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ABSTRACT. Onsager conjectured that weak solutions of the Euler equa-
tions for incompressible fluids in R3 conserve energy only if they have a
certain minimal smoothness, (of order of 1/3 fractional derivatives) and
that they dissipate energy if they are rougher. In this paper we prove
that energy is conserved for velocities in the function space B

1/3
3,c(N). We

show that this space is sharp in a natural sense. We phrase the energy
spectrum in terms of the Littlewood-Paley decomposition and show that
the energy flux is controlled by local interactions. This locality is shown
to hold also for the helicity flux; moreover, every weak solution of the
Euler equations that belongs to B

2/3
3,c(N) conserves helicity. In contrast,

in two dimensions, the strong locality of the enstrophy holds only in the
ultraviolet range.

1. INTRODUCTION

The Euler equations for the motion of an incompressible inviscid fluid
are

(1)
∂u

∂t
+ (u · ∇)u = −∇p,

(2) ∇ · u = 0,

where u(x, t) denotes the d-dimensional velocity, p(x, t) denotes the pres-
sure, and x ∈ Rd. We mainly consider the case d = 3. When u(x, t) is a
classical solution, it follows directly that the total energyE(t) = 1

2

∫
|u|2 dx

is conserved. However, conservation of energy may fail for weak solutions
(see Scheffer [27], Shnirelman [26]). This possibility has given rise to a
considerable body of literature and it is closely connected with statistical
theories of turbulence envisioned 60 years ago by Kolmogorov and On-
sager. For reviews see, for example, Eyink and Sreenivasan [16], Robert
[25], and Frisch [17].
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Onsager [24] conjectured that in 3-dimensional turbulent flows, energy
dissipation might exist even in the limit of vanishing viscosity. He sug-
gested that an appropriate mathematical description of turbulent flows (in
the inviscid limit) might be given by weak solutions of the Euler equations
that are not regular enough to conserve energy. According to this view, non-
conservation of energy in a turbulent flow might occur not only from vis-
cous dissipation, but also from lack of smoothness of the velocity. Specif-
ically, Onsager conjectured that weak solutions of the Euler equation with
Hölder continuity exponent h > 1/3 do conserve energy and that turbulent
or anomalous dissipation occurs when h ≤ 1/3. Eyink [14] proved energy
conservation under a stronger assumption. Subsequently, Constantin, E and
Titi [9] proved energy conservation for u in the Besov spaceBα

3,∞, α > 1/3.
More recently the result was proved under a slightly weaker assumption by
Duchon and Robert [13].

In this paper we sharpen the result of [9] and [13]: we prove that energy is
conserved for velocities in the Besov space of tempered distributions B1/3

3,p .
In fact we prove the result for velocities in the slightly larger space B1/3

3,c(N)

(see Section 3). This is a space in which the “Hölder exponent” is exactly
1/3, but the slightly better regularity is encoded in the summability condi-
tion. The method of proof combines the approach of [9] in bounding the
trilinear term in (3) with a suitable choice of the test function for weak so-
lutions in terms of a Littlewood-Paley decomposition. Certain cancelations
in the trilinear term become apparent using this decomposition. We observe
that the space B1/3

3,c(N) is sharp in the context of no anomalous dissipation.

We give an example of a divergence free vector field in B1/3
3,∞ for which the

energy flux due to the trilinear term is bounded from below by a positive
constant. This construction follows ideas in [14]. However, because it is
not a solution of the unforced Euler equation, the example does not prove
that indeed there exist unforced solutions to the Euler equation that live in
B

1/3
3,∞ and dissipate energy.
Experiments and numerical simulations indicate that for many turbu-

lent flows the energy dissipation rate appears to remain positive at large
Reynolds numbers. However, there are no known rigorous lower bounds
for slightly viscous Navier-Stokes equations. The existence of a weak so-
lution of Euler’s equation, with positive smoothness and that does not con-
serve energy remains an open question. For a discussion see, for example,
Duchon and Robert [13], Eyink [14], Shnirelman [27], Scheffer [26], de
Lellis and Szekelyhidi [12].

We note that the proof in Section 3 applied to Burger’s equation for 1-
dimensional compressible flow gives conservation of energy in B1/3

3,c(N). In
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this case it is easy to show that conservation of energy can fail in B
1/3
3,∞

which is the sharp space for shocks.
The Littlewood-Paley approach to the issue of energy conservation ver-

sus turbulent dissipation is mirrored in a study of a discrete dyadic model
for the forced Euler equations [5, 6]. By construction, all the interactions
in that model system are local and energy cascades strictly to higher wave
numbers. There is a unique fixed point which is an exponential global at-
tractor. Onsager’s conjecture is confirmed for the model in both directions,
i.e. solutions with bounded H5/6 norm satisfy the energy balance condi-
tion and turbulent dissipation occurs for all solutions when the H5/6 norm
becomes unbounded, which happens in finite time. The absence of anoma-
lous dissipation for inviscid shell models has been obtained in [10] in a
space with regularity logarithmically higher than 1/3.

In Section 3.2 we present the definition of the energy flux employed in
the paper. This is the flux of the Littlewood-Paley spectrum, ([7]) which
is a mathematically convenient variant of the physical concept of flux from
the turbulence literature. Our estimates employing the Littlewood-Paley de-
composition produce not only a sharpening of the conditions under which
there is no anomalous dissipation, but also provide detailed information
concerning the cascade of energy flux through frequency space. In sec-
tion 3.3. we prove that the energy flux through the sphere of radius κ is
controlled primarily by scales of order κ. Thus we give a mathematical
justification for the physical intuition underlying much of turbulence the-
ory, namely that the flux is controlled by local interactions (see, for exam-
ple, Kolmogorov [18] and also [15], where sufficient conditions for locality
were described). Our analysis makes precise an exponential decay of non-
local contributions to the flux that was conjectured by Kraichnan [19].

