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ABSTRACT. Motivated by Kolmogorov’s theory of turbulence we present
a unified approach to the regularity problems for the 3D Navier-Stokes
and Euler equations. We introduce a dissipation wavenumber A(t) that
separates low modes where the Euler dynamics is predominant from the
high modes where the viscous forces take over. Then using an indiffer-
ent to the viscosity technique we obtain a new regularity criterion which
is weaker than every Ladyzhenskaya-Prodi-Serrin condition in the vis-
cous case, and reduces to the Beale-Kato-Majda criterion in the inviscid
case. In the viscous case we also we prove that Leray-Hopf solutions are
regular provided A € L5/2, which improves our previous A € L con-
dition. We also show that A € L for all Leray-Hopf solutions. Finally,
we prove that Leray-Hopf solutions are regular when the time-averaged
spatial intermittency is small, i.e., close to Kolmogorov’s regime.

1. INTRODUCTION

We study the 3D incompressible fluid equations
Ou —vAu+ (u-V)u+Vp=0, reR3t>0,
(1) V.u=0,
u(0) = uy,

where u(z,t), the velocity, and p(x,t), the pressure, are unknowns, uy €
L?(R?) is the initial condition, and v > 0 is the kinematic viscosity coef-
ficient of the fluid. In the inviscid (v = 0) and viscous (v > 0) cases the
equations (1) are referred to as the Euler and Navier-Stokes (NSE) equa-
tions respectively.

The regularity of solutions to the NSE remains a significant open problem
taking its mathematical roots in the seminal work of Leray [12]. A consider-
able body of literature has been devoted to studying regularity criteria which
include the classical Ladyzhenskaya-Prodi-Serrin conditions v € LjL:,
2/r+3/s <1, s > 3, its notable extention to the case s = 3 by Escauriaza,
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Seregin, and Sverdk [8], logarithmic improvements of the above, conditions
in terms of the pressure, velocity gradients, extentions to Besov-type spaces,
etc. We refer the reader to [1, 3, 4, 5, 6, 11, 13] for detailed accounts. Al-
though some subtle questions in the area remain open, e.g. regularity in
the largest critical space Bo‘ofoo, it becomes increasingly convincing that the
current techniques are not capable of narrowing the gap between the scaling
invariant range 2/r + 3/s = 1 and the range of 2/r + 3/s = 3/2 enjoyed
by all Leray-Hopf solutions.

The mathematical theory of (1) is even less complete in the inviscid
case insofar as the existence of weak solutions is not known. Neverthe-
less, the local existence and uniqueness of solutions to the Euler equations
was proved in H*® for s > 5/2 by Kato [9]. Moreover, these solutions can
be extended forward in time as long as ||V X u|| is integrable, which is
known as the Beale-Kato-Majda condition [2, 11, 13].

In the present paper we propose a unified approach to the regularity prob-
lem for the fluid equations (1) utilizing Kolmogorov’s concept of an inertial
range in turbulent flow. Our basic idea is to define a time-dependent dissipa-
tion wavenumber A (?) that separates high frequency modes where viscosity
prevails over the non-linear term from the low frequency modes where the
Euler dynamics is dominant. Specifically, we define

Q(t) = min{q : 277||uy(t)|| < cov, Vp > q,q > 0},
A(t) = 290,

where ¢y > 0 1s some absolute constant and u,, denotes the Littlewood-Paley
projection on the p-th dyadic shell (see Section 2).

To illustrate the separatory role of the wavenumber A between viscous
and inviscid properties of the equation we present a regularity criterion
based on vorticity w = V x u, which reduces to the classical Beale-Kato-
Majda condition in the inviscid case. More precisely, using an indifferent
to the viscosity technique, we prove the following theorem:

Theorem 1.1. Let u(t) be a weak solution of (1) with v > 0, such that u(t)
is regular on (0,T') and

T

@ | Tocou®lae. .. di < o
0

then u(t) is regular on (0,T].

