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Abstract

In this paper we outline an algorithmic approach to compute Puiseux series expansions
for algebraic surfaces. The series expansions originate at the intersection of the surface with
as many coordinate planes as the dimension of the surface. Our approach starts with a
polyhedral method to compute cones of normal vectors to the Newton polytopes of the given
polynomial system that defines the surface. If as many vectors in the cone as the dimension
of the surface define an initial form system that has isolated solutions, then those vectors
are potential tropisms for the initial term of the Puiseux series expansion. Our preliminary
methods produce exact representations for solution sets of the cyclic n-roots problem, for
n = m2, corresponding to a result of Backelin.

Keywords. algebraic surface, binomial system, cyclic n-roots problem, initial form, Newton
polytope, orbit, permutation symmetry, polyhedral method, Puiseux series, sparse polynomial
system, tropism, unimodular transformation.

1 Introduction

We presented polyhedral algorithms to develop Puiseux expansions, for plane curves in [2] and
for space curves in [1], based on ideas described in [32]. In this paper we explain a polyhedral
approach to compute series developments for algebraic sets. Although we use the numerical solver
of PHCpack [31], one may use any solver for the leading coefficients of the series and obtain a
purely symbolic method. We implemented our methods using Sage [28].

We could reduce the treatment of algebraic sets to the curve case by adding sufficiently many
hyperplanes in general position to cut out a curve on the set. This approach [26] is not flexible
enough to exploit permutation symmetry as the added general hyperplanes ignore the symmetric
structure of the polynomial system.

∗This material is based upon work supported by the National Science Foundation under Grant No. 1115777.
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Although presently we do not have a fully automatic implementation suitable for benchmark-
ing on a large class of polynomial systems, we have obtained promising results on the cyclic n-root
systems:





x0 + x1 + · · ·+ xn−1 = 0

x0x1 + x1x2 + · · · + xn−2xn−1 + xn−1x0 = 0

i = 3, 4, . . . , n− 1 :
n−1∑

j=0

j+i−1∏

k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

(1)

The cyclic n-roots system is a standard benchmark problem in computer algebra, relevant to
operator algebras. We refer to [30] for recent advances in the classification of complex Hadamard
matrices. In [12], the close relationship of (1) with some systems occurring in optimal design of
filter banks is stressed. The numerical factorization of the two dimensional surface of cyclic 9-
roots into 6 irreducible cubics was reported in [25]. Recent results for the cyclic 12-roots problem
can be found in [23].

Surprisingly, while looking to develop Puiseux series for algebraic sets, for cyclic 9-roots we
found exact results: the first term of the series satisfies the entire polynomial system. These exact
result correspond to known (see e.g. [4] or [12]) configurations of cyclic n-roots.

The type of polynomial systems targeted by the polyhedral approach are sparse polynomial
systems. We introduce our approach in the next section with a very particular sparse class of
systems. We use unimodular transformations to work with points at infinity. The second section
ends with a general approach to solve a binomial system.

To find the initial coefficients in the Puiseux series we look for initial form systems, systems
that have fewer monomials than the original systems and that are supported on faces of the
Newton polytopes. Faces of the Newton polytopes that define the initial forms are determined
by their inner normals. Those inner normals that define the initial form systems are the leading
powers (called tropisms) of generalized Puiseux series. The leading coefficients of the series vanish
at the initial form systems.

In the third section we define initial form systems, give an illustrative example, and describe
the degeneration of a d-dimensional algebraic set along a path towards the intersection with
the first d coordinate planes. Polyhedral methods give us cones of pretropisms and initial form
systems that may lead to initial coefficients of Puiseux series. We end this paper giving an exact
description of positive dimensional sets of cyclic n-roots.

Related work. A geometric resolution of a polynomial system uses a parameterization of the
coordinates [14] for global version of Newton’s iterator [9]. Our algorithms arose from an un-
derstanding of [6, Theorem B] and are inspired by tropical methods [7] and in particular by the
constructive proof of the fundamental theorem of tropical algebraic geometry [20]. Puiseux series
occur perhaps most often in the resolution of singularities, [3] describes an extension of Newton’s
method using the notion of tropical variety. Software related to [20] is Gfan [18] and the Singular
library tropical.lib [19].

