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ABSTRACT. Motivated by Kolmogorov’s theory of turbulence we present
a unified approach to the regularity problems for the 3D Navier-Stokes
and Euler equations. We introduce a dissipation wavenumber Λ(t) that
separates low modes where the Euler dynamics is predominant from the
high modes where the viscous forces take over. Then using an indiffer-
ent to the viscosity technique we obtain a new regularity criterion which
is weaker than every Ladyzhenskaya-Prodi-Serrin condition in the vis-
cous case, and reduces to the Beale-Kato-Majda criterion in the inviscid
case. In the viscous case we also we prove that Leray-Hopf solutions are
regular provided Λ ∈ L5/2, which improves our previous Λ ∈ L∞ con-
dition. We also show that Λ ∈ L1 for all Leray-Hopf solutions. Finally,
we prove that Leray-Hopf solutions are regular when the time-averaged
spatial intermittency is small, i.e., close to Kolmogorov’s regime.

1. INTRODUCTION

We study the 3D incompressible fluid equations

(1)


∂tu− ν∆u+ (u · ∇)u+∇p = 0, x ∈ R3, t > 0,

∇ · u = 0,

u(0) = u0,

where u(x, t), the velocity, and p(x, t), the pressure, are unknowns, u0 ∈
L2(R3) is the initial condition, and ν ≥ 0 is the kinematic viscosity coef-
ficient of the fluid. In the inviscid (ν = 0) and viscous (ν > 0) cases the
equations (1) are referred to as the Euler and Navier-Stokes (NSE) equa-
tions respectively.

The regularity of solutions to the NSE remains a significant open problem
taking its mathematical roots in the seminal work of Leray [12]. A consider-
able body of literature has been devoted to studying regularity criteria which
include the classical Ladyzhenskaya-Prodi-Serrin conditions u ∈ LrtL

s
x,

2/r+ 3/s ≤ 1, s > 3, its notable extention to the case s = 3 by Escauriaza,
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Seregin, and Šverák [8], logarithmic improvements of the above, conditions
in terms of the pressure, velocity gradients, extentions to Besov-type spaces,
etc. We refer the reader to [1, 3, 4, 5, 6, 11, 13] for detailed accounts. Al-
though some subtle questions in the area remain open, e.g. regularity in
the largest critical space Ḃ−1

∞,∞, it becomes increasingly convincing that the
current techniques are not capable of narrowing the gap between the scaling
invariant range 2/r + 3/s = 1 and the range of 2/r + 3/s = 3/2 enjoyed
by all Leray-Hopf solutions.

The mathematical theory of (1) is even less complete in the inviscid
case insofar as the existence of weak solutions is not known. Neverthe-
less, the local existence and uniqueness of solutions to the Euler equations
was proved in Hs for s > 5/2 by Kato [9]. Moreover, these solutions can
be extended forward in time as long as ‖∇ × u‖∞ is integrable, which is
known as the Beale-Kato-Majda condition [2, 11, 13].

In the present paper we propose a unified approach to the regularity prob-
lem for the fluid equations (1) utilizing Kolmogorov’s concept of an inertial
range in turbulent flow. Our basic idea is to define a time-dependent dissipa-
tion wavenumber Λ(t) that separates high frequency modes where viscosity
prevails over the non-linear term from the low frequency modes where the
Euler dynamics is dominant. Specifically, we define

Q(t) = min{q : 2−p‖up(t)‖∞ < c0ν, ∀ p > q, q ≥ 0},
Λ(t) = 2Q(t),

where c0 > 0 is some absolute constant and up denotes the Littlewood-Paley
projection on the p-th dyadic shell (see Section 2).

To illustrate the separatory role of the wavenumber Λ between viscous
and inviscid properties of the equation we present a regularity criterion
based on vorticity ω = ∇ × u, which reduces to the classical Beale-Kato-
Majda condition in the inviscid case. More precisely, using an indifferent
to the viscosity technique, we prove the following theorem:

Theorem 1.1. Let u(t) be a weak solution of (1) with ν ≥ 0, such that u(t)
is regular on (0, T ) and

(2)
∫ T

0

‖ω≤Q(t)(t)‖B0
∞,∞ dt <∞,

then u(t) is regular on (0, T ].

