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Cyclic n-roots Problem

Cn(x) =



x0 + x1 + · · ·+ xn−1 = 0

x0x1 + x1x2 + · · ·+ xn−2xn−1 + xn−1x0 = 0

i = 3, 4, . . . , n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

benchmark problem in the field of computer algebra (pop. by J. Davenport)
extremely hard to solve for n ≥ 8
square systems

we expect isolated solutions
we find positive dimensional solution sets

Lemma (Backelin)

If m2 divides n, then the dimension of the cyclic n-roots polynomial system is at
least m − 1.

J. Backelin: Square multiples n give infinitely many cyclic n-roots.
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.
J. Davenport. Looking at a set of equations.
Technical Report 87-06, Bath Computer Science, 1987.
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Our Approach

a new polyhedral method

for square systems and systems with more equations than unknowns
a symbolic-numeric approach with an origin in polyhedral homotopies
Bernshtein’s Theorem A & B to solve polynomial systems with Puiseux
series
we aim to generalize polyhedral homotopies to develop positive
dimensional solution sets
our approach is inspired by the constructive proof of the
fundamental theorem of tropical algebraic geometry

Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

ω ∈ Trop(I ) ∩Qn ⇐⇒ ∃p ∈ V (I ) : −val(p) = ω ∈ Qn.

Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
An Algorithm for Lifting Points in a Tropical Variety.
Collect. Math. vol. 59, no. 2, pages 129–165, 2008.

rephrasing the theorem

rational vector in the tropical variety corresponds to the leading powers of a
Puiseux series, converging to a point in the algebraic variety.

we understand the fundamental theorem via polyhedral homotopies
we see it as a generalization of Bernshtein’s Theorem B
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General Definitions

Definition (Polynomial System)

F (x) =


f0(x) = 0
f1(x) = 0
...
fn−1(x) = 0

Definition (Laurent Polynomial)

f (x) =
∑
a∈A

cax
a, ca ∈ C \ {0}, xa = x±a00 x±a11 · · · x±an−1

n−1

Definition (Support Set)

The set of exponents Ai is called the support set of fi .

Definition (Newton Polytope)

Let Ai be the support set of the polynomial fi ∈ F(x) = 0. Then,
the Newton polytope of fi is the convex hull of Ai , denoted Pi .

equivalent representation of Pi (or any polytope) in Rn

convex hull of finite set of points, i.e. V-representation
intersection of finitely many closed half-spaces, i.e. H-representation
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General Definitions

Definition (Initial Form)

Let f (x) =
∑
a∈A

cax
a be a Laurent polynomial, v ∈ Zn a non-zero vector and let 〈·, ·〉

denote the usual inner product. Then, the initial form with respect to v is given by

inv(f (x)) =
∑

a∈A, m=〈a,v〉

cax
a

m = min {〈a, v〉 | a ∈ A}

Definition (Initial Form System)

For a system of polynomials F(x) = 0, the initial form system is defined by
inv(F(x)) = (inv(f0), inv(f1), . . . , inv(fn−1)) = 0.

Definition (Pretropism)

A pretropism v ∈ Zn is a vector, which leads to an initial form system.

Definition (Tropism)

A tropism is a pretropism, which is the leading exponent vector of a Puiseux series
expansion for a curve, expanded about t ≈ 0.
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Tropisms and d-Dimensional Surfaces

Definition (Cone of Tropisms)

A cone of tropisms is a polyhedral cone, spanned by tropisms.

v0, v1, . . . , vd−1 span a d-dimensional cone of tropisms
dimension of the cone is the dimension of the solution set
we obtain the tropisms by using the Cayley trick.