Connections with Gröbner bases are described in [29]. Polyhedral and tropical methods
for finiteness proofs in celestial mechanics are explained in [16] and [17]. Truncations of two
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dimensional varieties are studied in [21]. The unimodular coordinate transformations are related
to power transformations in [8]. A Newton-Puiseux algorithm for polynomials in several variables
is described in [5]. In [22], fractional power series solutions are developed for generic systems.

Acknowledgements. We thank Marc Culler for mentioning the Smith normal form for uni-
modular transformations. We appreciate the comments of the reviewers.

2 Binomial Systems

We aim to solve sparse polynomial systems, systems of polynomials with relatively few monomials
appearing with nonzero coefficient. The sparsest polynomial systems which admit solutions with
nonzero values for all coordinates consist of exactly two monomials in every equation and we call
such systems binomial systems. See e.g.: [10] and [11] for more on binomial ideals.

To represent a d-dimensional solution set S intersecting the first d coordinate planes in as
many regular isolated points as the degree of S, the first d variables can serve as independent
parameters. The parameterizations that are of interest to us start with the generators of cones
of normal vectors defining initial forms of polynomial systems.

2.1 An Example

Consider for example {
x20x1x

4
2x

3
3 − 1 = 0

x0x1x2x3 − 1 = 0.
(2)

We write the exponent vectors in the matrix

A =

[
2 1 4 3
1 1 1 1

]
(3)

and we look for a basis of the null space of A. Two linearly independent vectors that satisfy Ax = 0

are for example u = (−3, 2, 1, 0) and v = (−2, 1, 0, 1). Placing u and v in the columns of a
matrix M leads to a coordinate transformation:

M =




−3 −2 1 0
2 1 0 1
1 0 0 0
0 1 0 0








x0 = y−3
0 y−2

1 y2
x1 = y20y1y3
x2 = y0
x3 = y1.

(4)

The coordinate transformation x = yM eliminates y0 and y1 — because u and v are in the null
space of A — as substituting the coordinates corresponds to computing Au and Av, reducing
the given system to {

y22y3 − 1 = 0
y2y3 − 1 = 0.

(5)

Solving the reduced system in (5) gives values for y2 and y3 which after substitution in the
coordinate transformation in (4) yields an explicit solution for the original system in (2) with y0
and y1 as parameters.
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2.2 Unimodular Transformations

In the previous section we constructed in (4) a unimodular coordinate transformation x = yM ,
where det(M) = ±1. In the new y coordinates all points that make the same inner product of
the ith row of the given exponent matrix A will have the same value for yi.

The null space of the matrix A is stored in the rows of the matrix B: ABT = 0. The
Smith normal form of B consists of the triplet (U,S, V ), where U and V are unimodular matrices
(det(U) = ±1 and det(V ) = ±1), and the only nonzero elements of S are on the diagonal:
UBV = S.

If U equals the identity matrix, then UBV = S implies B = SV −1. This means that for
any x, the outcome of Bx is the same as SV −1x. If moreover S contains the identity matrix,
then V −1 defines the unimodular transformation M . The next examples illustrates the case of
general U but where S contains the identity matrix.

For the matrix A in (3), the matrix B has in its two rows the vectors u and v so that ABT = 0:

B =

[
−3 2 1 0
−2 1 0 1

]
. (6)

The computation of the Smith normal form of B with GAP [15] (from the console in Sage [28])
gives

U =

[
1 −2
2 −3

]
, S =

[
1 0 0 0
0 1 0 0

]
, (7)

and

V =




1 0 1 −2
0 1 2 −3
0 0 1 0
0 0 0 1


 . (8)

We use the inverses U−1 and V −1 to construct a unimodular transformation extending U−1 with
the identity matrix, as follows:




−3 2 0 0
−2 1 0 0
0 0 1 0
0 0 0 1







1 0 1 −2
0 1 2 −3
0 0 1 0
0 0 0 1


 (9)

and this product gives the transpose of M , the matrix in the unimodular transformation of (4).
This examples illustrates the case when U is not the identity matrix and where we may ignore S

as its diagonal elements are all equal to one.