Here the regularity should be understood as the continuity of the H3

norm. If the viscosity coefficient ν is zero, then Λ(t) ≡ ∞ and hence, the
condition (2) naturally turns into the Beale-Kato-Majda criterion as stated
in [11]. On the other hand, we show that the condition (2) is weaker than
every Ladyzhenskaya-Prodi-Serrin condition in the viscous case.
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In the viscous case we also derive a regularity criterion in terms of only
Λ. The estimates based on the use of B−1

∞,∞-norm performed in [5] allow us
to conclude that Λ ∈ L∞(0, T ) implies regularity of u up to T . Here this
condition will be weakened to Λ ∈ L5/2(0, T ), while for every Leray-Hopf
solution one can show that Λ ∈ L1(0, T ).

With regard to connection between Λ and the classical Kolmogorov dis-
sipation wavenumber we prove the direct inequality (up to an absolute mul-
tiple)

1

T

∫ T

0

Λ(t)dt = 〈Λ〉 . κd =
( ε
ν3

) 1
1+d

,

where d is the intermittency parameter representing dimension of a dissi-
pation set, and ε = ν〈‖∇u‖22〉 is the energy dissipation rate (see [7]). The
definition of d will be given in Section 5 based on the average level of sat-
uration of Bernstein’s inequalities inside the Λ(t)-th dyadic shell. We then
prove in Theorem 5.1 that if d > 3/2 then the solution u is regular. This
provides an analytical evidence to the fact that the flows usually observed in
simulations of intermittent turbulence are regular as they show only moder-
ate deviations from the Kolmogorov’s predicted value of d = 3 (see [7] and
references therein).

Finally, in Section 6 the use of Λ will be adapted to show regularity for a
variant of a hyperdissipative Navier-Stokes system and to give a short proof
of a known recent result of Tao, [14].

2. 3D INCOMPRESSIBLE EQUATIONS OF FLUID MOTION

Let us first recall several classical definitions and results.

Definition 2.1. A weak solution of (1) with ν ≥ 0 on [0, T ] (or [0,∞) if
T = ∞) with the divergence-free initial data u0 ∈ L2(R3) is a function
u : [0, T ]→ L2(R3) in the class

u ∈ Cw([0, T ];L2(R3)),

satisfying u(0) = u0,

(3) (u(t), ϕ(t))− (u0, ϕ(0))

=

∫ t

0

{(u(s), ∂sϕ(s)) + ν(u(s),∆ϕ(s)) + (u(s) · ∇ϕ(s), u(s))} ds

and ∇x · u(t) = 0 in the sense of distributions for all t ∈ [0, T ] and all test
functions ϕ ∈ C∞0 ([0, T ] × R3) with ∇x · ϕ = 0. Here (·, ·) stands for the
L2-inner product.

In the case ν > 0 we also define Leray-Hopf solutions:
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Definition 2.2. A weak solution u(t) of (1) with ν > 0 on [0, T ] is called a
Leray-Hopf solution if u ∈ L2([0, T ];H1(R3)) and the energy inequality

(4) ‖u(t)‖22 + 2ν

∫ t

t0

‖∇u(s)‖22 ds ≤ ‖u(t0)‖22,

is satisfied for almost all t0 ∈ (0, T ) and all t ∈ (t0, T ].

In 1934 Leray [12] proved the existence of Leray-Hopf solutions on
[0,∞) for every ν > 0 and every divergence-free initial data u0 ∈ L2(R3).
In the case ν = 0 the existence of weak solutions is still not known. Given
u0 ∈ Hs, the local existence of Hs-continuous solutions is known for
s > 5/2 in the inviscid case, and for s ≥ 1/2 in the viscous case. Moreover,
the continuity of some supercritical Hs-norm (s ≥ 1/2) of a Leray-Hopf
solution implies the continuity of all supercritical Hs-norms. Therefore,
for simplicity, we choose the continuity of the H3-norm as a definition of
regularity, even though any s > 5/2 would be appropriate as well.

