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Abstract

An abstract framework for studying the asymptotic behavior of a dissipative evo-
lutionary system E with respect to weak and strong topologies was introduced in [9]
primarily to study the long-time behavior of the 3D Navier-Stokes equations (NSE) for
which the existence of a semigroup of solution operators is not known. Each evolution-
ary system possesses a global attractor in the weak topology, but does not necessarily
in the strong topology. In this paper we study the structure of a global attractor for
an abstract evolutionary system, focusing on omega-limits and attracting, invariant,
and quasi-invariant sets. We obtain weak and strong uniform tracking properties of
omega-limits and global attractors. In addition, we discuss a trajectory attractor for
an evolutionary system and derive a condition under which the convergence to the
trajectory attractor is strong.

1 Introduction
Existence of a global attractor is a significant feature of many dissipative partial dif-
ferential equations (PDEs). Often the evolution of solutions to a dissipative PDE can
be described by a semigroup of solution operators. If the semigroup is asymptoti-
cally compact, then the classical theory of semiflows yields the existence of a compact
global attractor (see Hale [18], Ladyzhenskaya [21], or Temam [28]). However, for
some PDEs the semigroup is not asymptotically compact. Some PDEs, such as the
3D Navier-Stokes equations (NSE), do not even possess the semigroup property due
to the lack of uniqueness (or proof of uniqueness).

There are several abstract frameworks for studying dynamical systems without
uniqueness. See Caraballo, P. Marn-Rubio & Robinson [5] for a comparison of two
canonical ones by Melnik & Valero [22] and Ball [2]. In the first approach, used by
Babin & Vishik [1], and which goes all the way back to the work by Barbashin [4], a
trajectory is a function of time with values in the set of all subsets of a phase space.
The evolutionary system E considered in this paper is closer to the Ball’s generalized
semiflowG, where a trajectory is a function of time with values in the phase space and
there may be more than one trajectory with given initial data. Since E does not contain
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the hypotheses of concatenation and upper semicontinuity with respect to initial data,
the Leray-Hopf weak solutions of the 3D NSE form an evolutionary system.

In fact, the notion of an evolutionary system, introduced in Cheskidov & Foias
[9], was motivated by the 3D NSE, which possesses a global attractor with respect to
the weak topology of the natural phase space. This weak global attractor, introduced
by Foias and Temam in [16], captures the long-time behavior of all Leray-Hopf weak
solutions. In particular, it includes the support of any time-average measure of the 3D
NSE (see Foias, Manley, Rosa & Temam [15]).

We choose as phase space X for the evolutionary system E a metric space (whose
metric is called strong), which is compact in some weaker metric. For a dissipative
PDE, the space X is defined to be an absorbing ball, and the weak metric is a metric
induced by the weak topology. A global attractor for E is the minimal closed attracting
set in the corresponding topology. In [9] it is shown that the weak global attractor
always exists, it is the maximal invariant set, and if the strong global attractor exists,
then its weak closure is the weak global attractor. Moreover, if E is asymptotically
compact, then the weak global attractor becomes the strong compact global attractor.
Applied to the 3D NSE, this result implies the existence of a strong compact global
attractor in the case where solutions on the weak global attractor are continuous in L2

(see Ball [2] and Rosa [25] for similar results).
In this paper we continue investigating properties of the evolutionary system E ,

concentrating on omega-limits and attracting, invariant, and quasi-invariant sets. As-
sume that the evolutionary system is not asymptotically compact. Since the phase
space X is weakly compact, we will see that the omega-limits and attracting sets with
respect to the weak metric possess familiar properties known from the classical theory
of semiflows. Our goal will be to examine the corresponding objects with respect to
the strong metric.

The structure of the paper is as follows. In Section 2 we define the evolutionary
system E and compare it with a semiflow. Attracting sets, global attractors, and omega-
limits are defined and studied in Section 3. We show the existence of a weak global
attractor Aw and deduce a new necessary and sufficient condition (in terms of the
omega-limits) for the existence of the strong global attractor As.

In Section 4 we further study an asymptotically compact evolutionary system. In
this case the situation is the same as in the classical theory of global attractors. We
show that the weak omega-limit of a set uniformly strongly attracts that set. Moreover,
the weak omega-limit coincides with the strong omega-limit. In particular, we recover
a result from [9], which says that As exists, is strongly compact, and coincides with
Aw.

Section 5 mostly focuses on invariant and quasi-invariant sets. We study an evo-
lutionary system with an assumption that the family of all the trajectories is compact
in C([0,∞);Xw). For instance, Leray-Hopf weak solutions of the 3D NSE satisfy
this property. We prove that the weak omega-limit of any set is quasi-invariant (i.e.,
consists of complete orbits) and possesses a weak uniform tracking property (Theo-
rem 5.6). Moreover, in the case where the evolutionary system is asymptotically com-
pact, omega limits possess a strong uniform tracking property (Theorem 5.7), which
holds, for instance, for the 2D NSE supplemented with appropriate boundary condi-
tions. This generalizes the tracking property by Langa and Robinson [23]. Finally, we
prove that Aw is the strong omega-limit of the phase space X , and if As exists, then it
has to coincide with Aw, i.e., As is automatically weakly closed.
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In Section 6 we make one more step towards abstracting results known for the 3D
NSE. We consider an evolutionary system that satisfies the energy inequality and the
strong convergence almost everywhere for a weakly convergent sequence of trajecto-
ries. Again, Leray-Hopf weak solutions of the 3D NSE satisfy these properties. In this
case, the strong continuity of a trajectory u(t) automatically implies that any sequence
of trajectories that uniformly weakly converges to u(t) converges in fact strongly. In
particular, this yields that As exists and coincides with Aw provided that all the com-
plete trajectories are strongly continuous. In Cheskidov, Friedlander & Pavlović [11]
this result was used to show the existence of a strong global attractor for the invis-
cid dyadic model of fluid equations, one of the original shell models introduced by
Desnyanskiy and Novikov [14]. This fact is a result of an anomalous dissipation due
to the loss of regularity of solutions, as it was conjectured by Onsager [24] for the
3D Euler equation (see also [8] and references therein). For applications of the above
theorem to a viscous dyadic model see Cheskidov [7] and Cheskidov & Friedlander
[10].

In Section 7 we study a trajectory attractor A for an evolutionary system. The
trajectory attractor, a global attractor in the trajectory space, was first introduced by
Sell [26] for the 3D NSE, and further studied in Chepyzhov & Vishik [6] and Sell
& You [27]. We show that every evolutionary system possesses a trajectory attractor
and discuss its connection to the weak global attractor. Moreover, we prove a strong
convergence of the trajectories to A in the case where all the complete trajectories are
strongly continuous.

