ILL-POSEDNESS FOR SUBCRITICAL HYPERDISSIPATIVE
NAVIER-STOKES EQUATIONS IN THE LARGEST CRITICAL
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ABSTRACT. We study the incompressible Navier-Stokes equations with
a fractional Laplacian and prove the existence of discontinuous Leray-
Hopf solutions in the largest critical space with arbitrarily small initial
data.

1. INTRODUCTION

In this paper we study the supercritical 3D Navier-Stokes equations with
a fractional power of the Laplacian

ou+ (u-V)u+ Vp = —v(—A)%, re T t>0,
(1) V-u=0,
u(0) = uy,

where the velocity u(x,t) and the pressure p(z,t) are unknowns, uy €
L?(T3) is the initial condition, » > 0 is the kinematic viscosity coeffi-
cient of the fluid, and o > 0. The case & = 1 corresponds to the classical
Navier-Stokes equations, which has been studied extensively for decades.
We refer to [7, 17] for the classical theory for these equations. In the case
a > 5/4 the equations are well-posed, as the dissipative term simply domi-
nates the nonlinear term. Moreover, the global regularity is known even in a
slightly supercritical case, i.e., when logarithmic corrections to the Fourier
multiplier of the dissipative term are present (see [16, 4]). However, a fi-
nite time blow up of solutions to (1) remains a possibility for « < 5/4 due
to a supercritical nature of the equations. Nevertheless, a partial regularity
result [3] has been established in the supercritical case a« = 1, later ex-
tended to o € (1,5/4) in [11]. There are also various regularity criteria
in the case @ = 1, most of which are of Ladyzhenskaya-Prodi-Serrin type
[8, 13, 14, 15, 10, 6, 4], which can also be extended to o € (1,5/4).
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One of the open questions studied extensively is whether solutions bounded
in the largest critical case (B;ofoo for a = 1) are regular. A positive answer
to this question would extend the famous L{°L3 result due to Iscauriaza,
Seregin, and Sverak [10]. In addition, the best small initial result for the 3D
NSE, due to Koch and Tataru [12], is in the space BMO~!, and it is not
known either if its extension to the Bo_ol,OO 1s possible.

In view of these problems two “negative” results have been obtained in
the space BO_O{OO. First, Bourgain and Pavlovic [2] proved that that there are
solutions to the 3D NSE equations, with arbitrary small initial data in B;o%oo
that become arbitrarily large in Bo_ofoo in arbitrarily small time. Second,
Leray-Hopf solutions with arbitrary small initial data, but discontinuous in
BZ',, were obtained in [5].

The largest critical space for the fractional NSE (1) is Bg; 2o Recently
Yu and Zhai [18] obtained a small initial data result in this space in the
hypodissipative case o € (1/2,1). Heuristically, the hypodissipative NSE
behaves better because it is closer to the fractional heat semigroup in critical
spaces. In the hyperdissipative case it is therefore natural to expect ill-
posedness results of the type mentioned above. Indeed, in this paper we
demonstrate this in the case @ € [1,5/4) by constructing a Leray-Hopf
solution with arbitrarily small initial data, which is discontinuous in the
critical Besov space BC{; 2> Tt is thus a direct extension of our previous
result stated in [5]. The method breaks down either when « passes beyond
the value of 1, which is consistent with the result of Yu and Zhai, and at 5/4
and beyond, which is consistent with the global regularity in that range.

We now fix our notation. We assume periodic boundary conditions in all
3 dimensions, so T? will denote the 3D torus, while | - lp» p > 1, denotes

the LP-norm in T3. We let f and f stand for the forward and, respectively,
inverse Fourier transforms on the torus. The Fourier multiplier with symbol
|€]*, where ¢ stands for the frequency vector and o > 0, is denoted by
|V|*. The fractional Laplacian operator (—A)* has symbol |£]|?*. We write
p(&) =1id — [€]726® &, € # 0, p(0) = id, for the symbol of the Leray-Hopf
projection on the divergence-free fields. We fix notation for the dyadic a-
dimensional wavenumbers )\, = 29. We use extensively the classical dyadic
decomposition throughout: u =" - u,, where u, is the Littlewood-Paley
projection with the Fourier support contained in {\,_1 < || < Aj4+1}. The
definitions are standard and can be found in the references above. We often
will be using the extended projection defined by @, = ug—1 + ug + Ugi1,

g > 1, and projection onto the dyadic ball, u<, = ZZ:O u,. Thus, u, is
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supported on {\,_2 < |[£| < A,4+2} and we have the identity

2) /u-uqu:/&q-uqu.
T3 T3

With the Littlewood-Paley decomposition we define Besov spaces B, .,
s € R, r > 1 by requiring

[ullBs . = sup Agllugll- < oo.
q>0

We will frequently refer to Bernstein’s inequalities, which state that for all
1 <r <1’ < oo, and in three dimensions, one has

!uq\w < Ag(l/r—l/r/)‘uq’h

where here and throughout < denote inequality up to an absolute constant.
Finally, let €}, €5, etc., stand for the vectors of the standard unit basis.

