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ABSTRACT. We study the incompressible Navier-Stokes equations with
a fractional Laplacian and prove the existence of discontinuous Leray-
Hopf solutions in the largest critical space with arbitrarily small initial
data.

1. INTRODUCTION

In this paper we study the supercritical 3D Navier-Stokes equations with
a fractional power of the Laplacian

(1)


∂tu+ (u · ∇)u+∇p = −ν(−∆)αu, x ∈ T3, t ≥ 0,

∇ · u = 0,

u(0) = u0,

where the velocity u(x, t) and the pressure p(x, t) are unknowns, u0 ∈
L2(T3) is the initial condition, ν > 0 is the kinematic viscosity coeffi-
cient of the fluid, and α > 0. The case α = 1 corresponds to the classical
Navier-Stokes equations, which has been studied extensively for decades.
We refer to [7, 17] for the classical theory for these equations. In the case
α ≥ 5/4 the equations are well-posed, as the dissipative term simply domi-
nates the nonlinear term. Moreover, the global regularity is known even in a
slightly supercritical case, i.e., when logarithmic corrections to the Fourier
multiplier of the dissipative term are present (see [16, 4]). However, a fi-
nite time blow up of solutions to (1) remains a possibility for α < 5/4 due
to a supercritical nature of the equations. Nevertheless, a partial regularity
result [3] has been established in the supercritical case α = 1, later ex-
tended to α ∈ (1, 5/4) in [11]. There are also various regularity criteria
in the case α = 1, most of which are of Ladyzhenskaya-Prodi-Serrin type
[8, 13, 14, 15, 10, 6, 4], which can also be extended to α ∈ (1, 5/4).
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One of the open questions studied extensively is whether solutions bounded
in the largest critical case (Ḃ−1

∞,∞ for α = 1) are regular. A positive answer
to this question would extend the famous L∞t L

3
x result due to Iscauriaza,

Seregin, and Šverák [10]. In addition, the best small initial result for the 3D
NSE, due to Koch and Tataru [12], is in the space BMO−1, and it is not
known either if its extension to the B−1

∞,∞ is possible.
In view of these problems two “negative” results have been obtained in

the space Ḃ−1
∞,∞. First, Bourgain and Pavlovic [2] proved that that there are

solutions to the 3D NSE equations, with arbitrary small initial data in Ḃ−1
∞,∞

that become arbitrarily large in Ḃ−1
∞,∞ in arbitrarily small time. Second,

Leray-Hopf solutions with arbitrary small initial data, but discontinuous in
B−1
∞,∞ were obtained in [5].
The largest critical space for the fractional NSE (1) is Ḃ1−2α

∞,∞ . Recently
Yu and Zhai [18] obtained a small initial data result in this space in the
hypodissipative case α ∈ (1/2, 1). Heuristically, the hypodissipative NSE
behaves better because it is closer to the fractional heat semigroup in critical
spaces. In the hyperdissipative case it is therefore natural to expect ill-
posedness results of the type mentioned above. Indeed, in this paper we
demonstrate this in the case α ∈ [1, 5/4) by constructing a Leray-Hopf
solution with arbitrarily small initial data, which is discontinuous in the
critical Besov space B1−2α

∞,∞ . It is thus a direct extension of our previous
result stated in [5]. The method breaks down either when α passes beyond
the value of 1, which is consistent with the result of Yu and Zhai, and at 5/4
and beyond, which is consistent with the global regularity in that range.

We now fix our notation. We assume periodic boundary conditions in all
3 dimensions, so T3 will denote the 3D torus, while | · |p, p ≥ 1, denotes
the Lp-norm in T3. We let f̂ and f̌ stand for the forward and, respectively,
inverse Fourier transforms on the torus. The Fourier multiplier with symbol
|ξ|α, where ξ stands for the frequency vector and α > 0, is denoted by
|∇|α. The fractional Laplacian operator (−∆)α has symbol |ξ|2α. We write
p(ξ) = id− |ξ|−2ξ⊗ ξ, ξ 6= 0, p(0) = id, for the symbol of the Leray-Hopf
projection on the divergence-free fields. We fix notation for the dyadic a-
dimensional wavenumbers λq = 2q. We use extensively the classical dyadic
decomposition throughout: u =

∑
q≥0 uq, where uq is the Littlewood-Paley

projection with the Fourier support contained in {λq−1 < |ξ| < λq+1}. The
definitions are standard and can be found in the references above. We often
will be using the extended projection defined by ũq = uq−1 + uq + uq+1,
q ≥ 1, and projection onto the dyadic ball, u≤q =

∑q
p=0 up. Thus, ũq is
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supported on {λq−2 < |ξ| < λq+2} and we have the identity

(2)
∫

T3

u · uq dx =

∫
T3

ũq · uq dx.