Finally, in Section 8 we show that the Leray-Hopf weak solutions of the 3D NSE
form an evolutionary system satisfying the above mentioned three additional proper-
ties. Therefore, all the results obtained in this paper apply to the 3D NSE.

2 Evolutionary system
Let (X,ds(·, ·)) be a metric space endowed with a metric ds, which will be referred
to as a strong metric. Let dw(·, ·) be another metric on X satisfying the following
conditions:

1. X is dw-compact.

2. If ds(un, vn) → 0 as n → ∞ for some un, vn ∈ X , then dw(un, vn) → 0 as
n→∞.

Due to the property 2, dw(·, ·) will be referred to as a weak metric on X . Denote by
A
•

the closure of a set A ⊂ X in the topology generated by d•. Note that any strongly
compact (ds-compact) set is weakly compact (dw-compact), and any weakly closed
set is strongly closed.

Let C([a, b];X•), where • = s or w, be the space of d•-continuous X-valued
functions on [a, b] endowed with the metric

dC([a,b];X•)(u, v) := sup
t∈[a,b]

d•(u(t), v(t)).

3



Let also C([a,∞);X•) be the space of d•-continuous X-valued functions on [a,∞)
endowed with the metric

dC([a,∞);X•)(u, v) :=
∑
T∈N

1
2T

sup{d•(u(t), v(t)) : a ≤ t ≤ a+ T}
1 + sup{d•(u(t), v(t)) : a ≤ t ≤ a+ T}

.

Assume that u, un ∈ C([T,∞);X•), n ∈ N, are such that un|[T1,T2] → u|[T1,T2] in
C([T1, T2];X•) as n→∞, for some T ≤ T1 ≤ T2. To simplify the notation, in such
cases we will usually write un → u in C([T1, T2];X•).

To define an evolutionary system, first let

T := {I : I = [T,∞) ⊂ R, or I = (−∞,∞)},

and for each I ⊂ T , let F(I) denote the set of all X-valued functions on I .

Definition 2.1. A map E that associates to each I ∈ T a subset E(I) ⊂ F will be
called an evolutionary system if the following conditions are satisfied:

1. E([0,∞)) 6= ∅.
2. E(I + s) = {u(·) : u(· − s) ∈ E(I)} for all s ∈ R.

3. {u(·)|I2 : u(·) ∈ E(I1)} ⊂ E(I2) for all pairs I1, I2 ∈ T , such that I2 ⊂ I1.

4. E((−∞,∞)) = {u(·) : u(·)|[T,∞) ∈ E([T,∞)) ∀T ∈ R}.

We will refer to E(I) as the set of all trajectories on the time interval I . Trajectories
in E((−∞,∞)) will be called complete. Let P (X) be the set of all subsets of X . For
every t ≥ 0, define a map

R(t) : P (X)→ P (X),
R(t)A := {u(t) : u ∈ A, u ∈ E([0,∞))}, A ⊂ X.

Note that the assumptions on E imply that R(t) enjoys the following property:

R(t+ s)A ⊂ R(t)R(s)A, A ⊂ X, t, s ≥ 0. (1)

We will also study evolutionary systems E satisfying the following assumptions:

A1 E([0,∞)) is a compact set in C([0,∞);Xw).

A2 (Energy inequality) Assume that X is a bounded set in some uniformly convex
Banach space H with the norm denoted by | · |, such that ds(x, y) = |x− y| for
x, y ∈ X . Assume also that for any ε > 0, there exists δ, such that for every
u ∈ E([0,∞)) and t > 0,

|u(t)| ≤ |u(t0)|+ ε,

for t0 a.e. in (t− δ, t).

A3 (Strong convergence a.e.) Let u, un ∈ E([0,∞)), be such that un → u in
C([0, T ];Xw) for some T > 0. Then un(t)→ u(t) strongly a.e. in [0, T ].

We will see that all the assumptions A1 – A3 hold for an evolutionary system consist-
ing of the Leray-Hopf weak solutions of the 3D Navier-Stokes equations.

Let us now show that a semiflow defines an evolutionary system. In most appli-
cations, the phase space H (a functional space in which trajectories are defined) is
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a separable reflexive Banach space. Consider a semigroup of continuous operators
S(t) : H → H , t ≥ 0 satisfying the following properties:

S(t+ s) = S(t)S(s), t, s ≥ 0, S(0) = Identity operator. (2)

A trajectory u(t) is a mapping from R+ to H , such that

u(t+ s) = S(t)u(s), t, s ≥ 0.

A ball B ⊂ H is called an absorbing ball if for any bounded set A ⊂ H , there exists
t0, such that

S(t)A ⊂ B, ∀t ≥ t0.

Assume that the semiflow is dissipative, i.e., there exists an absorbing ball. Then, if we
are interested in a long-time behavior of solutions, it is enough to consider a restriction
of the semiflow to the absorbing ball. So, we let X be a closed absorbing ball. Since
H is a separable reflexive Banach space, both the strong and the weak topologies on
X are metrizable. Now for each I ∈ T let

E(I) := {u ∈ F(I) : u(t+s) = S(t)u(s) and u(s) ∈ X ∀s ∈ I, t ≥ 0 with t+s ∈ I}.

Conditions 1–4 in the definition of the evolutionary system E follow from the semi-
group properties (2) of S(t). In addition, let T be such that

S(t)X ⊂ X ∀t ≥ T.

Then we have
R(t)A = S(t)A, ∀A ⊂ S(T )X, t ≥ 0.

3 Attracting sets, ω-limits, and global attractors
Consider an arbitrary evolutionary system E . For a set A ⊂ X and r > 0, denote
B•(A, r) = {u ∈ X : d•(u,A) < r}, where

d•(u,A) := inf
x∈A

d•(u, x), • = s,w.

A set A ⊂ X uniformly attracts a set B ⊂ X in d•-metric (• = s,w) if for any ε > 0
there exists t0, such that

R(t)B ⊂ B•(A, ε), ∀t ≥ t0.

Definition 3.1. A set A ⊂ X is a d•-attracting set (• = s,w) if it uniformly attracts
X in d•-metric.

Definition 3.2. A set A• ⊂ X is a d•-global attractor (• = s,w) if A• is a minimal
d•-closed d•-attracting set.

