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ILL-POSEDNESS OF BASIC EQUATIONS OF FLUID
DYNAMICS IN BESOV SPACES

A. CHESKIDOV AND R. SHVYDKOY

ABSTRACT. We give a construction of a divergence-free vector field
up € H* N B!, forall s < 1/2, such that any Leray-Hopf solution

00,00
to the Navier-Stokes equation starting framis discontinuous at = 0
in the metric ofB.! . For the Euler equation a similar result is proved
in all Besov spaces®;  wheres > 0if r > 2, ands > n(2/r — 1) if
1<r<2.

1. INTRODUCTION

In recent years numerous results appear in the literatuneetirposedness
theory of the Euler and Navier-Stokes equations in Besoeespésee for
example,[[1}, 4,5, 10, 13] and references therein). The beat existence
and uniqueness result known for the Euler equation staée$ahany initial

conditionu, € Bffrl with 1 < r < oo, wheren is the dimension of the fluid
domain, there exists a unique weak solution space’ ([0, T'; B,ffrl), for

somel’ > 0, such that(t) — ug in Bfl“. The case of =2, n = 3ises-
pecially interesting for it constitutes the borderlinesp#or applicability of
the standard energy method in proving local well-posed(sess[9]). No-
tice thatB;/” is a proper subspace of the Sobolev spdé€ = By’ , where
local existence is an outstanding open problem. As a partohatruction
presented here in Proposition 2.1 we show that the Eulertiequis ill-

posed in the opposite extreme space with respect to suntmaamely in
By’ Specifically, there exists@, € B,'- such that any energy bounded

2,00

weak solution to the Euler equation that starts fropdoes not converge
back tou is the metric of B2 as time goes to zero. Another particular

2,00
case of Proposition 2.1 demonstrates similar ill-posesinesult inB},

thus precluding a possible extension of Pak and Park’str'afvs|IHC1>O,1 (see
[20]).
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In the second part of this note we address the questionpddedness for
the Navier-Stokes equations in the critical Besov spsce B_ ', . We re-

call that the homogeneous spake= B;Ofoo is invariant with respect to the
natural scaling of the equation &". Moreover it is the largest such space
[4]. The non-homogeneous space considered in this noteeislavger al-
though (quasi-)invariant only with respect to the smallesachalations. In
a recent work of Bourgain and Pavlovic [3] the authors carcséd a mild
solution to NSE with initial condition|u|| y < ¢ such that at a time < &
the solution satisfiegu(t)||y > 1/6. This shows the evolution under NSE
is not continuous fronX to C([0, 7]; X). In our Propositio 312, similar
to the case of the Euler equation, we construct an initiatitamn U which
belongs to all Besov spacésg,é’;_l in the rangel < r < oo, — In partic-
ular U has finite energy — such that any Leray-Hopf weak solutiortista
from U does not return t&’ in the metric of inhomogeneous spake This
demonstrates an even more dramatic breakdown of NSE ewolutiX as
there is no continuous trajectory K at all. More importantly our construc-
tion gives a simple model for the forward energy cascadeghvisitypically
observed in turbulent flows [8]. Incidentally, the resulbyed in [7] shows
that any left-continuous Leray-Hopf solution.fis necessarily regular.

We consider periodic boundary conditions for two main readerstly,
we do not make use of lower frequencies in our analysis, atwhsky, our
constructions become much more transparent. However hgttechnique
developed in[[B] the results can be carried over to the opacesipo.

Let us now introduce the notation and spaces used in thisrpape
will fix the notation for scales\, = 2¢ in some inverse length units. Let
us fix a nonnegative radial function € C§°(R™) such thaty({) = 1 for
€] < 1/2, andx(€) = 0 for |¢| > 1. We definep(¢) = x(\'€) — x(&),
ande, (&) = (X, '¢) for ¢ > 0, andy_; = . For a tempered distribution
vector fieldu on the torusl™ we consider the Littlewood-Paley projections

(1) ug(r) = Y ak)py(k)e™™, ¢ > 1.

kezm

So, we have: = > 77 | u, in the sense of distributions. We also use the
following notationu<, = Zg:_l Up, ANy = gy + g + Ug1.