Here the regularity should be understood as the continuity of the H?3
norm. If the viscosity coefficient v is zero, then A(¢) = oo and hence, the
condition (2) naturally turns into the Beale-Kato-Majda criterion as stated
in [11]. On the other hand, we show that the condition (2) is weaker than
every Ladyzhenskaya-Prodi-Serrin condition in the viscous case.
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In the viscous case we also derive a regularity criterion in terms of only
A. The estimates based on the use of Bo‘o{oo-norm performed in [5] allow us
to conclude that A € L°°(0,T) implies regularity of u up to 7. Here this
condition will be weakened to A € L°/%(0, T)), while for every Leray-Hopf
solution one can show that A € L'(0, 7).

With regard to connection between A and the classical Kolmogorov dis-
sipation wavenumber we prove the direct inequality (up to an absolute mul-
tiple)

L[ @t = (A) < g = (£

0= 500 (5)
where d is the intermittency parameter representing dimension of a dissi-
pation set, and € = v(||Vu||3) is the energy dissipation rate (see [7]). The
definition of d will be given in Section 5 based on the average level of sat-
uration of Bernstein’s inequalities inside the A(¢)-th dyadic shell. We then
prove in Theorem 5.1 that if d > 3/2 then the solution u is regular. This
provides an analytical evidence to the fact that the flows usually observed in
simulations of intermittent turbulence are regular as they show only moder-
ate deviations from the Kolmogorov’s predicted value of d = 3 (see [7] and
references therein).

Finally, in Section 6 the use of A will be adapted to show regularity for a

variant of a hyperdissipative Navier-Stokes system and to give a short proof
of a known recent result of Tao, [14].

2. 3D INCOMPRESSIBLE EQUATIONS OF FLUID MOTION
Let us first recall several classical definitions and results.

Definition 2.1. A weak solution of (1) with » > 0 on [0,77] (or [0, 00) if
T = oo) with the divergence-free initial data uy € L*(R?) is a function
w: [0,T] — L*(R?) in the class

u € CW([Ov T]) LQ(R?)))’

satisfying u(0) = uy,
() (u(t), (1) = (uo, ¥(0))

= {(u(s), 0sp(s)) + v(uls), Ap(s)) + (u(s) - Vio(s), u(s))} ds

and V,, - u(t) = 0 in the sense of distributions for all ¢ € [0, 7] and all test
functions p € C5°([0,T] x R?) with V,, - ¢ = 0. Here (-, -) stands for the
L?-inner product.

In the case v > 0 we also define Leray-Hopf solutions:
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Definition 2.2. A weak solution u(t) of (1) with v > 0 on [0, T is called a
Leray-Hopf solution if u € L?([0,T]; H'(R?)) and the energy inequality

t
) HU(t)H§+2V/t IVu(s)l3 ds < [lu(to)l5.

is satisfied for almost all ¢, € (0,7") and all ¢ € (o, T'.

In 1934 Leray [12] proved the existence of Leray-Hopf solutions on
0, 00) for every v > 0 and every divergence-free initial data ug € L*(R3).
In the case v = 0 the existence of weak solutions is still not known. Given
ug € H?, the local existence of H?®-continuous solutions is known for
s > 5/2in the inviscid case, and for s > 1/2 in the viscous case. Moreover,
the continuity of some supercritical H*-norm (s > 1/2) of a Leray-Hopf
solution implies the continuity of all supercritical //°-norms. Therefore,
for simplicity, we choose the continuity of the H3-norm as a definition of
regularity, even though any s > 5/2 would be appropriate as well.

Definition 2.3. A week solution u(t) of (1) with v > 0 is regular on a time
interval 7 if ||u(t)|| gs is continuous on Z.

An interval 7 where wu(t) is regular is called an interval of regularity.
Viscous regular solutions are unique in the class of Leray-Hopf solutions,
which results in the following regularity condition:

Theorem 2.4 (Leray). Let u(t) be a Leray-Hopf solution of (1) withv > 0
on [0, T). If for every interval of regularity (o, 3) C (0,7T)
lim sup ||u(t)|| g < 00,

t—pB—
for some s > 1/2, then u(t) is regular on (0,T.

Note that merely weak viscous solutions are not known to satisfy the
above property. The possibility of a blow up from the right for such solu-
tions has not been ruled out.