Definition 2.3. A week solution u(t) of (1) with ν ≥ 0 is regular on a time
interval I if ‖u(t)‖H3 is continuous on I.

An interval I where u(t) is regular is called an interval of regularity.
Viscous regular solutions are unique in the class of Leray-Hopf solutions,
which results in the following regularity condition:

Theorem 2.4 (Leray). Let u(t) be a Leray-Hopf solution of (1) with ν > 0
on [0, T ]. If for every interval of regularity (α, β) ⊂ (0, T )

lim sup
t→β−

‖u(t)‖Hs <∞,

for some s > 1/2, then u(t) is regular on (0, T ].

Note that merely weak viscous solutions are not known to satisfy the
above property. The possibility of a blow up from the right for such solu-
tions has not been ruled out.

Let us now briefly recall the definition of Besov spaces. We will use the
notation λq = 2q (in some inverse length units). Let Br denote the ball
centered at 0 of radius r in R3. Let us fix a nonnegative radial function
χ ∈ C∞0 (B1) such that χ(ξ) = 1 for |ξ| ≤ 1/2. We further define ϕ(ξ) =
χ(λ−1

1 ξ) − χ(ξ) and ϕq(ξ) = ϕ(λ−1
q ξ). For a tempered distribution vector

field u let us denote

uq = F−1(ϕq) ∗ u, for q > −1, u−1 = F−1(χ) ∗ u,
where F denotes the Fourier transform. So, we have u =

∑∞
q=−1 uq in the

sense of distributions. We also use the following notation

u≤Q =
∑
q≤Q

uq, u≥Q =
∑
q≥Q

uq.
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Finally, let us recall that a tempered distribution u belongs to Bs
p,∞ iff

‖u‖Bs
p,∞ = sup

q
λsq‖uq‖p <∞.

3. A UNIVERSAL REGULARITY CRITERION

Let u(t) be a weak solution of (1) with ν ≥ 0 on [0, T ]. We define our
dissipation wavenumber as

(5) Λ(t) = min{λq : λ−1
p ‖up(t)‖∞ < c0ν, ∀ p > q, q ≥ 0},

where c0 is an absolute constant, which will be defined later. Note that
Λ(t) ≡ ∞ in the inviscid case ν = 0. Let Q(t) ∈ N be such that λQ(t) =
Λ(t). Directly from the definition we have

(6) ‖u(t)Q(t)‖∞ ≥ c0νΛ(t),

provided 1 < Λ(t) <∞.
We will now obtain a universal regularity criterion, which is valid in both

viscous and inviscid cases. This criterion is stated in terms of a Besov type
bound on frequencies smaller than Λ(t). For this purpose we consider the
following function

f(t) = ‖u≤Q(t)(t)‖B1
∞,∞ = sup

q≤Q(t)

λq‖uq(t)‖∞,

or in terms of vorticity ω = ∇× u,

f(t) ∼ ‖ω≤Q(t)(t)‖B0
∞,∞ .

Theorem 3.1. Let u be a weak solution to (1) with ν ≥ 0 on [0, T ]. Assume
that u(t) is regular on [0, T ), and f ∈ L1(0, T ), i.e.

(7)
∫ T

0

‖ω≤Q(t)(t)‖B0
∞,∞ dt <∞.

Then u(t) is regular on [0, T ].

We note that the theorem is valid for both Navier-Stokes and the Euler
equations. In the case when ν = 0 we have Λ ≡ ∞, and thus we recover the
classical Beal-Kato-Majda criterion extended to Besov spaces as in Kozono,
Ogawa, and Taniuchi [11], see also Planchon [13]. Our technique of proving
Theorem 3.1 does not distinguish between the cases ν > 0 and ν = 0
and is based on the frequency separation method and logarithmic Sobolev
inequality.

