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UNIFORM GLOBAL ATTRACTORS FOR THE NONAUTONOMOUS 3D
NAVIER-STOKES EQUATIONS

ALEXEY CHESKIDOV AND SONGSONG LU

ABSTRACT. We obtain the existence and the structure of the weak umifaith
respect to the initial time) global attractor and constauttajectory attractor for
the 3D Navier-Stokes equations (NSE) with a fixed time-depenforce satisfy-
ing a translation boundedness condition. Moreover, we shewif the force is
normal and every complete bounded solution is stronglyicanus, then the uni-
form global attractor is strong, strongly compact, and sohs converge strongly
toward the trajectory attractor. Our method is based omtpki closure of the
autonomous evolutionary system without uniqueness, whragectories are so-
lutions to the nonautonomous 3D NSE. The established framieis general
and can also be applied to other nonautonomous dissipatist@lpdifferential
equations for which the uniqueness of solutions might ndd.hti is not known
whether previous frameworks can also be applied in suchscasave indicate
in open problems related to the question of uniqueness of¢nay-Hopf weak
solutions.

Keywords: uniform global attractor, Navier-Stokes equations, etiohary sys-
tem, trajectory attractor, normal external force
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1. INTRODUCTION

The theory of uniform attractors of nonautonomous infiiterensional dissipa-
tive dynamical system bears its roots in the work of Haraua9gH, who defined
the uniform global attractor as a minimal closed set whittaats all the trajecto-
ries starting from a bounded set uniformly with respect ta.{W the initial time.
This naturally generalizes the notion of a global attrattononautonomous dy-
namical systems. In this paper we will present a method ftainimg the structure
of the uniform global attractor of a general nonautonomaussesn. In particular,
we obtain the existence and the structure of the weak unifpoimal attractor and
construct a trajectory attractor for the 3D Navier-Stokgqaations (NSE) with a
fixed time-dependent force satisfying a translation bodndss condition.

Previous studies of uniform global attractors mostly ussalst developed by
Chepyzhov and Vishik [CV94, CV02]. Their framework was lhsm the use
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of the so-called time symbol (e.g. the external force in 3LEN&nd constructing a
symbol space as a suitable closure of the translation fawhilge original symbol.
To describe the structure of the uniform global attracteytimtroduced an auxiliary
notion of a uniform w.r.t. the symbol space attractor. Hogrethis method requires
a strong condition on the force and only provides the streobfithe uniform w.r.t.
the symbol space attractor, which does not always have teicka with the original
uniform global attractor (see Open Probleml 6.5). In thisgpape present a differ-
ent approach that deals directly with the notion of a unifgtobal attractor and is
based on taking a closure of the family of trajectories ofsysem, which does not
change the uniform global attractor. The established nekithgeneral and can be
applied to any nonautonomous dissipative PDE.

Since the pioneering work of Leray, the problem of regwaoit the 3D NSE
has been a subject of serious investigation and still posesportant challenge
for mathematicians. Due to the lack of a uniqueness proisf nbt known whether
the 3D NSE possesses, for the autonomous case, a semigrasgafthe nonau-
tonomous case, a process of solution operators. Theredarkgssical theory of
semigroup or process [HB8, T8, 191, SY02, CV02] cannot kel der this sys-
tem. A mathematical object describing long time behavioamfautonomous 3D
NSE is a (weak) global attractor, a notion that goes all thg back to the seminal
work by Foias and Temarm [FT85].

The goal of this paper is to study the long time behavior of3BeNSE with a
fixed time-dependent force in the physical space withoutingainy assumptions
on weak solutions. Moreover, we assume that the force onisfies a translation
boundedness condition, which is the weakest conditionsgharanties the exis-
tence of a bounded uniform absorbing ball. In order to obthethe structure
of the weak uniform global attractor we will consider an andmous evolutionary
system without uniqueness, whose trajectories are sakitathe nonautonomous
3D NSE. The evolutionary systefhwas first introduced in [CF06] to study a weak
global attractor and a trajectory attractor for the autooosBD NSE, and then the
theory was developed further in [C09] to make it applicablarbitrary autonomous
dissipative PDE without uniqueness. In particular, it wiasven that the global at-
tractor consists of points on complete bounded trajectauigder an assumption
(seeAl) satisfied by autonomous PDEs. The evolutionary systerioge to Ball's
generalized semiflow [B98], but due to relaxed assumptiorthe trajectories, the
Leray-Hopf weak solutions of the 3D NSE always form an evohdry system re-
gardless whether they lose regularity or not. The advarwéagas framework lies
in a simultaneous use of weak and strong metric, which mdlegspiicable to any
other PDE for which the uniqueness of solutions may be indimb

In [CLO9] the authors already generalized the frameworkefavolutionary sys-
tem to study the long time behavior of nonautonomous dynalmsicstems without
uniqueness. In this paper we develop the theory furtherm@tnolduce a “closure of
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the evolutionary system” in order to obtain the structur¢hef uniform global at-
tractor. This method avoids the necessity of constructisygnabol space and works
for systems without uniqueness.

The paper is organized as follows. In Section 2 we brieflylf¢ha theory of
evolutionary system originally designed for autonomoust@ys, define a nonau-
tonomous evolutionary system, and reduce it to an autonsragstem. Then we
consider classical cases of a process and a family of presesgl show how they
define evolutionary systems. In particular, when the euahatry system is defined
by a process, the uniform global attractor for the evoludigrsystem is identical to
the uniform global attractor for the process. Hence, udnegtheory developed in
this paper, we can describe the structure of the uniformajlattractor of a general
process, which was mentioned as an open problem in [CV942TCV0

Sectior 8 is mainly concerned with the existence and thetstrel of the weak
and strong uniform global attractors for the nonautonomexgutionary system
corresponding to the original equations under considarafor instance, the 3D
NSE with a fixed time-dependent external force. To this enel,cansider a clo-
sure of the evolutionary system and prove that its weak tmifglobal attractor is
identical to the one for the original evolutionary systeme Wen apply the the-
ory developed in [CQ9] to the closure of the evolutionaryteysto obtain various
properties of the uniform global attractor for the origisgstem.

In Subsection 311 we use our framework to examine the nofiomiform w.r.t.
symbol space global attractor. For this we assume that aldeisymbol spack
is provided, and consider a nonautonomous evolutionatgsywith such symbol
space satisfying the uniqueness condition, i.e., we assoatdor a fixed symbol
there exists only one trajectory starting at a given poine tén study the rela-
tion between the system and its evolutionary subsystem evepsbol space is
a dense subset of the former symbol spEceAssuming that the system satisfies
an additional condition (which translates into the strorams$lation compactness
condition on the force in the case of the 3D NSE), we show thiaas the same
weak uniform global attractor as its subsystem. Therefaeeshow that the uni-
form w.r.t. ¥ attractor coincides with the uniform global attractor. thermore, if
the evolutionary system is asymptotically compact, thenvtleak uniform global
attractor is in fact the strong uniform global attractoreTRsults in this subsection
generalize those in [CV02, LWZ05, Lu(06, Lu07].