Let us now briefly recall the definition of Besov spaces. We will use the
notation \, = 27 (in some inverse length units). Let B, denote the ball
centered at O of radius r in R3. Let us fix a nonnegative radial function
X € C§°(By) such that x (&) = 1 for || < 1/2. We further define ¢(&) =
Y(ATTE) — x(€) and ¢, (€) = ©(A,'€). For a tempered distribution vector
field u let us denote

ug =F Hpg) xu, forg>—1,  u_y=F '(x)*u,

where F denotes the Fourier transform. So, we have u = Z;i_l uq in the
sense of distributions. We also use the following notation

U< = Zuq, U>Q = Zuq‘

q<Q >Q
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Finally, let us recall that a tempered distribution u belongs to B; . iff

[ullB; . = sup Ag[ugl|, < oo.
q

3. A UNIVERSAL REGULARITY CRITERION

Let u(t) be a weak solution of (1) with » > 0 on [0, 7]. We define our
dissipation wavenumber as

5) A(t) = min{)\, : )\;1||up(t)]|oo < cov, Vp>q,q >0},
where ¢q is an absolute constant, which will be defined later. Note that

A(t) = oo in the inviscid case v = 0. Let Q(t) € N be such that Ao =
A(t). Directly from the definition we have

(6) [u(®) @ lloo > covAlt),

provided 1 < A(t) < oo.

We will now obtain a universal regularity criterion, which is valid in both
viscous and inviscid cases. This criterion is stated in terms of a Besov type
bound on frequencies smaller than A(¢). For this purpose we consider the
following function

f@) = llu<qu@llsy, . = sup Agllug(t)oo,
q<Q(t)

or in terms of vorticity w = V X u,
f(t) ~ llw<qm s, .-

Theorem 3.1. Let u be a weak solution to (1) with v > 0 on [0, T). Assume
that u(t) is regular on [0, T), and f € L*(0,T), i.e.

T

(7N / lw<qu (D) s, . dt < oo.
0

Then u(t) is regular on [0, T.

We note that the theorem is valid for both Navier-Stokes and the Euler
equations. In the case when v = 0 we have A = oo, and thus we recover the
classical Beal-Kato-Majda criterion extended to Besov spaces as in Kozono,
Ogawa, and Taniuchi [11], see also Planchon [13]. Our technique of proving
Theorem 3.1 does not distinguish between the cases v > 0 and v = 0
and is based on the frequency separation method and logarithmic Sobolev
inequality.

Proof. Since u(t) is regular on [0, T"), we have that ||u(t)|| g+ is continuous
on [0, 7T) for s = 3. In what follows we will prove the following estimate:

®) S lu@®)fs < CA+ f(0)ut)]

17+ (1 + log , [[u(t)]

Hs)a
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where C' is an absolute constant. Then the Gronwall inequality implies that
||u(t)||gs is bounded on [0,7"). The regularity of u now follows from the
standard argument. Indeed, let M = sup,c(o 7y [|u(t)[|gs. By the local well-
posedness of regular solutions for e < ﬁ there exists a regular solution
veC([T—eT)|; H?) with v(T — €) = u(T — €). By uniqueness, v = u on
[T — €,T). By weak continuity of u we deduce that u(7") = v(7T'). Hence,
u(t) is regular on the closed interval [0, 7).

We now proceed to proving (8). Testing the equation (1) against 9**u on
the interval [0, T"), where « is a multiindex with |«| < s, we obtain

1d )
S S N0l < vl + vilul3+ Y

| <s lo<s
i<a

/3’1_% -Vou - 0%l .

Let us note that if v > 0, then u € H*® implies u € H*"!' automatically
on [0,7) by the classical bootstrapping argument. The term v||u||3 above
was added to compensate the homogeneity of the viscous term near low
frequencies. Furthermore, let us note that if « = « or if a = 0, the trilinear
term vanishes due to incompressibility rendering the estimate

zsﬂ + VHqu + Z

1<]al<s
<o

1d
= < —
©) 5allulle < —vlu

/80"@ -Volu - 0%l .

Now all the trilinear terms have at least one and at most |«| derivatives on
each component. We now prove the following auxiliary lemma.

Lemma 3.2. Suppose 1 < |a| < s, and |ay| + |az| + |as| = 2|a| + 1 and
all indices satisfy 1 < |o;| < |a|. Let Q) € N and let u € H®. Then

(10) / 0™ U< 02 ud™u

< Cllu<qlisy, . Mulls (1 + log [|ul[r+).