Proof. Since u(t) is regular on [0, T ), we have that ‖u(t)‖Hs is continuous
on [0, T ) for s = 3. In what follows we will prove the following estimate:

(8)
1

2

d

dt
‖u(t)‖2Hs ≤ C(1 + f(t))‖u(t)‖2Hs(1 + log+ ‖u(t)‖Hs),
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where C is an absolute constant. Then the Grönwall inequality implies that
‖u(t)‖Hs is bounded on [0, T ). The regularity of u now follows from the
standard argument. Indeed, let M = supt∈[0,T ) ‖u(t)‖Hs . By the local well-
posedness of regular solutions for ε < 1

cM
there exists a regular solution

v ∈ C([T − ε, T ];Hs) with v(T − ε) = u(T − ε). By uniqueness, v = u on
[T − ε, T ). By weak continuity of u we deduce that u(T ) = v(T ). Hence,
u(t) is regular on the closed interval [0, T ].

We now proceed to proving (8). Testing the equation (1) against ∂2αu on
the interval [0, T ), where α is a multiindex with |α| ≤ s, we obtain

1

2

d

dt

∑
|α|≤s

‖∂αu‖22 ≤ −ν‖u‖2Hs+1 + ν‖u‖22 +
∑
|α|≤s
i≤α

∣∣∣∣∫ ∂α−iu · ∇∂iu · ∂αu
∣∣∣∣ .

Let us note that if ν > 0, then u ∈ Hs implies u ∈ Hs+1 automatically
on [0, T ) by the classical bootstrapping argument. The term ν‖u‖22 above
was added to compensate the homogeneity of the viscous term near low
frequencies. Furthermore, let us note that if i = α or if α = 0, the trilinear
term vanishes due to incompressibility rendering the estimate

(9)
1

2

d

dt
‖u‖Hs ≤ −ν‖u‖2Hs+1 + ν‖u‖22 +

∑
1≤|α|≤s
i<α

∣∣∣∣∫ ∂α−iu · ∇∂iu · ∂αu
∣∣∣∣ .

Now all the trilinear terms have at least one and at most |α| derivatives on
each component. We now prove the following auxiliary lemma.

Lemma 3.2. Suppose 1 ≤ |α| ≤ s, and |α1| + |α2| + |α3| = 2|α| + 1 and
all indices satisfy 1 ≤ |αi| ≤ |α|. Let Q ∈ N and let u ∈ Hs. Then

(10)
∣∣∣∣∫ ∂α1u≤Q∂

α2u∂α3u

∣∣∣∣ ≤ C‖u≤Q‖B1
∞,∞‖u‖Hs(1 + log+ ‖u‖Hs).

Proof. We have∫
∂α1u≤Q∂

α2u∂α3u =

∫
∂α1u≤Q∂

α2u≤Q∂
α3u≤Q

+

∫
∂α1u≤Q

∑
q′>Q,q′′>Q−2
|q′−q′′|≤2

∂α2uq′∂
α3uq′′ = I + II

To estimate II we argue as follows

|II| . ‖∇u≤Q‖∞λα1−1
Q

∑
q>Q−2

λα2+α3
q ‖uq‖22.
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Since s > 3/2, by the Besov-type logarithmic Sobolev inequality we have

‖∇u≤Q‖∞ . ‖u≤Q‖B1
∞,∞(1 + log+ ‖u‖Hs)

(see Appendix or [11] for more general versions). Thus, continuing the
above,

|II| . ‖u≤Q‖B1
∞,∞(1 + log+ ‖u‖Hs)

∑
q>Q−2

λα1+α2+α3−1
q ‖uq‖22

. ‖u≤Q‖B1
∞,∞(1 + log+ ‖u‖Hs)‖u‖2Hs .