Let us recall the definition of Besov spaces. A temperediligion «
belongs taB;, for s € R, 1 < [,r < oo iff

1/1
lulls, = (Z(A;Hqu> < 0.

q>—1
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2. INVISCID CASE
The Euler equation for the evolution of ideal fluid is given by
(2) u+ (u- V)u=—Vp,

wherew is a divergence free field ofi”. By a weak solution to[(2) we
understand ar.?-valued weakly continuous field satisfying [2) in the
distributional sense. Let us recall that all such solutibage absolutely
continuous in time Fourier coefficients (see for examplg)[11

Our construction below is two-dimensional. So, we denote’ by, the
vectors of the standard unit basis and define

. L 1
uo(z,y) = € cos(y) + & q:ZO )‘_Z cos(Agz).
Proposition 2.1. If u is a weak solution to the Euler equati) with initial
conditionu(0) = ug. Then there i = §(n,r, s) > 0 independent of such
that we have

3) lim sup [Ju(t) — uol

t—0t

wheres > 0if r > 2, ands > n(2/r —1)if 1 <r < 2.

Bf-,oo Z 57

The rest of the section is devoted to the proof of Proposiidn

Let us denoteX = B; . We can make the assumption that for some
to > 0, u € L*([0,t0); X). Indeed, otherwise [3) follows immediately.
Further proof is based on the fact thgtproduces a strong forward energy
transfer which forces to actually escape frons;  unless[(B) is met. To
this end, let us consider frequencigs= (\,, 1). Letp(¢£) be the symbol of
the Leray-Hopf projection. By a direct computation we have

(4) fa = (&) (w0 - Vo)™ (&) = iA; ™" + O(1/X)).
We will prove the following estimate for the nonlinear term
(5) (- Vo)l S A lullx vl x.

forall u,v € X andg > —1. First, let us assume that< 2. Using the
identity div(u ® v) = u - Vv and the Bernstein inequality we obtain

(6) [div(u @ v)gl1 S Agl(u®@v)gli < A Z |t [ U]
P'p"'>q
Ip'—p" <2
(7) +)‘q|uq‘7‘2|vp|r’ +)‘q|vq|72‘up|r’-
P<q P<q
Using that

‘wp‘r’ S )‘Z(z/r_l)‘wpha
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we have for the first sum
s n 2/r—1
Aq Z [t | [Upr | S A Z [ty [ NS |0 [ A N (/ )—2

p'p"">q P p'">q
Ip/_pll‘§2 ‘pl_plllgz

< )\1+n(2/r 1) ZSHUHXHUHX

For the second sum we obtain
Altgle D lople S A7 Nolutgle D Tl XA =07 < A [l o x.
p<q p<q
Similar estimate holds for the third term. We thus obt&in (5)
In the caser > 2, we use the basic embeddidg ¢ L" instead of

Bernstein’s inequalities im{6)5(7). The rest of the argotis similar.
We have

®) W(Egrt) = 4(6,.0) + /0 P(Eg) (- V) €y, 5)ds

for all t > 0. By our constructioni(&,,0) = 0. On the other hand we can
estimate usind (5)

[P(&q) (- V)" (&, 8) = fol < [(u- V)™ (&g, 8) = (o - Vo)™ (&)
= |(u- Vu)g (&g, 8) — (uo - Vo) (&)
\(u Vu)y(s) = (uo - Vuo)gly
g (luls)llx + lluollx) u(s) — uollx

Thus, from [(8) we obtain

Agli(€g, )] = tAg = 1O(1) — CAq/O (lu(s)llx + lluollx)[u(s) — uollxds.