We point out that the vectors in the null space of the exponent matrix A as in (3) are typically
normalized so that the greatest common divisors of the components of the vectors equals one.
We may change coordinates so that the first vector in the null space has only its first coordinate
different from zero, the second vector in the null space can have nonzero entries only in the first
two coordinates, etc.
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Although we prefer to represent the solution set using only integer exponents for the param-
eters, this is not always possible, consider for example

B =

[
2 6 17 9
4 14 13 3

]
. (10)

The divisors for the two rows of B (and the denominators of the exponents of the parameters) are
obtained via the Hermite normal form of B: UB = H, where U is a square unimodular matrix
and H an upper triangular matrix. We assume that B is full rank and that the columns have
been permuted so H has only nonzero elements on its diagonal. Let D be a diagonal matrix of
the same dimensions as U which takes its elements from the corresponding diagonal elements of
the matrix H. Then the coordinate transformation is defined by

M =

[
D−1B

0 I

]
. (11)

where I is the identity matrix. To show that the determinant of M equals ±1, consider the
extended unimodular matrix

Û =

[
U 0

0 I

]
. (12)

Because U is unimodular, det(Û ) = ±1 and det(ÛM) = ± det(M). We have det(ÛM) = ±1,
because ÛM is an upper triangular matrix with ±1 on its diagonal as a result of the multiplication
by D−1.

Note that the rational exponents will appear only in the powers of the parameters as per-
forming the coordinate transformation x = yM on the system xA − c = 0 eliminates the first d
variables of the d-dimensional solution set.

2.3 Solving Binomial Systems

We denote a binomial system by xA − c = 0, where A ∈ Zk×n and c = (c0, c1, . . . , ck−1)
T with

ci 6= 0 for all i = 0, 1, . . . , k − 1. If the rank of A equals k, then k is the codimension of the
solution set. Given the tuple (A, c), the solution set of xA − c = 0 is described by a unimodular
transformation M and a set of values for the last n− k variables.

In the sketch of the solution method below we assume that A has rank k, otherwise xA−c = 0

has no (n − k)-dimensional solution set for general values of c. The steps are as follows:

1. Compute the null space B of A, d = n− k.

2. Compute the Smith normal form (U,S, V ) of B.

3. Depending on U and S do one of the following:

• If U is the identity matrix, then M = V −1 and the first d variables have positive
denominators in their powers when not all elements on the diagonal of S are equal to
one.
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• If U is not the identity matrix and if all elements on the diagonal of S are one, then
extend U−1 with an identity matrix to obtain an n-by-n matrix E that has U−1 in its
first d rows and columns. Then, M = EV −1.

• In all other cases, define M as in (11).

4. After the coordinate transformation x = yM , compute the leading coefficients solving a
binomial system of k equations in k unknowns. Return M and the corresponding solutions
of the binomial system.

The solution procedure for binomial systems outlined above returns a representation with d

parameters for the d-dimensional solution set which can geometrically interpreted as follows. For
zero values of the parameters, we obtain the points of the solution set intersected with the first
d coordinate hyperplanes. For nonzero values of the parameters, the powers of the parameters
correspond to a choice of the basis for the null space of the exponent matrix of the binomial
system.

3 Sparse Polynomial Systems

To look for d-dimensional components of sparse polynomial systems, we investigate solutions of
initial forms defined by cones of normal vectors. In order for the initial form systems to have
solutions with all coordinates different from zero, they need to be at least binomial systems.

Although not all (and perhaps only few) initial form systems are binomial, the unimodular
transformations explained in §2.2 are applied on a matrix of pretropisms.

3.1 Initial Forms

A polynomial f in n variables x = (x0, x1, . . . , xn−1) is denoted as

f(x) =
∑

a∈A

cax
a, ca ∈ C \ {0}, (13)

xa = xa00 xa11 · · · xan−1

n−1 , where A is the set of all exponents of monomials with nonzero coefficient.
The set A is the support of f and the convex hull of A is the Newton polytope P of f . Any nonzero
vector v defines a face of P , spanned by

inv(A) = { b ∈ A | 〈b,v〉 = min
a∈A

〈a,v〉 }, (14)

where 〈·, ·〉 denotes the usual inner product of two vectors. We use the notation inv(A) because
a face of a support set defines an initial form of the polynomial f :

inv(f)(x) =
∑

a∈inv(A)

cax
a, (15)

where A is the support of f . For a system f(x) = 0 and a nonzero vector v, the initial form
system inv(f)(x) = 0 is defined by the initial forms of the polynomials f with respect to v.