As to I we have the decomposition

I =

∫ ∑
q≤Q,|q′−q|,|q′′−q|≤2

∂α1uq∂
α2uq′∂

α3u≤q′′

+

∫ ∑
q≤Q,|q′−q|,|q′′−q|≤2

∂α1uq∂
α2u≤q′∂

α3uq′′

+

∫ ∑
q≤Q,|q′−q′′|≤2,q′≥q

∂α1uq∂
α2uq′∂

α3uq′′ − repeated terms

Estimates for all of these terms are similar. We show one for the first term
only. We have∣∣∣∣∣∣∣∣∣∣
∫ ∑

q≤Q
|q′−q|≤2
|q′′−q|≤2

∂α1uq∂
α2uq′∂

α3u≤q′′

∣∣∣∣∣∣∣∣∣∣
.

∑
q≤Q
|q′−q|≤2
|q′′−q|≤2

λα1+α2+α3−1
q ‖uq‖2‖uq′‖2‖∇u≤q′′‖∞

. ‖u≤Q‖B1
∞,∞(1 + log+ ‖u‖Hs)

∑
q≤Q

λ2s
q ‖uq‖22

. ‖u≤Q‖B1
∞,∞(1 + log+ ‖u‖Hs)‖u‖2Hs .

�

Note that if Λ ≡ ∞, then Lemma 3.2 already finishes the proof of (8).
Otherwise, going back to (9) and in view of Lemma 3.2 the only terms left
to estimate are ∫

∂α−iu>Q(t) · ∇∂iu>Q(t) · ∂αu>Q(t).
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These will be absorbed by the viscous term after a proper frequency local-
ization. We split each of them into the sum∫

∂α−iu>Q · ∇∂iu>Q · ∂αu>Q =

∫ ∑
q>Q

|q′−q|,|q′′−q|≤2

∂α1uq′∂
α2uq′′∂

α3uQ<·≤q

+ cyclic terms − repeated terms.

We estimate∣∣∣∣∣∣∣∣
∫ ∑

q>Q
|q′−q|,|q′′−q|≤2

∂α1uq′∂
α2uq′′∂

α3uQ<·≤q

∣∣∣∣∣∣∣∣
.

∑
q>Q

|q′−q|,|q′′−q|≤2

λα1+α2
q ‖uq′‖2‖uq′′‖2

∑
Q<p≤q

λα3+1
p λ−1

p ‖up‖∞

. c0ν
∑
q>Q

|q′−q|,|q′′−q|≤2

λα1+α2+α3+1
q ‖uq′‖2‖uq′′‖2

. c0ν‖u‖2Hs+1 .

By choosing c0 small enough in the definition of Λ we then ensure that this
term is smaller than the viscous term in (9). This finishes the proof. �

Note that in the inviscid case ν = 0 condition (7) is a variant of the Beale-
Kato-Majda condition. In the viscous case ν > 0 this theorem together with
Theorem 2.4 implies the following

Corollary 3.3. Let u be a Leray-Hopf solution to (1) with ν > 0 on [0, T ],
such that

(11)
∫ T

0

‖ω≤Q(t)(t)‖B0
∞,∞ dt <∞.

Then u(t) is regular on (0, T ].

In the next section we will further analyze the criterion (11) in the vis-
cous case and show that it is weaker than every Ladyzhenskaya-Prodi-Serrin
condition.

4. REGULARITY CRITERIA IN THE VISCOUS CASE

In this section we will focus on the 3D Navier-Stokes equations, i.e.,
equations (1) with ν > 0. In [5] it was proved that a Leray-Hopf solution
u(t) is regular on (0, T ] provided

(12) lim sup
q→∞

sup
t∈(0,T )

λ−1
q ‖uq(t)‖∞ < c0ν.
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In terms of Λ(t) this regularity condition can be restated as Λ ∈ L∞(0, T ).
It is also shown to be equivalent to the following small-jump condition:

(13) sup
t∈(0,T ]

lim sup
t0→t−

‖u(t)− u(t0)‖B−1
∞,∞

< c1ν.