The energy is not the only scalar quantity that is conserved under evolu-
tion by classical solutions of the Euler equations. For 3-dimensional flows
the helicity is an important quantity related to the topological configura-
tions of vortex tubes (see, for example, Moffatt and Tsinober [23]). The
total helicity is conserved for smooth ideal flows. In Section 4 we observe
that the techniques used in Section 3 carry over exactly to considerations of
the helicity flux, i.e., there is locality for turbulent cascades of helicity and
every weak solution of the Euler equation that belongs to B2/3

3,c(N) conserves
helicity. This strengthens a recent result of Chae [2]. Once again our argu-
ment is sharp in the sense that a divergence free vector field in B2/3

3,∞ can be
constructed to produce an example for which the helicity flux is bounded
from below by a positive constant.



4 A. CHESKIDOV, P. CONSTANTIN, S. FRIEDLANDER, AND R. SHVYDKOY

An important property of smooth flows of an ideal fluid in two dimen-
sions is conservation of enstrophy (i.e. the L2 norm of the curl of the ve-
locity). In section 4.2 we apply the techniques of Section 3 to the weak
formulation of the Euler equations for velocity using a test function that
permits estimation of the enstrophy. We obtain the result that, unlike the
cases of the energy and the helicity, the locality in the enstrophy cascade is
strong only in the ultraviolet range. In the infrared range there are nonlo-
cal effects. Such ultraviolet locality was predicted by Kraichnan [20] and
agrees with numerical and experimental evidence. Furthermore, there are
arguments in the physical literature that hold that the enstrophy cascade is
not local in the infrared range. We present a concrete example that exhibits
this behavior.

In the final section of this paper, we study the bilinear term B(u, v). We
show that the trilinear map (u, v, w) → 〈B(u, v), w)〉 defined for smooth
vector fields in L3 has a unique continuous extension to {B1/2

18/7,2}3 (and a
fortiori to {H5/6}3, which is the relevant space for the dyadic model prob-
lem referred to above). We present an example to show that this result is
optimal. We stress that the borderline space for energy conservation is much
rougher than the space of continuity for 〈B(u, v), w〉.

2. PRELIMINARIES

We will use the notation λq = 2q (in some inverse length units). Let
B(0, r) denote the ball centered at 0 of radius r in Rd. We fix a nonnegative
radial function χ belonging to C∞

0 (B(0, 1)) such that χ(ξ) = 1 for |ξ| ≤
1/2. We further define

(3) ϕ(ξ) = χ(λ−1
1 ξ)− χ(ξ).

Then the following is true

(4) χ(ξ) +
∑
q≥0

ϕ(λ−1
q ξ) = 1,

and

(5) |p− q| ≥ 2 ⇒ Supp ϕ(λ−1
q ·) ∩ Supp ϕ(λ−1

p ·) = ∅.

We define a Littlewood-Paley decomposition. Let us denote by F the
Fourier transform on Rd. Let h, h̃, ∆q (q ≥ −1) be defined as follows:
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h = F−1ϕ and h̃ = F−1χ,

∆qu = F−1(ϕ(λ−1
q ξ)Fu) = λd

q

∫
h(λqy)u(x− y)dy, q ≥ 0

∆−1u = F−1(χ(ξ)Fu) =

∫
h̃(y)u(x− y)dy.

For Q ∈ N we define

(6) SQ =

Q∑
q=−1

∆q.

Due to (3) we have

(7) SQu = F−1(χ(λ−1
Q+1ξ)Fu).

Let us now recall the definition of inhomogeneous Besov spaces.

Definition 2.1. Let s be a real number, p and r two real numbers greater
than 1. Then

‖u‖Bs
p,r

def
= ‖∆−1u‖Lp +

∥∥∥(λs
q‖∆qu‖Lp

)
q∈N

∥∥∥
`r(N)

is the inhomogeneous Besov norm.

Definition 2.2. Let s be a real number, p and r two real numbers greater
than 1. The inhomogeneous Besov space Bs

p,r is the space of tempered
distributions u such that the norm ‖u‖Bs

p,r
is finite.

We refer to [3] and [21] for background on harmonic analysis in the con-
text of fluids. We will use the Bernstein inequalities

Lemma 2.3.

‖∆qu‖Lb ≤ λ
d( 1

a
− 1

b
)

q ‖∆qu‖La for b ≥ a ≥ 1.

As a consiquence we have the following inclusions.

Corollary 2.4. If b ≥ a ≥ 1, then we have the following continuous em-
beddings

Bs
a,r ⊂ B

s−d

(
1
a
− 1

b

)
b,r ,(8)

B0
a,2 ⊂ La, for a ≥ 2.(9)

In particular, the following chain of inclusions will be used throughout
the text.

(10) H
5
6 (R3) ⊂ B

2
3
9
4
,2
(R3) ⊂ B

1
2
18
7

,2
(R3) ⊂ B

1
3
3,2(R3).
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3. ENERGY FLUX AND LOCALITY

3.1. Weak solutions.

Definition 3.1. A function u is a weak solution of the Euler equations with
initial data u0 ∈ L2(Rd) if u ∈ Cw([0, T ];L2(Rd)), (the space of weakly
continuous functions) and for every ψ ∈ C1([0, T ];S(Rd)) with S(Rd) the
space of rapidly decaying functions, with ∇x · ψ = 0 and 0 ≤ t ≤ T , we
have
(11)

(u(t), ψ(t))− (u(0), ψ(0))−
∫ t

0

(u(s), ∂sψ(s))ds =

∫ t

0

b(u, ψ, u)(s)ds,

where

(u, v) =

∫
Rd

u · vdx,

b(u, v, w) =

∫
Rd

u · ∇v · w dx,

and ∇x · u(t) = 0 in the sense of distributions for every t ∈ [0, T ].

Clearly, (11) implies Lipschitz continuity of the maps t → (u(t), ψ) for
fixed test functions. By an approximation argument one can show that for
any weak solution u of the Euler equation, the relationship (11) holds for all
ψ that are smooth and localized in space, but only weakly Lipschitz in time.
This justifies the use of physical space mollifications of u as test functions
ψ. Because we do not have an existence theory of weak solutions, this is a
rather academic point.

3.2. Energy flux. For a divergence-free vector field u ∈ L2 we introduce
the Littlewood-Paley energy flux at wave number λQ by

(12) ΠQ =

∫
R3

Tr[SQ(u⊗ u) · ∇SQu]dx.