Proof. We have
/6a1u§Q8a2uaa3u = /8a1u§Q8a2u§Q8a3u§Q

+ /8"‘1u§Q Z 8a2uq/8a3uqu = ] + I]

¢>Q,¢">Q-2
|q/_q/l‘§2

To estimate /1 we argue as follows

1] S [Vusallodd ™ D Xg2 % lug5.

g>Q—2
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Since s > 3/2, by the Besov-type logarithmic Sobolev inequality we have

IVu<qlloo S llu<allsy, . (1 +log, [ullm:)

00,00

(see Appendix or [11] for more general versions). Thus, continuing the
above,

1] S llu<ellsy, ., (1 +logy |lul

) D Ayt 3

>Q—2

ullze-

S llu<qllsy, . (1 +1og, [[ull &)

00,00

As to I we have the decomposition

] B / Z aaluanQU/q/aa?’uSq//

q<Q,lq¢'—ql,l¢" —q|<2

+ E (90‘1 uq3a2u§q/5a3uq//

9<Q,|q’'—ql,l¢" —q|<2

/ Z 0 g0 ug 0™ ugyr — repeated terms

9<Q,l¢'—q"|<2,¢'>q

Estimates for all of these terms are similar. We show one for the first term
only. We have

/ D T e | S A e Vs

q<Q
q q|<2 lg’ —q|<2
lg" —q|<2 lg" —q|<2

i) D Ay g3

q<Q

S luellsy, (1 +1og, [|u|

S llu<ellsy, o (1 +log, [[ullm:)

00,00

0

Note that if A = oo, then Lemma 3.2 already finishes the proof of (8).
Otherwise, going back to (9) and in view of Lemma 3.2 the only terms left
to estimate are

/aai%cz(t) - Vd'usqq - 0% usqu).
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These will be absorbed by the viscous term after a proper frequency local-
ization. We split each of them into the sum

/aaiU>Q . ValU>Q . aQU>Q = / Z aaluq/aa2uq//a(XSU,Q<.§q
la'—alla" —q|<2
+ cyclic terms — repeated terms.

We estimate

/ Z 0™ ug 0™ g 0™ uq<.<q
7>Q

lg’—ql,lq" —q| <2

SN gl 30 X el
7>Q Q<p<q
ld'—ql,l¢" —ql<2

Sev Y AT g gl ug .
7>Q
la’—al,l¢" —q|<2
S covllul[Fresa.

By choosing ¢y small enough in the definition of A we then ensure that this
term is smaller than the viscous term in (9). This finishes the proof. [

Note that in the inviscid case v = 0 condition (7) is a variant of the Beale-
Kato-Majda condition. In the viscous case v > 0 this theorem together with
Theorem 2.4 implies the following

Corollary 3.3. Let u be a Leray-Hopf solution to (1) with v > 0 on [0, T,
such that

T
(a1 / lweou®)lle_ df < oo
0

Then u(t) is regular on (0,T.

In the next section we will further analyze the criterion (11) in the vis-
cous case and show that it is weaker than every Ladyzhenskaya-Prodi-Serrin
condition.

4. REGULARITY CRITERIA IN THE VISCOUS CASE

In this section we will focus on the 3D Navier-Stokes equations, i.e.,
equations (1) with v > 0. In [5] it was proved that a Leray-Hopf solution
u(t) is regular on (0, 7] provided

(12) limsup sup A, ug(t)||oe < cov.
g—oo  te(0,T)
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In terms of A(t) this regularity condition can be restated as A € L>°(0,7).
It is also shown to be equivalent to the following small-jump condition:
(13) sup. lim supfu(t) — u(to)| p=: < v
te(0,7] to—t— ’

More precisely, (12) implies (13) with ¢; = 2¢g, and (13) implies (12) with
Co = 201.

It is easy to see that Theorem 3.1 improves this condition to A € L>/2(0, T).
Indeed, in view of (6) we have f(t) = A(t)?, provided A(t) > 1. On the
other hand, by Bernstein inequality,

FE) S sup A [lug(t)]la S A1),
q<Q(t)

In summary,
(14) A1) S F(t) S A2, whenever A(t) > 1.