In Sectiori 4 we study the notion of a trajectory attractot s first introduced
in [Se96] and further studied in [CV97, CV02, SY02]. We use thols in the
preceding sections to show the existence and the strudtthre trajectory attractor
of a nonatonomous evolutionary system such as the 3D NSE.tNat such a result
could not be obtained with previous frameworks (see Opeblend6.7). We also
show a relation of the trajectory attractor to a uniform glldittractor. Moreover, in
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the case where all complete bounded trajectories are $yroagtinuous, a strong
convergence of the trajectories to the trajectory attrastproved.

In Sectior’d we consider the 3D NSE with a translation bounddd, .(R; V")
fixed time-dependent external forgg We show that the Leray-Hopf weak solu-
tions form an evolutionary system investigated in Secti@nand therefore all the
results obtained in that section hold for the 3D NSE. In patér, we obtain the
structure of the weak uniform global attractdr Notice again that we only require
the weakest boundedness condition on the force and makesnmptons on the
solutions of the 3D NSE. In addition, we show that if the forges normal and
every complete bounded solution is strongly continuouen tthe weak uniform
global attractor is strong, strongly compact, and sol@&iconverge strongly toward
the trajectory attractor. The normality condition on theeemal force, introduced in
[LWZ05] and Lu [Lu06], is weaker than the usual strong tratish compactness
condition (see [LWZ05]), which is generally required in &pations of Chepyzhov
and Vishik’s approach [CV94, CVO02].

Evolutionary systems are constructed without a suitalii@®f space in Section
B In Sectiori b we construct a uniform w.r.t. symbol spacdalattractor for the
3D NSE. For this we first have to impose a stronger conditiotherexternal force,
namely, we assume that the force is strongly translatiorpemi Then we can find
a suitable closure of the symbol spacdor which the corresponding evolutionary
system enjoys the desired compactness property, and hbtaia the structure of
the uniform w.r.t. symbol space attractorA>. However, this attractor might not
coincide with the uniform global attractof if Leray-Hopf weak solutions are not
unigue (see the Open Problém]|6.5), which illustrates aditioih of the framework
of uniform w.r.t. symbol global attractor put forward in [@4] (see also [CV02]).
It is still not clear how to obtain the structure of the unifoglobal attractot4
using the notion of uniform w.r.t. symbol global attractdt for the 3D NSE or
other systems without uniqueness, or where the uniquesniass known. Similarly,
the trajectory attractors constructed [in [Se96] and [C\W@V02] for the 3D NSE
or other systems without uniqueness, might be bigger thaiotie we constructed
in the section (see Open Probleém|6.7).

2. EVOLUTIONARY SYSTEM

2.1. Autonomous case.Here we recall the basic definitions and results on evolu-
tionary systems (see [C09] for details). L&f, ds(-,-)) be a metric space endowed
with a metricds, which will be referred to as a strong metric. Icgl(-, -) be another
metric on.X satisfying the following conditions:

(1) X isd,-compact.
(2) If ds(uy,v,) — 0 asn — oo for someu,,, v, € X, thend,, (u,,v,) — 0 as
n — oo.
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Due to the property 24, (-, -) will be referred to as a weak metric oti. Denote
by A° the closure of a sefl C X in the topology generated hy,. Note that
any strongly compacid(-compact) set is weakly compact,(-compact), and any
weakly closed set is strongly closed.

Let C([a,b]; X.), Wwheree = s or w, be the space ad,-continuousX-valued
functions ona, b] endowed with the metric

de(lap)xe) (U, v) == sup de(u(t),v(t)).
tela,b]

Let alsoC([a, >0); X, ) be the space af,-continuousX -valued functions ofu, co)
endowed with the metric

1 sup{de(u(t),v
2 27 1 + sup{d, (u(t), v(t)) :

de(la,c0):xa) (U, V) 1=
TeN
Let
T:={I:1=[T,00) CR, or] =(—00,00)},
and for eachl C T, let 7(I) denote the set of alk-valued functions ord. Now
we define an evolutionary systefras follows.

Definition 2.1. A map€ that associates to eache 7 a subse€ (/) C F will be
called an evolutionary system if the following conditioms satisfied:
(1) £([0,00)) # 0.
(2 EI+s)={u
(3) {ul)lp - ul)
)
(1

(): u(-—s) € ()}forallse]R
e E(I)} C E(I,) for all pairs I, I, € T, such thatly C ;.
(4) £((—o0 = {u) : u()|iroo) € E(|T,00)) VT € R}

o0)
We will refer to€(1) as the set of all trajectories on the time inter¥alrajecto-
ries in&((—oo0, 00)) are called complete. Lgt(X) be the set of all subsets &f.
For everyt > 0 define a map

R(t): P(X) — P(X),
R(t)A :={u(t) : u(0) € A,u € £([0,00))}, AcCX.
Note that the assumptions énmply that R(¢) enjoys the following property:
1) R(t+ s)A C R(t)R(s)A, ACX, t,s>0.

Definition 2.2. A setA, C X is ad,-global attractor @ = s, w) of if A4, is a
minimal set which is

(1) d.-closed.

(2) d,-attracting: for anyB C X ande > 0, there exists,, such that

R(t)B C Be(As,€) :={u: inj de(u,z) <€}, Vt>t.
TEAe
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Definition 2.3. Thew,-limit (e =s,w) ofasetd ¢ X is

w(4):= N JRMA .

T>0t>T
An equivalent definition of they,-limit set is given by
we(A) = {z € X : there exist sequences — oo asn — oo andz,, € R(t,)A,
such thatz,, — x in d,-metric asn — oo}.

In order to extend the notion of invariance from a semiflow ioesiolutionary
system we use the following mapping:

RA = {u(t) : u(0) € A,u € E((—00,0))}, ACX,teR.

Definition 2.4. A setA C X is positively invariant if

R(t)A C A, YVt > 0.
A is invariant if

RMA=A4, Vt>0.
A is quasi-invariant if for everyu € A there exists a complete trajectory €
E((—o0,00)) withu(0) = a andu(t) € Aforall ¢ € R.

Definition 2.5. The evolutionary systeéis asymptotically compact if for arty —
oo and anyzxy, € R(tx)X, the sequencér, } is relatively strongly compact.

Below are some additional assumptions that we will impos€ ansome cases.

Al £(]0,00)) is a compact set if'([0,00); Xy ).

A2 (Energy inequality) Assume tha is a set in some Banach spabesat-
isfying the Radon-Riesz property with the norm denoted bly such that
ds(z,y) = |z — y| for z,y € X andd, induces the weak topology on
X. Assume also that for any > 0, there exists), such that for every
u € £(]0,00)) andt > 0,

lu(®)] < fulto)| + ¢,

_ fortga.e.in(t—o,t).
A3 (Strong convergence a.e.) Letu, € £([0,00)), be such that,, — w in
C([0,T]; X) for someT’ > 0. Thenu,(t) — u(t) strongly a.e. irf0, 7).