If u(t) is a weak solution to the Euler equation, then substituting the test
function ψ = S2

Qu into the weak formulation of the Euler equation (11) we
obtain

(13) ΠQ(t) =
1

2

d

dt
‖SQu(t)‖2

2.

Let us introduce the following localization kernel

(14) K(q) =

{
λ

2/3
q , q ≤ 0;

λ
−4/3
q , q > 0,
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For a tempered distribution u in R3 we denote

dq = λ1/3
q ‖∆qu‖3,(15)

d2 = {d2
q}q≥−1.(16)

Proposition 3.2. The energy flux of a divergence-free vector field u ∈ L2

satisfies the following estimate

(17) |ΠQ| ≤ C(K ∗ d2)3/2(Q),

where C > 0 is an absolute constant.

From (17) we immediately obtain

(18) lim sup
Q→∞

|ΠQ| ≤ lim sup
Q→∞

d3
Q.

We define B1/3
3,c(N) to be the class of all tempered distributions u in R3 for

which

(19) lim
q→∞

λ1/3
q ‖∆qu‖3 = 0,

and hence dq → 0. We endow B
1/3
3,c(N) with the norm inherited from B

1/3
3,∞.

Notice that the Besov spaces B1/3
3,p for 1 ≤ p < ∞, and in particular B1/3

3,2

are included in B1/3
3,c(N).

As a consequence of (13) and (18) we obtain the following theorem.

Theorem 3.3. The total energy flux of any divergence-free vector field in
the class B1/3

3,c(N) ∩ L2 vanishes. In particular, every weak solution to the

Euler equation that belongs to the class L3([0, T ];B
1/3
3,c(N)) ∩Cw([0, T ];L2)

conserves energy.

Remark 3.4. We note that (13) and (18) imply that every weak solution u
to the Euler equations on [0, T ] conserves energy provided the following
weaker condition holds

lim
q→∞

∫ T

0

λq‖∆qu‖3
3 dt = 0.

Spaces defined by similar conditions were used in [4, 8].

Proof of Proposition 3.2. In the argument below all the inequalities should
be understood up to a constant multiple.

Following [9] we write

(20) SQ(u⊗ u) = rQ(u, u)− (u− SQu)⊗ (u− SQu) + SQu⊗ SQu,
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where

rQ(u, u) =

∫
R3

hQ(y)(u(x− y)− u(x))⊗ (u(x− y)− u(x))dy,

h̃Q(y) = λ3
Q+1h̃(λQ+1y).

After substituting (20) into (12) we find

ΠQ =

∫
R3

Tr[rQ(u, u) · ∇SQu]dx(21)

−
∫

R3

Tr[(u− SQu)⊗ (u− SQu) · ∇SQu]dx.(22)

We can estimate the term in (21) using the Hölder inequality by

‖rQ(u, u)‖3/2‖∇SQu‖3,

whereas

(23) ‖rQ(u, u)‖3/2 ≤
∫

R3

∣∣∣h̃Q(y)
∣∣∣ ‖u(· − y)− u(·)‖2

3dy.

Let us now use Bernstein’s inequalities and Corollary 2.4 to estimate

‖u(· − y)− u(·)‖2
3 ≤

∑
q≤Q

|y|2λ2
q‖∆qu‖2

3 +
∑
q>Q

‖∆qu‖2
3(24)

= λ
4/3
Q |y|2

∑
q≤Q

λ
−4/3
Q−q d

2
q + λ

−2/3
Q

∑
q>Q

λ
2/3
Q−qd

2
q(25)

≤ (λ
4/3
Q |y|2 + λ

−2/3
Q )(K ∗ d2)(Q).(26)

Collecting the obtained estimates we find∣∣∣∣∫
R3

Tr[rQ(u, u) · ∇SQu]dx

∣∣∣∣
≤ (K ∗ d2)(Q)

(∫
R3

∣∣∣h̃Q(y)
∣∣∣λ4/3

Q |y|2dy + λ
−2/3
Q

)[∑
q≤Q

λ2
q‖∆qu‖2

3

]1/2

≤ (K ∗ d2)(Q)λ
−2/3
Q

[∑
q≤Q

λ4/3
q d2

q

]1/2

≤ (K ∗ d2)3/2(Q)
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Analogously we estimate the term in (22)∫
R3

Tr[(u− SQu)⊗ (u− SQu) · ∇SQu]dx

≤ ‖u− SQu‖2
3‖∇SQu‖3

≤

(∑
q>Q

‖∆qu‖2
3

)(∑
q≤Q

λ2
q‖∆qu‖2

3

)1/2

≤ (K ∗ d2)3/2(Q).

This finishes the proof.
�

3.3. Energy flux through dyadic shells. Let us introduce the energy flux
through a sequence of dyadic shells between scales −1 ≤ Q0 < Q1 < ∞
as follows

(27) ΠQ0Q1 =

∫
R3

Tr[SQ0Q1(u⊗ u) · ∇SQ0Q1u] dx,

where

(28) SQ0Q1 =
∑

Q0≤q≤Q1

∆q = SQ1 − SQ0 .

If u is a weak solution of the Euler equations, then

ΠQ0Q1 =
1

2

d

dt

Q1∑
q=Q0

‖∆qu‖2
2.

We will show that similar to formula (17) the flux through dyadic shells
is essentially controlled by scales near the inner and outer radii. In fact it
almost follows from (17) in view of the following decomposition

S2
Q0Q1

= (SQ1 − SQ0−1)
2

= S2
Q1

+ S2
Q0−1 − 2SQ0−1SQ1

= S2
Q1

+ S2
Q0−1 − 2SQ0−1

= S2
Q1
− S2

Q0−1 − 2SQ0−1(1− SQ0−1)

= S2
Q1
− S2

Q0−1 − 2∆Q0−1∆Q0 .

(29)

Therefore

(30) ΠQ0Q1 = ΠQ1 − ΠQ0−1 − 2

∫
R3

Tr[∆̄Q0(u⊗ u) · ∇∆̄Q0u] dx,
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where

(31) ∆̄Q0(u) =

∫
R3

h̄Q0(y)u(x− y) dy,

and h̄Q0(x) = F−1
√
ϕ(λ−1

Q0−1ξ)ϕ(λ−1
Q0
ξ).

