ILL-POSEDNESS FOR SUBCRITICAL HYPERDISSIPATIVE NAVIER-STOKES EQUATIONS IN THE LARGEST CRITICAL SPACES

A. CHESKIDOV AND R. SHVYDKOY

ABSTRACT. We study the incompressible Navier-Stokes equations with a fractional Laplacian and prove the existence of discontinuous Leray-Hopf solutions in the largest critical space with arbitrarily small initial data.

1. INTRODUCTION

In this paper we study the supercritical 3D Navier-Stokes equations with a fractional power of the Laplacian

\[
\begin{aligned}
\frac{\partial u}{\partial t} + (u \cdot \nabla) u + \nabla p &= -\nu (-\Delta)^{\alpha} u, \quad x \in \mathbb{T}^3, \quad t \geq 0, \\
\nabla \cdot u &= 0, \\
u(0) &= u_0,
\end{aligned}
\]

(1)

where the velocity \(u(x, t) \) and the pressure \(p(x, t) \) are unknowns, \(u_0 \in L^2(\mathbb{T}^3) \) is the initial condition, \(\nu > 0 \) is the kinematic viscosity coefficient of the fluid, and \(\alpha > 0 \). The case \(\alpha = 1 \) corresponds to the classical Navier-Stokes equations, which has been studied extensively for decades. We refer to [7, 17] for the classical theory for these equations. In the case \(\alpha \geq 5/4 \) the equations are well-posed, as the dissipative term simply dominates the nonlinear term. Moreover, the global regularity is known even in a slightly supercritical case, i.e., when logarithmic corrections to the Fourier multiplier of the dissipative term are present (see [16, 4]). However, a finite time blow up of solutions to (1) remains a possibility for \(\alpha < 5/4 \) due to a supercritical nature of the equations. Nevertheless, a partial regularity result [3] has been established in the supercritical case \(\alpha = 1 \), later extended to \(\alpha \in (1, 5/4) \) in [11]. There are also various regularity criteria in the case \(\alpha = 1 \), most of which are of Ladyzhenskaya-Prodi-Serrin type [8, 13, 14, 15, 10, 6, 4], which can also be extended to \(\alpha \in (1, 5/4) \).

2000 Mathematics Subject Classification. Primary: 76D03; Secondary: 35Q30.

Key words and phrases. Navier-Stokes equation, ill-posedness, Besov spaces.

The work of A. Cheskidov is partially supported by NSF grant DMS–1108864.

The work of R. Shvydkoy was partially supported by NSF grants DMS–0907812 and DMS–1210896.
One of the open questions studied extensively is whether solutions bounded in the largest critical case ($\dot{B}^{-1}_{\infty,\infty}$ for $\alpha = 1$) are regular. A positive answer to this question would extend the famous $L_t^\infty L_x^3$ result due to I. I. I. Seregin, and Šverák [10]. In addition, the best small initial result for the 3D NSE, due to Koch and Tataru [12], is in the space BMO^{-1}, and it is not known either if its extension to the $B^{-1}_{\infty,\infty}$ is possible.

In view of these problems two “negative” results have been obtained in the space $\dot{B}^{-1}_{\infty,\infty}$. First, Bourgain and Pavlovic [2] proved that there are solutions to the 3D NSE equations, with arbitrary small initial data in $\dot{B}^{-1}_{\infty,\infty}$ that become arbitrarily large in $\dot{B}^{-1}_{\infty,\infty}$ in arbitrarily small time. Second, Leray-Hopf solutions with arbitrary small initial data, but discontinuous in $B^{-1}_{\infty,\infty}$ were obtained in [5].

The largest critical space for the fractional NSE (1) is $\dot{B}^{1-2\alpha}_{\infty,\infty}$. Recently Yu and Zhai [18] obtained a small initial data result in this space in the hypodissipative case $\alpha \in (1/2, 1)$. Heuristically, the hypodissipative NSE behaves better because it is closer to the fractional heat semigroup in critical spaces. In the hyperdissipative case it is therefore natural to expect ill-posedness results of the type mentioned above. Indeed, in this paper we demonstrate this in the case $\alpha \in [1, 5/4)$ by constructing a Leray-Hopf solution with arbitrarily small initial data, which is discontinuous in the critical Besov space $B^{1-2\alpha}_{\infty,\infty}$. It is thus a direct extension of our previous result stated in [5]. The method breaks down either when α passes beyond the value of 1, which is consistent with the result of Yu and Zhai, and at $5/4$ and beyond, which is consistent with the global regularity in that range.