In particular, if A € L>2(0,T) for some Leray-Hopf solution u(t), then
f € LY(0,T) and, consequently, u(t) is regular on (0, 7] by Theorem 3.1.
On the other hand, as we will see next, A(t) is integrable for every Leray-
Hopf solution. Hence, this approach would require to fill the gap between
L* and L%/? in order to solve the regularity problem.

In what follows we will often integrate over the set U = {¢ : A(t) > 1}.
Note that A(t) < oo a.e. for every Leray-Hopf solution. Thus (6) implies

(15) |u(t)o)llee = covAlt), for a.a. teU.

Lemma 4.1. Let u(t) be a Leray-Hopf solution to (1) with v > 0 on [0, T'.
Then A € L'(0,T).

Proof. Let u(t) be a Leray-Hopf solution on [0,7"] and U = [0,T] U {t :

A(t) > 1}. By Bernstein inequality ||u,|/c < Ay ?||up]lo- Therefore, since

| Vu(t)]|3 is integrable, using (15) we obtain

o [ A0t < [ 2@y ugldt < [ AP JuoFde < oo.
U U U

O

Now we will show that the viscous Beale-Kato-Majda condition f &€
L' is weaker than every Ladyzhenskaya-Prodi-Serrin regularity condition.
First, observe that if 3/s + 2/r = 1, then

'L cL'B)  C L'BY L.

Hence, the latter is a larger class for regularity. We then have the following
implication.
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Lemma 4.2. Let u(t) be a Leray-Hopf solution to (1) with v > 0 on [0, T).
Ifu e L((0,T); B for some 1 < r < oo, then f € L'(0,T).

Proof. The case r = 1 follows from the definition of f. Now assume that
r>1.LetU =[0,T]n{t: A(t) > 1}. Clearly,

T
/ ft)dt 5 / |w(t)]|2 dt < oo.
[0,T\U 0

On the other hand, using (15) we obtain

/U £t dt < /U AP sup N2y () o dt

q

1-1/r yr
. ( / A(t)zdt) ( [ w2 luol dt)
U U ¢

1-1/r
c(v) (/U A(t)Q_THuQ(t)(t)Hgodt) ||u||Lng<{j;1

< Nl ol

IN

which concludes the proof. U

The regularity criterion in Theorem 3.1 also allows to obtain conditions
under which a “mild” blow-up (blow-up in norms only higher than some

BY+) is possible. By the energy inequality and Bernstein estimates, every
Leray-Hopf solution satisfies u € L*((0,7); B2 ). Now assume that u
belongs to a smoother space L*°((0,7"); BY,,) for some r € [0,3/2]. Then

the complementary condition for regularity is A € L'*7.

Corollary 4.3. If u(t) is a Leray-Hopf solution of (1) on [0,T], such that
we L®B and A € L', then u(t) is regular on (0, T.

Proof. Observe that

ft) = sup A lug()lloo™ < Null poo pr A
q<Q(t)

Now the result follows from Theorem 3.1. U
In the scaling invariant case of v € LB, we find that A € L% is

sufficient for regularity, although it is not clear whether this latter condition
is already a consequence of the former.
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5. CONNECTION WITH KOLMOGOROV’S THEORY OF TURBULENCE

Kolmogorov in 1941 [10] suggested that viscous effects in a turbulent
flow are negligible in the inertial range, the range below Kolmogorov’s dis-
sipation wave number

€\ 1/4
e ()"

where the energy dissipation rate € is usually defined as

v T
e=v(|Vully) = = [ IVull3dt.
T 0

However, numerical and emperical observations show than one also needs
to take into account effects of spacial intermittency which change the di-
mension of e. With this intermittency correction the formula for x4 becomes

1
€\ a1
(16) ka= ()"
where the parameter d € [0, 3] represents the dimension of the set in the
physical space where the dissipation occurs. Then s = 3 — d represents
the dimension of the set in the Fourier space where dissipation occurs. We
define s so that it captures the level of saturation of the Bernstein inequality

in the last dyadic shell in the inertial range. More precisely, by Bernstein
we have inequalities

(A MluellS) S (A lugllz) S (A*[lugllz.)-
We let s € [0, 3] be any parameter for which
(17) (A ugllZe) < (A%lluqll3) -
LetU = [0,7)N{t: A(t) > 1} and

(A)y = %/UA(t) dt.