We can see that if the limit in{3) does not exceee: 1/(10C) then the
integral becomes less tharR. This implies that.(t) ¢ X.

3. ILL-POSEDNESS OINSE

Now we turn to the analogous question for the viscous modeie T
Navier-Stokes equation is given by
(9) u + (u - V)u = vAu — Vp.

Here u is a three dimensional divergence free field Bh We refer to
[12] for the classical well-posedness theory for this equmat Let us re-
call that for every fieldU € L*(T?) there exists a weak solutiom €

Cw([0,T); L?) N L*([0, T); H') to (9) such that the energy inequality

t
(10) ()2 + 20 / Vu(s)Bds < UL,
0
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holds for allt > 0 andu(t) — U strongly inL? ast — 0. In what follows
we do not actually use inequality (10) which allows us to falate a more
general statement below in Proposition 3.2.

Let us fix a smalk > 0. Let us choose a sequenge< ¢ < ... with
elements sufficiently far apart so thet /), < e. Letusfixasmalt: > 0
and consider the following integer lattice blocks:

[( )>‘q 7(1 +c ))\(Ij] X [_C)\(Ij7 C)\(Ij]2 nz?
[ C)\qj—la C)\qj—l] X [(1 — C))\qj_l, (1 —+ C))‘qj—l] N Z3
A; + B,

Aj = —Aj, B; — —Bj, Cj* - —Cj.
Thus,4;, C; and their conjugates lie in the, -th shell, whileB;, B lie in
the contiguous\,, _;-th shell. Let us denote

€1(§) = p(§)er andéz (&) = p(§)éa.

A=
B; =
C; =

We define

(11) U=> (U, +Uy-1),
Jjz1

where

and
Ug—1 = €1(§)XB,uB; -
SinceU has no modes in thgy; + 1)-st shellU,, = U,,_1 + U,,.

Lemma3.1. We havdJ ¢ Bmo Jforall 1 < r < o0

Proof. We give the estimate only for one block. Using boundednesiseof
Leray-Hopf projection, we have fdr< r < oo

A2 (@0)xa,) 1 S A () e < A2 D, I

where Dy denote the Dini kernel. By a well-known estimate, we have
|Dy|, < N'=+, which implies the lemma.
If » = oo, we simply use the triangle inequality to obtain

| |OON q;
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Let us now examine the trilinear term. We will use the follog/notation
for convenience

(12) u@uv:Vw = /3 v; 0w u de.
Using the antisymmetry we obtaiqrrl
UQU:VU, = > U, @U, : VU, +U, ®U, : VU,
k>j4+1
+Usqy , @ Uy, : VU, + Uy, @ Uy, , : VU,
= Y Uy ®@Uy, : VU, + Uy @ Uy, - VU, — Uy @ U,

k>j+1

=A+B+C.
Using Bernstein’s inequalities we estimate

. A2
|A| S )‘qJ‘|UqJ‘|oo Z |qu|g S \ i <,

k>j+1 qj+1
)\2
& qj—1
CIS UL Y AalUgleo S 5 <
k<j—1 4
On the other hand, a straightforward computation show that
(13) B~
Proposition 3.2. Letu € C,([0,T); L?) N L*([0,T); H') be a weak so-

lution solution to the NSE with initial condition(0) = U. Then there is
d = d(u) > 0 such that

(14) limsup [[u(t) — Ul g1 > 6.

t—0+

: VUSijl

If in addition « is a Leray-Hopf solution satisfying the energy inequality

(@0), thenc can be chosen independent.of
Proof. Usingu,, as a test function we can write
Oi(Tg, - ug;) = —vVig, - Vg, +u @ u : V.
DenotingE(t) = [ |Vul3ds we obtain
(15) g, (1|3 = Uy, |3 — vE(t) + c1Agt
_CQAt‘u®u:vqu ~U®U:VU,|ds,

for some positive constants andc,. We now show that if the conclusion
of the proposition fails then for some small> 0 the integral term is less
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thanc, \,,t/2 uniformly for all large;. This forces|i,, (t)[5 2 Ayt for all
largej. Henceu has infinite energy, which is a contradiction.