More precisely, (12) implies (13) with c1 = 2c0, and (13) implies (12) with
c0 = 2c1.

It is easy to see that Theorem 3.1 improves this condition to Λ ∈ L5/2(0, T ).
Indeed, in view of (6) we have f(t) & Λ(t)2, provided Λ(t) > 1. On the
other hand, by Bernstein inequality,

f(t) . sup
q≤Q(t)

λ5/2
q ‖uq(t)‖2 . Λ(t)5/2.

In summary,

(14) Λ(t)2 . f(t) . Λ(t)5/2, whenever Λ(t) > 1.

In particular, if Λ ∈ L5/2(0, T ) for some Leray-Hopf solution u(t), then
f ∈ L1(0, T ) and, consequently, u(t) is regular on (0, T ] by Theorem 3.1.
On the other hand, as we will see next, Λ(t) is integrable for every Leray-
Hopf solution. Hence, this approach would require to fill the gap between
L1 and L5/2 in order to solve the regularity problem.

In what follows we will often integrate over the set U = {t : Λ(t) > 1}.
Note that Λ(t) <∞ a.e. for every Leray-Hopf solution. Thus (6) implies

(15) ‖u(t)Q(t)‖∞ ≥ c0νΛ(t), for a.a. t ∈ U.

Lemma 4.1. Let u(t) be a Leray-Hopf solution to (1) with ν > 0 on [0, T ].
Then Λ ∈ L1(0, T ).

Proof. Let u(t) be a Leray-Hopf solution on [0, T ] and U = [0, T ] ∪ {t :

Λ(t) > 1}. By Bernstein inequality ‖up‖∞ ≤ λ
3/2
p ‖up‖2. Therefore, since

‖∇u(t)‖22 is integrable, using (15) we obtain

c0ν

∫
U

Λ(t) dt ≤
∫
U

Λ(t)−1‖uQ(t)‖2∞ dt ≤
∫
U

Λ(t)2‖uQ(t)‖22 dt <∞.

�

Now we will show that the viscous Beale-Kato-Majda condition f ∈
L1 is weaker than every Ladyzhenskaya-Prodi-Serrin regularity condition.
First, observe that if 3/s+ 2/r = 1, then

LrLs ⊂ LrB0
s,∞ ⊂ LrB2/r−1

∞,∞ .

Hence, the latter is a larger class for regularity. We then have the following
implication.
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Lemma 4.2. Let u(t) be a Leray-Hopf solution to (1) with ν > 0 on [0, T ].
If u ∈ Lr((0, T );B

2/r−1
∞,∞ ) for some 1 ≤ r <∞, then f ∈ L1(0, T ).

Proof. The case r = 1 follows from the definition of f . Now assume that
r > 1. Let U = [0, T ] ∩ {t : Λ(t) > 1}. Clearly,∫

[0,T ]\U
f(t) dt .

∫ T

0

‖u(t)‖2 dt <∞.

On the other hand, using (15) we obtain∫
U

f(t) dt ≤
∫
U

Λ(t)2−2/r sup
q
λ2/r−1
q ‖uq(t)‖∞ dt

≤
(∫

U

Λ(t)2 dt

)1−1/r (∫
U

sup
q
λ2−r
q ‖uq(t)‖r∞ dt

)1/r

≤ c(ν)

(∫
U

Λ(t)2−r‖uQ(t)(t)‖r∞ dt
)1−1/r

‖u‖
LrB

2/r−1
∞,∞

≤ c(ν)‖u‖r−1

LrB
2/r−1
∞,∞
‖u‖

LrB
2/r−1
∞,∞

= c(ν)‖u‖r
LrB

2/r−1
∞,∞

,

which concludes the proof. �

The regularity criterion in Theorem 3.1 also allows to obtain conditions
under which a “mild” blow-up (blow-up in norms only higher than some
B−r∞,∞) is possible. By the energy inequality and Bernstein estimates, every
Leray-Hopf solution satisfies u ∈ L∞((0, T );B

−3/2
∞,∞). Now assume that u

belongs to a smoother space L∞((0, T );B−r∞,∞) for some r ∈ [0, 3/2]. Then
the complementary condition for regularity is Λ ∈ L1+r.