Remark 2.6. A Banach spacé/ is said to satisfy the Radon-Riesz property when a
sequence converges if and only if it converges weakly anadims of the elements
of the sequence converge to the norm of the weak limit. In rappiicationsX

is a bounded closed set in a uniformly convex separable BaspaceH. Then
the weak topology aff is metrizable onX, and X is compact with respect to such
a metricd,,. Moreover, the Radon-Riesz property is automaticallys$iat in this
case.
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Theorem 2.7.[CQ9] Let £ be an evolutionary system. Then
1. The weak global attractar,, exists.
Furthermore, if€ satisfiesA1, then

2. Ay, = wy(X) = ws(X) ={up : uo = u(0) for someu € E((—o0,0))}.

3. A, is the maximal invariant and maximal quasi-invariant set.

4. (Weak uniform tracking property) For amy> 0, there existg,, such that for
anyt* > t,, every trajectoryu € £([0, 00)) satisfieslc (i ooy x,) (4, V) < €,
for some complete trajectorye £((—o0, 00)).

Theorem 2.8.[C09] Let£ be an asymptotically compact evolutionary system. Then
1. The strong global attracto exists, it is strongly compact, andl, = A,,.
Furthermore, if€ satisfiesAl, then

2. (Strong uniform tracking property) for any > 0 and 7" > 0, there ex-
ists tg, such that for anyt* > ¢, every trajectoryu € £([0,00)) sat-
isfiesds(u(t),v(t)) < ¢ Vt € [t*,t* + T, for some complete trajectory
v € E((—o00,00)).

Theorem 2.9.[C09] Let€ be an evolutionary system satisfyifg, A2, andA3 and
such that every complete trajectory is strongly continudieené is asymptotically
compact.

2.2. Nonautonomous caseln this subsection we will show that the notion of evo-
lutionary system is naturally applicable to a nonautonosrsystem.

Let 3 be a parameter set afd’(s)|s > 0} be a family of operators acting on
¥ satisfyingT'(s)X = X, Vs > 0. Any elementsc € X will be called (time)
symbol andX will be called (time) symbol space. For instance, in manyliapp
cations{7'(s)} is the translation semigroup andis the translation family of the
time dependent items of the considered system or its closulseme appropriate
topological space.

Definition 2.10. A family of map<,, o € ¥ that for verys € 3 associates to each
I € T asubset,(I) c F(I) will be called a nonautonomous evolutionary system
if the following conditions are satisfied:

(1) & ([r,00)) 0, VT € R.

(2) &, ([+ s) ={u(-) :u(- = s) € Epe)o (1)}, Vs > 0.

(3) {u()|[2 cu(r) € Eg(I)} C & (L), VI, I, € T, Iy C I.
(4) & ((—00,00)) = {u() : u(-)lire0) € & ([7,00)), VT € R}

We will refer to&, (1) as the set of all trajectories with respect to (w.r.t.) thasy
bol o on the time interval. Trajectories ir,((—oo, 00)) will be called complete
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w.rt.o. Foreveryt > 7,7 € R, 0 € X, define a map
R,(t,7): P(X) — P(X),
R,(t,7)A == {u(t) : u(r) € A,u € & ([r,0)}, ACX.

Similarly, the assumptions aofy,, o € ¥ imply that R, (¢, 7) enjoys the following
property:
(2) R,(t,7)A C R,(t,s)R,(s,7)A, AC X, Vi>s>T1,7€eR.

Let us now show how a nonautonomous evolutionary systembeaefined in
the classical case where the uniqueness of trajectoriés.hol

Let H be a phase space (a separable reflexive Banach space). €a@ngrdcess

of a two-parameter family of single-valued operatGs(t, 7) : H — H, satisfying

the following conditions:
Uso(t,s) o Uyy(s,7) = Uy (t, 7), Vt>s>1, 7€R,
U,,(7,7) = ldentity operator, 7 € R.

®3)

Here oy is a fixed symbol, which is usually the collection of all tirdependent
terms of a considered system. So we assume that it is a fanmti® with values
in some space. A trajectoryon |7, oo) is @ mapping fromr, co) to H, such that
4) u(t) = Uy (t, T)u(T), t>T.

A ball B C H is called a uniform (w.r.tz € R) absorbing ball if for any bounded
setA C H, there exists & = t,(A), such that,

(5) U U,t+rmAcB
TER t>1o

Assume that the process is dissipative, i.e., there exigtsfarmly (w.r.t. 7 € R)
absorbing ballB. Since we are interested in a long-time behavior of solgtidn
is enough to consider a restriction of the proces®10A uniform (w.r.t. 7 € R)
attractor.A of the process is a minimal closed set satisfying that, fgr.AnC B
ande > 0 there exists, = (¢, A), such that

(6) U U Us(t+7.7)A C Bu(Ae).

TER t>1o
Now denote by~ the translation familf{ oo (- + h)|h € R} of o, and define
(7) Ucro('-l-h)(ta T) = Ucro(')(t + h77— + h)7 Vit > T, TE R? h € R.

Due to the uniqueness of the trajectories, for ang X, the family of operators
U,(t,7) define a process, i.e[1(3) is valid withsubstituted fors,. Obviously,
T(s)X =%, Vs > 0 and the following translation identity holds,

8) Us(t+s,74+s)="Ures).o(t ), VoeX, t>7, 71eR, s>0,
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where{T'(s)}s>o is the translation semigroup. We now consider the familyrof p
cesseqdU,(t,7)}, o € X. Note that((b) is equivalent to that for amye R and
bounded sefl C H there exists, = t,(A) > 7, such that

9) U UU.t+rmACB,

gEX t>1p
i.e., B C H is also a uniform (w.rt.c € ) absorbing ball for the family of
processegU,(t,7)}, o € X. Similarly, (8) is equivalent to that for any € R,
A C B ande > 0 there exists, = ty(¢, A), such that

(10) U U Ut +7,7)A C Bu(A,e),

g€ t>1g

i.e, Ais alsoauniform (w.r.toc € X) attractor for the family of processé¥, (¢, 7)},

o € ¥. Now takeX = B. Note that sincé{ is a separable reflexive Banach space,
both the strong and the weak topologiesorare metrizable. Define the mags,

o € Y in the following way:

E([1,00)) :i=A{u(:) s u(t) = Uy(t, T)tr,u, € X,t > 7}

Conditions 1-4 in the definition of the nonautonomous evohary systeme,,
o € ¥ follow from the definition of the family of processg#/,(¢,7)}, o € . In
addition, by [(4), we have

R,(t,T)A=U,(t,7)A, VACX,oceX, t>1,7€R.

Hence, the procesd/,, (¢, 7)} always defines a nonautonomous evolutionary sys-
tem with the symbol space being the translation farhilgf o.

In the theory of Chepyzhov & Vishik [CV94, CV02], when studygithe exis-
tence and other properties, such as the invariance of tHerom{(w.r.t. = € R)
attractor of the procesd/,, (¢, 7) }, one considers a family of procesgés, (¢, 7)},

o € ¥ with the symbol spac& being the closure of in some appropriate topol-
ogy space. Accordingly, one consider a family of equatioith wymbols in the

strongly compact closure of the translation familyof the original symboby, in

a corresponding functional space. In general, supposeatfanily of processes
{U,(t,7)}, o € ¥ satisfies the following natural translation identity:

Us(t + 5,7+ 5) = Up(s)o (£, 7), VoeX, t>1, 71eR, s>0,

andT'(s)X = %, Vs > 0. Proceeding in a similar manner with replacings,
it is easy to check that the family of procesqé$, (¢,7)}, o € X also defines a

nonautonomous evolutionary system with symbol space

2.3. Reducing a nonautonomous evolutionary system to an autonooas evolu-
tionary system. In this subsection we show that any nonautonomous evoktyon
system can be viewed as an (autonomous) evolutionary systMastart with the
following key lemma.
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Lemma 2.11.Let7, € R be fixed. Then for any € R ando € ¥, there exists at
least ones’ € ¥ such that

(12) Es([r,00)) ={u() :u(- = 7+ 1) € E([10,0))}.