Because the initial coefficients of Puiseux series expansions are solutions to initial form sys-
tems, the initial forms we consider must have at least two monomials, otherwise the solutions will
have coordinates equal to zero and are unfit as leading coefficients in a Puiseux series development.
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3.2 An Illustrative Example

In this section we indicate how the presence of a higher dimensional solution set manifests itself
from the relative position of the Newton polytopes of the polynomials in the system. To illustrate
a numerical irreducible decomposition of the solution set of a polynomial system, the following
system was used in [24]:

f(x, y, z) =



(y − x2)(x2 + y2 + z2 − 1)(x− 0.5) = 0

(z − x3)(x2 + y2 + z2 − 1)(y − 0.5) = 0

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5)=0

(16)

The solution set Z = f−1(0) is decomposed as

Z = Z2 ∪ Z1 ∪ Z0 (17)

= {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01} (18)

where

1. Z21 is the sphere x2 + y2 + z2 − 1 = 0,

2. Z11 is the line (x = 0.5, z = 0.53),

3. Z12 is the line (x =
√
0.5, y = 0.5),

4. Z13 is the line (x = −
√
0.5, y = 0.5),

5. Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0),

6. Z01 is the point (x = 0.5, y = 0.5, z = 0.5).

A first cascade of homotopies in [24] needed 197 solution paths to compute generic points on all
components. The equation-by-equation solver of [27] reduced the number of paths down to 13.
The Newton polytopes of the polynomials in the system are displayed in Figures 1 and 2.

Consider a point on the 2-dimensional solution component of f−1(0) and let the first coordi-
nate of that point go to zero. As x1 = t → 0:

in(1,0,0)(f)(x, y, z)

=





y(y2 + z2 − 1)(−0.5) = 0

z(y2 + z2 − 1)(y − 0.5) = 0

yz(y2 + z2 − 1)(z − 0.5) = 0.

(19)

Alternatively, as x2 = s → 0, we end up at a solution of the initial form system:

in(0,1,0)(f)(x, y, z)

=





−x2(x2 + z2 − 1)(x− 0.5) = 0

(z − x3)(x2 + z2 − 1)(−0.5) = 0

−x2(z − x3)(x2 + z2 − 1)(z − 0.5) = 0.

(20)
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Figure 1: From top to bottom, we see the Newton polytopes of f1 and f2, the polynomials in (16).
The edges of the faces of the polytopes with normals (1, 0, 0) and (0, 1, 0) are marked in bold,
respectively in red (thick solid lines) and black (thick dashed lines).

Looking at the Newton polytopes along v = (1, 0, 0) and v = (0, 1, 0), we consider faces of
the Newton polytopes, see Figures 1 and 2.

Combining the two degenerations, we arrive at the initial form system:

in(0,1,0)(in(1,0,0)(f))(x, y, z)

=





y(z2 − 1)(−0.5) = 0

z(z2 − 1)(−0.5) = 0

yz(z2 − 1)(z − 0.5) = 0

(21)

The factor z2 − 1 is shared with in(1,0,0)(in(0,1,0)(f))(x, y, z).

Based on these degenerations, we arrive at the following representation for a solution surface.
The sphere is two dimensional, x and y are free:





x = t0
y = t1
z = 1 + c0t

2
0 + c1t

2
1.

(22)

For t0 = 0 and t1 = 0, z = 1 is a solution of z2 − 1 = 0. Substituting (x = t0, y = t1, z =
1 + c0t

2
0 + c1t

2
1) into the original system gives linear conditions on the coefficients of the second

term: c0 = −0.5 and c1 = −0.5.