Then using (15) we have

2—s

<A<uco>fs>%;s>“ [ A gl

>4—s

v2ck - v3c3

1 1
< (A NuallZ) = o (({ANluell3) )
- v2ck ~ v2ck

<(5)"™

So, we obtain

<A>—1s<A>U=<
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Hence (A) defines the dissipation range more precisely than xq. In other
words, generally the effects of viscosity start to manifest earlier than pre-
dicted by the dimensional argument. Now we will show that Leray-Hopf
solutions are regular when d = 3 — s is close to 3 and in particular in
Kolmogorov 41 regime of d = 3.

Theorem 5.1. Let u(t) be a Leray-Hopf solution of (1) on [0,T] for which
d > 3/2. Then u(t) is regular on (0, T).

Proof. LetU = [0, T) N {t : A(t) > 1}. Since s < 3/2 we have via (15)
cijmmﬁs/<w%w<n&ﬁ
U U
18) SLMNMwWMﬁ

< 00.

Therefore f € L'(0,T) by (14), and hence u(t) is regular on (0, 7] due to
Theorem 3.1.
0

6. REGULARITY OF HYPERDISSIPATIVE NSE

In this section we will apply the developed technique to give a simple
proof of a recent result by T. Tao, [14] on regularity of slightly supercritical
hyperdissipative NSE. Let us consider the system

O+ (u-V)u=—vD?*u—Vp=0, reR3t>0,
(19) V-u=0,
u(0) = o,

where D is a Fourier multiplier whose symbol m(¢) = [£]°/4/¢(|£]), and

g([€]) = log'*(2 + [¢]?).
Consider a Leray-Hopf solution to (19) on [0,7]. Due to the energy
inequality we have

T
/ | Dul|3 dx < oc.
0

Let us fix € € (0,1) and use the weak formulation of the NSE with the
test-function A\ 7*(uqy),. As in [5], on every interval of regularity of u(t) we
obtain

QﬁZ*WWWZ wm«&)%wuww@

q=—1
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where C' > 0. Let ¢y = v/C. Now we adapt the definition of A to these
settings as follows:

A(t) = min{)\, : )\;3/29()\p)2|]up(t)|]oo <cvVp>q,q>0}.

This again ensures that the linear term dominates the nonlinear term above
A(t). Therefore we have

1d

S B S FOEQ)

on every interval of regularity of u(¢). Here
E@t) =Y MNlugl3,  f0) = luson @l .
q

as before. Now note that

1 .
ft) < —A 329(M)?[|uglloo sup A ttg [l oo
oV q<Q

1
< —g(A)* A% sup [|ugll3
CoV 7<Q
1
< —qg(N)*|Dul|?
< 9 IDull,

provided A(¢) > 1. In addition, we have
log(2 4+ A?) < log(2 + AF9/?)

1
< tog (24 477 LA () g 2 )
1
<1 9 _A1+6 2
Stog (24 A ugl)

< log (2 + iE(t)) .

ColV
Hence we obtain the following differential inequality:
S B() Sog (24— E(®)) I Du®)EEWD
—— 0 — u )
2 dt ~ 108 CoV 2

Since || Du(t)]|3 is integrable, F(t) does not blow up.
The conjecture made in [14] concerning regularity in the case where
g(|€]) = log'?(2 +|£|?) does not seem to follow from the argument above.
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7. APPENDIX: BESOV-TYPE LOGARITHMIC SOBOLEV INEQUALITY

Although the logarithmic Sobolev inequality used in the proof of Theo-
rem 3.1 is known (see [11]) we include its proof here as well for the conve-
nience of the reader. Let u € H*(R"), for some s > n/2. Then

(20) [ull e < Cllullpg, (1 +log, [Jullms).

Indeed, for any ¢ € N we have (up to some absolute constants)

lullz= S 3 lpllos + > lupllso

p<q p>q
Sallullsg, .+ > AP N |2
p>q

S allulle, . + A"l s

Optimizing over ¢ immediately gives (20).
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