} a) f
\]
\[= |\nabla|^{-1+s} A_1 + |\nabla|^{-1+s} A_2\]

For the term \(A_1\), since \(f\) is \(\sigma^{-1} T^d\)-periodic and zero-mean, it follows that
\[P_{\geq 2^{-1} \sigma} f = f\]
and then by the support of Fourier modes of \((P_{\leq 2^{-s} \sigma} a) f\) we have
\[P_{\leq 2^{-s} \sigma} \left[p_{\leq 2^{-s} \sigma} a\right] = 0 \quad \text{and} \quad \int_{\mathbb{T}^d} \left[p_{\leq 2^{-s} \sigma} a\right] = 0\]
which implies that
\[|\nabla|^{-1+s} A_1 = |\nabla|^{-s} P_{\geq 2^{-s} \sigma} A_1\]

By the Littlewood-Paley theory, we have
\[\| |\nabla|^{-1+s} P_{\geq 2^{-s} \sigma} \|_{L^p \rightarrow L^p} \lesssim \sigma^{-1} \quad \text{for all } 1 < p < \infty\]
So, we have
\[\| |\nabla|^{-1+s} A_1 \|_p \lesssim \sigma^{-1} \left\| |\nabla|^{-s} (P_{\geq 2^{-1} \sigma} a f) \right\|_p\]
To get the exact form of the estimate, since \(|\nabla|^{-1+s}\) is bounded \(L^p \rightarrow L^p\) for any \(1 < p < \infty\) we bound the above in the following way:
\[\| |\nabla|^{-1+s} A_1 \|_p \leq \sigma^{-1+s} \| |\nabla|^{-s} (a f) \|_p + \sigma^{-1+s} \left\| |\nabla|^{-s} (P_{\geq 2^{-1} \sigma} a f) \right\|_p
\]
\[\lesssim \sigma^{-1+s} \left\| |\nabla|^{-s} (a f) \right\|_p + \sigma^{-1+s} \| P_{\geq 2^{-1} \sigma} a f \|_\infty \| f \|_p\]
(B.7)

Also, for \(A_2\) by the same reason, we have
\[\| |\nabla|^{-1+s} A_2 \|_p \lesssim \| P_{\geq 2^{-1} \sigma} a f \|_p \leq \| P_{\geq 2^{-1} \sigma} a \|_\infty \| f \|_p\]
So it suffices to show \(\| \Delta_\sigma a \|_\infty \lesssim 2^{-Nq}\) for all \(2^q \geq 2^{-4} \sigma\). Recall from the definition of the periodic Littlewood-Paley projection that
\[\Delta_\sigma a = \int_{Q_d} \varphi_q(x-y) a(y) \, dy\]

Applying a standard integration by parts argument gives:
\[\Delta_\sigma a \leq \int_{Q_d} |\nabla|^{-M} \varphi_q(x-y) |\nabla|^{-M} a(y) \, dy\]

And the below estimate follows from Young’s inequality:
\[\| \Delta_\sigma a \|_\infty \leq \| |\nabla|^{-M} \varphi_q \|_2 \| |\nabla|^{-M} a \|_2\]

From \(L^2\) boundedness of Riesz transform and the assumption on \(a\) it follows
\[\| |\nabla|^{-M} a \|_2 \leq \| |\nabla|^{-M} a \|_\infty \leq \mu_M\]
(B.8)

where we have used that \(C_a = 1\). By the Littlewood-Paley frequency cutoff there holds the bound
\[\| |\nabla|^{-M} \varphi_q \|_2 \lesssim 2^{-qM} \| \varphi_q \|_2 \lesssim 2^{-qM+qd}\]
(B.9)

Thus, combining estimates (B.8) and (B.9) we find
\[\| \Delta_\sigma a \|_\infty \lesssim 2^{qd} \mu_M 2^{-qM}\]
(B.10)
Since \(\mu \leq \sigma^{1-\theta}\), there exists a sufficiently large \(\lambda_0 \in \mathbb{N}\) depending on \(\theta > 0\) so that \(\lambda_0 \leq \mu \ll 2^{-4} \sigma\). Then there exists a sufficiently large \(M \in \mathbb{N}\) so that in view of (B.10) we have
\[\| \Delta_\sigma a \|_\infty \lesssim 2^{-Nq}\]
for all \(2^q \geq 2^{-4} \sigma\).
After taking a summation in q for $2^i \geq 2^{-4}\sigma$ we have that
\[
\|P_{\geq 2^{-4}\sigma} a\|_{\infty} \lesssim \sigma^{-N}.
\]
Then collecting all the estimates, we have
\[
\|\nabla^{-1+s}(af)\|_p \leq \|\nabla^{-1+s} A_1\|_p + \|\nabla^{-1+s} A_2\|_p
\]
\[
\lesssim \sigma^{-1+s}\|\nabla^{-s}(af)\|_p + \sigma^{-N}\|f\|_p.
\]
\[
\square
\]

REFERENCES

Alexey Cheskidov and Xiaoytao Luo