We now fix our notation. We assume periodic boundary conditions in all 3 dimensions, so \mathbb{T}^3 will denote the 3D torus, while $|\cdot|_p$, $p \geq 1$, denotes the L^p-norm in \mathbb{T}^3. We let \hat{f} and \tilde{f} stand for the forward and, respectively, inverse Fourier transforms on the torus. The Fourier multiplier with symbol $|\xi|^{\alpha}$, where ξ stands for the frequency vector and $\alpha > 0$, is denoted by $|\nabla|^{\alpha}$. The fractional Laplacian operator $(-\Delta)^\alpha$ has symbol $|\xi|^{2\alpha}$. We write $p(\xi) = \text{id} - |\xi|^{-2}\xi \otimes \xi$, $\xi \neq 0$, $p(0) = \text{id}$, for the symbol of the Leray-Hopf projection on the divergence-free fields. We fix notation for the dyadic a-dimensional wavenumbers $\lambda_q = 2^q$. We use extensively the classical dyadic decomposition throughout: $u = \sum_{q \geq 0} u_q$, where u_q is the Littlewood-Paley projection with the Fourier support contained in $\{\lambda_{q-1} < |\xi| < \lambda_{q+1}\}$. The definitions are standard and can be found in the references above. We often will be using the extended projection defined by $\tilde{u}_q = u_{q-1} + u_q + u_{q+1}$, $q \geq 1$, and projection onto the dyadic ball, $u_{\leq q} = \sum_{p=0}^q u_p$. Thus, u_q is
supported on \(\{ \lambda_{q-2} < |\xi| < \lambda_{q+2} \} \) and we have the identity
\[
(2) \quad \int_{\mathbb{T}^3} u \cdot u_q \, dx = \int_{\mathbb{T}^3} \tilde{u}_q \cdot u_q \, dx.
\]
With the Littlewood-Paley decomposition we define Besov spaces \(B^s_{r,\infty} \), \(s \in \mathbb{R} \), \(r \geq 1 \) by requiring
\[
\|u\|_{B^s_{r,\infty}} = \sup_{q \geq 0} \lambda^s_q \|u_q\|_r < \infty.
\]
We will frequently refer to Bernstein’s inequalities, which state that for all \(1 \leq r < r' \leq \infty \), and in three dimensions, one has
\[
|u_q|_{r'} \lesssim \lambda^3 \left(\frac{1}{r} - \frac{1}{r'} \right) q |u_q|_r,
\]
where here and throughout \(\lesssim \) denote inequality up to an absolute constant. Finally, let \(\vec{e}_1, \vec{e}_2, \) etc., stand for the vectors of the standard unit basis.

2. ILL-POSEDNESS OF NSE

The Navier-Stokes equation with a fractional power of the Laplacian is given by
\[
(3) \quad u_t + (u \cdot \nabla)u = -\nu (-\Delta)^\alpha u - \nabla p.
\]
Here \(u \) is a three dimensional divergence free field on \(\mathbb{T}^3 \), and \(\alpha \in [1, 5/4) \). Let us recall that for every field \(U \in L^2(\mathbb{T}^3) \) there exists a weak solution \(u \in C_w([0,T); L^2) \cap L^2([0,T); H^1) \) to (3) such that the energy inequality
\[
(4) \quad \|u(t)\|^2_2 + 2\nu \int_0^t \|\nabla^\alpha u(s)\|^2 ds \leq \|U\|^2_2,
\]
holds for all \(t > 0 \) and \(u(t) \to U \) strongly in \(L^2 \) as \(t \to 0 \). In what follows we do not actually use inequality (4) which allows us to formulate a more general statement below in Proposition 2.2.