2. ILL-POSEDNESS OF NSE

The Navier-Stokes equation with a fractional power of the Laplacian is
given by
3) u + (u-Vu = —v(—=A)%u — Vp.
Here u is a three dimensional divergence free field on T2, and o € [1,5/4).

Let us recall that for every field U € L?*(T?) there exists a weak solution
u € Cy([0,T); L?) N L2([0,T); H') to (3) such that the energy inequality

t
@ e+ 20 [ |IVIus) s < U
0

holds for all ¢ > 0 and u(t) — U strongly in L? as t — 0. In what follows
we do not actually use inequality (4) which allows us to formulate a more
general statement below in Proposition 2.2.

Let us choose a strictly increasing sequence {¢;} € N with elements suf-
ficiently far apart so that at least /\21,0‘)\33*15 < 1. We consider the following
lattice blocks:

9 11 1 1 2
A= | =X\ =) — o — Ao 73
J {10%’10%} X{ 10%’10%} "
1 1 2 9 11
b= l_l_OAqf‘l’l_oAqfl} . [1—0qu_1,1—0qu_1] ne
Cj - Aj ‘I‘ Bj
A5 =~ A5, B = =B;, €] = =C;.

Thus, A;, C; and their conjugates lie in the g;-th shell, while B, Bj’f lie in
the adjacent (¢; — 1)-th shell. The particular choice of scaling exponents
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9/10,11/10, etc., is unimportant as long as the blocks fit into the their re-
spective shells. Let us denote

a(e) =p(O)a, &) = p©)é.
We now define the initial condition field to be the following sum
5) U= (Uy +Uy1),
7j>1

where the components, on the Fourier side, are

—~

Uy () = 20" ( 2(E)xa,0ar +i(€2(€) — €1(€))xc, — ilea(€) — 61(5)))(0*)

and
Ugy—1(§) = )‘33 e (&)X UB; -

~

By construction, U(—¢) = U(€), which ensures that U is real. Since U
has no modes in the (g; + 1)-st shell, then the extended Littlewood-Paley

projection of the j-th component has the form qu =Uy-1+ Uy,
2 _2a
Lemma 2.1. We have U € Bi:g 2 ,forany 1 < r < oo.

Proof. We give the estimate only for one block, the other ones being similar.
Using boundedness of the Leray-Hopf projection, we have, forall 1 < r <
oo,

N @()xa) e S AT (xay) o
Notice that by construction,

|(XAJ-)V($1,9C2,$3)| = ’D(C+1)/\qj (%)Dc/\qj (fﬂz)Dc)\qj (5133)|
where D denotes the Dirichlet kernel. Hence,
|(XAj)V|7" < |D(C+1))\qj |7“|Dc/\qj |E

By a well-known estimate, we have |Dy|, < N -3 (c.f. [9]). Putting the

above estimates together implies the desired inclusion in B, & 13/m2% In the
case r = oo we simply use the triangle inequality to obtain
| |oo < )\Qa 1
Ul

Let us now examine the trilinear term. We will use the following notation
for convenience

(6) u®uv: Vw = / V0w u de.
T3
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Using the antisymmetry we obtain
UQU:VU, = > U, &@U, : VU, +U, ®U, : VU,
k>j+1
+ Uqu—l ® qu : VU%' + qu ® Uqu—1 : VU%'
=) Uy ®@U, : VU, + Uy @ U, : VU,
k>j+1
— U, @Uy, - VU<, _,
=A+B+C.
Using Bernstein’s inequalities we estimate
AIS A 1Ug oo D 1003 S AN <1,
k>j+1

’C’ S ‘qu‘g Z )\Qk’UQk’W S D W <1,

[ad q5—-1" 945
k<j—1

where in the latter inequality we used the fact [Ug, [, ~ )\2?_5/ 2

other hand, a straightforward computation shows that

(7) B~ A,

. On the

which is thus the dominant term of the three, and hence,
UU: VU, ~ )\2;_”‘_5.
Proposition 2.2. Let u € C,([0,T); L*) N L*([0,T); H') be a weak solu-

tion to the NSE with initial condition u(0) = U. Then there is § = 6(u) > 0
such that

®) timsup Ju(t) — U] prese > 6
t—0+ e

If, in addition, v is a Leray-Hopf solution satisfying the energy inequality
(4), then 6 can be chosen independent of u.