With the Littlewood-Paley decomposition we define Besov spaces Bs
r,∞,

s ∈ R, r ≥ 1 by requiring

‖u‖Bsr,∞ = sup
q≥0

λsq‖uq‖r <∞.

We will frequently refer to Bernstein’s inequalities, which state that for all
1 ≤ r < r′ ≤ ∞, and in three dimensions, one has

|uq|r′ . λ3(1/r−1/r′)
q |uq|r,

where here and throughout . denote inequality up to an absolute constant.
Finally, let ~e1, ~e2, etc., stand for the vectors of the standard unit basis.

2. ILL-POSEDNESS OF NSE

The Navier-Stokes equation with a fractional power of the Laplacian is
given by

(3) ut + (u · ∇)u = −ν(−∆)αu−∇p.
Here u is a three dimensional divergence free field on T3, and α ∈ [1, 5/4).
Let us recall that for every field U ∈ L2(T3) there exists a weak solution
u ∈ Cw([0, T );L2) ∩ L2([0, T );H1) to (3) such that the energy inequality

(4) |u(t)|22 + 2ν

∫ t

0

||∇|αu(s)|22ds ≤ |U |22,

holds for all t > 0 and u(t) → U strongly in L2 as t → 0. In what follows
we do not actually use inequality (4) which allows us to formulate a more
general statement below in Proposition 2.2.

Let us choose a strictly increasing sequence {qi} ∈ N with elements suf-
ficiently far apart so that at least λ2α

qi
λ4α−5
qi+1

< 1. We consider the following
lattice blocks:

Aj =

[
9

10
λqj ,

11

10
λqj

]
×
[
− 1

10
λqj ,

1

10
λqj

]2

∩ Z3

Bj =

[
− 1

10
λqj−1,

1

10
λqj−1

]2

×
[

9

10
λqj−1,

11

10
λqj−1

]
∩ Z3

Cj = Aj +Bj

A∗j = −Aj, B∗j = −Bj, C
∗
j = −Cj.

Thus, Aj , Cj and their conjugates lie in the qj-th shell, while Bj , B∗j lie in
the adjacent (qj − 1)-th shell. The particular choice of scaling exponents
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9/10, 11/10, etc., is unimportant as long as the blocks fit into the their re-
spective shells. Let us denote

~e1(ξ) = p(ξ)~e1, ~e2(ξ) = p(ξ)~e2.

We now define the initial condition field to be the following sum

(5) U =
∑
j≥1

(Uqj + Uqj−1),

where the components, on the Fourier side, are

Ûqj(ξ) = λ2α−4
qj

(
~e2(ξ)χAj∪A∗j + i(~e2(ξ)− ~e1(ξ))χCj − i(~e2(ξ)− ~e1(ξ))χC∗j

)
,

and
Ûqj−1(ξ) = λ2α−4

qj
~e1(ξ)χBj∪B∗j .

By construction, Û(−ξ) = Û(ξ), which ensures that U is real. Since U
has no modes in the (qj + 1)-st shell, then the extended Littlewood-Paley
projection of the j-th component has the form Ũqj = Uqj−1 + Uqj .

Lemma 2.1. We have U ∈ B1+ 3
r
−2α

r,∞ , for any 1 < r ≤ ∞.

Proof. We give the estimate only for one block, the other ones being similar.
Using boundedness of the Leray-Hopf projection, we have, for all 1 < r <
∞,

|λ2α−4
qj

(~e2(·)χAj)∨|r . λ2α−4
qj
|(χAj)∨|r.

Notice that by construction,

|(χAj)∨(x1, x2, x3)| = |D(c+1)λqj
(x1)Dcλqj

(x2)Dcλqj
(x3)|.

where DN denotes the Dirichlet kernel. Hence,

|(χAj)∨|r ≤ |D(c+1)λqj
|r|Dcλqj

|2r.

By a well-known estimate, we have |DN |r ≤ N1− 1
r (c.f. [9]). Putting the

above estimates together implies the desired inclusion in B1+3/r−2α
r,∞ . In the

case r =∞ we simply use the triangle inequality to obtain

|Uqj |∞ . λ2α−1
qj

.

�

Let us now examine the trilinear term. We will use the following notation
for convenience

(6) u⊗ v : ∇w =

∫
T3

vi∂iwjujdx.
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Using the antisymmetry we obtain

U ⊗ U : ∇Uqj =
∑
k≥j+1

Ũqk ⊗ Ũqk : ∇Uqj + Ũqj ⊗ Ũqj : ∇Uqj

+ U≤qj−1
⊗ Ũqj : ∇Uqj + Ũqj ⊗ U≤qj−1

: ∇Uqj
=
∑
k≥j+1

Ũqk ⊗ Ũqk : ∇Uqj + Uqj−1 ⊗ Uqj : ∇Uqj

− Uqj ⊗ Uqj : ∇U≤qj−1

= A+B + C.