3.3 Asymptotics of Algebraic Surfaces and Puiseux Series

Denoting by d the dimension of the algebraic surface defined by f(x) = 0, for x ∈ Cn, we assume
the defining equations are in Noether position so we may specialize the first d coordinates to
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Figure 2: The Newton polytopes of the third polynomial in (16). The edges of the faces of the
polytopes with normals (1, 0, 0) and (0, 1, 0) are marked in bold, respectively in red (thick solid
lines) and black (thick dashed lines).

random complex numbers in f(x) = 0 and obtain a system with isolated solutions. Moreover, we
assume that when specializing the first d variables to zero, the algebraic set remains of dimension d.
Geometrically this means that we assume that the algebraic set meets the first d coordinate planes
(perpendicular to the first d coordinate axes) properly.

We consider what happens when starting at a random point on the surface we move the first
d coordinates to zero. For simplicity of notation we take d = 2 and consider a multiparameter
family of polynomial systems:





f(x) = 0

x0 = c0t0
x1 = c1t

v0,1
0 t

v1,1
1 (c1,1 +O(t0, t1)),

(23)

with c0, c1, c1,1 ∈ C \ {0}, v0,1, v1,1 ∈ Q, letting t0 and t1 go from 1 to 0, starting at a generic
point on the surface with its first two coordinates equal to c0 and c1.

The multiparameter family in (23) specifies the last equation as a series to leave enough
freedom for the actual shape of the surface. While we may always move x0 as going linearly to
zero, with x0 = c0t0, the second coordinate of a point along a path on the surface may no longer
move linearly. Taking x1 as c1t1 would be too restrictive.

As we move x0 to zero as t0 goes to zero, then x1 can go to zero as well if v0,1 > 0 and
v1,1 > 0, or go to infinity if v0,1 < 0 or v1,1 < 0, or go to c1c1,1 if both v0,1 = 0 and v1,1 = 0.
The multiparameter family in (23) contains what we define as a multiparameter version of a
Puiseux series for algebraic curves. Similar to x1, the other components of the moving point can
be developed as a generalized Puiseux series

xk = ckt
v0,k
0 t

v1,k
1 (c1,k +O(t0, t1)), (24)
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ck, c1,k ∈ C \ {0}, v0,k, v1,k ∈ Q. If in the limit — when t0 and t1 are both zero — the solution is
finite and of multiplicity one, and if the powers in the series are positive integer numbers, then
the generalized Puiseux series coincides with a multivariate Taylor series.

As t0 and t1 go to zero, the system F (t0, t1) = 0 — obtained after replacing x0 and x1 using
the last two equations of (23) and after substituting (24) for the remaining n−2 into f(x) = 0 —
must have at least two monomials with lowest power in t0 and lowest power in t1 in every equation
because ck, c1,k ∈ C \ {0} for all k = 0, 1, . . . , n − 1. We call the part of f(x) = 0 corresponding
to F (t0, t1) with lowest powers of t0 and t1 the initial form system of f(x) = 0 with respect to
the normal vectors v0 = (1, v0,1, v0,1, . . . , v0,n−1) and v1 = (0, v1,1, v1,2, . . . , v1,n−1). Because the
normal vectors are the leading powers of the generalized Puiseux series, v0 and v1 can be called
tropisms in analogy to the case of algebraic curves.

The derivation of Puiseux series for an algebraic set in any dimension d if formulated as
follows.

Proposition 3.1. If f(x) = 0 is in Noether position and defines a d-dimensional solution set
in Cn, intersecting the first d coordinate planes in regular isolated points, then there are d linearly
independent tropisms v0,v1, . . . vd−1 ∈ Qn so that the initial form system inv0

(inv1
(· · · invd−1

(f) · · · ))(x =
yM ) = 0 has a solution c ∈ (C \ {0})n−d. This solution and the tropisms are the leading coeffi-
cients and powers of a generalized Puiseux series expansion for the algebraic set:

x0 = t
v0,0
0

x1 = t
v0,1
0 t

v1,1
1

...

xd−1 = t
v0,d−1

0 t
v1,d−1

1 · · · tvd−1,d−1

d−1

xd = c0t
v0,d
0 t

v1,d
1 · · · tvd−1,d

d−1 + · · ·

xd+1 = c1t
v0,d+1

0 t
v1,d+1

1 · · · tvd−1,d+1

d−1 + · · ·
...

xn = cn−d−1t
v0,n−1

0 t
v1,n−1

1 · · · tvd−1,n−1

d−1 + · · ·

(25)

Proof. Because the set defined by f(x) = 0 is in Noether position, we can let the first d variables
go to zero, using for example a multiparameter homotopy as in (23) and still obtain regular
isolated solutions, denoted as (0, 0, . . ., 0, c0, c1, . . . , cn−d−1) ∈ Cn.