Note that since X may not be strongly compact, the intersection of two strongly
closed strongly attracting sets may not be strongly attracting. Nevertheless, later we
will see that if A• exists, then it is unique.
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Definition 3.3. The ω•-limit (• = s,w) of a set A ⊂ X is

ω•(A) :=
⋂
T≥0

⋃
t≥T

R(t)A
•
.

An equivalent definition of the ω•-limit set is given by

ω•(A) = {x ∈ X : there exist a sequence tn →∞ as n→∞ and xn ∈ R(tn)A,
such that xn → x in d•-metric as tn →∞}.

The following are some properties of ω-limits that immediately follow from the
definition.

Lemma 3.4. Let A ⊂ X . Then

(a) ω•(A) is d•-closed (• = s,w).

(b) ωs(A) ⊂ ωw(A).

(c) If ωw(A) is strongly compact and uniformly strongly attracts A, then ωs(A) =
ωw(A).

Proof. Clearly, part (a) follows from the definition. To show part (b), take any x ∈
ωs(A). By the definition of ωs-limit, there exist a sequence tn →∞ as n→∞ and a
sequence xn ∈ R(tn)A, such that xn → x strongly as n→∞. In particular, xn → x
weakly as n→∞. Hence, x ∈ ωw(A), which proves (b).

Now assume that ωw(A) is strongly compact and uniformly strongly attracts A.
Take any x ∈ ωw(A). By the definition of ωw-limit, there exist a sequence tn → ∞
as n→∞ and a sequence xn ∈ R(tn)A, such that xn → x weakly as n→∞. Since
ωw(A) strongly attracts A, there exists a sequence an ∈ ωw(A), such that

ds(xn, an)→ 0, as n→∞.

Thus an → x weakly as n→∞. Since ωw(A) is strongly compact, this convergence
is in fact strong. Hence, xn → x strongly as n → ∞. Therefore, x ∈ ωs(A), which
proves (c).

Lemma 3.5. Let A be a d•-closed d•-attracting set (• = s,w). Then

ω•(X) ⊂ A.

Proof. Assume that there exists x ∈ ω•(X) \ A. Since A is d•-closed, there exists
ε > 0, such that

x /∈ B•(A, ε). (3)

On the other hand, by the definition of ω-limit, there exist a sequence tn → ∞ as
n → ∞ and a sequence xn ∈ R(tn)X , such that xn → x in d•-metric as n → ∞.
Since A is d•-attracting,

R(tn)X ⊂ B•(A, ε/2),

for n large enough. Therefore, xn ∈ B•(A, ε/2) for n large enough and consequently
x ∈ B•(A, ε), which contradicts (3).
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Now we can show the uniqueness of a global attractor.

Theorem 3.6. If A• exists (• = s,w), then

A• = ω•(X).

Proof. Thanks to Lemma 3.5, ω•(X) ⊂ A•. Assume that there exists a ∈ A•\ω•(X).
Since a /∈ ω•(X), there exist ε > 0 and a time t0 > 0, such that

R(t)X ∩B•(a, ε) = ∅, ∀t > t0.

Hence, A• \ B•(a, ε) is a d•-closed d•-attracting set strictly included in A•, which
contradicts the definition of a global attractor.

The above results imply the following characterization of the existence of the d•-
global attractor.

Theorem 3.7. A• exists if and only if ω•(X) is a d•-attracting set.

Proof. If A• exists, then Theorem 3.6 implies that ω•(X) = A•. Therefore, ω•(X)
is a d•-attracting set.

Assume now that ω•(X) is a d•-attracting set. Note that ω•(X) is also d•-closed
due to Lemma 3.4. Then Lemma 3.5 implies that ω•(X) is the minimal d•-closed
d•-attracting set, i.e., ω•(X) is the d•-global attractor.

Now we will study ωw-limit sets. The following theorem is an extension of a well
known result for semiflows (see [18, 21, 28]).

Theorem 3.8. Let A ⊂ X be such that there exists u ∈ E([0,∞)) with u(0) ∈ A.
Then ωw(A) is a nonempty weakly compact set. In addition, ωw(A) uniformly weakly
attracts A.

Proof. Since X is weakly compact,

W (T ) :=
⋃
t≥T

R(t)A
w

is a nonempty weakly compact set for all T ≥ 0. In addition, W (s) ⊂ W (t) for all
s ≥ t ≥ 0. Thus,

ωw(A) =
⋂
T≥0

W (T )

is a nonempty weakly compact set.
We will now prove that ωw(A) uniformly weakly attracts A. Assume it does not.

Then there exists ε > 0, such that

V (t) := W (t) ∩ (X \B•(ωw(A), ε)) 6= ∅, ∀t ≥ 0.

Since V (t) is weakly compact and V (s) ⊂ V (t) for s ≥ t ≥ 0, there exists

x ∈
⋂
t≥0

V (t).

Hence, x ∈ ωw(A). However, this together with the definition of V (t) implies that
x /∈ V (t), t ≥ 0, a contradiction.
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Finally, from the results of this section we immediately recover the following the-
orem from [9]:

Theorem 3.9. Every evolutionary system possesses a weak global attractorAw. More-
over, if As exists, then As

w
= Aw.

Proof. Thanks to Theorem 3.8, ωw(X) is a weakly closed weakly attracting set. There-
fore, Aw exists and Aw = ωw(X) due to Theorems 3.7 and 3.6.

Assume now thatAs exists. SinceAs
w

is a strongly attracting set, it is also weakly
attracting. Moreover, since it is weakly closed, Lemma 3.5 implies that ωw(X) ⊂
As

w
. On the other hand, thanks to Theorem 3.6, As = ωs(X). Hence, ωw(X) ⊂

ωs(X)
w

. Therefore, ωw(X) = ωs(X)
w

= As
w

due to Lemma 3.4.

4 Existence of a strong global attractor
Definition 4.1. The evolutionary system E is asymptotically compact if for any tn →
∞ as n → ∞ and any xn ∈ R(tn)X , the sequence {xn} is relatively strongly com-
pact.

Theorem 4.2. Let E be asymptotically compact. Let A ⊂ X be such that there exists
u ∈ E([0,∞)) with u(0) ∈ A. Then ωs(A) is a nonempty strongly compact set that
uniformly strongly attracts A, and ωs(A) = ωw(A).