Let us choose a strictly increasing sequence \(\{ q_j \} \in \mathbb{N} \) with elements sufficiently far apart so that at least \(\lambda_{q_{j+1}}^2 \lambda_{q_{j+1}}^-5 < 1 \). We consider the following lattice blocks:
\[
A_j = \left[\frac{9}{10} \lambda_{q_j}, \frac{11}{10} \lambda_{q_j} \right] \times \left[-\frac{1}{10} \lambda_{q_j}, \frac{1}{10} \lambda_{q_j} \right]^2 \cap \mathbb{Z}^3
\]
\[
B_j = \left[-\frac{1}{10} \lambda_{q_j-1}, \frac{1}{10} \lambda_{q_j-1} \right]^2 \times \left[\frac{9}{10} \lambda_{q_j-1}, \frac{11}{10} \lambda_{q_j-1} \right] \cap \mathbb{Z}^3
\]
\[
C_j = A_j + B_j
\]
\[
A_j^* = -A_j, B_j^* = -B_j, C_j^* = -C_j.
\]
Thus, \(A_j, C_j \) and their conjugates lie in the \(q_j \)-th shell, while \(B_j, B_j^* \) lie in the adjacent \((q_j - 1) \)-th shell. The particular choice of scaling exponents
9/10, 11/10, etc., is unimportant as long as the blocks fit into the their respective shells. Let us denote
\[\vec{e}_1(\xi) = p(\xi)\vec{e}_1, \quad \vec{e}_2(\xi) = p(\xi)\vec{e}_2. \]
We now define the initial condition field to be the following sum
\[U = \sum_{j \geq 1} (U_{q_j} + U_{q_j-1}), \]
where the components, on the Fourier side, are
\[\hat{U}_{q_j}(\xi) = \lambda_{q_j}^{2\alpha-4} \left(\vec{e}_2(\xi)\chi_{A_j \cup A_j^*} + i(\vec{e}_2(\xi) - \vec{e}_1(\xi))\chi_{C_j} - i(\vec{e}_2(\xi) - \vec{e}_1(\xi))\chi_{C_j^*} \right), \]
and
\[\hat{U}_{q_j-1}(\xi) = \lambda_{q_j}^{2\alpha-4}\vec{e}_1(\xi)\chi_{B_j \cup B_j^*}. \]
By construction, \(\hat{U}(\xi) = \hat{U}(\xi) \), which ensures that \(U \) is real. Since \(U \) has no modes in the \((q_j + 1)\)-st shell, then the extended Littlewood-Paley projection of the \(j \)-th component has the form \(\hat{U}_{q_j} = U_{q_j-1} + U_{q_j} \).

Lemma 2.1. We have \(U \in B^{1+\frac{3}{r}-2\alpha}_{r,\infty} \), for any \(1 < r \leq \infty \).

Proof. We give the estimate only for one block, the other ones being similar. Using boundedness of the Leray-Hopf projection, we have, for all \(1 < r < \infty \),
\[|\lambda_{q_j}^{2\alpha-4}(\vec{e}_2(\cdot)\chi_{A_j})^\vee|_r \lesssim \lambda_{q_j}^{2\alpha-4}|(\chi_{A_j})^\vee|_r. \]
Notice that by construction,
\[|(\chi_{A_j})^\vee(x_1, x_2, x_3)| = |D_{(c+1)\lambda_{q_j}}(x_1)D_{c\lambda_{q_j}}(x_2)D_{c\lambda_{q_j}}(x_3)|, \]
where \(D_N \) denotes the Dirichlet kernel. Hence,
\[|(\chi_{A_j})^\vee|_r \leq |D_{(c+1)\lambda_{q_j}}|_r|D_{c\lambda_{q_j}}|_r^2. \]
By a well-known estimate, we have \(|D_N|_r \leq N^{1-\frac{1}{r}} \) (c.f. [9]). Putting the above estimates together implies the desired inclusion in \(B^{1+3/r-2\alpha}_{r,\infty} \). In the case \(r = \infty \) we simply use the triangle inequality to obtain
\[|U_{q_j}|_\infty \lesssim \lambda_{q_j}^{2\alpha-1}. \]

Let us now examine the trilinear term. We will use the following notation for convenience
\[u \otimes v : \nabla w = \int_{T^3} v_i \partial_i w_j u_j dx. \]
Using the antisymmetry we obtain
\[
U \otimes U : \nabla U_{q_j} = \sum_{k \geq j+1} \bar{U}_{q_k} \otimes \bar{U}_{q_k} : \nabla U_{q_j} + \bar{U}_{q_j} \otimes \bar{U}_{q_j} : \nabla U_{q_j}
+ U_{\leq q_{j-1}} \otimes \bar{U}_{q_j} : \nabla U_{q_j} + \bar{U}_{q_j} \otimes U_{\leq q_{j-1}} : \nabla U_{q_j}
= \sum_{k \geq j+1} \bar{U}_{q_k} \otimes \bar{U}_{q_k} : \nabla U_{q_j} + U_{q_{j-1}} \otimes U_{q_j} : \nabla U_{q_j}
- U_{q_j} \otimes U_{q_j} : \nabla U_{\leq q_{j-1}}
= A + B + C.
\]