The tropisms v0, v1, . . ., vd−1 define the initial form system, i.e.: those monomials in the
system f(x) = 0 that become dominant as the parameters t0, t1, . . ., td−1 move to zero. In
particular: for any vector v in the cone spanned by the tropisms, we have that every monomial
xa in the initial form system makes minimal inner product 〈a,v〉, minimal with respect to any
other monomial xb not in the initial form system, i.e.: 〈a,v〉 ¡ 〈b,v〉.

Because the leading terms of the Puiseux series vanish at the initial form system, the inner
product with the monomials and the leading powers must be minimal compared to all other
monomials in the system. Hence the shape of the Puiseux series.
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3.4 Polyhedral Methods

In our algorithm to develop Puiseux series developments for algebraic sets, Proposition 3.1 is
applied as follows. If we are looking for an algebraic set of dimension d and

• if there are no cones of vectors perpendicular to edges of the Newton polytopes of f(x) = 0

of dimension d, then the system f(x) = 0 has no solution set of dimension d that intersects
the first d coordinate planes properly; otherwise

• if a d-dimensional cone of vectors perpendicular to edges of the Newton polytopes exists,
then that cone defines a part of the tropical prevariety.

We call a vector perpendicular to at least one edge of every Newton polytope of f(x) = 0 a
candidate tropism or pretropism.

Algorithms to compute a tropical prevariety are described in [7]. As we outlined in [1], we
applied cddlib [13] to the Cayley embedding of the Newton polytopes of the system to compute
pretropisms. With the Cayley embedding we managed to compute all pretropisms of the cyclic
12-roots problem, reported in [1].

For highly structured problems such as the cyclic n-roots problem, a tropism found at lower
dimension often occurs also in extended form for higher dimensions. For example, for n = 4, a
tropism is (+1,−1,+1,−1) which extends directly to (+1,−1,+1,−1,+1,−1,+1,−1) for n = 8
and (+1,−1,+1,−1,+1,−1,+1,−1,+1,−1,+1,−1) for n = 12, and any n that is a multiple
of 4.

In addition to the extraneous results reported from the Cayley embedding, it suffices to restrict
to pretropisms with positive first coordinate because geometrically we intersect the solution set
with the coordinate hyperplane perpendicular to the x0-axes at the end of moving x0 to zero.
Allowing a negative first exponent in the first pretropism corresponds to intersecting the solution
set at infinity, when in the limit we let x0 go to infinity.

In any case, after the computation of pretropisms, exploiting permutation symmetry is rela-
tively straightforward as we can group the pretropisms in orbits and process only one generator
per orbit.

3.5 Puiseux Series for Algebraic Sets

The approach to develop Puiseux series proceeds as follows. For every d-dimensional cone C of
pretropisms:

1. We select d linearly independent generators to form the d-by-n matrix A and the corre-
sponding unimodular transformation x = yM .

2. Because the matrix A contains pretropisms, the initial form system inv0
(inv1

(· · · invd−1
(f) · · · ))(x) =

0 determined by the rows v0, v1, . . ., vd−1 of A has at least two monomials in every equa-
tion. If the initial form system has no solution with all coordinates different from zero, then
we move to the next cone C and return to step 1, else we continue with the next step.
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3. Solutions of the initial form system found in the previous step may be leading coefficients
in a potential Puiseux series with corresponding leading powers equal to the pretropisms. If
the leading term satisfies the entire polynomial system, then we report an explicit solution
of the system and we continue processing the next cone C. Otherwise, we take the current
leading term to the next step.

4. If there is a second term in the Puiseux series, then we have computed an initial development
for an algebraic set and report this development in the output.