Proof. i). Caser > 71,. Thanks to condition 2 in the definition of the nonau-
tonomous evolutionary system we can just take- 7'(7 — 79)o.

il). Caser < 7. SinceX is invariant, there exists at least onésuch that
T(1o — 7)o’ = 0. Again, by condition 2 in the definition &,, o € X, we have

Eqr([10,00)) = {u(-) : u(- = 10+ 7) € & ([, 00))},
which is equivalent td(11). O
Remark 2.12. In many applications, the elements of the symbol spaaee func-
tions on the real line andl7'(s) } s> is the translation semigroup. If the existence of
o’ is unique in Lemm@a 2.11, corresponding to the backward werigas property of

the system{7'(s)}+>o can be extended to a group and condition 2 in the definition
of the nonautonomous evolutionary system is validferR.

It follows from Lemmd 2,111 that

U Ro(t,00A=JRo(t+7.7)A, VACX TR t>0.

ceX oEX
So it is convenient to denote

Re(t)A = | J R,(t,00A, VACX, t>0.
oey
Similarly, we denote
Ex(l) =] &), VIET.
oeEY

Now we define an (autonomous) evolutionary systm the following way:

E(I) = &x(I), VIeT.

It is easy to check that all the conditions in Definitjon]2.& aatisfied. Moreover,
for this evolutionary system we obviously have

(12) R(A = Re(t)A, YAC X,t>0.

Now the notions of invariance, quasi-invariance, and a @lalttractor for€ can

be extended to the nonautonomous evolutionary syg@m,.s. For instance,
the global attractors for evolutionary systems defined byoegss and a family
of processes in Sectidn 2.2 are the uniform (w.r.t. theahitime) attractor and
uniform (w.r.t. the symbol space) attractor, respectiveélye global attractor in
the nonautonomous case will be conventionally called aoumifglobal attractor
(or simply a global attractor). Other than that we will nostdiguish between
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autonomous and nonautonomous evolutionary systems adedam evolutionary
system with a symbol spaéeby &£, and its attractor by4™ if it is necessary.

The advantage of such an approach will be clear in next seatibere we will
see that for some evolutionary systems constructed frormautonomous dynamical
systems the associated symbol spaces are not known.

3. CLOSURE OF AN EVOLUTIONARY SYSTEM

In this section we will investigate evolutionary systefisatisfying the following
property:

Al £(]0,00)) is a precompact set i ([0, 00); Xy ).
In addition, we will present some results for evolutionaygtems satisfying these
additional properties:

A2 (Energy inequality) Assume tha is a set in some Banach spaHesat-
isfying the Radon-Riesz property with the norm denoted bly such that
ds(z,y) = |z — y| for z,y € X andd, induces the weak topology on
X. Assume also that for any > 0, there exists), such that for every
u € £([0,00)) andt > 0,

lu(®)] < ulto)| + e,

for tp a.e. in(t — o,1).

A3 (Strong convergence a.e.) ket € £([0, 00)), be such thaty, isdeo,7;x,,)-
Cauchy sequence i6'([0,7]; X,,) for someT" > 0. Thenu(t) is ds-
Cauchy sequence a.e.[ih 7.

Such kinds of evolutionary systems are closely related @octimncept of the uni-
form w.r.t. the initial time global attractor for nonautanous system, initiated by
Haraux. For instance, as shown in previous section, theepsg$¢/,,, (¢, 7)} defines
an evolutionary systerfiy whose uniform global attractor is the uniform w.r.t. the
initial time global attractor due to Haraux. However, irsgteof conditionAl, &y
usually satisfies only A1l. The Chepyzhov-Vishik approaaiunes finding a suit-
able closure: of the symbol space in some topological space.[ In [Lu07, ¢L0O9
open problems indicate that there may not exist a symbokspasuch that a fam-
ily of processeq U, (t,7)}, o € ¥ can be defined. Later we will see that even for
evolutionary systems taking a closure of the symbol spacetialways appropriate
to study the uniform global attractor.

Denote byA, the uniformd,-global attractor of. We will investigate the exis-
tence and the structure gf, using a new method that involves taking a closure of
the evolutionary systeifi. Let

E([r,00)) 1= E(r,00)) T yr e R,
It can be checked thdt is also an evolutionary system. We célthe closure of
the evolutionary systeri, and add the top-scriptto the corresponding notations
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in previous subsections fér. For instance, we denote b4, the uniformd,-global
attractor for€.
First, we clearly have the following:

Lemma 3.1. If £ satisfies Al, thef satisfiesAl.

Now we will obtain the structure of the weak global attractqr as well as the
weakw-limit of any weakly open set:

Theorem 3.2.Let& be an evolutionary system satisfying AL. ThefA) = wy(A)
for any weakly open set in X. In particular,

Ay = Ay = {ug : up = u(0) for someu € £((—o0,0))}.
Proof. From the definition of it follows that
U R(A C U R(HA , YT >0.
t>T t>T

Hencewy (A) C wy(A).

Now take anyr € wy(A). There exist sequencés — oo asn — oo and
r, € R(t,)A, such thats,, — x in d,,-metric asn — oo. By definition of€ there
existy,, € R(t,)A satisfying

S

dw(yrn xn) S

Therefore,
1

(13) dw(yn, ) < dy(Yn, zn) + dw(zp, ) < — + dy(x,,2) = 0, asn — oo,
n

which means that € w,(A). Hencew,(A) C wy(A). This concludes the first
part of the proof.

The second part of the theorem follows from Theofem 2.7 aadaéts that the
weak global attractorsl,, and A,, exist and equal ta,,,(X) and,, (X), respec-
tively. O

If £ is asymptotically compact then Theorém|2.8 immediatelyliesgthat the
strong uniform global attractod, exists and4, = A,,. It also easy to see that the
strong attracting property in Theorém2.8 holds under thekereassumption Al:

Theorem 3.3(Strong uniform tracking property) et& be an asymptotically com-
pact evolutionary system satisfying Al. Kebe the closure of the evolutionary
systen€. Then for any > 0 and7" > 0, there exists,, such that for any* > ¢,
every trajectoryu € £([0, c0)) satisfies

ds(u(t),v(t)) <e, Vtelt't"+1T],

for some complete trajectoryc £((—oo, 00)).
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Proof. Suppose to the contrary that there exist 0, 7" > 0, and sequenceas, <
£([0,00)), t, — o0 asn — oo, such that

(14) sup  dy(un(t),0(t) > €, Vn,

te [tny tn +T]

forallv € £((—o00,00)). B
On the other hand, sine satisfiesAl, the weak uniform tracking property in
Theoreni 2.7 implies that there exists a sequence & ((—oo, 00)), such that

(15) lim  sup  dy(u,(t),v,(t)) =0.