Note that the flux through a sequence of dyadic shells is equal to the
difference between the fluxes across the dyadic spheres on the boundary
plus an error term that can be easily estimated. Indeed, let us rewrite the
tensor product term as follows

(32) ∆̄Q0(u⊗ u) = r̄Q0(u, u) + ∆̄Q0u⊗ u+ u⊗ ∆̄Q0u,

where

r̄Q(u, u) =

∫
R3

h̄Q(y)(u(x− y)− u(x))⊗ (u(x− y)− u(x)) dy.

Thus we have∫
R3

Tr[∆̄Q0(u⊗ u) · ∇∆̄Q0u] dx =

∫
R3

Tr[r̄Q(u, u) · ∇∆̄Q0u] dx

−
∫

R3

∆̄Q0u · ∇u · ∆̄Q0u dx

Let K̄(q) = λ
−2/3
|q| . We estimate the first integral as previously to obtain

(33)
∣∣∣∣∫

R3

Tr[r̄Q0(u, u) · ∇∆̄Q0u] dx

∣∣∣∣ ≤ dQ0(K̄ ∗ d2)(Q0).

As to the second integral we have∣∣∣∣∫
R3

∆̄Q0u · ∇u · ∆̄Q0u dx

∣∣∣∣ =

∣∣∣∣∫
R3

∆̄Q0u · ∇SQ0u · ∆̄Q0u dx

∣∣∣∣
≤ d2

Q0
(K̄ ∗ d2)1/2(Q0).

(34)

Applying these estimates to the flux (30) we arrive at the following con-
clusion.

Theorem 3.5. The energy flux through dyadic shells between wavenumbers
λQ0 and λQ1 is controlled primarily by the end-point scales. More precisely,
the following estimate holds

(35) |ΠQ0Q1| ≤ C(K̄ ∗ d2)3/2(Q0) + C(K̄ ∗ d2)3/2(Q1),

where C > 0 is an absolute constant.
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3.4. Construction of a divergence free vector field with non-vanishing
energy flux. In this section we give a construction of a divergence free
vector field in B1/3

3,∞(R3) for which the energy flux is bounded from below
by a positive constant. This suggests the sharpness ofB1/3

3,c(N)(R
3) for energy

conservation. Our construction is based on Eyink’s example on a torus [14],
which we transform to R3 using a method described below.

Let χQ(ξ) = χ(λ−1
Q+1ξ). We define P⊥

ξ for vectors ξ ∈ R3, ξ 6= 0 by

P⊥
ξ v = v − |ξ|−2(v · ξ)ξ =

(
I− |ξ|−2(ξ ⊗ ξ)

)
v

for v ∈ C3 and we use v · w =
3∑

j=1

vjwj for v, w ∈ C3.

Lemma 3.6. Let Φk(x) be R3 – valued functions, such that

Ik :=

∫
R3

|ξ||FΦk(ξ)| dξ <∞.

Let also Ψk(x) = P(eik·xΦk(x)) where P is the Leray projector onto the
space of divergence free vectors. Then

(36) sup
x

∣∣Ψk(x)− eik·x(P⊥
k Φk)(x)

∣∣ ≤ 1

4π3

Ik
|k|
,

and

(37) sup
x

∣∣(S2
QΨk)(x)− χ2

Q(k)Ψk(x)
∣∣ ≤ c

(2π)3

Ik
λQ+1

,

where c is the the Lipschitz constant of χ(ξ)2.

Proof. First, note that for any k, ξ ∈ R3 and v ∈ C3 we have∣∣∣∣(v · ξ)ξ|ξ|2
+

(v · ξ)k
|k|2

∣∣∣∣ ≤ |v|
|k|

∣∣∣∣ |k||ξ| ξ +
|ξ|
|k|
k

∣∣∣∣
=
|v||ξ + k|
|k|

.

(38)

In addition, it follows that∣∣∣∣(v · k)k|k|2
+

(v · ξ)k
|k|2

∣∣∣∣ =
|(v · (k + ξ))k|

|k|2

≤ |v||ξ + k|
|k|

.

(39)
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Adding (38) and (39) we obtain

|P⊥
ξ v − P⊥

k v| =
∣∣∣∣(v · ξ)ξ|ξ|2

− (v · k)k
|k|2

∣∣∣∣
≤
∣∣∣∣(v · ξ)ξ|ξ|2

+
(v · ξ)k
|k|2

∣∣∣∣+ ∣∣∣∣(v · k)k|k|2
+

(v · ξ)k
|k|2

∣∣∣∣
≤ 2

|v||ξ + k|
|k|

.

(40)

Using this inequality we can now derive the following estimate:

|Ψk(x)− eik·x(P⊥
k Φk)(x)| = |F−1[P⊥

ξ (FΦk)(ξ + k)− P⊥
k (FΦk)(ξ + k)]|

≤ 1

(2π)3

∫
R3

2
|ξ + k|
|k|

|(FΦk)(ξ + k)| dξ

= |k|−1 1

4π3

∫
R3

|ξ||(FΦk(ξ))| dξ.

(41)

Finally, we have

|(S2
QΨk)(x)− χQ(k)2Ψk(x)| = |F−1[(χQ(ξ)2 − χQ(k)2)(FΨk)(ξ)]|

≤ 1

(2π)3

∫
R3

c|ξ + k|
λQ+1

|(FΦk)(ξ + k)| dξ

= λ−1
Q+1

c

(2π)3

∫
R3

|ξ||(FΦk)(ξ)| dξ,

(42)

where c is the the Lipschitz constant of χ(ξ)2. This concludes the proof. �

Example illustrating the sharpness of Theorem 3.3. Now we proceed to
construct a divergence free vector field in B

1/3
3,∞(R3) with non-vanishing

energy flux. Let U(k) be a vector field U : Z3 → C3 as in Eyink’s example
[14] with

U(λq, 0, 0) = iλ−1/3
q (0, 0,−1), U(−λq, 0, 0) = iλ−1/3

q (0, 0, 1),

U(0, λq, 0) = iλ−1/3
q (1, 0, 1), U(0,−λq, 0) = iλ−1/3

q (−1, 0,−1),

U(λq, λq, 0) = iλ−1/3
q (0, 0, 1), U(−λq,−λq, 0) = iλ−1/3

q (0, 0,−1),

U(λq,−λq, 0) = iλ−1/3
q (1, 1,−1), U(−λq, λq, 0) = iλ−1/3

q (−1,−1, 1),
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for all q ∈ N and zero otherwise. Denote ρ(x) = F−1χ(4ξ) and A =∫
R3 ρ(x)

3 dx. Since χ(ξ) is radial, ρ(x) is real. Moreover,

A =

∫
R3

ρ(x)3 dx =
1

(2π)3

∫
R3

F(ρ2)Fρ dξ

=
1

(2π)6

∫
R3

∫
R3

χ(4η)χ(4(ξ − η))χ(4ξ) dηdξ > 0.