Corollary 4.3. If u(t) is a Leray-Hopf solution of (1) on [0, T ], such that
u ∈ L∞B−r∞,∞ and Λ ∈ L1+r, then u(t) is regular on (0, T ].

Proof. Observe that

f(t) = sup
q≤Q(t)

λ−rq ‖uq(t)‖∞λ1+r
q ≤ ‖u‖L∞B−r

∞,∞
Λ(t)1+r.

Now the result follows from Theorem 3.1. �

In the scaling invariant case of u ∈ L∞B−1
∞,∞ we find that Λ ∈ L2 is

sufficient for regularity, although it is not clear whether this latter condition
is already a consequence of the former.
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5. CONNECTION WITH KOLMOGOROV’S THEORY OF TURBULENCE

Kolmogorov in 1941 [10] suggested that viscous effects in a turbulent
flow are negligible in the inertial range, the range below Kolmogorov’s dis-
sipation wave number

κd =
( ε
ν3

)1/4

,

where the energy dissipation rate ε is usually defined as

ε = ν〈‖∇u‖22〉 =
ν

T

∫ T

0

‖∇u‖22 dt.

However, numerical and emperical observations show than one also needs
to take into account effects of spacial intermittency which change the di-
mension of ε. With this intermittency correction the formula for κd becomes

(16) κd =
( ε
ν3

) 1
d+1

,

where the parameter d ∈ [0, 3] represents the dimension of the set in the
physical space where the dissipation occurs. Then s = 3 − d represents
the dimension of the set in the Fourier space where dissipation occurs. We
define s so that it captures the level of saturation of the Bernstein inequality
in the last dyadic shell in the inertial range. More precisely, by Bernstein
we have inequalities

〈Λ−1‖uQ‖2∞〉 . 〈Λ2‖uQ‖22〉 . 〈Λ2‖uQ‖2∞〉.
We let s ∈ [0, 3] be any parameter for which

(17) 〈Λ2−s‖uQ‖2∞〉 . 〈Λ2‖uQ‖22〉 .
Let U = [0, T ] ∩ {t : Λ(t) > 1} and

〈Λ〉U =
1

T

∫
U

Λ(t) dt.

Then using (15) we have

〈Λ〉 − 1 ≤ 〈Λ〉U =

(
〈Λ(νc0)

2
4−s 〉4−sU

ν2c20

) 1
4−s

≤

〈Λ 2−s
4−s‖uQ‖

2
4−s
∞ 〉4−s

ν2c20

 1
4−s

≤
(
〈Λ2−s‖uQ‖2∞〉

ν2c20

) 1
4−s

.

(
〈Λ2‖uQ‖22〉

ν2c20

) 1
4−s

.
( ε
ν3

) 1
4−s

.

So, we obtain
〈Λ〉 . κd.
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Hence 〈Λ〉 defines the dissipation range more precisely than κd. In other
words, generally the effects of viscosity start to manifest earlier than pre-
dicted by the dimensional argument. Now we will show that Leray-Hopf
solutions are regular when d = 3 − s is close to 3 and in particular in
Kolmogorov 41 regime of d = 3.

Theorem 5.1. Let u(t) be a Leray-Hopf solution of (1) on [0, T ] for which
d > 3/2. Then u(t) is regular on (0, T ].

Proof. Let U = [0, T ] ∩ {t : Λ(t) > 1}. Since s < 3/2 we have via (15)

c20ν
2

∫
U

Λ(t)5/2 dt ≤
∫
U

Λ(t)1/2‖uQ(t)(t)‖2∞ dt

.
∫
U

Λ(t)2‖uQ(t)(t)‖22 dt

<∞.