So suppose that for evety > 0 there existg, = t,(4) > 0 such that
Ju(t) = Ul gz < dforall0 <t <ty Denotingw = u — U we write

u®u:Vuy, —UQU: VU, =weU: VU, +u®w: VU,

+tu®u:Vw,, =A+B+C.

We will now decompose each triplet into three terms accgrtinthe type
of interaction (c.f. Bonyl[2]) and estimate each of them safedy.

A= Y wy@Uy : VU, +wey, ® U, : VU,

P’ p">q;
‘p/ _p// ‘ §2

+ g, @ Uy, : VU, — repeated= A; + Ay + 4s.
Using Lemma 31 along with Holder and Bernstein inequesitive obtain

AL < VU0 Y N loolUprlags S XD Twgloch”™ S 00,
| As| = ‘qu ® 0qj : vaQj‘ < |U(Ij|§‘vwff1j‘00 N )‘q_jl Z )‘;)‘;1|wp|oo < 0,
P<q;
|A3| < )‘q]'|U§qJ‘|2|UqJ‘|2|wqj|oo S |wqy‘|00 < 6)‘%'
We have shown the following estimate:
(16) |A] S 5N,
As to B we decompose analogously,
B = Z Uy (%9 Wyt - Vqu + quj (%9 'LZJqJ. . Vqu

P 0" >q;
Ip'—p"|<2

+ 1y, ® weq, : VU, — repeated= By + By + Bs.
Again, using LemmA 311, Bernstein and Hodlder inequalitiesobtain
Bl S Mgy U 12 ) g 2wy oo < 0N [Vu2.
| By| = }qu ®7I’qj : VUSQJ“ < |UQj|2|1DQj|OO|VUSQj|2
< APy, ool Vtla < 6A)? V.
|Bs| < |ﬁqj|2|w§qj|00|Vqu|2 S )\(11]/2|ﬁqj|2 Z )‘;1|wp|oo)‘p

P<q;
S 6NVl
We thus obtain
(17) |B| < 0A*|Vuls.
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Continuing in a similar fashion we write

C = Z Upr @ Uy 2 VW, + U<q; @ Uy + Vwy,

P’ 0" >q;
‘p/ _p// ‘ §2

+ Uy, ® U<y, : Vw,, —repeated= C; + Cs + Cs.

G| < [Vwg e Y pl3 S Ay wg, ooy’ Vul3 < 6| Vul3,
p>q;—2
|Cy| < | Vulalty, 2wy oo S A IV ul3|wg,lr < 6]Vul3,

Now using a uniform bound on the energy(t)|2 < 1 for almost allt > 0,
we estimate

T3] S A, [wg,|ooliig, |2 < 0A, [Vig, 2.
Thus,
(18) |C| S 6|Vul3 + 6Ag,| Vi, |2.

Now combining estimate$ (16}, (17), (18) along with the kraness of
E(ty) we obtain

to
(19) /0 lu@u: Vug, —U®U: VU, |ds < A to + 5A;j2t5/2

0

t
+ 0+ 0A, / |Viig, (s)]2ds.
0
Using that

to
/ Vg, (5)|2ds — 0
0

asj — oo we can choseé small enough angl, large enough so that the left
hand side of the (19) is less than

1
202

for all j > 7. Going back to[(15) this implies
g, (to)[5 > Uy, 5 — vE(to) + c1)g;t0/2,

forall j > jo, which shows that(¢,) has infinite energy, a contradiction.
The last statement of the proposition follows from the fhetttwe have

the bounds oru(t)|, < |Ul, and E(ty) < (2v)~!|U|% which remove de-

pendence of the constants on O

Mgt
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