Now let
u(x) = P

∑
k∈Z3

U(k)eik·xρ(x).

Note that u ∈ B
1/3
3,∞(R3). Our goal is to estimate the flux ΠQ for the vector

field u. Define

Φk = |k|1/3U(k)ρ(x) and Ψk(x) = P(eik·xΦk(x)).

Then clearly Φk(x) and Ψk(x) satisfy the conditions of Lemma 3.6, and we
have

(43) u(x) =
∑

k∈Z3\{0}

|k|−1/3Ψk(x).

Now note that

Ψk1 · ∇S2
QΨk2 = Ψk1 · S2

QP[∇(eik·xΦk2)]

= i(Ψk1 · k2)S
2
QΨk2 + Ψk1 · S2

QP(eik2·x∇Φk2).
(44)

In addition, the following equality holds by construction:

(45) P⊥
k Φk = Φk, ∀k ∈ Z3.

Define the annulusAQ = Z3∩B(0, λQ+2)\B(0, λQ−1). Thanks to Lemma 3.6,
for any sequences k1(Q), k2(Q), k3(Q) ∈ AQ with k1 + k2 = k3, we have∫

R3

(Ψk1 · ∇S2
QΨk2) ·Ψ∗

k3
dx = i

∫
R3

(Ψk1 · k2)S
2
QΨk2 ·Ψ∗

k3
dx+O(λ0

Q)

= i

∫
R3

(eik1·xΦk1 · k2)χQ(k2)
2eik2·xΦk2 · e−ik3·xΦ∗

k3
dx+O(λ0

Q)

= i(|k1||k2||k3|)1/3A(U(k1) · k2)χQ(k2)
2U(k2) · U(k3)

∗ +O(λ0
Q).

On the other hand, since the Fourier transform of Ψk is supported in
B(k, 1/4), we have

(46)
∫

R3

(Ψk1 · ∇S2
QΨk2) ·Ψ∗

k3
dx = 0,
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whenever k1 + k2 6= k3. In addition, due to locality of interactions in this
example, (46) also holds if Aq \ {k1, k2, k3} 6= ∅ for all q ∈ N. Finally,

(47)
∫

R3

(Ψk1 · ∇S2
QΨk2) ·Ψ∗

k3
dx+

∫
R3

(Ψk1 · ∇S2
QΨk3) ·Ψ∗

k2
dx = 0,

whenever k2 /∈ AQ and k3 /∈ AQ. Hence, the flux for u can be written as

(48) ΠQ = −
∑

k1,k2,k3∈AQ

k1+k2+k3=0

(|k1||k2||k3|)−1/3

∫
R3

(Ψk1 · ∇S2
QΨk2) ·Ψk3 dx.

Since the number of nonzero terms in the above sum is independent of Q,
we obtain

(49) ΠQ = AΠ̃Q +O(λ−1
Q ),

where Π̃ is the flux for the vector field U , i.e.,

(50) Π̃Q := −
∑

k1,k2,k3∈AQ

k1+k2+k3=0

i(U(k1) · k2)χQ(k2)
2U(k2) · U(k3).

The flux Π̃Q has only the following non-zero terms (see [14] for details):

−
∑

|k2|=λQ

|k3|=
√

2λQ

i(U1(−k2 − k3) · k2)U2(k2) · U3(k3)(χQ(k2)
2 − χQ(k3)

2)

≥ 4(χ(1/2)2 − χ(1/
√

2)2),

and

−
∑

|k2|=
√

2λQ

|k3|=2λQ

i(U1(−k2 − k3) · k2)U2(k2) · U3(k3)(χQ(k2)
2 − χQ(k3)

2)

≥ 4(χ(1/
√

2)2 − χ(1)2).

Hence

Π̃Q ≥ 4(χ(1/2)2 − χ(1/
√

2)2 + χ(1/
√

2)2 − χ(1)2) = 4.

This together with (49) implies that

lim inf
Q→∞

ΠQ ≥ 4A.
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4. OTHER CONSERVATION LAWS

In this section we apply similar techniques to derive optimal results con-
cerning the conservation of helicity in 3D and that of enstrophy in 2D for
weak solutions of the Euler equation. In the case of the helicity flux we
prove that simultaneous infrared and ultraviolet localization occurs, as for
the energy flux. However, the enstrophy flux exhibits strong localization
only in the ultraviolet region, and a partial localization in the infrared re-
gion. A possibility of such a type of localization was discussed in [20].

4.1. Helicity. For a divergence-free vector field u ∈ H1/2 with vorticity
ω = ∇ × u ∈ H−1/2 we define the helicity and truncated helicity flux as
follows

H =

∫
R3

u · ω dx(51)

HQ =

∫
R3

Tr [SQ(u⊗ u) · ∇SQω + SQ(u ∧ ω) · ∇SQu] dx,(52)

where u ∧ ω = u ⊗ ω − ω ⊗ u. Thus, if u was a solution to the Euler
equation, then HQ would be the time derivative of the Littlewood-Paley
helicity at frequency λQ, ∫

R3

SQu · SQω dx.

Let us denote

bq = λ2/3
q ‖∆qu‖3,(53)

b2 = {b2q}∞q=−1,(54)

T (q) =

{
λ

2/3
q , q ≤ 0;

λ
−4/3
q , q > 0,

(55)

Proposition 4.1. The helicity flux of a divergence-free vector field u ∈ H1/2

satisfies the following estimate

(56) |HQ| ≤ C(T ∗ b2)3/2(Q).