Let v0 = (v(0,1), v(0,2), . . . , v(0,n−1)), v1 = (v(1,0), v(1,1), . . . , v(1,n−1)), . . . ,
vd−1 = (v(d−1,0), v(d−1,1), . . . , v(d−1,n−1)) be d tropisms. Let r0, r1, . . . , rn−1 be
the solutions of the initial form system inv0(inv1(· · · invd−1

(F ) · · · ))(x) = 0.

d tropisms generate a Puiseux series expansion of a d-dimensional surface

x0 = t
v(0,0)
0 t

v(1,0)
1 · · · tv(d−1,0)

d−1 (r0 + c(0,0)t
w(0,0)

0 + c(1,0)t
w(1,0)

1 + . . . )

x1 = t
v(0,1)

0 t
v(1,1)
1 · · · tv(d−1,1)

d−1 (r1 + c(0,1)t
w(0,1)

0 + c(1,1)t
w(1,1)

1 + . . . )

x2 = t
v(0,2)
0 t

v(1,2)
1 · · · tv(d−1,2)

d−1 (r2 + c(0,2)t
w(0,2)

0 + c(1,2)t
w(1,2)

1 + . . . )

...

xn−1 = t
v(0,n−1)

0 t
v(1,n−1)

1 · · · tv(d−1,n−1)

d−1 (rn−1 + c(0,n−1)t
w(0,n−1)

0 + c(1,n−1)t
w(1,n−1)

1 + . . . )
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Cyclic 4-roots problem

Cyclic 4-Root Polynomial System

C4(x) =


x0 + x1 + x2 + x3 = 0

x0x1 + x0x3 + x1x2 + x2x3 = 0

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0

x0x1x2x3 − 1 = 0

The only pretropism is (1,−1, 1,−1)

cyclic 4-roots initial form system in direction (1,−1, 1,−1)

in(1,−1,1,−1)(C4)(x) =


x1 + x3 = 0

x0x1 + x0x3 + x1x2 + x2x3 = 0

x0x1x3 + x1x2x3 = 0

x0x1x2x3 − 1 = 0

Using M to transform in(1,−1,1,−1)(C4):

M =


1 −1 1 −1
0 1 0 0
0 0 1 0
0 0 0 1


x0 = z0; x1 =

z1
z0

; x2 = z0z2; x3 =
z3
z0

in(1,−1,1,−1)(F )(z) =
z1/z0 + z3/z0 = 0

z1z2 + z2z3 + z1 + z3 = 0

z1z2z3/z0 + z1z3/z0 = 0

z1z2z3 − 1 = 0
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Cyclic 4-roots problem

cyclic 4-root polynomial system transformed

in(1,−1,1,−1)(C4)(z) =


z1 + z3 = 0

z1z2 + z2z3 + z1 + z3 = 0

z1z2z3 + z1z3 = 0

z1z2z3 − 1 = 0

Solutions of the transformed initial form system are
(z1 = 1, z2 = −1, z3 = −1) and (z1 = −1, z2 = −1, z3 = 1).
Letting z0 = t and returning solutions to original coordinates with

x0 = z0; x1 =
z1
z0

; x2 = z0z2; x3 =
z3
z0

For cyclic 4-roots, the initial terms of the series are exact solutions
x0 = t1

x1 = t−1

x2 = −t1

x1 = −t−1

and


x0 = t1

x1 = −t−1

x2 = −t1

x1 = t−1

Danko Adrovic (UIC) the cyclic n-roots problem January 11th , 2013 8 / 17



Cyclic 4,8,12-roots problem

cyclic 4-roots:
tropism: (1,-1,1,-1)

x0 = t, x1 = t−1, x2 = −t, x3 = −t−1

cyclic 8-roots:
tropism: (1,-1,1,-1,1,-1,1,-1)

x0 = t, x1 = t−1, x2 = it, x3 = it−1, x4 = −t, x5 = −t−1,
x6 = −it, x7 = −it−1

cyclic 12-roots:

tropism: (1,-1,1,-1, 1,-1,1,-1,1,-1,1,-1) x0 = t, x1 = t−1, x2 = (1+
√
3i

2 )t,

x3 = (1+
√
3i

2 )t−1,

x4 = (−1+
√
3i

2 )t, x5 = (−1+
√
3i

2 )t−1, x6 = −t, x7 = −t−1,

x8 = (−1−
√
3i

2 )t, x9 = (−1−
√
3i

2 )t−1, x10 = (1−
√
3i

2 )t, x11 = (1−
√
3i

2 )t−1

Observing structure among

tropism
coefficients

numerical solver PHCpack was used
we recognize the coefficients as n

2 -roots of unity
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Cyclic n-roots problem: n=4m case

Proposition
For n = 4m, there is a one-dimensional set of cyclic n-roots, represented
exactly as

x2k = ukt
x2k+1 = ukt−1

for k = 0, . . . , n2 − 1 and uk = e
i2πk
n
2 = e

i4πk
n .

taking random linear combination of the solutions

α0t + α1t−1 + α2t + α3t−1 + · · ·+ αn−2t + αn−1t−1 = 0, αj ∈ C

and simplifying

β0t2 + β1 = 0, βj ∈ C

we see that all space curves are quadrics.
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Cyclic 9-Roots Polynomial System

The cone of pretropisms for the cyclic 9-roots polynomial system was generated
by pretropism sequence
v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2)
v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1).