N0 telty, tn+T]
Thanks to[(TH), there exists a sequehge [t,,t,, + T}, such that
(16) ds(un(fn),vn(fn)) >e€/2, Vn,

Now note that{u,,(%,)} is relatively strongly compact due to the asymptotic com-
pactness of. In addition, Theorern 312 implies that

{va(t,)} C Ay

Thanks again to the asymptotic compactnesg 0f4,, is strongly compact due
to Theoreni 2J8. Hence, the sequekiog(t,)} is also relatively strongly compact.
Then it follows from [I5) that the limits of the convergenbsequences dfu,, (£,)}
and{v,(t,)} coincide, which contradict§ (16). O

Finally, in order to extend Theorelm 2.9&owe need the following:
Lemma 3.4. If £ satisfies A2 and A3, thehsatisfiesA2 andA3.

Proof. Clearly A3 holds by definition of£. Now takeu € £([0,0)) andT > 0.
There exists a sequenag € £([0, 00)) satisfying

up, = uin C([0,T; Xy).
Thank toA3,
un(t) — u(t) strongly in[0, 7]\ Ey,
whereE) is a set of zero measure. Due to A2, for any 0, there exist9, such
that for everyu,, € £([0,00)) and7T > 0,

|un(T)] < |un(t)] + €,

fortin (T —9,T)\ E,, whereE, is a zero measure set. Taking the lower limit as
n — oo we obtain

|w(T)| < liminf |u,(T)| < Ju(t)|+€, te (T —0,T)\ U2 E;,
which means thad2 holds. O

With the above results in hand, we conclude with the follaywersions of The-
orem2.7[2.B, and 2.9 fd.
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Theorem 3.5.Let £ be an evolutionary system. Then
1. The weak global attractar,, exists.
Furthermore, assume th&tsatisfies Al. Lef be the closure of. Then
2. Ay = wy(X) = @y (X) = 0s(X) = Ay = {uo € X : up = u(0) for someu €
E((—00,00))}. )
3. A, is the maximal invariant and maximal quasi-invariant settwe.
4. (Weak uniform tracking property) For amy> 0, there existg,, such that for
anyt* > t,, every trajectoryu € £([0, 00)) satisfieslc (i ooy x,) (4, V) < €,

for some complete trajectorye £((—o0, 00)).

Theorem 3.6.Let £ be an asymptotically compact evolutionary system. Then
1. The strong global attractor; exists, it is strongly compact, and, = A,,.
Furthermore, assume thdtsatisfiesAl. Let€ be the closure of . Then

2. (Strong uniform tracking property) For any > 0 andT” > 0, there ex-
ists ¢y, such that for anyt* > t¢,, every trajectoryu € £([0,00)) sat-
isfiesds(u(t),v(t)) < € Vt € [t*,t" + T, for some complete trajectory
v € E((—00,0)).

Theorem 3.7.Let £ be an evolutionary system satisfying A1, A2, and A3, and
assume that its closur€ satisfiesE((—oo, 00)) C C((—o0,0); Xs). Then€ is
asymptotically compact.

3.1. Uniform w.r.t. symbol space global attractors. In [CV94, [CV0Z2], Chep-
yzhov and Vishik studied the structure of the uniform (wthe initial time) global
attractor of a process via that of the uniform (w.r.t. the bghspace) attractor of
a family of processes with the symbol space being the striosye of the trans-
lation family of the original symbol in an appropriate fuioctal space. For further
results in the case where the symbol space is a weak clostire trtiinslation fam-
ily of the original symbol we refer ta [LWZ05, Lu06, Lu07]. Isome cases (see
e.g. open problems in [Lu0iZ, CL09)) it is not clear how to cb®a symbol space
to obtain the structure of the uniform (w.r.t. the initiahe) global attractor. Even
though we solved this problem in Sectidn 3 using a differ@praach, the uniform
(w.r.t. the symbol space) attractor remains of mathemlatiterest. In this sub-
section we study this object and its relation to the unifomr.{. the initial time)
global attractor using our framework of evolutionary sysse

Definition 3.8. Let £ be an evolutionary system. If a map that associates to
eachl € T asubsef!(I) C £(I) is also an evolutionary system, we will call it an
evolutionary subsystem 6f and denote by! c £.

Let & be an evolutionary system, and }tc 3 be such thaf’(h)X = X for all
h > 0. Thenitis easy to check thét is also an evolutionary system. Hence, itis an
evolutionary subsystem é%.. For example, in Sectidn 2.2, the evolutionary system
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defined by a procesg/,,(t,7)} is an evolutionary subsystem of the evolutionary
system defined by the family of procesgés (¢, 7)}, o € X, whereXl is the closure
of the translation family: of the symbob, in some appropriate topological space.

Definition 3.9. An evolutionary systeify; is a system with uniqueness if for every
up € X ande € ¥, there is a unique trajectory € &,([0, 0o)) such that(0) = w.

Examples of evolutionary systems with uniqueness inclodeevolutionary sys-
tems defined previously by a process and a family of processes

Theorem 3.10.Let s, be an evolutionary system with uniqueness and with symbol
spaceX satisfying Al. LeE be the closure of in some topology spacgand&s. O

Es, be an evolutionary system with uniqueness satisfpibgand such that,, €

&5, (10,00)), up, — win C([0,00); Xy) ando,, — o in Fimplyu € &,([0, 00)).
Then, their weak uniform global attractos® and.AZ are identical.

Proof. Obviously,A> and.A> exist andA> c AZ. If there existsy, € A>\ A%,
then there exist two disjoin balls,, (A%, ¢) and By, (o, ¢). Since

{u(t)|t € R,u € E((—o0,00))} C AZ,

we can take, by Theorem 2.7, a complete trajectdrty < &,((—oo,00)) with
o € ¥\ X such that(0) = zy. The set{v(t)|t € R} is d,-attracted byd>. Hence,
there is some, such that,

Rs(to){v(t)|t € R} C By (AZ, ).

Note that® is the closure oF in 3. Take a sequenes, € ¥ suchthat,, — oin Q.
Consider a sequence of trajectoriggt) € &,, ([0, 00)) satisfyingu,,(0) = v(—to)
and

a7) Un(ty) € By (A% €).

Thanks toAl, {u,(t)} converges, passing to a subsequence and dropping a subindex
in C([0,00); Xy), whose limitu(t) € &,([0,00)) due too,, — o in J. By

the fact thatu(0) = v(—t,) and the uniqueness of the evolutionary syst&m

u(t) = v(t — ty), t > 0. However, [(1¥) indicates that

2o = v(0) = u(ty) € Bu(AZ,€) .
This is a contradiction. Hencel> = A>. O
Therefore, together with Theoremsl3.5 2.7, Theorenifplles the follow:

Theorem 3.11.Under the conditions of Theordm 3110, &t be the closure of the
evolutionary systerfiz. Then the three weak uniform global attractot§, A> and
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Av% of the evolutionary systenss,, &5, and s, respectively, are identical, and the
following invariance property holds

A = A5 = A
(18) = {ug : up = u(0) for someu € £((—o0, 0))}
= {ug : up = u(0) for someu € Ex((—o00,0))}.