Theorem 4.2. The total helicity flux of any divergence-free vector field in
the class B2/3

3,c(N) ∩H1/2 vanishes, i.e.

(57) lim
Q→∞

HQ = 0.

Consequently, every weak solution to the Euler equation that belongs to the
class L3([0, T ];B

2/3
3,c(N)) ∩ L∞([0, T ];H1/2) conserves helicity.

Proposition 4.1 and Theorem 4.2 are proved by direct analogy with the
proofs of Proposition 3.2 and Theorem 3.3.
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Example illustrating the sharpness of Theorem 4.2. We can also construct
an example of a vector field in B

2/3
∞ (R3) for which the helicity flux is

bounded from below by a positive constant. Indeed, let U(k) be a vector
field U : Z3 → C3 with

U(±λq, 0, 0) = λ−2/3
q (0, 0,−1),

U(0,±λq, 0) = λ−2/3
q (1, 0, 1),

U(±λq,±λq, 0) = λ−2/3
q (0, 0, 1),

U(±λq,∓λq, 0) = λ−2/3
q (1, 1,−1),

for all q ∈ N and zero otherwise. Denote ρ(x) = F−1χ(4ξ),A =
∫

R3 ρ(x)
3 dx,

and let

(58) u(x) = P
∑
k∈Z3

U(k)eik·xρ(x).

Note that u ∈ B
2/3
3,∞(R3). On the other hand, a computation similar to the

one in Section 3.4 yields

(59) lim inf
Q→∞

|HQ| ≥ 4A.

4.2. Enstrophy. We work with the case of a two dimensional fluid in this
section. In order to obtain an expression for the enstrophy flux one can use
the original weak formulation of the Euler equation for velocities (11) with
the test function chosen to be

(60) ψ = ∇⊥S2
Qω.

Let us denote by ΩQ the expression resulting on the right hand side of (11):

(61) ΩQ =

∫
R2

Tr
[
SQ(u⊗ u) · ∇∇⊥SQω

]
dx.

Then

(62) ΩQ =
1

2

d

dt
‖SQω‖2

2.

As before we write

ΩQ =

∫
R2

Tr
[
rQ(u, u) · ∇∇⊥SQω

]
dx

+

∫
R2

Tr
[
(u− SQu)⊗ (u− SQu) · ∇∇⊥SQω

]
dx
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Let us denote

cq = ‖∆qω‖3,(63)

c2 = {c2q}∞q=−1,(64)

W (q) =

{
λ2

q, q ≤ 0;
λ−4

q , q > 0,
(65)

We have the following estimate (absolute constants are omitted)

|ΩQ| ≤
∫

R2

∣∣∣h̃Q(y)
∣∣∣ (‖∇SQu‖2

3|y|2 + ‖(I − SQ)u‖2
3)‖∇2SQω‖3dy

+ ‖(I − SQ)u‖2
3‖∇2SQω‖3

≤

(
λ−2

Q ‖SQω‖2
3 +

∑
q>Q

λ−2
q c2q

)(∑
q≤Q

λ4
qc

2
q

)1/2

+

(∑
q>Q

λ−2
q c2q

)(∑
q≤Q

λ4
qc

2
q

)1/2

≤ ‖SQω‖2
3

(∑
q≤Q

λ−4
Q−qc

2
q

)1/2

+

(∑
q>Q

λ2
Q−qc

2
q

)(∑
q≤Q

λ−4
Q−qc

2
q

)1/2

≤ ‖SQω‖2
3(W ∗ c2)1/2(Q) + (W ∗ c2)3/2(Q)

Thus, we have proved the following proposition.

Proposition 4.3. The enstrophy flux of a divergence-free vector field satis-
fies the following estimate up to multiplication by an absolute constant

(66) |ΩQ| ≤ ‖SQω‖2
3(W ∗ c2)1/2(Q) + (W ∗ c2)3/2(Q).

Consequently, every weak solution to the 2D Euler equation
with ω ∈ L3([0, T ];L3) conserves enstrophy.

Much stronger results concerning conservation of enstrophy are available
for the Euler equations ([15], [22]) and for the long time zero-viscosity limit
for damped and driven Navier-Stokes equations ([11]).

Example illustrating infrared nonlocality. We conclude this section with a
construction of a vector field for which the enstrophy cascade is nonlocal in
the infrared range. Let θq = arcsin(λq−Q−2) and

(67) U l
q = (cos(θq),− sin(θq)), Uh

q = (sin(θq), cos(θq)),

(68)
kl

q = λq(sin(θq), cos(θq)), kh
q =

√
λ2

Q+2 − λ2
q(cos(θq),− sin(θq)),
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ξ1

ξ2

2Q+1
2Q

V

UQ

kQ
h

kQ
l

l

hUQ

FIGURE 1. Construction of the vector field illustrating in-
frared nonlocality.

see Fig. 4.2 for the case q = Q. Denote ρ(x) = δh̃(δx),A =
∫

R3 ρ(x)
3 dx =∫

R3 h̃(x)
3 dx. Note that A > 0 and is independent of δ. Now let

(69) ul
q(x) = P[U l

q sin(kl
q · x)ρ(x)], uh

q (x) = P[Uh
q sin(kh

q · x)ρ(x)].

Let

(70) uq(x) = ul
q(x) + uh

q (x)

for q = 0, . . . , Q, and

(71) uQ+1(x) = P[V sin(λQ+2x1)ρ(x)],

where V = (0, 1). Now define

(72) u(x) =

Q+1∑
q=0

uq(x).

Our goal is to estimate the enstrophy flux for u. Since Fu is compactly
supported, the expression (61) is equivalent to

(73) ΩQ =

∫
R3

(u · ∇)S2
Qω · ω dx.

It is easy to see that

(74) ΩQ ≥
Q∑

q=0

∫
R3

(uh
q · ∇)S2

Q(∇⊥ · ul
q)(∇⊥ · uQ+1) dx.
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Using Lemma 3.6 we obtain

ΩQ ≥ A

Q∑
q=0

|Uh
q |λ2

q|U l
q|λQ+2|V |+O(δ)

= λQ+2‖∆Q+2u‖3

Q∑
q=0

λ2
q‖∆qu‖2

3 +O(δ),

(75)

which shows sharpness of (66) in the infrared range.