To compute in the last step a second term in a multivariate Puiseux series seems very com-
plicated, but we point out that it is not necessary to compute the second term in all d variables.
To ensure that a solution of an initial form system is not isolated, it suffices that we can compute
a series development for a curve starting at that solution. In practice this means that we may
restrict all but one free variable in the series development and apply the methods we outlined
in [1] for the computation of the second term of the Puiseux series for a space curve.

With Puiseux series, the solutions of the initial form system can be extended to form a
witness set. A witness set [26] is a numerical data structure for positive dimensional solution sets
of polynomial systems. Depending on the heights of the powers in the series, we may need more
than the second term to ensure convergence with Newton’s method.

4 Applications

Our polyhedral approach enables to compute exact representations for positive dimensional so-
lution sets of the cyclic n-roots problem (1).

4.1 On cyclic 9-roots

Taking n = 9 in (1), for cyclic 9-roots, we show that our solution can be transformed into the
same format as in the proof we found in [12, Lemma 1.1] of the statement in [4] that square
divisors of n lead to infinitely many cyclic n-roots.

Among the tropisms computed by cddlib [13] on the Cayley embedding of the Newton
polytopes of the system, there is a two dimensional cone of normal vectors spanned by u =
(1, 1,−2, 1, 1,−2, 1, 1,−2) and v = (0, 1,−1, 0, 1,−1, 0, 1,−1). The vectors u and v are tropisms.
The initial form system inu(inv(f))(x) = 0 is
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x2 + x5 + x8 = 0
x0x8 + x2x3 + x5x6 = 0

x0x1x2 + x0x1x8 + x0x7x8 + x1x2x3
+ x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7

+ x6x7x8 = 0
x0x1x2x8 + x2x3x4x5 + x5x6x7x8 = 0

x0x1x2x3x8 + x0x5x6x7x8 + x2x3x4x5x6 = 0
x0x1x2x3x4x5 + x0x1x2x3x4x8

+ x0x1x2x3x7x8 + x0x1x2x6x7x8
+ x0x1x5x6x7x8 + x0x4x5x6x7x8
+ x1x2x3x4x5x6 + x2x3x4x5x6x7

+ x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x8 + x0x1x2x5x6x7x8

+ x2x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x6x8 + x0x1x2x3x5x6x7x8

+ x0x2x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x6x7x8 − 1 = 0.

(26)

Although not binomial, inu(inv(f))(x) = 0 is is significantly sparser and thus easier to solve than
the original system. To solve inu(inv(f))(x) = 0, we eliminate x0 and x1 with a unimodular
coordinate transformation M that has u and v on its first two rows. The last seven rows of M
are zero except for the ones on the diagonal:

M =




1 1 −2 1 1 −2 1 1 −2
0 1 −1 0 1 −1 0 1 −1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




. (27)

The matrix M defines the unimodular coordinate transformation x = yM :

x0 = y0
x1 = y0y1
x2 = y−2

0 y−1
1 y2

x3 = y0y3
x4 = y0y1y4
x5 = y−2

0 y−1
1 y5

x6 = y0y6
x7 = y0y1y7
x8 = y−2

0 y−1
1 y8.

(28)

The transformation x = yM reduces the initial form system inu(inv(f))(x = yM ) = 0 to a system
of 9 equations in 7 unknowns.

After adding two slack variables to square the system (see [26] for an illustration of introducing
slack variables), the mixed volume equals 326. In contrast, the mixed volume of the original
polynomial system equals 20,376.

We find that the entire cyclic 9-roots system vanishes at this first term of the series expansion.
Recognizing the numerical roots as primitive roots of unity leads to an exact representation of
the two dimensional set of cyclic 9-roots.
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Denoting by u = ei2π/3 the primitive third root of unity, u3 − 1 = 0, our representation of the
solution set is

x0 = t0
x1 = t0t1
x2 = t−2

0 t−1
1 u2

x3 = t0u

x4 = t0t1u

x5 = t−2
0 t−1

1

x6 = t0u
2

x7 = t0t1u
2

x8 = t−2
0 t−1

1 u.