Inv1(Inv0(C9))(x) =



x2 + x5 + x8 = 0

x0x8 + x2x3 + x5x6 = 0

x0x1x2 + x0x1x8 + x0x7x8 + x1x2x3 + x2x3x4 + x3x4x5

+x4x5x6 + x5x6x7 + x6x7x8 = 0

x0x1x2x8 + x2x3x4x5 + x5x6x7x8 = 0

x0x1x2x3x8 + x0x5x6x7x8 + x2x3x4x5x6 = 0

x0x1x2x3x4x5 + x0x1x2x3x4x8 + x0x1x2x3x7x8

+x0x1x2x6x7x8 + x0x1x5x6x7x8 + x0x4x5x6x7x8 + x1x2x3x4x5x6

+x2x3x4x5x6x7 + x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x8 + x0x1x2x5x6x7x8 + x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x8 + x0x1x2x3x5x6x7x8 + x0x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x7x8 − 1 = 0

For one of the first solutions of the cyclic 9-roots polynomial system, we refer to
J. C. Faugère, A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, Vol. 139, Number 1-3, Pages 61-88, Year
1999. Proceedings of MEGA’98, 22–27 June 1998, Saint-Malo, France.
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Cyclic 9-Roots Polynomial System Cont.

v0 =( 1, 1, -2, 1, 1, -2, 1, 1, -2 )
v1 =( 0, 1, -1, 0, 1, -1, 0, 1, -1 )
The unimodular coordinate transformation x = zM acts on the exponents.
The new coordinates are given by

M =



1 1 −2 1 1 −2 1 1 −2
0 1 −1 0 1 −1 0 1 −1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



x0 = z0

x1 = z0z1

x2 = z−20 z−11 z2

x3 = z0z3

x4 = z0z1z4

x5 = z−20 z−11 z5

x6 = z0z6

x7 = z0z1z7

x8 = z−20 z−11 z8

We use the coordinate change to transform the initial form system and the
original cyclic 9-roots system.
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Cyclic 9-Roots Polynomial System Cont.

The transformed initial form system inv1(inv0(C9))(z) is given by



z2 + z5 + z8 = 0

z2z3 + z5z6 + z8 = 0

z2z3z4 + z3z4z5 + z4z5z6 + z5z6z7 + z6z7z8 + z2z3 + z7z8 + z2 + z8 = 0

z2z3z4z5 + z5z6z7z8 + z2z8 = 0

z2z3z4z5z6 + z5z6z7z8 + z2z3z8 = 0

z2z3z4z5z6z7 + z3z4z5z6z7z8 + z2z3z4z5z6 + z4z5z6z7z8 + z2z3z4z5 + z2z3z4z8

+z2z3z7z8 + z2z6z7z8 + z5z6z7z8 = 0

z3z4z6z7 + z3z4 + z6z7 = 0

z4z7 + z4 + z7 = 0

z2z3z4z5z6z7z8 − 1 = 0

Its solution is
z2 = −1

2 −
√
3i
2 , z3 = −1

2 +
√
3i
2 , z4 = −1

2 +
√
3i
2 , z5 = 1, z6 = −1

2 −
√
3i
2 ,

z7 = −1
2 −

√
3i
2 , z8 = −1

2 +
√
3i
2 , where i =

√
−1.

While we used a numerical solver PHCpack, we recognized the solution as
the 3rd roots of unity.
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Cyclic 9-Roots Polynomial System Cont.