5. INEQUALITIES FOR THE NONLINEAR TERM

We take d = 3 and consider u, v ∈ B
1
3
3,2 with ∇ · u = 0 and wish to

examine the advective term

(76) B(u, v) = P(u · ∇v) = ΛH(u⊗ v)

where

(77) [H(u⊗ v)]i = Rj(ujvi) +Ri(RkRl(ukvl))

and P is the Leray-Hodge projector, Λ = (−∆)
1
2 is the Zygmund operator

and Rk = ∂kΛ
−1 are Riesz transforms.

Proposition 5.1. The bilinear advective term B(u, v) maps continuously

the space B
1
3
3,2 × B

1
3
3,2 to the space B

− 1
3

3
2
,2

+ B
− 2

3
9
5
,2

. More precisely, there exist

bilinear continuous maps C(u, v), I(u, v) so that B(u, v) = C(u, v) +

I(u, v) and constants C such that, for all u, v ∈ B
1
3
3,2 with ∇ · u = 0,

(78) ‖C(u, v)‖
B
− 1

3
3
2 ,2

≤ C‖u‖
B

1
3
3,2

‖v‖
B

1
3
3,2

and

(79) ‖I(u, v)‖
B
− 2

3
9
5 ,2

≤ C‖u‖
B

1
3
3,2

‖v‖
B

1
3
3,2

hold. If u, v, w ∈ B
1
2
18
7

,2
then

(80) |〈B(u, v), w〉| ≤ C‖u‖
B

1
2
18
7 ,2

‖v‖
B

1
2
18
7 ,2

‖w‖
B

1
2
18
7 ,2

holds. So the trilinear map (u, v, w) 7→ 〈B(u, v), w〉 defined for smooth

vector fields in L3 has a unique continuous extension to
{
B

1
2
18
7

,2

}3

and a

fortiori to
{
H

5
6

}3

.
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Proof. We use duality. We take w smooth (w ∈ B
2
3
9
4
,2

) and take the scalar
product

〈B(u, v), w〉 =

∫
R3

B(u, v) · wdx

We write, in the spirit of the paraproduct of Bony ([1])

(81) ∆q(B(u, v)) = Cq(u, v) + Iq(u, v)

with

(82) Cq(u, v) =
∑

p≥q−2, |p−p′|≤2

∆q(ΛH(∆pu,∆p′v))

and
(83)

Iq(u, v) =
2∑

j=−2

[∆qΛH(Sq+j−2u,∆q+jv) + ∆qΛH(Sq+j−2v,∆q+ju)]

We estimate the contribution coming from the Cq(u, v):∑
q

|〈Cq(u, v), w〉|

≤ C
∑

|q−q′|≤1

∑
p≥q−2, |p−p′|≤2

λqλ
− 2

3
p ‖Λ

1
3 ∆pu‖L3‖Λ

1
3 ∆p′v‖L3‖∆q′w‖L3

= C
∑

|p−p′|≤2

λ
− 2

3
p ‖Λ

1
3 ∆pu‖L3‖Λ

1
3 ∆p′v‖L3

∑
q≤p+2,|q−q′|≤1

λ
2
3
q ‖Λ

1
3 ∆q′w‖L3

≤ C

 ∑
|p−p′|≤2

‖Λ
1
3 ∆pu‖ L3‖Λ

1
3 ∆p′v‖L3

 ‖w‖
B

1
3
3,2

≤ C‖u‖
B

1
3
3,2

‖v‖
B

1
3
3,2

‖w‖
B

1
3
3,2

.

This shows that the bilinear map C(u, v) =
∑

q≥−1Cq(u, v) maps continu-

ously
{
B

1
3
3,2

}2

to B
− 1

3
3
2
,2

and

(84) |〈C(u, v), w〉| ≤ C‖u‖
B

1
3
3,2

‖v‖
B

1
3
3,2

‖w‖
B

1
3
3,2
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The terms Iq(u, v) contribute

∑
|〈Iq(u, v), w〉|

≤ C
∑

|j|≤2, |q−q′|≤1

λq‖Sq+j−2u‖L
9
2
‖∆q+jv‖L3‖∆q′w‖L

9
4

+
∑

|j|≤2, |q−q′|≤1

λq‖Sq+j−2v‖L
9
2
‖∆q+ju‖L3‖∆q′w‖L

9
4

≤ C‖u‖
B

1
3
3,2

∑
|j|≤2,|q−q′|≤1

λ
1
3
q ‖∆q+jv‖L3λ

2
3
q ‖∆q′w‖L

9
4

+C‖v‖
B

1
3
3,2

∑
|j|≤2,|q−q′|≤1

λ
1
3
q ‖∆q+ju‖L3λ

2
3
q ‖∆q′w‖L

9
4

≤ C‖u‖
B

1
3
3,2

‖v‖
B

1
3
3,2

‖w‖
B

2
3
9
4 ,2

Here we used the fact that

sup
q≥0

‖Squ‖L
9
2
≤ C‖u‖

B
1
3
3,2

This last fact is proved easily:

‖Sq(u)‖L
9
2
≤

∥∥∥∥∥∥
(∑

j≤q

|∆ju|2
) 1

2

∥∥∥∥∥∥
L

9
2

≤

{∑
j≤q

‖∆ju‖2

L
9
2

} 1
2

≤ C‖u‖
B

1
3
3,2

We used Minkowski’s inequality in L
9
4 in the penultimate inequality and

Bernstein’s inequality in the last. This proves that I maps continuously
B

1
3
3,2 ×B

1
3
3,2 to B

− 2
3

9
5
,2

.
The proof of (80) follows along the same lines. Because of Bernstein’s

inequalities, the inequality (84) for the trilinear term 〈C(u, v), w〉 is stronger
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than (80). The estimate of I follows:∑
|〈Iq(u, v), w〉|