Moreover, the weak uniform tracking property holds.
Now, Theoreni 3.3 ensures the strong compactness.

Theorem 3.12.Under the conditions of Theordm 311, assume &kais asymp-
totically compact. Then the weak uniform global attractorsTheoreni 3,11 are
strongly compact strong uniform global attractors. Moregwhe strong uniform
tracking property holds.

In applications the auxiliary evolutionary systefn is usually asymptotically
compact. For instance, in [LuD6], in the case of the 2D NaSimkes equations
with non-slip boundary conditiory; is taken as the closure of the translation family
of a normal external force (see Section 5)7f1" (R; V’). Here, V" is the dual
of the space of divergence-free vector fields with squategnable derivatives and
vanishing on the boundary, argt™ (R; V') is the spacd.?,.(R; V') endowed with
local weak convergence topology. Then Theokem|3.12 api¢his system gives
the strong uniform tracking property.

Similarly, together with Theorein 3.6 ahd 2.8, TheofemI3niplies the follows:

Theorem 3.13.Under the conditions of Theordm 3111, assume fhatatisfies A2,
A3 and the complete trajectories [n {18) is strongly conbimst Then the weak uni-
form global attractorAZ for £y is strongly compact strong uniform global attractor.
Moreover, the strong uniform tracking property holds.

4. TRAJECTORY ATTRACTOR

A trajectory attractor for the 3D NSE was introduced in [Se@td further stud-
ied in [CV97,/[CV02) SY0R] by considering a family of auxijanonautonomous
systems including the original system. In this sectionhwlie results in preceding
sections in hand, we will naturally construct a trajectoityagtor for the original
system under consideration, rather than for a family ofesyst More precisely, we
construct a trajectory attractor for the evolutionary eysf satisfying Al utilizing
the trajectory attractor for its closu#g which is defined in[C09].

Let 7+ := C(]0, o0); X,,) and denote

Kt :=&(0c0)) C F'.
Define the translation operatdf§s), s > 0,
(T(s)u)(t) == u(t + s)|jo,00), uweFT.
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Due to the property 3 of the evolutionary system (see Definifl.] and 2.10), we
have that,

T(s)KT cK*, Vs>0.
Note thatXC* may not be closed, but is precompact#it due to A1l. For a set
P c F*andr > 0 denote

B(P, T) = {u - .F+ : dC’([O,oo));XW)(ualD) < ’f’}.

A setP C F* uniformly attracts a sep C K7 if for any e > 0 there exist$,, such
that
T(t)Q C B(Pye), Vt>to.

Definition 4.1. A setP C FT is a trajectory attracting set for an evolutionary
systent if it uniformly attractskC™.

Definition 4.2. A set?l C F* is a trajectory attractor for an evolutionary system
£ if 2 is a minimal compact trajectory attracting set, aidt)2( = 2 for all ¢ > 0.

It is easy to see that if a trajectory attractor exists, itngque. Let€ be the
closure of the evolutionary systefnand letlC := £((—oo, o0)) which is called the
kernel of€. Let also

H+I€ = {u(-)ho,oo) U e /6}

Theorem 4.3.Let £ be an evolutionary system satisfying A1. Then the trajgctor
attractor exists and

Q/l - H+I€,
whereK is the kernel of the closui€ of the evolutionary systeth Furthermore,
Ay =24(t) :={u(t) :ue A}, Vt>0.

Proof. Notice that Theorem 7.4 in [C09] states that the conclusamawalid for an
evolutionary system satisfyingl. B B
Obviously,& satisfiesAl. Hence the trajectory attractdr, K for & uniformly
attractsk™. Now we verify thatll, X is a minimal trajectory attracting set fér.
Assume that there exists a compact trajectory attracting’ssrictly included in
I1, K. Then there exist > 0 and
u € 1K\ B(P,2e).
Letv € E(j—oo, 00)) be such that |y ..y = u. Letalsov,(-) = v(- —n)|j0,.0). NOte
thatv,, € £([0,00)) and
T(n)v, =u ¢ B(P,2), Vn.
Now takeu,, € £(]0, c0)) such that

de(0,00)):%0) (Un, 0n) < €/2", V.
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By the definition of the metrid (o ~)).x,,), We have

de(o,00)):x0) (T (1)U, T(n) ) < 2"de((0,00));x0) (Uns Un), V1.
Hence,
deo,00)xn) (T(R)un, u) <€, Vn,
which implies that
T(n)u, ¢ B(P,e), Vn.
Therefore,P is not a trajectory attracting set fét which is a contradiction. [

Furthermore, the asymptotical compactness$ ahplies a uniform strong con-
vergence of solutions toward the trajectory attractor.

Theorem 4.4.Let £ be an asymptotically comapct evolutionary system satigfyi
Al. Then the trajectory attract@ uniformly attracts'C*™ in L2 ((0, 00)).

loc

Proof. This is just a consequence of Theorleni 3.3. O

Finally, by the strong continuity of the complete trajectsr we have the follow-
ing.
Theorem 4.5. Let £ be an evolutionary system satisfying A1, A2 and A3l If
C(]0, 00); Xs), then the trajectory attracta uniformly attractsiC* in L. ((0, c0)).

loc

Proof. Since? C C([0,00); X;), Theoreni 3.]7 implies that the evolutionary sys-
tem & is asymptotically compact. Therefore, Theolleni 4.4 yiehdg A uniformly
attractsiC™ in L2 ((0, 00)). O

loc
5. 3D NAVIER-STOKES EQUATION

Consider the space periodic 3D incompressible Navier&dtekjuations (NSE)

d
(19) d—tu—I/Au+(u~V)u+Vp:f(t),

V-u=0,

whereu, the velocity, and, the pressure, are unknowng(t) is a given driving
force, andv > 0 is the kinematic viscosity coefficient of the fluid. By a Gatih
change of variables, we can assume that the space average z#ro, i.e.,

/ u(zx,t)dx =0, Vt,
Q

whereQ) = [0, L]? is a periodic bod.
First, let us introduce some notations and functionalrsgttDenote by, -) and
| - | the L?(Q)3-inner product and the correspondiig(Q2)3-norm. LetV be the

1The no-slip case can be considered in a similar way, only sdthe adaption on the functional
setting.
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space of allR? trigonometric polynomials of period in each variable satisfying
V-u=0andf,u(z)dz = 0. Let H andV to be the closures a? in L*(Q2)? and
H'(Q)3, respectively. Define the strong and weak distances by

1 |uk — vy
ds(u,v) == |u —v|, dy(u,v) = Zﬁm, u,v € H,
KEZ3
whereu,, andv,, are Fourier coefficients af andv respectively. Note that the weak
metricd,, induces the weak topology in any ball IF()3.