(29)

Introducing new variables y0 = t0, y1 = t0t1, and y2 = t−2
0 t−1

1 u2, our representation becomes

x0 = y0
x1 = y1
x2 = y2

x3 = y0u

x4 = y1u

x5 = y2u

x6 = y0u
2

x7 = y1u
2

x8 = y2u
2

(30)

which modulo y30y
3
1y

3
2u

9 − 1 = 0 satisfies by plain substitution the cyclic 9-roots system, as in the
proof of [12, Lemma 1.1].

Note that the representation in (29) allows a quick computation of the degree of the surface.
This degree equals the number of points in the intersection of the surface with two random
hyperplanes. Using (29) for points on the surface, the two random hyperplanes become a system
in the monomials t0, t0t1, and t−2

0 t−1
1 :

{
α1t0 + α1,2t0t1 + α−2,−1t

−2
0 t−1

1 = 0

β1t0 + β1,2t0t1 + β−2,−1t
−2
0 t−1

1 = 0
(31)

for some complex numbers αi,j and βi,j . The above system is equivalent to the system

{
t−3
0 t−1

1 − c0 = 0
t1 − c1 = 0

(32)

for some c0, c1 ∈ C. We see that for any nonzero c0 and c1, the system has three solutions. So the
algebraic surface represented in (29) is a cubic surface. Using other roots of unity and permuting
variables leads to an entire orbit of cubic surfaces.

Using the representation (30), we arrange the position of the coefficients with u as a third
root of unity:

1 u u2

u u2 1
u2 1 u

u2 u 1
u 1 u2

1 u2 u

(33)

shifting the variables in forward and backward order. So the one cubic surface leads to an orbit
of 6 cubic surfaces, corresponding with our numerical results of [25].

4.2 On cyclic m
2-roots

While the Cayley embedding becomes too wasteful to extend the computation of all candidate
tropisms beyond n = 12, by the structure of the tropisms for n = 9 we can predict the tropisms
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for cyclic 16-roots:

u = (1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3),
v = (0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2),
w = (0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1),

(34)

and the corresponding initial form solutions are primitive fourth roots of unity. Similar to (29)
and (30) we can show that the exact representation obtained with tropical methods corresponds
to what is in the proof of [12, Lemma 1.1].

A general pattern for surfaces of cyclic m2-roots is below.

Proposition 4.1. For n = m2, there is an (m− 1)-dimensional set of cyclic n-roots, represented
exactly as

xkm+0 = ukt0
xkm+1 = ukt0t1
xkm+2 = ukt0t1t2

...
xkm+m−2 = ukt0t1t2 · · · tm−2

xkm+m−1 = ukt
−m+1
0 t−m+2

1 · · · t−2
m−3t

−1
m−2

(35)

for k = 0, 1, 2, . . . ,m− 1 and uk = ei2kπ/m.

The substitution t0 = s0, t0t1 = s1, t0t1t2 = s2, . . ., t
−m+1
0 t−m+2

1 · · · t−2
m−3t

−1
m−2 = s−1

0 s−1
1 · · · s−1

m−2

simplifies (35).

Proposition 4.2. The (m− 1)-dimensional solution set in (35) has degree equal to m.

Proof. To determine the degree of an (m− 1)-dimensional algebraic set, we intersect the set with
m − 1 hyperplanes with random coefficients. In any linear equation we replace the x-variables
using the equations in (35), dividing each equation by t0 to obtain a nonzero constant coefficient.
Because every xj corresponds to one monomial in t0, t1, . . ., tm−1, bringing the coefficient matrix
into a reduced row echelon form leads to a binomial system of m−1 equations in m−1 unknowns:





t−m
0 t−m+2

1 t−m+3
2 · · · t−1

m−2 − c0 = 0
t1 − c1 = 0

t1t2 − c2 = 0
...

t1t2t3 · · · tm−2 − cm−2 = 0

(36)

Collecting the coefficients (c0, c1, c2, . . . , cm−2) in c and the exponents in a matrix A, we denote
the binomial system as tA = c with

A =




−m −m+ 2 −m+ 3 · · · −2 −1
0 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 1 1 · · · 1 0
0 1 1 · · · 1 1




. (37)
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The binomial system has |det(A)| = m solutions and therefore the degree equals m.

Applying the permutation symmetry, shifting the variables forward and backward as in (33),
we find 2m components of degree m.
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