Proof. Since there exists u ∈ E([0,∞)) with u(0) ∈ A, Theorem 3.8 implies that
ωw(A) is nonempty. First we will show that ωw(A) uniformly strongly attracts A.
Assume that it does not. Then there exist ε > 0, xn ∈ X , and tn → ∞ as n → ∞,
such that

xn ∈ R(tn)A \Bs(ωw(A), ε), ∀n ∈ N. (4)

Since E is asymptotically compact, we have that {xn} is relatively strongly compact.
Passing to a subsequence and dropping a subindex, we may assume that there exists
x ∈ X , such that

ds(xn, x)→ 0 as n→∞. (5)

Then also xn → x weakly as n → ∞. Therefore, we have that x ∈ ωw(A). Hence,
thanks to (5), there exists n ∈ N, such that

xn ∈ Bs(ωw(A), ε),

a contradiction with (4).
Now note that ωs(A) ⊂ ωw(A) due to Lemma 3.4,. On the other hand, let x ∈

ωw(A). By the definition of ωw-limit, there exist tn → ∞ as n → ∞ and xn ∈
R(tn)A, such that

dw(xn, x)→ 0 as n→∞.

Thanks to the asymptotic compactness of E , this convergence is in fact strong. There-
fore, x ∈ ωs(A). Hence, ωs(A) = ωw(A).
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Finally, we have to show that ωs(A) is strongly compact. Take any sequence an ∈
ωs(A). By the definition of ωs-limit, there exist tn →∞ and xn ∈ R(tn)A, such that

ds(xn, an)→ 0 as n→∞.

Note that {xn} is relatively strongly compact due to the asymptotic compactness of
E . Hence, {an} is relatively strongly compact and, consequently, ωs(A) is relatively
strongly compact. Due to Lemma 3.4, ωs(A) is also strongly closed. Therefore, ωs(A)
is strongly compact, which concludes the proof.

In particular, we automatically have the following result proved in [9] for evolu-
tionary systems, which generalizes corresponding results for generalized semiflows
and semiflows [2, 18, 19, 21].

Theorem 4.3. If the evolutionary system E is asymptotically compact, then Aw is a
strongly compact strong global attractor.

Proof. Since E([0,∞)) 6= ∅, thanks to Theorem 4.2, ωs(X) is a ds-compact ds-
attracting set and ωs(X) = ωw(X) = Aw. Now Theorems 3.7 and 3.6 imply that
As exists and As = ωs(X) = Aw, which concludes the proof.

5 Invariance and tracking properties
In this section we will further study an evolutionary system E satisfying property A1:

E([0,∞)) is a compact set in C([0,∞);Xw).

In order to extend the notion of invariance from a semiflow to an evolutionary system,
we will need the following mapping:

R̃(t)A := {u(t) : u(0) ∈ A, u ∈ E((−∞,∞))}, A ⊂ X, t ∈ R.

Definition 5.1. A set A ⊂ X is positively invariant if

R̃(t)A ⊂ A, ∀t ≥ 0.

A is invariant if
R̃(t)A = A, ∀t ≥ 0.

A is quasi-invariant if for every a ∈ A there exists a complete trajectory u ∈ E((−∞,∞))
with u(0) = a and u(t) ∈ A for all t ∈ R.

Note that the definition of invariance coincides with the classical one in the case
where E is a semiflow or Ball’s generalized semiflow.

Note that if A is quasi-invariant, then

A ⊂ R̃(t)A ⊂ R(t)A, ∀t ≥ 0. (6)

This together with Lemma 3.4 imply that

A ⊂ ωs(A) ⊂ ωw(A), A is quasi-invariant. (7)
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Theorem 5.2. Let E be an evolutionary system satisfying A1. Then ωw(A) is quasi-
invariant for every A ⊂ X .

Proof. Take any x ∈ ωw(A). There exist tn → ∞ as n → ∞ and xn ∈ R(tn)A,
such that xn → x weakly as n → ∞. Then there exist un ∈ E([−tn,∞)) with
un(−tn) ∈ A and un(0) = xn. Because of A1 and the definition of E , we have that
E([−tn,∞)) is compact in C([−tn,∞);Xw) and

{u|[−t1,∞) : u ∈ E([−tn,∞))} ⊂ E([−t1,∞))

for every n. Therefore, passing to a subsequence and dropping a subindex, we obtain
that there exists u1 ∈ E([−t1,∞)), such that

un|[−t1,∞) → u1 in C([−t1,∞);Xw),

as n → ∞. Again passing to a subsequence and dropping a subindex, we obtain that
there exists u2 ∈ E([−t2,∞)), such that

un|[−t2,∞) → u2 in C([−t2,∞);Xw),

as n → ∞. Note that u1(t) = u2(t) on [−t1,∞). By a standard diagonalization
process we infer that there exist a subsequence of un, still denoted by un, and u ∈
F((−∞,∞)), such that u|[−T,∞) ∈ E([−T,∞)) and un → u in C([−T,∞);Xw) as
n→∞ for all T > 0. Note that u(0) = x. In addition, by the definition of E we have
that u ∈ E((−∞,∞)).

Now take any t0 ∈ R. Note that un(t0) → u(t0) weakly as n → ∞. Since
un(−tn) ∈ A, we have that un(t0) ∈ R(t0 + tn)A for tn ≥ −t0. Hence, u(t0) ∈
ωw(A), i.e., the complete trajectory u(t) stays on ωw(A) for all time. Therefore,
ωw(X) is quasi-invariant.

Applied to a weak global attractor, this theorem will have several important con-
sequences. The following is one of them.

Theorem 5.3. Let E be an evolutionary system satisfying A1. Let A ⊂ X be such that
ωw(A) ⊂ A. Then ωs(A) = ωw(A).

Proof. Thanks to Theorem 5.2, we have that ωw(A) is quasi-invariant. Then (6) im-
plies that ωw(A) ⊂ R(t)ωw(A) for all t ≥ 0. Since ωw(A) ⊂ A, it follows that
ωw(A) ⊂ R(t)A for all t ≥ 0. Therefore, ωw(A) ⊂ ωs(A). On the other hand,
ωs(A) ⊂ ωw(A) due to Lemma 3.4. Therefore, ωs(A) = ωw(A).

Thanks to this theorem and the fact that ωw(X) ⊂ X , we have

Aw = ωw(X) = ωs(X),

provided E satisfies A1. Note that ifAs exists, Theorem 3.6 implies thatAs = ωs(X).
Hence, we have the following.

Corollary 5.4. Let E be an evolutionary system satisfying A1. If As exists, then

As = Aw.
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Similarly to the proof of Theorem 5.2, we can also obtain the following extension
of a corresponding result for generalized semiflows (see [2]). Note that due to the lack
of concatenation, the proof of this theorem strongly relies on property A1.

Theorem 5.5. Let E be an evolutionary system satisfying A1. Let A ⊂ X be a weakly
closed set. Then A is invariant if and only if A is positively invariant and quasi-
invariant.