Let alsoP, : L?(2)> — H be theL?-orthogonal projection, referred to as the
Leray projector. Denote byt = — P, A = —A the Stokes operator with the domain
D(A) = (H?*(Q2))®NV. The Stokes operator is a self-adjoint positive operattn wi
a compact inverse. Let

lul| = A4l
which is called the enstrophy norm. Note thiat| is equivalent to thé7*-norm of
u foru € D(AY?).

Now denoteB(u, v) := P,(u-Vv) € V' forall u,v € V. This bilinear form has

the following property:

(B(u,v),w) = —(B(u,w),v), u,v,w €V,

in particular,(B(u,v),v) = 0 forallu,v € V.
Now we can rewrite[(19) as the following differential eqoatin 1':

d
(20) i + vAu + B(u,u) = g,

whereu is aV-valued function of time and = P, f.

Definition 5.1. A weak solution of19)on [T, o) (or (—o0, 00), if T' = —o0) is an
H-valued functionu(t) defined fort € [T, c0), such that

%u € Llloc([T, 0); V'), u(t) € C([T,00); Hy) N Lfoc([f 00): V),
and

(21) (U(t)—U(to),v)Z/ (=v((u,v)) = (B(u, u),v) + (g,v)) ds,

to

forallv e VandT <t, <t.

Theorem 5.2(Leray, Hopf) For everyu, € H andg € L3 _(R;V’), there exists

a weak solution of (19) of¥’, co) with u(7T") = u, satisfying the following energy
inequality

22)  |u(t)f + 2 / lu(s)|P ds < Ju(to)|? +2 / (9(s), u(s)) ds

to
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forall t > ty, to a.e. in[T, c0).

Definition 5.3. A Leray-Hopf solution of{19) on the interval[T, o) is a weak
solution on[T’, o) satisfying the energy inequality (22) for &l < ¢, < t, ¢, a.e.

in [T, 00). The setE'z of measuré) on which the energy inequality does not hold
will be called the exceptional set.

Now fixed an external forceg, that is translational bounded i} .(R; V’) , i.e

t+1
||90||%§ = S;gg/ lgo(s) |2 ds < oo.
t

Then g, is translation compact i (R; V'), i.e., the translation family :=

loc

{go(- + h)|h € R} of gy is precompact i, (R; V). Note that,

loc

(23) ||9||%g < ||90||Lg> VgeX.
Due to the energy inequality (22) we have

|<|2+u/ lu(s)| ds < [uto)” + /||g V2. ds,  Vgex.

forall t > ¢y, to a.e. in[T,o0). Hereu(t) is a Leray-Hopf solutions of (19) with
forceg on[T', c0). By Gronwall’s inequality there exists an absorbing a0, R),
where the radiugt depends oidL, v, and||g0||i%. Let X be a closed absorbing ball

X ={u€eH:|ul <R},
which is also weakly compact. Then for any bounded4et H, there exists a
timet, > T, such that

u(t) € X, Vit >t
for every Leray-Hopf solutiom(¢) with the forceg € ¥ and the initial data.(7") €
A. For any sequence of Leray—Hopf solutiansthe following result holds.

Lemma 5.4. Let u,(t) be a sequence of Leray-Hopf solutions(@g) with forces
gn € %, such thatu,(t) € X forall ¢t > t;. Then

u,, is bounded inL?(ty,ty; V) and L*>(ty,ty; H),
(24) d . for4/3 /
i is bounded inL*°(tq,ta; V'),

for all ¢, > t,. Moreover, there exists a subsequenge&onverges to some(t) in
C([tl, tg], HW), i.e.,

(Un;,v) = (u,v) uniformlyon [ty ts],

asn; — oo, forallv € H.
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Proof. The proof is standard (see ed. [CF389, Ro01]). Here we justkkeme
steps. Take a sequeneg satisfying [(19) with forceg,,. By (20), we have

d
(25) d_tu" + vAu, + B(uy, uyn) = gn,

Classical estimates imply the boundedneskinh (24). Thessipgto a subsequence
and dropping a subindex, we can obtain that

u, — u weak-star inL>(ty, ty; H),
weakly in L*(t;, t5; V),
strongly inL?(t,ty; H),

and d d
Zln = 22U weakly in LY3(t,, ty; V'),
Au,, — Au  weakly inL*(t,, ty; V),
B(ttn, un) = B(u,u)  weakly inL? (ty,t5; V'),
for some

u € Lty to; H) N L*(ty,t; V).
Again, passing to a subsequence and dropping a subindexsabave,
(26) gn — g weaklyinL?(ty,ty; V'),
with g € L2(t,,ty; V'). Passing to the limit yields

d
T + vAu + B(u,u) = g.

It follows from (21) thatu,, — w in C([t1, ta]; Hy). O

Remark 5.5. In the autonomous case, i.€.(t) is independent of, the limitu is
a Leray-Holf solution. However, we don't know here whetheas ia Leray-Holf
solution yet.

Consider an evolutionary system for which a family of trégeies consists of all
Leray-Hopf solutions of the 3D Navier-Stokes equationsaifixed forcey, in X.
More precisely, define

E([T,0)) := {u(-) : u(-) is a Leray-Hopf solution ofil’, oo)
with the forceg € ¥ andu(t) € X, Vt € [T, )}, T e R,
E((—o0,00)) := {u(-) : u(-) is a Leray-Hopf solution ofi—oco, co)
with the forceg € 3 andu(t) € X, Vt € (—o0,00)}.

Clearly, the properties 1-4 & hold, if we utilize the translation semigroup
{T'(s)}s>0. Therefore, thanks to Theordm B.5, the uniform weak glotiedtor
A, for this evolutionary system exists.
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Now we give the definition of normal function which was firstt garward in
[LWZ05].

Definition 5.6. Let B be a Banach space. A functigiis) € L2 _(R; B) is said to

loc
be normal inL? (R; B) if for any e > 0, there exist$ > 0, such that

t+0
sup [ el ds < e
t

teR

Note that the class of normal functions is a proper closedzad®e of the class of
translation bounded functions (see [LWZ05] for more dejailThen, we have the
following.

Lemma 5.7. The evolutionary syste# of the 3D NSE with the forcg, satisfies
Al and A3. Moreover, ify is normal inL2 (R; V) then A2 holds.

loc

Proof. First note that® ([0, 00)) C C([0,00); Hy,) by the definition of a Leray-
Hopf solution. Now take any sequeneg € £([0,00)), n = 1,2,.... Thanks
to Lemma 5.4, there exists a subsequence, still denoted, bthat converges to
someu! € C([0,1]; H,,) in C([0,1]; Hy,) asn — oo. Passing to a subsequence
and dropping a subindex once more, we obtain that- «? in C([0,2]; H,) as
n — oo for someu? € C([0,2]; H,,). Note that:'(¢) = v*(¢) on |0, 1]. Continuing
this diagonalization process, we obtain a subsequepcef u,, that converges to
someu € C([0,00); Hy) in C([0,00); Hy,) asn; — oco. Therefore, Al holds.