Using Bernstein’s inequalities we estimate
\[
|A| \lesssim \lambda_{q_j} |U_{q_j}|_\infty \sum_{k \geq j+1} |\bar{U}_{q_k}|^2 \lesssim \lambda_{q_j}^{2\alpha} \lambda_{q_{j+1}}^{4\alpha-5} \leq 1,
\]
\[
|C| \lesssim |U_{q_j}|^2 \sum_{k \leq j-1} \lambda_{q_k} |\bar{U}_{q_k}|_\infty \lesssim \lambda_{q_{j-1}}^{2\alpha} \lambda_{q_j}^{4\alpha-5} \leq 1,
\]
where in the latter inequality we used the fact $|U_{q_j}|^2 \sim \lambda_{q_j}^{2\alpha-5/2}$. On the other hand, a straightforward computation shows that
\[
B \sim \lambda_{q_j}^{6\alpha-5},
\]
which is thus the dominant term of the three, and hence,
\[
U \otimes U : \nabla U_{q_j} \sim \lambda_{q_j}^{6\alpha-5}.
\]

Proposition 2.2. Let $u \in C_w([0, T); L^2) \cap L^2([0, T); H^1)$ be a weak solution to the NSE with initial condition $u(0) = U$. Then there is $\delta = \delta(u) > 0$ such that
\[
\limsup_{t \to 0^+} \|u(t) - U\|_{B^{1-2\alpha}_{\infty, \infty}} \geq \delta.
\]

If, in addition, u is a Leray-Hopf solution satisfying the energy inequality (4), then δ can be chosen independent of u.

Proof. Let us test (3) with u_{q_j}. Using (2), we find
\[
\partial_t (\bar{u}_{q_j} \cdot u_{q_j}) = -\nu |\nabla|^{\alpha} \bar{u}_{q_j} \cdot |\nabla|^{\alpha} u_{q_j} + u \otimes u : \nabla u_{q_j},
\]
where as defined before, $\bar{u}_{q_j} = u_{q_j-1} + u_{q_j} + u_{q_j+1}$. Denoting $E(t) = \int_0^t \|\nabla|^{\alpha} u\|^2_{L^2} ds$ we obtain
\[
|\bar{u}_{q_j}(t)|^2 \geq |U_{q_j}|^2 - \nu E(t) + c_1 \lambda_{q_j}^{6\alpha-5} t
- c_2 \int_0^t \|u \otimes u : \nabla u_{q_j} - U \otimes U : \nabla U_{q_j}\|_1 ds,
\]
for some positive constants \(c_1\) and \(c_2\). We now show that if the conclusion of the proposition fails then for some small \(t > 0\) the integral term the growth of the integral term above becomes less than \(c_1\lambda^{6\alpha-5}t\) for large \(j\). This forces \(\|\tilde{u}_{q_j}(t)\|_2^2 \gtrsim \lambda^{6\alpha-5}t\) for all large \(j\). Hence \(u\) has infinite energy, which is a contradiction.

So suppose that for every \(\delta > 0\) there exists \(t_0 = t_0(\delta) > 0\) such that \(\|u(t) - U\|_{B^{1-2\alpha}_{\infty}\infty} < \delta\) for all \(0 < t \leq t_0\). Denoting \(w = u - U\) we write

\[
 u \otimes u : \nabla u_{q_j} - U \otimes U : \nabla U_{q_j} = w \otimes U : \nabla U_{q_j} + u \otimes w : \nabla U_{q_j}
 + u \otimes u : \nabla w_{q_j} = A + B + C.
\]

We will now decompose each triplet into three terms according to the type of interaction (c.f. Bony [1]) and estimate each of them separately.