≤ C
∑

|j|≤2, |q−q′|≤1

λq‖Sq+j−2u‖L
9
2
‖∆q+jv‖L

18
7
‖∆q′w‖L

18
7

+
∑

|j|≤2, |q−q′|≤1

λq‖Sq+j−2v‖L
9
2
‖∆q+ju‖L

18
7
‖∆q′w‖L

18
7

≤ C‖u‖
B

1
3
3,2

∑
|j|≤2,|q−q′|≤1

λ
1
2
q ‖∆q+jv‖L

18
7
λ

1
2
q ‖∆q′w‖L

18
7

+C‖v‖
B

1
3
3,2

∑
|j|≤2,|q−q′|≤1

λ
1
2
q ‖∆q+ju‖L

18
7
λ

1
2
q ‖∆q′w‖L

18
7

≤ C

[
‖u‖

B
1
3
3,2

‖v‖
B

1
2
18
7 ,2

+ ‖v‖
B

1
3
3,2

‖u‖
B

1
2
18
7 ,2

]
‖w‖

B
1
2
18
7 ,2

This concludes the proof. 2

The inequality (84) is not true for 〈B(u, v), w〉 and (80) is close to being
optimal:

Proposition 5.2. For any 0 ≤ s ≤ 1
2
, 1 < p < ∞, 2 < r ≤ ∞ there exist

functions u, v, w ∈ Bs
p,r and smooth, rapidly decaying functions un, vn, wn,

such that limn→∞ un = u, limn→∞ vn = v, limn→∞wn = w hold in the
norm of Bs

p,r and such that

lim
n→∞

〈B(un, vn), wn〉 = ∞

Proof. We start the construction with a divergence-free, smooth function
u such that Fu ∈ C∞

0 (B(0, 1
4
)) and

∫
u3

1dx > 0. We select a direction
e = (1, 0, 0) and set Φ = (0, u1, 0). Then

(85) A :=

∫
R3

(u(x) · e)
∣∣P⊥

e Φ(x)
∣∣2 dx > 0.

Next we consider the sequence aq = 1√
q

so that (aq) ∈ `r(N) for r > 2, but
not for r = 2, and the functions

(86) vn =
n∑

q=1

λ
− 1

2
q aqP [sin(λqe · x)Φ(x)]

and

(87) wn =
n∑

q=1

λ
− 1

2
q aqP [cos(λqe · x)Φ(x)] .

Clearly, the limits v = limn→∞ vn and w = limn→∞wn exist in norm in
every Bs

p,r with 0 ≤ s ≤ 1
2
, 1 < p < ∞ and r > 2. Manifestly, by
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construction, u, vn and wn are divergence-free, and because their Fourier
transforms are in C∞

0 , they are rapidly decaying functions. Clearly also

〈B(u, vn), wn〉 =

∫
R3

P(u · ∇vn)wndx =

∫
R3

(u · ∇vn) · wndx.

The terms corresponding to each q in

(88)

u · ∇vn =
n∑

q=1

(u(x) · e)aqλ
1
2
q P [cos(λqe · x)Φ(x)]

+
n∑

q=1

aqλ
− 1

2
q u(x) · P [sin(λqe · x)∇Φ(x)]

and in (87) have Fourier transforms supported B(λqe,
1
2
) ∪ B(−λq,

1
2
) and

respectively B(λqe,
1
4
) ∪ B(−λqe,

1
4
). These are mutually disjoint sets for

distinct q and, consequently, the terms corresponding to different indices q
do not contribute to the integral

∫
(u · ∇vn) · wndx. The terms from the

second sum in (88) form a convergent series. Therefore, using Lemma 3.6,
we obtain∫

R3

(u · vn) · wn =
n∑

q=1

a2
q

∫
R3

(u(x) · e) {P [cos(λqe · x)Φ(x)]}2 dx+O(1)

=
n∑

q=1

a2
q

∫
R3

(u(x) · e)
∣∣P⊥

e Φ(x)
∣∣2 dx+O(1)

=

[
n∑

q=1

a2
q

]
A+O(1),

which concludes the proof. �

6. REMARKS

In [13], Duchon and Robert have shown that a weak solution u to the 3D
Euler or 3D Navier-Stokes equations conserves energy provided

(89)
∫
|u(x, t)− u(x− y, t)|3 dx = C(t)|y|σ(|y|), ∀y ∈ R3,

for some C(t) integrable on [0, T ] and σ(a), such that σ(a) → 0 as a→ 0.

Here we show that there are functions in L3((0, T );B
1
3
3,p(R3)), p > 1 that

do not satisfy (89). Namely, any function on [0, T ] of the form

u(x, t) = (sin(λ(t)x1)ρ(x), 0, 0),

where ρ(x) = F−1χ(4ξ) and λ(t) > 0 is integrable, belongs toL3((0, T );B
1
3
3,p)

for all p > 1. However, u does not satisfy Duchon-Robert condition (89)
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provided λ(t)3 is not integrable. Indeed, suppose that (89) is satisfied. Then
for |y| � 1 and λ ≤ |y|−1 we have

C(t)|y|σ(|y|) =

∫
|u(x)− u(x− y)|3 dx ∼ λ3|y|3.

Let us fix t0, such that C(t0) > 0. Then for |y| small enough with |y| ≤
λ−1(t0) we have

(90) C(t0)σ(|y|) ∼ λ(t0)
3|y|2.

Now, for every t with λ(t) � 1 we set |y| = λ(t)−1 and obtain

C(t)λ(t)−1σ(λ(t)−1) ∼ 1.

Hence, using (90) we obtain

C(t) ∼ λ(t)σ(λ(t)−1)−1 ∼ λ(t)3C(t0)λ(t0)
−3,

which is not integrable, a contradiction.
We also note that the estimates on the energy flux in Section 3.2 can be

applied to weak solutions of the 3D Navier-Stokes equations.

Theorem 6.1. Let u ∈ L∞((0, T );L2(R3))∩L2((0, T );H1(R3)) be a weak
solution to the 3D incompressible Navier-Stokes equations with

u ∈ L3((0, T );B
1
3
3,∞).

Then u satisfies energy equality, i.e., ‖u(t)‖2
2 is absolutely continuous on

[0, T ].

Hence the techniques in this present paper give stronger results than those
in [13] for the conditions under which it can be proved that the energy bal-
ance equation holds for the both the Euler and the Navier-Stokes equations.
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lence: the global attractor (with S. Friedlander and N. Pavlović), preprint.
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