Proof. Clearly, if A is positively invariant and quasi-invariant, then A is invariant.
Assume now that A is invariant. Then A is positively invariant. To show that it is
quasi-invariant, consider any x ∈ A. Since A is invariant, there exist tn → ∞ as
n→∞ and un ∈ E([−tn,∞)) with un(−tn) ∈ A and un(0) = x. As in the proof of
Theorem 5.2, passing to a subsequence and dropping a subindex, we infer that there
exists u ∈ E((−∞,∞)) with u(0) = x, such that un → u in C([−T,∞);Xw) for all
T > 0. SinceA is weakly closed, u(t) ∈ A for all t ∈ R, i.e.,A is quasi-invariant.

Let
I := {u0 : u0 = u(0) for some u ∈ E((−∞,∞))}.

Clearly, I is quasi-invariant and invariant. Moreover, it contains every quasi-invariant
an every invariant set. Due to Theorem 5.2, it also follows that

ωw(A) ⊂ I, ∀A ⊂ X. (8)

Now we will show that ωw(A) captures a long-time behavior of every trajectory
starting in A, provided property A1 holds.

Theorem 5.6 (Weak uniform tracking property). Let E be an evolutionary system
satisfying A1. Let A ⊂ X . Then for any ε > 0, there exists t0, such that for any
t∗ > t0, every trajectory u ∈ E([0,∞)) with u(0) ∈ A satisfies

dC([t∗,∞);Xw)(u, v) < ε,

for some complete trajectory v ∈ E((−∞,∞)) with v(t) ∈ ωw(A) for all t ∈ R.

Proof. Suppose the claim is not true. Then there exist ε > 0, un ∈ E([0,∞)) with
un(0) ∈ A, and tn →∞ as n→∞, such that

dC([tn,∞);Xw)(un, v) ≥ ε, (9)

for all n, all v ∈ E((−∞,∞)) with v(t) ∈ ωw(A), t ∈ R.
On the other hand, consider a sequence vn ∈ E([−tn,∞)), vn(t) = un(t + tn).

Thanks to the fact that E([−tn,∞)) is compact in C([−tn,∞);Xw)) for all n, using
a diaganalization process, passing to a subsequence and dropping a subindex, we infer
that there exists v ∈ E((−∞,∞)), such that vn → v in C([−T,∞);Xw) as n → ∞
for all T > 0. In particular, v(t) ∈ ωw(A) for all t ∈ R. Finally, for large n we
have dC([0,∞);Xw)(vn, v) < ε, which means that dC([tn,∞);Xw)(un, v(· − tn)) < ε, a
contradiction with (9).
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Theorem 5.7 (Strong uniform tracking property). Let E be an asymptotically compact
evolutionary system satisfying A1. Let A ⊂ X . Then for any ε > 0 and T > 0, there
exists t0, such that for any t∗ > t0, every trajectory u ∈ E([0,∞)) with u(0) ∈ A
satisfies

ds(u(t), v(t)) < ε, ∀t ∈ [t∗, t∗ + T ],

for some complete trajectory v ∈ E((−∞,∞)) with v(t) ∈ ωs(A) for all t ∈ R.

Proof. Suppose that the claim does not hold. Then there exist ε > 0, T > 0, and
sequences un ∈ E([0,∞)) with un(0) ∈ A and tn →∞ as n→∞, such that

sup
t∈[tn,tn+T ]

ds(un(t), v(t)) ≥ ε, ∀n, (10)

for all v ∈ E((−∞,∞)) with v(t) ∈ ωs(A), t ∈ R.
On the other hand, Theorem 5.6 implies that there exists a sequence vn ∈ E((−∞,∞))

with vn(t) ∈ ωw(A) for all t, such that

lim
n→∞

sup
t∈[tn,tn+T ]

dw(un(t), vn(t)) = 0. (11)

Since E is asymptotically compact, Theorem 4.3 implies that ωs(A) = ωw(A). There-
fore, thanks to (10), there exists a sequence t̂n ∈ [tn, tn + T ], such that

ds(un(t̂n), vn(t̂n)) ≥ ε/2, ∀n. (12)

Due to the asymptotic compactness of E , the sequences {un(t̂n)} and {vn(t̂n)} are rel-
atively strongly compact. Therefore, passing to subsequences and dropping a subindex,
we obtain that un(t̂n) → x, vn(t̂n) → y strongly as n → ∞ for some x, y ∈ X .
Thanks to (11), x = y, which contradicts (12).

We conclude this section with a summary of the above results applied to the weak
global attractor Aw. The tracking property of Aw connects the global attractor with a
trajectory attractor (see Section 7).

Theorem 5.8. Let E be an evolutionary system satisfying A1. Then Aw = I, and Aw

is the maximal invariant and maximal quasi-invariant set. Moreover, for any ε > 0,
there exists t0, such that for any t∗ > t0, every trajectory u ∈ E([0,∞)) satisfies

dC([t∗,∞);Xw)(u, v) < ε,

for some complete trajectory v ∈ E((−∞,∞)).

Proof. Note that Aw = ωw(X). Since I contains every quasi-invariant set, Theo-
rem 5.2 implies that Aw ⊂ I. On the other hand, thanks to (7), it follows that

I ⊂ ωw(I) ⊂ ωw(X) = Aw.

Therefore,Aw = I. The last statement of the theorem follows from Theorem 5.6.

In the case E is asymptotically compact, this theorem together with Theorems 4.3
and 5.7 implies the following.
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Theorem 5.9. Let E be an asymptotically compact evolutionary system satisfying A1.
ThenAs = I andAs is the maximal invariant and maximal quasi-invariant set. More-
over, for any ε > 0 and T > 0, there exists t0, such that for any t∗ > t0, every
trajectory u ∈ E([0,∞)) satisfies

ds(u(t), v(t)) < ε, ∀t ∈ [t∗, t∗ + T ],

for some complete trajectory v ∈ E((−∞,∞)).

Note that the solutions to the 2D Navier-Stokes equations supplemented with ap-
propriate boundary conditions form an asymptotically compact evolutionary system
satisfying A1. Therefore, Theorem 5.9 yields the strong tracking property for the 2D
NSE.