Using Bernstein’s inequalities we estimate

|A| . λqj |Uqj |∞
∑
k≥j+1

|Ũqk |22 . λ2α
qj
λ4α−5
qj+1

≤ 1,

|C| . |Uqj |22
∑
k≤j−1

λqk |Ũqk |∞ . λ2α
qj−1

λ4α−5
qj

≤ 1,

where in the latter inequality we used the fact |Uqj |2 ∼ λ
2α−5/2
qj . On the

other hand, a straightforward computation shows that

(7) B ∼ λ6α−5
qj

,

which is thus the dominant term of the three, and hence,

U ⊗ U : ∇Uqj ∼ λ6α−5
qj

.

Proposition 2.2. Let u ∈ Cw([0, T );L2) ∩ L2([0, T );H1) be a weak solu-
tion to the NSE with initial condition u(0) = U . Then there is δ = δ(u) > 0
such that

(8) lim sup
t→0+

‖u(t)− U‖B1−2α
∞,∞
≥ δ.

If, in addition, u is a Leray-Hopf solution satisfying the energy inequality
(4), then δ can be chosen independent of u.

Proof. Let us test (3) with uqj . Using (2), we find

∂t(ũqj · uqj) = −ν|∇|αũqj · |∇|αuqj + u⊗ u : ∇uqj ,

where as defined before, ũqj = uqj−1 + uqj + uqj+1. Denoting E(t) =∫ t
0
||∇|αu|22ds we obtain

(9) |ũqj(t)|22 ≥ |Uqj |22 − νE(t) + c1λ
6α−5
qj

t

− c2
∫ t

0

∣∣u⊗ u : ∇uqj − U ⊗ U : ∇Uqj
∣∣
1
ds,
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for some positive constants c1 and c2. We now show that if the conclusion
of the proposition fails then for some small t > 0 the integral term the
growth of the integral term above becomes less than c1λ6α−5

qj
t for large j.

This forces |ũqj(t)|22 & λ6α−5
qj

t for all large j. Hence u has infinite energy,
which is a contradiction.

So suppose that for every δ > 0 there exists t0 = t0(δ) > 0 such that
‖u(t)− U‖B1−2α

∞,∞
< δ for all 0 < t ≤ t0. Denoting w = u− U we write

u⊗ u : ∇uqj − U ⊗ U : ∇Uqj = w ⊗ U : ∇Uqj + u⊗ w : ∇Uqj
+ u⊗ u : ∇wqj = A+B + C.

We will now decompose each triplet into three terms according to the type
of interaction (c.f. Bony [1]) and estimate each of them separately.

A =
∑

p′,p′′≥qj
|p′−p′′|≤2

wp′ ⊗ Up′′ : ∇Uqj + w≤qj ⊗ Ũqj : ∇Uqj

+ w̃qj ⊗ U≤qj : ∇Uqj − repeated = A1 + A2 + A3.

Let us fix r ∈ (1, 3/(4α − 2)) and use Lemma 2.1 along with Hölder and
Bernstein’s inequalities to estimate A1:

|A1| ≤ |∇Uqj |r′
∑
|wp′|∞|Up′′|r . λ

2α−3+ 3
r

qj

∑
|wp′|∞λ

2α−1− 3
r

p′′

. δλ
2α−3+ 3

r
qj ≤ δλ6α−5

qj
.

Intergrating by parts we obtain A2 = Uqj ⊗ Ũqj : ∇w≤qj . Thus, using the
same tools,

|A2| ≤ |Ũqj |22|∇w≤qj |∞ . λ4α−5
qj

∑
p≤qj

λp|wp|∞ < δλ6α−5
qj

.

And finally,

|A3| ≤ λqj |U≤qj |2|Uqj |2|w̃qj |∞ . λ4α−4
qj
|w̃qj |∞ < δλ6α−5

qj
.

We have shown the following estimate:

(10) |A| . δλ6α−5
qj

.