Let nowu,, € £(]0,00)) be such that,, — u € C([0,T]; Hy) in C([0,7T]; Hy)
asn — oo for someT" > 0. Thanks to Lemméa54 again, the sequefieg} is
bounded inZ?([0, T]; V). Hence,

T
/ [ (s) — u(s)]*ds — 0, as n— oo.
0

In particular,|u, (t)| — |u(t)| asn — oo a.e. on0, T, i.e., A3 holds.
Now assume thag, is normal inLi .(R; V). Then givene > 0, there exists
d > 0, such that

t
sup/ ||g0(s)||%/, ds < ve.
teR Ji—s

Take anyu € £(]0,00)) andt > 0. Sinceu(t) is a Leray-Hopf solution, it satisfies
the energy inequality (22)

u(t)* + 2V/t lu(s)I|* ds < u(to)* + 2/ (g(s), u(s)) ds,

to
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forall0 < t, <t t, € [0,00)\ Ez, whereEx is a set of zero measure. Hence,
together with[(2B),

O < futwl + L [ Il as
< Ju(to)|* + ¢,
for all ¢, > 0, such that, € (t — §,t) \ Ex. Therefore, A2 holds. O

Now Lemmd5.l7, Theorem 3.5 ahd 3.6 yield the following.

Theorem 5.8. The uniform weak global attractod,, for the 3D NSE with force
go exists, A,, is the maximal invariant and maximal quasi-invariant settwthe
closure€ of the corresponding evolutionary systé€mand

Ay = wy(X) = wy(X) = {u(0) : u € E((—00,0))}.
Moreover, the weak uniform tracking property holds
Theorem 5.9.1f g, is normal in L2 (R; V') and every complete trajectory 6fis

strongly continuous, then the weak global attractyy is a strongly compact strong
global attractor.4,. Moreover, the strong uniform tracking property holds.

Finally, we obtain the trajectory attractor for 3D NSE witfix@d time-dependent
force g, due to Theorem 413 and 4.5.

Theorem 5.10. The trajectory attractor for 3D NSE with forgg exists and
2 = H.,.g((—OO, OO)) = {u()|[0,oo) tu e g((—OO, OO))}7
satisfying
Ay =24(t) ={u(t) :ueA}, V>0,
Furthermore, ifg, is normal in L2 (R, V') and every complete trajectory éfis

strongly continuous then the trajectory attrac&muniformly attracts€ ([0, o)) in
L. ((0, 00)).

6. OPEN PROBLEMS

In this section we assume thatis translation compact i (R; V') and denote
by 3 the closure ofZ in L2 (R;V’). Note that the class of translation compact
functions is also a closed subspace of the class of tramslatunded functions,
but it is a proper subset of the class of normal functions fhare details, see
[LWZ05]). Note that the argument in Sectibh 5 before Lenin#iS.valid for &
replaced by: and Lemma5l4 can be improved as follows.
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Lemma 6.1. Letu,(t) be a sequence of Leray-Hopf solutions(@g) with forces
gn € X, such thatu,(t) € X forall ¢t > t;. Then

u,, is bounded inL?(t,,t5; V) and L™ (ty,ty; H),

d . .
il bounded inL*/3(ty, t,; V),

for all t, > t,. Moreover, there exists a subsequenggsuch thaty,, converges in
L2Y(R; V') to somey € % andu,,; converges it ([t1, t]; H,,) to some Leray-Hopf

solutionu(t) of (19)with the forcey, i.e.,

(Un;,v) = (u,v) uniformlyon [ty 5],
asn; — oo, forallv € H.
Proof. See [CF809, CV02]. Here we give a brief sketch.

The proof of Lemm&5l4 is still valid if we substituiefor 3. So, the remains is
to verify (22) for the limitu. We have

@) lu®)P + 20 / lun(S)IP ds < fun(to)]? +2 / (9a(5), tn(s)) ds

to

forall t > ¢y, tp a.e. in[t;, o). Note that
u,(t) — u(t) weaklyinH, Vit>t,
strongly inH, ta.e. inft;,c0),
weakly inLZ (t,, 00; V),

and the convergence ih (26) is strong fgris translation compact idZ (R; V”).
Therefore, taking the limit of.(27) we obtain the energy inality

\U(t)|2+2V/t lus)|I* ds < \U(to)\2+2/ (g(s),u(s)) ds

to

forall t > to, tp a.e. infty, o). O

Due to this lemma, now we can consider another evolutiongstes withY as
a symbol space. The family of trajectories of the evolutigreystem consists of
all Leray-Hopf solutions of the family of 3D Navier-Stokeguations with forces
g€ Xin X:

Es ([T, 00)) :={u(-) : u(-) is a Leray-Hopf solution offil’, co)
with the forceg € ¥ andu(t) € X, Vt € [T, 00)}, T eR,
Es((—o0,00)) :={u(:) : u(-) is a Leray-Hopf solution of—oo, co0)
with the forceg € ¥ andu(t) € X, Vt € (—o0,0)}.

Obviously,E C E&s.
We have the following lemma.
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Lemma 6.2. The evolutionary syste#y, of the family of 3D NSE with forces i
satisfiesAl, A2 andAS3.

Proof. The proof is similar to Lemmga 5.7. The difference is that weehtn use
Lemma6.1 instead of Lemnia’b.4, and that} andw would now be contained in
€5((0,00)). O

Similarly, Lemmd. 6.2 and Theorem 2.7 yield the following {V02]).

Theorem 6.3. The uniform weak global attracto«ﬁviv for the family of 3D NSE with
forcesg € ¥ exists, A” is the maximal invariant and maximal quasi-invariant set
w.r.t. the corresponding evolutionary systém and

Ay = {u(0) : u € Es((~o00, 00))}.
Moreover, the weak uniform tracking property holds
Theoreni 2.8 gives a criterion for strong compactness ofttiector.

Theorem 6.4.1f every complete trajectory of the family of 3D NSE with &g €
> is strongly continuous, then the weak global attracr is a strongly compact
strong global attractotd>. Moreover, the strong uniform tracking property holds.

Let £ be the closure of the evolutionary systém Obviously,€ C £ C &s.
Then, an interesting problem arises:

Open Problem 6.5. Are the uniform global attractorst, and.A% in Theorem§5]8
and[6.4 identical?

If the solutions of 3D NSE are unique, then the answer is ppegiiue to Theorem
[3.11 and_3.12. However, the negative answer, ig.C A%, would imply that the
Leray-Hopf weak solutions are not unique and the uniform{vsymbol space) at-
tractor doesn’t satisfy the minimality property with respt® uniform (w.r.t. initial
time) attracting for the original 3D NSE with fixed externatde ;.

We can also obtain a trajectory attractorggfas in Section 5:

Theorem 6.6. The trajectory attractor for the family of 3D NSE with foreeg &
exists and

A = I, Ex((—00,00)) = {u() j0.00) : u € Ex((—00,00))},
satisfying
AZ =05 (t) = {u(t) :u e A”}, V> 0.
Furthermore, if every complete trajectory 6§ is strongly continuous thef(™
uniformly attracts€s ([0, 00)) in Li2.((0, 00)).

A similar problem on the relationship of this trajectoryrattor and that o€
also arises:
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Open Problem 6.7.Are the trajectory attractor€l and2(* in Theoreni5.20 and
identical?

This open problem hints that, in general, the trajectoryaatbrs constructed
in [CV02] for the systems without uniqueness might not $atitke minimality

property.
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