The following assignment satisfies cyclic 9-roots polynomial system entirely.

z0 = t0

z1 = t1

z2 = −1

2
−
√

3i

2

z3 = −1

2
+

√
3i

2

z4 = −1

2
+

√
3i

2
z5 = 1

z6 = −1

2
−
√

3i

2

z7 = −1

2
−
√

3i

2

z8 = −1

2
+

√
3i

2

x0 = z0

x1 = z0z1

x2 = z−20 z−11 z2

x3 = z0z3

x4 = z0z1z4

x5 = z−20 z−11 z5

x6 = z0z6

x7 = z0z1z7

x8 = z−20 z−11 z8

x0 = t0

x1 = t0t1

x2 = t−20 t−11 (−1

2
−
√

3i

2
)

x3 = t0(−1

2
+

√
3i

2
)

x4 = t0t1(−1

2
+

√
3i

2
)

x5 = t−20 t−11

x6 = t0(−1

2
−
√

3i

2
)

x7 = t0t1(−1

2
−
√

3i

2
)

x8 = t−20 t−11 (−1

2
+

√
3i

2
)
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Cyclic 9-Roots Polynomial System Cont.

Letting u = e
2πi
3 and y0 = t0, y1 = t0t1, y2 = t−20 t−11 u2

we can rewrite the exact solution as

x0 = t0 x3 = t0u x6 = t0u2

x1 = t0t1 x4 = t0t2u x7 = t0t2u2

x2 = t−20 t−11 u2 x5 = t−20 t−11 x8 = t−20 t−11 u

x0 = y0 x3 = y0u x6 = y0u2

x1 = y1 x4 = y1u x7 = y1u2

x2 = y2 x5 = y2u x8 = y2u2

and put it in the same format as in the proof of Backelin’s Lemma, given in
J. C. Faugère, Finding all the solutions of Cyclic 9 using Gröbner basis techniques.
In Computer Mathematics: Proceedings of the Fifth Asian Symposium (ASCM),
pages 1-12. World Scientific, 2001.

degree of the solution component

α1t0 + α2t0t1 + α3t−20 t−11 = 0

α4t0 + α5t0t1 + α6t−20 t−11 = 0
αi ∈ C

Simplifying, the system becomes

t−20 t−11 − β1 = 0

t1 − β2 = 0

forwards : [1, u, u2]→ [u, u2, 1]→ [u2, 1, u]

backwards : [u2, u, 1]→ [u, 1, u2]→ [1, u2, u]

As the simplified system has 3 solutions, the cyclic 9 solution component
is a cubic surface. With the cyclic permutation, we obtain an orbit of 6
cubic surfaces, which satisfy the cyclic 9-roots system.
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Cyclic 16-Roots Polynomial System

Extending the pattern we observed among tropisms of the cyclic 9-roots,
v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2)
v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1)
we can get the correct cone of tropisms for the cyclic 16-roots.
v0 = (1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3)
v1 = (0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2)
v2 = (0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1)
Extending the solutions at infinity pattern,

cyclic 9-roots: u = e
2πi
3 → cyclic 16-roots: u = e

2πi
4

The 3-dimensional solution component of the cyclic 16-roots is given by:

x0 = t0

x1 = t0t1

x2 = t0t1t2

x3 = t−30 t−21 t−12

x4 = ut0

x5 = ut0t1

x6 = ut0t1t2

x7 = ut−30 t−21 t−12

x8 = u2t0

x9 = u2t0t1

x10 = u2t0t1t2

x11 = u2t−30 t−21 t−12

x12 = u3t0

x13 = u3t0t1

x14 = u3t0t1t2

x15 = u3t−30 t−21 t−12

This 3-dimensional cyclic 16-root solution component is a quartic surface.
Using cyclic permutation, we obtain 2 ∗ 4 = 8 components of degree 4.
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Cyclic n-Roots Polynomial System Summary

We now generalize the previous results for the cyclic n-roots systems.

Proposition For n = m2, there is a (m − 1)-dimensional set of cyclic n-roots,
represented exactly as

xkm+0 = ukt0
xkm+1 = ukt0t1
xkm+2 = ukt0t1t2

...
xkm+m−2 = ukt0t1t2 · · · tm−2
xkm+m−1 = ukt−m+1

0 t−m+2
1 · · · t−2m−3t−1m−2

for k = 0, 1, 2, . . . ,m − 1 and uk = e i2kπ/m.

Proposition The (m − 1)-dimensional solutions set has degree equal to m.

Applying cyclic permutation, we can find 2m components of degree m.
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