As to B we decompose analogously,

B =
∑

p′,p′′≥qj
|p′−p′′|≤2

up′ ⊗ wp′′ : ∇Uqj + u≤qj ⊗ w̃qj : ∇Uqj

+ ũqj ⊗ w≤qj : ∇Uqj − repeated = B1 +B2 +B3.
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The term B is the least problematic. Here we do not even have to use the
smallness of w and can just roughly estimate it in terms of the enstrophy
||∇|αu|22. We have

|B1| .
∑

p′,p′′≥qj
|p′−p′′|≤2

|up′ ⊗ up′′ : ∇Uqj |+
∑

p′,p′′≥qj
|p′−p′′|≤2

|up′ ⊗ Up′′ : ∇Uqj |

≤ λ2α
qj
|u≥qj |22 + λ2α

qj
|u≥qj |2|U≥qj |2

≤ ||∇|αu≥qj |22 + λ3α−5/2
qj

||∇|αu≥qj |2
≤ ||∇|αu≥qj |22 + λ6α−5−1/2

qj
||∇|αu≥qj |2.

Again, using Lemma 2.1, Bernstein and Hölder inequalities we obtain

|B2| =
∣∣Uqj ⊗ w̃qj : ∇u≤qj

∣∣ ≤ |Uqj |2|w̃qj |∞|∇u≤qj |2
≤ λ2α−5/2

qj
|w̃qj |∞||∇|αu|2 ≤ λ4α−7/2

qj
||∇|αu|2 ≤ λ6α−5−1/2

qj
||∇|αu|2.

|B3| ≤ |ũqj |2|w≤qj |∞|∇Uqj |2 . λ2α−3/2
qj

|ũqj |2
∑
p≤qj

|wp|∞

. λ3α−5/2
qj

||∇|αu|2 ≤ λ6α−5−1/2
qj

||∇|αu|2.

We thus obtain

(11) |B| . ||∇|αu≥qj |22 + λ6α−5−1/2
qj

||∇|αu|2.

Continuing in a similar fashion we write

C =
∑

p′,p′′≥qj
|p′−p′′|≤2

up′ ⊗ up′′ : ∇wqj + u≤qj ⊗ ũqj : ∇wqj

+ ũqj ⊗ u≤qj : ∇wqj − repeated = C1 + C2 + C3.

We have
|C1| ≤ |∇wqj |∞|u≥qj |22 . δ||∇|αu|22.

In C2 we move the derivative onto u≤qj and estimate as usual,

|C2| ≤ |∇u|2|ũqj |2|wqj |∞ . ||∇|αu|2|ũqj |2λ2α−1
qj

≤ ||∇|αu|22λ6α−5−1/2
qj

.

Using a uniform bound on the energy we have for C3,

|C3| . λqj |wqj |∞|ũqj |2 ≤ δλαqj ||∇|
αũqj |2 ≤ δλ6α−5

qj
||∇|αũqj |2.

Thus,

(12) |C| . δ||∇|αu|22 + ||∇|αu|22λ6α−5−1/2
qj

+ δλ6α−5
qj
||∇|αũqj |2.
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Now combining estimates (10), (11), (12) along with the boundedness of
E(t0) we obtain

∫ t0

0

|A+B + C| ds . δλ6α−5
qj

t0 +

∫ t0

0

||∇|αu≥qj |22 ds+ E(t0)
1/2t

1/2
0 λ6α−5−1/2

qj

+ δE(t0) + δλ6α−5
qj

∫ t0

0

||∇|αũqj |2 ds.

(13)

And for large j, and fixed t0, this gives∫ t0

0

|A+B + C| ds . δλ6α−5
qj

t0 +
ν

2
E(t0).

Pugging this back into (9) gives the estimate

|ũqj(t0)|22 & λ6α−5
qj

,

for all j > j0, which shows that u(t0) has infinite energy, a contradiction.
The last statement of the proposition follows from the fact that we have

the bounds on |u(t)|2 ≤ |U |2 and E(t0) ≤ (2ν)−1|U |22 which remove de-
pendence of the constants on u. �
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[2] Jean Bourgain and Nataša Pavlović. Ill-posedness of the Navier-Stokes equations in
a critical space in 3D. J. Funct. Anal., 255(9):2233–2247, 2008.

[3] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions
of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.

[4] A. Cheskidov and R. Shvydkoy. A unified approach to regularity problems for the
3D Navier-Stokes and Euler equations: the use of Kolmogorov’s dissipation range.
http://arxiv.com/abs/1102.1944.

[5] A. Cheskidov and R. Shvydkoy. Ill-posedness of the basic equations of fluid dynamics
in Besov spaces. Proc. Amer. Math. Soc., 138(3):1059–1067, 2010.

[6] A. Cheskidov and R. Shvydkoy. The regularity of weak solutions of the 3D Navier-
Stokes equations in B−1

∞,∞. Arch. Ration. Mech. Anal., 195(1):159–169, 2010.
[7] Peter Constantin and Ciprian Foias. Navier-Stokes equations. Chicago Lectures in

Mathematics. University of Chicago Press, Chicago, IL, 1988.
[8] C. Foias. Essais dans l’étude des solutions des équations de Navier-Stokes dans
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