Proof. Let us test (3) with u,,. Using (2), we find
D(tg, - ug;) = —V|V[*Ug, - |[V|*ug, + u @ u: Vg,

where as defined before, iy, = ug,_1 + ug; + ug11. Denoting E(t) =
fot ||V |*u|3ds we obtain

) iig, ()3 > Uy |3 — vE(t) + e A2t

t
_02/ lu@u: Vug, —U®U : VU, |, ds,
0
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for some positive constants c; and co. We now show that if the conclusion
of the proposition fails then for some small ¢ > 0 the integral term the
growth of the integral term above becomes less than cl)\gj?‘_f’t for large ;.

This forces |1, (t)[3 2 Ag* "t for all large j. Hence u has infinite energy,

~

which is a contradiction.
So suppose that for every § > 0 there exists ¢ty = to(d) > 0 such that
|u(t) — Ullgi-22 < 6 forall 0 < ¢ < t,. Denoting w = u — U we write

u®u:Vug, —UQU: VU, =weU: VU, +u®w: VU,
t+tu®u:Vuw, =A+ B+C.

We will now decompose each triplet into three terms according to the type
of interaction (c.f. Bony [1]) and estimate each of them separately.

A= Y wy@Uy : VU, +wey, ® U, : VU,

P’ >q;
‘p/ _p/l ‘ §2

+ g, @ Uy, : VU, — repeated = Ay + Ay + As.

Let us fix r € (1,3/(4a — 2)) and use Lemma 2.1 along with Holder and
Bernstein’s inequalities to estimate A;:

2a—1-2
T

20—3+2
|A1] < [VUg, | Z Wyt oo | Upr | S )\‘Jja ’ Z ‘wp”oo)‘p”

200—3+2 _
oAy T AN,

~ qj

Intergrating by parts we obtain Ay = U, ® Uq]. : Vwey;. Thus, using the
same tools,

|[Ao| < U, 31 Vw<g loe S A2 Aplwyloo < AT,
=g,

And finally,

’A3’ < )\qj’Uqu|2’qu’2‘wqg‘|OO S )\3?74’117%‘00 < 5>\2;175'

~Y

We have shown the following estimate:
(10) Al S oA,
As to B we decompose analogously,

B = Z Up/ X U}p// . Vqu + U/qu ® UNqu . Vqu

P’ >q;
Ip'—p"|<2

+ Ug; ® wey,; : VU, — repeated = By + By + Bs.



ILL-POSEDNESS IN BESOV SPACES 7

The term B is the least problematic. Here we do not even have to use the
smallness of w and can just roughly estimate it in terms of the enstrophy
| V]*u|3. We have

BIS > Juy ®@uy VU, |+ D Juy @ Uy : VU, |

P 0" >q; P 0" >q;
[’ —p""|<2 lp'—p"|<2

< Agﬂ“qu |§ + )‘(21;1|u2qg' |2|U2qj |2
Vs, 5+ N2V [ usg, |2
<V s, |3+ A2 752V [ usg, 2.
Again, using Lemma 2.1, Bernstein and Holder inequalities we obtain
| Bs| = ’qu ® Wy, : vuS%‘l < |Ule|2|ij|00|vu§(Ij|2
< NGBy, ool [Vl < ATV uly < AQYTPT |Vl

‘B3| < |a¢Zj|2|w§‘Zj’00|VUQj|2 SJ )‘621?_3/2ij|2 Z |wp|oo
p<gj
SNVl < X |Vl

‘We thus obtain
(11) B S IV g, |3 + A0 2(|V[*ul.

Continuing in a similar fashion we write

C = Z Uy @ Upr 2 VW, + U<q; @ Uy, + Vg,

P’ 0" >q;
lp'—p|<2
+ Uy, ® U<y, : Vw,, — repeated = Cy + Cy + Cs.
We have

|G| < |V |ooltzg; 5 < 0]V ul5.
In C5 we move the derivative onto U<q, and estimate as usual,
|Col < [Vula|iig, 2wy, |0 S [V ul2|iig, |2A20 7" < [|V|*ul3AS 72,
Using a uniform bound on the energy we have for Cj,
|Cs| S Ny [y, looltig; |2 < OXG [V %y, o < N2V [ty |-
Thus,
(12) O] S 81V |ul3 + [V ul3AS 5712 4+ 60375V |y, |o.
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Now combining estimates (10), (11), (12) along with the boundedness of
E(to) we obtain

(13)
to

/ |A+ B+ Clds S 0Nt +/
0 0

to
V[, 3 ds + o)/t Ny 1/2

to
‘|‘5E(t0) +5)\ij_5/ ||V|a1~tqj|2 ds.
0
And for large j, and fixed t, this gives
to v
/ |A+ B+ Clds S oA "to + 5E(to).
0

Pugging this back into (9) gives the estimate
[, (t0)[3 2 Mg,

for all j > jo, which shows that u(¢y) has infinite energy, a contradiction.
The last statement of the proposition follows from the fact that we have

the bounds on |u(t)|s < |Ul; and E(ty) < (2v)~!U|3 which remove de-

pendence of the constants on . U
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