6 Evolutionary system with energy inequality
In this section we will study an evolutionary system E satisfying A2 and A3. In A2 we
assume that X is a bounded set in some uniformly convex Banach space H with the
norm denoted by | · |, such that ds(x, y) = |x− y| for x, y ∈ X . We also assume that
for any ε > 0, there exists δ, such that for every u ∈ E([0,∞)) and t > 0,

|u(t)| ≤ |u(t0)|+ ε,

for t0 a.e. in (t− δ, t).
In A3, for every sequence un ∈ E([0,∞)), such that un → u ∈ E([0,∞)) in

C([0, T ];Xw) for some T > 0, we assume that un(t)→ u(t) strongly a.e. in [0, T ].

Theorem 6.1. Let E be an evolutionary system satisfying A2 and A3. Let un ∈
E([T1,∞)) be such that un → u in C([T1, T2];Xw) as n → ∞ for some u ∈
E([T1,∞)). If u(t) is strongly continuous at some t = t∗ ∈ (T1, T2), then un(t∗) →
u(t∗) strongly in X .

Proof. Thanks to A3, there exists a set E of measure zero, such that un(t) → u(t)
strongly on [T1, T2] \ E. Let ε > 0. Due to the energy inequality A2 and strong
continuity of u(t), there exists t0 ∈ [T1, t

∗) \ E, such that

|un(t∗)| ≤ |un(t0)|+ ε, |u(t0)| ≤ |u(t∗)|+ ε,

for every n. Taking the upper limit as n→∞, we obtain

lim sup
n→∞

|un(t∗)| ≤ |u(t0)|+ ε

≤ |u(t∗)|+ 2ε.

Since this inequality holds for an arbitrary ε, we have

lim sup
n→∞

|un(t∗)| ≤ |u(t∗)|.

Hence, the convergence of un(t∗) to u(t∗) is in fact strong.
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Theorem 6.2. Let E be an evolutionary system satisfying A1, A2, and A3. If E((−∞,∞)) ⊂
C((−∞,∞);Xs), then E is asymptotically compact.

Proof. Take any sequences tn → ∞ and xn ∈ R(tn)X . Without loss of generality,
there exists T > 0, such that tn > T for all n. Since X is weakly compact, passing
to a subsequence and dropping a subindex, we can assume that xn → x weakly as
n→∞, for some x ∈ X .

Since xn ∈ R(tn)X , there exist un ∈ E([−tn,∞)), such that un(0) = xn.
Thanks to A1, using a diagonalization process, passing to a subsequence and dropping
a subindex, we infer that there exists u ∈ E((−∞,∞)), such that

un → u in C([−T, T ];Xw).

Since u(t) is strongly continuous at t = 0, Theorem 6.1 implies that xn = un(0)→ x
strongly as n→∞. Therefore, E is asymptotically compact.

This theorem, together with Theorem 4.3, immediately implies the following.

Corollary 6.3. Let E be an evolutionary system satisfying A1, A2, and A3. If every
complete trajectory is strongly continuous, then E possesses a strongly compact strong
global attractor As.

It is clear from the above proof that for the strong convergence towards a weak
omega limit we only need the strong continuity of complete trajectories that pass
through the omega limit. More precisely, we have the following result.

Theorem 6.4. Let E be an evolutionary system satisfying A1, A2, and A3. Let A ⊂ X
be such that there exists u ∈ E([0,∞)) with u(0) ∈ A. Assume that u(t) is strongly
continuous at t = 0 for every u ∈ E((−∞,∞)) with u(0) ∈ ωw(A). Then ωw(A)
is a nonempty strongly compact set that uniformly strongly attracts A. Moreover,
ωs(A) = ωw(A).

Proof. The proof follows the same lines as the proofs of Theorems 4.2 and 6.2.

Now we show that the strong continuity of a limit trajectory implies a uniform
strong convergence towards the trajectory.

Theorem 6.5. Let E be an evolutionary system satisfying A1, A2, and A3. Let un ∈
E([0,∞)) be such that un → u in C([0,∞);Xw) as n→∞ for some u ∈ E([0,∞)).
If u(t) is strongly continuous on (0,∞), then un → u in L∞loc((0,∞);H).

Proof. Suppose that un 9 u in L∞loc((0,∞);H). Then passing to a subsequence and
dropping a subindex we can assume that there exist an interval [a, b] ⊂ (0,∞), ε > 0,
and a sequence tn ∈ [a, b], such that

ds(un(tn), u(tn)) ≥ ε, ∀n.

Again passing to a subsequence and dropping a subindex, we obtain that tn →
t0 ∈ [a, b] as n → ∞. Without loss of generality, assume that tn ≥ t0/2 for all n.
Consider a sequence of trajectories vn(t) = un(t − t0 + tn), t ∈ [t0/2,∞). Note
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that vn ∈ E([t0/2,∞)) for all n. Since u(t) is continuous on (0,∞), it follows that
ds(u(tn), u(t0)) ≤ ε/2 for n large enough. Therefore, since vn(t0) = un(tn), the
triangle inequality implies that

ds(vn(t0), u(t0)) ≥ ds(vn(t0), u(tn))− ds(u(tn), u(t0))

≥ ε− ε

2
=
ε

2
,

(13)

for n large enough.
On the other hand, since un → u in C([0,∞);Xw) as n→∞, we have that

dw(vn(t), u(t)) ≤ dw(vn(t), u(t− t0 + tn)) + dw(u(t− t0 + tn), u(t))
= dw(un(t− t0 + tn), u(t− t0 + tn)) + dw(u(t− t0 + tn), u(t))
→ 0,

as n → ∞, for all t ∈ [t0/2,∞). Therefore, thanks to A1, passing to a subsequence
and dropping a subindex, we obtain that vn → u in C([t0/2, 2t0];Xw) as n → ∞.
Since u(t) is strongly continuous at t = t0, Theorem 6.1 implies that vn(t0)→ u(t0)
strongly as n→∞, a contradiction with (13).

Finally, we show that the strong continuity of a trajectory is equivalent to the strong
continuity from the right, provided A2 and A3 hold.

Theorem 6.6. Let E be an evolutionary system satisfying A2 and A3. Let u ∈ E([0,∞))
and t∗ > 0. Then u(t) is strongly continuous at t = t∗ if and only if u(t) is strongly
continuous from the left at t = t∗.

Proof. Assume that u(t) is strongly continuous from the left at t = t∗. Let ε > 0. Due
to the energy inequality A2, there exists δ > 0, such that for every t ∈ (t∗, t∗ + δ),
there exists a sequence tn < t∗, tn → t∗ as n→∞, such that

|u(t)| ≤ |u(tn)|+ ε,

for every n. Thanks to the strong continuity from the left of u(t) at t = t∗, we obtain
that

|u(t)| ≤ |u(t∗)|+ ε,

for all t ∈ (t∗, t∗ + δ). Finally, taking the limit as ε→∞, we obtain

lim sup
t→t∗+

|u(t)| ≤ |u(t∗)|.