\[
 A = \sum_{p', p'' \geq q_j \atop |p' - p''| \leq 2} w_{p'} \otimes U_{p''} : \nabla U_{q_j} + w_{\leq q_j} \otimes \tilde{U}_{q_j} : \nabla U_{q_j}
 + \tilde{w}_{q_j} \otimes U_{\leq q_j} : \nabla U_{q_j} - \text{repeated} = A_1 + A_2 + A_3.
\]

Let us fix \(r \in (1, 3/(4\alpha - 2))\) and use Lemma 2.1 along with Hölder and Bernstein’s inequalities to estimate \(A_1\):

\[
 |A_1| \leq |\nabla U_{q_j}|_{r'} \sum |w_{p'}|_\infty |U_{p''}|_r \lesssim \lambda_{q_j}^{2\alpha-3+\frac{3}{r}} \sum |w_{p'}|_\infty \lambda_{p''}^{2\alpha-1-\frac{2}{r}} \lesssim \delta \lambda_{q_j}^{2\alpha-3+\frac{3}{r}} \leq \delta \lambda_{q_j}^{6\alpha-5}.
\]

Intergrating by parts we obtain \(A_2 = U_{q_j} \otimes \tilde{U}_{q_j} : \nabla w_{\leq q_j}\). Thus, using the same tools,

\[
 |A_2| \leq |\tilde{U}_{q_j}|_2^2 |\nabla w_{\leq q_j}|_{\infty} \lesssim \lambda_{q_j}^{4\alpha-5} \sum_{p \leq q_j} \lambda_p |w_p|_{\infty} < \delta \lambda_{q_j}^{6\alpha-5}.
\]

And finally,

\[
 |A_3| \leq \lambda_{q_j} |U_{\leq q_j}|_2 |U_{q_j}|_2 |\tilde{w}_{q_j}|_{\infty} \lesssim \lambda_{q_j}^{4\alpha-4} |\tilde{w}_{q_j}|_{\infty} < \delta \lambda_{q_j}^{6\alpha-5}.
\]

We have shown the following estimate:

\[(10)\]

\[
 |A| \lesssim \delta \lambda_{q_j}^{6\alpha-5}.
\]

As to \(B\) we decompose analogously,

\[
 B = \sum_{p', p'' \geq q_j \atop |p' - p''| \leq 2} u_{p'} \otimes w_{p''} : \nabla U_{q_j} + u_{\leq q_j} \otimes \tilde{w}_{q_j} : \nabla U_{q_j}
 + \tilde{u}_{q_j} \otimes w_{\leq q_j} : \nabla U_{q_j} - \text{repeated} = B_1 + B_2 + B_3.
\]
The term B is the least problematic. Here we do not even have to use the smallness of w and can just roughly estimate it in terms of the enstrophy $\|\nabla^\alpha u\|_2^2$. We have

$$
|B_1| \lesssim \sum_{j : p, p' \geq j, |p'| \leq 2} |u_{p'} \otimes u_{p''} : \nabla w_j| + \sum_{j : p, p' \geq j, |p'| \leq 2} |u_{p'} \otimes U_{p''} : \nabla U_{j_2}| \\
\leq \lambda^{2\alpha}_j \|u_{\geq j_2}\|_2^2 + \lambda^{2\alpha}_j \|u_{\geq j_2}\|_2 \|U_{\geq j_2}\|_2 \\
\leq \|\nabla^\alpha u_{\geq j_2}\|_2^2 + \lambda^{3\alpha-5/2}_j \|\nabla^\alpha u_{\geq j_2}\|_2 \\
\leq \|\nabla^\alpha u_{\geq j_2}\|_2^2 + \lambda^{6\alpha-5-1/2}_j \|\nabla^\alpha u_{\geq j_2}\|_2.
$$

Again, using Lemma 2.1, Bernstein and Hölder inequalities we obtain

$$
|B_2| = |U_{q_2} \otimes \tilde{w}_{q_2} : \nabla u_{\leq q_2}| \leq |U_{q_2}|_2 \|\tilde{w}_{q_2}\|_\infty \|\nabla u_{\leq q_2}\|_2 \\
\leq \lambda^{2\alpha-5/2}_j \|\tilde{w}_{q_2}\|_\infty \|\nabla^\alpha u\|_2 \leq \lambda^{2\alpha-7/2}_j \|\nabla^\alpha u\|_2 \leq \lambda^{6\alpha-5-1/2}_j \|\nabla^\alpha u\|_2.
$$