(18)

Therefore f ∈ L1(0, T ) by (14), and hence u(t) is regular on (0, T ] due to
Theorem 3.1.

�

6. REGULARITY OF HYPERDISSIPATIVE NSE

In this section we will apply the developed technique to give a simple
proof of a recent result by T. Tao, [14] on regularity of slightly supercritical
hyperdissipative NSE. Let us consider the system

(19)


∂tu+ (u · ∇)u = −νD2u−∇p = 0, x ∈ R3, t ≥ 0,

∇ · u = 0,

u(0) = u0,

where D is a Fourier multiplier whose symbol m(ξ) = |ξ|5/4/g(|ξ|), and
g(|ξ|) = log1/4(2 + |ξ|2).

Consider a Leray-Hopf solution to (19) on [0, T ]. Due to the energy
inequality we have ∫ T

0

‖Du‖22 dx <∞.

Let us fix ε ∈ (0, 1) and use the weak formulation of the NSE with the
test-function λ1+ε

q (uq)q. As in [5], on every interval of regularity of u(t) we
obtain

1

2

d

dt

∞∑
q=−1

λ1+ε
q ‖uq‖22+ν

∞∑
q=−1

λ
7/2+ε
q

g(λq)2
‖uq‖22 ≤ C

∞∑
q=−1

λ3+ε
q ‖uq‖22(λ−1

q ‖uq‖∞),
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where C > 0. Let c0 = ν/C. Now we adapt the definition of Λ to these
settings as follows:

Λ(t) = min{λq : λ−3/2
p g(λp)

2‖up(t)‖∞ ≤ c0ν ∀ p > q, q ≥ 0}.

This again ensures that the linear term dominates the nonlinear term above
Λ(t). Therefore we have

1

2

d

dt
E(t) . f(t)E(t)

on every interval of regularity of u(t). Here

E(t) =
∑
q

λ1+ε
q ‖uq‖22, f(t) = ‖u≤Q(t)(t)‖B1

∞,∞

as before. Now note that

f(t) ≤ 1

c0ν
Λ−3/2g(Λ)2‖uQ‖∞ sup

q≤Q
λq‖uq‖∞

≤ 1

c0ν
g(Λ)2Λ5/2 sup

q≤Q
‖uq‖22

≤ 1

c0ν
g(Λ)4‖Du‖22,

provided Λ(t) ≥ 1. In addition, we have

log(2 + Λ2) . log(2 + Λ1+ε/2)

≤ log

(
2 + Λ1+ε/2 1

c0ν
Λ−3g(Λ)4‖uQ‖2∞

)
. log

(
2 +

1

c0ν
Λ1+ε‖uQ‖22

)
≤ log

(
2 +

1

c0ν
E(t)

)
.

Hence we obtain the following differential inequality:

1

2

d

dt
E(t) . log

(
2 +

1

c0ν
E(t)

)
‖Du(t)‖22E(t).

Since ‖Du(t)‖22 is integrable, E(t) does not blow up.
The conjecture made in [14] concerning regularity in the case where

g(|ξ|) = log1/2(2 + |ξ|2) does not seem to follow from the argument above.
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7. APPENDIX: BESOV-TYPE LOGARITHMIC SOBOLEV INEQUALITY

Although the logarithmic Sobolev inequality used in the proof of Theo-
rem 3.1 is known (see [11]) we include its proof here as well for the conve-
nience of the reader. Let u ∈ Hs(Rn), for some s > n/2. Then

(20) ‖u‖L∞ ≤ C‖u‖B0
∞,∞(1 + log+ ‖u‖Hs).

Indeed, for any q ∈ N we have (up to some absolute constants)

‖u‖L∞ .
∑
p≤q

‖up‖∞ +
∑
p>q

‖up‖∞

. q‖u‖B0
∞,∞ +

∑
p>q

λn/2−sp λsp‖up‖2

. q‖u‖B0
∞,∞ + λn/2−sq ‖u‖Hs .

Optimizing over q immediately gives (20).
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