Hence, u(t) is strongly continuous from the right at t = t∗. Therefore, u(t) is contin-
uous at t = t∗.
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7 Trajectory attractor
A trajectory attractor for the 3D NSE was introduced in [26] and further studied in
[6, 27]. In this section we define a trajectory attractor for the evolutionary system E
and discuss its properties that follow from the results in preceding sections.

Consider an evolutionary system E satisfying A1. Let F+ := C([0,∞);Xw). As
before, a function in E([0,∞)) is called a trajectory. Denote

K+ := E([0,∞)) ⊂ F+.

Note that K+ is compact in F+ due to A1. Define the translation operator T (s)

(T (s)u)(t) := u(t+ s)|[0,∞), u ∈ F+.

Due to the property 3 of the evolutionary system E (see Definition 2.1), we have that

T (s)K+ ⊂ K+, ∀s ≥ 0.

For a set P ⊂ K+ define

P (t) := {u(t) : u ∈ P}, t ≥ 0.

Note that since we do not assume the uniqueness of the trajectories, P does not have to
contain all the trajectories starting at P (0). More precisely, by the definition of R(t),
for all t ≥ 0 we have

P (t) = (T (t)P )(0) ⊂ R(t)P (0), P ⊂ K+.

On the other hand,

K+(t) = (T (t)K+)(0) = R(t)X, ∀t ≥ 0, (14)

since K+ includes all the trajectories in the evolutionary system. For a set P ⊂ F+

and r > 0 denote

B(P, r) := {u ∈ F+ : dC([0,∞);Xw)(u, P ) < r}.

A set P ⊂ F+ uniformly attracts a set Q ⊂ K+ if for any ε > 0 there exists t0, such
that

T (t)Q ⊂ B(P, ε), ∀t ≥ t0.

Definition 7.1. A set P ⊂ F+ is a trajectory attracting set if it uniformly attractsK+.

Lemma 7.2. Let P be a trajectory attracting set. Then P (0) is a weakly attracting
set.

Proof. Indeed, if T (t)K+ ⊂ B(P, ε) for some ε, t ≥ 0, then, thanks to (14), we have

R(t)X = (T (t)K+)(0) ⊂ (B(P, ε))(0) ⊂ Bw(P (0), ε).

This concludes the proof.
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Definition 7.3. A set A ⊂ F+ is a trajectory attractor if A is a minimal compact
trajectory attracting set, and T (t)A = A for all t ≥ 0.

It is easy to see that the intersection of two compact trajectory attracting sets is
a trajectory attracting set. Therefore, if a trajectory attractor exists, it is unique. Let
K := E((−∞,∞)), which is called the kernel of E . Let also

Π+K := {u(·)|[0,∞) : u ∈ K}.

Theorem 7.4. Let E be an evolutionary system satisfying A1. Then the trajectory
attractor exists and

A = Π+K.

Proof. Since E([−T,∞)) is compact in C([−T,∞);Xw) for all T > 0, using a diag-
onalization process, we obtain that Π+K is compact in F+. Moreover, due to Theo-
rem 5.8, Π+K uniformly attracts K+.

Now assume that there exits a compact trajectory attracting set P strictly included
in Π+K. Then there exist ε > 0 and

u ∈ Π+K \B(P, ε).

Let v ∈ E((−∞,∞)) be such that v|[0,∞) = u. Let also vn(·) = v(· − n)|[0,∞). Note
that vn ∈ K+ and

T (n)vn = u /∈ B(P, ε), ∀n.

Therefore, P is not a trajectory attracting set, a contradiction.
Finally, the properties 2 and 4 of E immediately imply that T (t)Π+K = Π+K for

all t ≥ 0.

Note that Theorem 5.8 also yields that

Aw = A(t), ∀t ∈ R.

Finally, we will show that the strong continuity of complete trajectories implies a
uniform strong convergence of solutions toward the trajectory attractor.

Theorem 7.5. Let E be an evolutionary system satisfying A1, A2, and A3. If A ⊂
C([0,∞);Xs), then the trajectory attractor A uniformly attractsK+ inL∞loc((0,∞);H).

Proof. Since A ⊂ C([0,∞);Xs), Theorem 6.2 implies that the evolutionary system
E is asymptotically compact. Therefore, Theorem 5.9 yields that A uniformly attracts
K+ in L∞loc((0,∞);H).
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8 3D Navier-Stokes equation
In this section we will apply the above results to the space periodic 3D incompressible
Navier-Stokes equations (NSE)

d

dt
u− ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,
u, p, f are periodic with period L in each space variable,

u, f are in L2
loc(R3)3,

(15)

where u, the velocity, and p, the pressure, are unknowns; f is a given driving force,
and ν > 0 is the kinematic viscosity coefficient of the fluid. By a Galilean change of
variables, we can assume that the space average of u is zero, i.e.,∫

Ω

u(x, t) dx = 0, ∀t,

where Ω = [0, L]3 is a periodic box.
First, let us introduce some notations and functional setting. Denote by (·, ·) and

| · | the L2(Ω)3-inner product and the corresponding L2(Ω)3-norm. Let V be the space
of all R3 trigonometric polynomials of period L in each variable satisfying ∇ · u = 0
and

∫
Ω
u(x) dx = 0. Let H and V to be the closures of V in L2(Ω)3 and H1(Ω)3,

respectively. Define the strong and weak distances by

ds(u, v) := |u− v|, dw(u, v) =
∑
κ∈Z3

1
2|κ|

|uκ − vκ|
1 + |uκ − vκ|

, u, v ∈ H,

where uκ and vκ are Fourier coefficients of u and v respectively.
Let also Pσ : L2(Ω)3 → H be the L2-orthogonal projection, referred to as the

Leray projector. Denote by A = −Pσ∆ = −∆ the Stokes operator with the domain
D(A) = (H2(Ω))3 ∩ V . The Stokes operator is a self-adjoint positive operator with a
compact support. Let

‖u‖ := |A1/2u|,

which is called the enstrophy norm. Note that ‖u‖ is equivalent to the H1-norm of u
for u ∈ D(A1/2).