Thus we obtain

(11) $|B| \lesssim \|\nabla^\alpha u_{\geq j_2}\|_2^2 + \lambda^{6\alpha-5-1/2}_j \|\nabla^\alpha u\|_2.$

Continuing in a similar fashion we write

$$
C = \sum_{j : p, p' \geq j, |p'| \leq 2} u_{p'} \otimes u_{p''} : \nabla w_{q_j} + u_{\leq q_j} \otimes \tilde{u}_{q_j} : \nabla w_{q_j} \\
+ \tilde{u}_{q_j} \otimes u_{\leq q_j} : \nabla w_{q_j} - \text{repeated} = C_1 + C_2 + C_3.
$$

We have

$$
|C_1| \leq \|\nabla w_{q_j}\|_\infty \|u_{\geq j_2}\|_2^2 \lesssim \delta \|\nabla^\alpha u\|_2^2.
$$

In C_2 we move the derivative onto $u_{\leq q_j}$ and estimate as usual,

$$
|C_2| \leq \|\nabla u\|_2 \|\tilde{u}_{q_j}\|_2 \|w_{q_j}\|_\infty \lesssim \|\nabla^\alpha u\|_2 \|\tilde{u}_{q_j}\|_2 \lambda^{2\alpha-1}_j \leq \|\nabla^\alpha u\|_2^2 \lambda^{6\alpha-5-1/2}_j.
$$

Using a uniform bound on the enstrophy we have for C_3,

$$
|C_3| \lesssim \lambda_j \|u_{q_j}\|_\infty \|\tilde{u}_{q_j}\|_2 \leq \delta \lambda^{\alpha}_j \|\nabla^\alpha \tilde{u}_{q_j}\|_2 \leq \delta \lambda^{6\alpha-5}_j \|\nabla^\alpha \tilde{u}_{q_j}\|_2.
$$

Thus,

(12) $|C| \lesssim \delta \|\nabla^\alpha u\|_2^2 + \|\nabla^\alpha u\|_2^2 \lambda^{6\alpha-5-1/2}_j + \delta \lambda^{6\alpha-5}_j \|\nabla^\alpha \tilde{u}_{q_j}\|_2.$
Now combining estimates (10), (11), (12) along with the boundedness of $E(t_0)$ we obtain

\begin{equation}
\int_0^{t_0} |A + B + C| \, ds \lesssim \delta \lambda_{q_j}^{6\alpha - 5} t_0 + \int_0^{t_0} \left\| \nabla |^\alpha u_{\geq q_j} \right\|_2^2 \, ds + E(t_0)^{1/2} t_0^{1/2} \lambda_{q_j}^{6\alpha - 5 - 1/2} \\
+ \delta E(t_0) + \delta \lambda_{q_j}^{6\alpha - 5} \int_0^{t_0} \left\| \nabla |^\alpha \tilde{u}_{q_j} \right\|_2 \, ds.
\end{equation}

And for large j, and fixed t_0, this gives

\[
\int_0^{t_0} |A + B + C| \, ds \lesssim \delta \lambda_{q_j}^{6\alpha - 5} t_0 + \frac{\nu}{2} E(t_0).
\]

Pugging this back into (9) gives the estimate

\[
|\tilde{u}_{q_j}(t_0)|_2^2 \gtrsim \lambda_{q_j}^{6\alpha - 5},
\]

for all $j > j_0$, which shows that $u(t_0)$ has infinite energy, a contradiction.

The last statement of the proposition follows from the fact that we have the bounds on $|u(t)|_2 \leq |U|_2$ and $E(t_0) \leq (2\nu)^{-1} |U|_2^2$ which remove dependence of the constants on u. \hfill \Box

\textbf{References}

[18] Xinwei Yu and Zhichun Zhai. Well-posedness for fractional Navier-Stokes equations in the largest critical spaces $\dot{B}^{-\frac{2\beta-1}{\beta}}_{\infty,\infty}({\mathbb R}^n)$. *Mathematical Methods in the Applied Sciences*.

(A. Cheskidov and R. Shvydkoy) DEPARTMENT OF MATHEMATICS, STAT. AND COMP. SCI., M/C 249, UNIVERSITY OF ILLINOIS, CHICAGO, IL 60607

E-mail address: acheskid@math.uic.edu

E-mail address: shvydkoy@math.uic.edu