Now denote B(u, v) := Pσ(u · ∇v) ∈ V ′ for all u, v ∈ V . This bilinear form has
the following property:

(B(u, v), w) = −(B(u,w), v), u, v, w ∈ V,

in particular, (B(u, v), v) = 0 for all u, v ∈ V .
Now we can rewrite (15) as the following differential equation in V ′:

d

dt
u+ νAu+B(u, v) = g, (16)

where u is a V -valued function of time and g = Pσf . Throughout, we will assume
that g is time independent and g ∈ H .
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Definition 8.1. A weak solution of (15) on [T,∞) (or (−∞,∞), if T = −∞) is an
H-valued function u(t) defined for t ∈ [T,∞), such that

d

dt
u ∈ L1

loc([T,∞);V ′), u(·) ∈ C([T,∞);Hw) ∩ L2
loc([T,∞);V ),

and (
d

dt
u, v

)
+ ν((u, v)) + (B(u, u), v) = (g, v) a.e. in t,∀v ∈ V.

Theorem 8.2 (Leray, Hopf). For every u0 ∈ H , there exists a weak solution of (15)
on [T,∞) with u(T ) = u0 satisfying the following energy inequality

|u(t)|2 + 2ν
∫ t

t0

‖u(s)‖2 ds ≤ |u(t0)|2 + 2
∫ t

t0

(g(s), u(s)) ds (17)

for all t ≥ t0, t0 a.e. in [T,∞).

Definition 8.3. A Leray-Hopf solution of (15) on the interval [T,∞) is a weak solution
on [T,∞) satisfying the energy inequality (17) for all T ≤ t0 ≤ t, t0 a.e. in [T,∞).
The set Ex of measure 0 on which the energy inequality does not hold will be called
the exceptional set.

It is known that there exists an absorbing ball for the 3D Navier-Stokes equations
(see, e.g., [13]).

Proposition 8.4. The 3D Navier-Stokes equations possess an absorbing ball

B = Bs(0, R),

where R as any number larger that |g|ν−1L/(2π).

Let X be a closed absorbing ball.

X = {u ∈ H : |u| ≤ R},

which is also weakly compact. Then for any bounded set A ⊂ H there exists a time
t0, such that

u(t) ∈ X, ∀t ≥ t0,
for every Leray-Hopf solution u(t) with the initial data u(0) ∈ A. Classical NSE
estimates (see [13]) imply that for any sequence of Leray–Hopf solutions un (not only
for the ones guaranteed by Theorem 8.2) the following result holds.

Lemma 8.5. Let un(t) be a sequence of Leray-Hopf solutions of (15), such that
un(t) ∈ X for all t ≥ t0. Then

un is bounded in L2([t0, T ];V ),
d

dt
un is bounded in L4/3([t0, T ];V ′),

for all T > t0. Moreover, there exists a subsequence unj
of un that converges in

C([t0, T ];Hw) to some Leray-Hopf solution u(t), i.e.,

(unj
, v)→ (u, v) uniformly on [t0, T ],

as nj →∞, for all v ∈ H .
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Consider an evolutionary system for which a family of trajectories consists of all
Leray-Hopf solutions of the 3D Navier-Stokes equations in X . More precisely, define

E([T,∞)) := {u(·) : u(·) is a Leray-Hopf solution on [T,∞)
and u(t) ∈ X ∀t ∈ [T,∞)}, T ∈ R,

E((∞,∞)) := {u(·) : u(·) is a Leray-Hopf solution on (−∞,∞)
and u(t) ∈ X ∀t ∈ (−∞,∞)}.

Clearly, the properties 1–4 of E hold. Therefore, thanks to Corollary 3.9, the weak
global attractorAw for this evolutionary system exists. Moreover, we have the follow-
ing.

Lemma 8.6. The evolutionary system E of the 3D NSE satisfies A1, A2, and A3.

Proof. First note that E([0,∞)) ⊂ C([0,∞);Hw) by the definition of a Leray-Hopf
solution. Now take any sequence un ∈ E([0,∞)), n = 1, 2, . . . . Thanks to Lemma 8.5,
there exists a subsequence, still denoted by un, that converges to some u1 ∈ E([0,∞))
in C([0, 1];Hw) as n → ∞. Passing to a subsequence and dropping a subindex once
more, we obtain that un → u2 in C([0, 2];Hw) as n → ∞ for some u2 ∈ E([0,∞)).
Note that u1(t) = u2(t) on [0, 1]. Continuing this diagonalization process, we obtain
a subsequence unj

of un that converges to some u ∈ E([0,∞)) in C([0,∞);Hw) as
nj →∞. Therefore, A1 holds.

Now, given ε > 0, let δ = ε/(2|g|R). Take any u ∈ E([0,∞)) and t > 0. Since
u(t) is a Leray-Hopf solution, it satisfies the energy inequality (17)

|u(t)|2 + 2ν
∫ t

t0

‖u(s)‖2 ds ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(s)) ds,

for all 0 ≤ t0 ≤ t, t0 ∈ [0,∞) \ Ex, where Ex is a set of zero measure. Hence,

|u(t)|2 ≤ |u(t0)|2 + 2(t− t0)|g|R
≤ |u(t0)|2 + ε,

for all t0 ≥ 0, such that t0 ∈ (t− δ, t) \ Ex. Therefore, A2 holds.
Let now un ∈ E([0,∞)) be such that un → u ∈ E([0,∞)) in C([0, T ];Xw) as

n → ∞ for some T > 0. Thanks to Lemma 8.5, the sequence {un} is bounded in
L2([0, T ];V ). Hence,∫ T

0

|un(s)− u(s)|2 ds→ 0, as n→∞.

In particular, |un(t)| → |u(t)| as n→∞ a.e. on [0, T ], i.e., A3 holds.

Now Theorem 5.8 and Corollary 6.3 yield the following.

Theorem 8.7. The weak global attractorAw for the 3D NSE exists,Aw is the maximal
invariant set, and

Aw = ωw(X) = ωs(X) = {u(0) : u ∈ E((−∞,∞))}.
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Moreover, for any ε > 0 there exists t0, such that for any t∗ > t0, every Leray-Hopf
solution u ∈ E([0,∞)) satisfies

dC([t∗,∞);Xw)(u, v) < ε,

for some complete trajectory v ∈ E((−∞,∞)).

Theorem 8.8. If every complete trajectory of the 3D NSE is strongly continuous, then
the weak global attractor is a strongly compact strong global attractor. In addition,
for any ε > 0 and T > 0, there exists t0, such that for any t∗ > t0, every Leray-Hopf
solution u ∈ E([0,∞)) satisfies

ds(u(t), v(t)) < ε, ∀t ∈ [t∗, t∗ + T ],

for some complete trajectory v ∈ E((−∞,∞)).

Finally, we note that all the other results from the previous sections apply to the
3D Navier-Stokes equations as well.
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