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Introduction

goal: use polyhedral methods and Puiseux series to solve systems of
polynomials

space curves

surfaces

main objects

tropism

Puiseux series

focus: exploitation of symmetry
illustration on cyclic n-roots benchmark problems

cyclic n-roots polynomial systems, n = 4, 5, 8, 9, 12, 24

assumptions on the space curves/surfaces we can find:

they are reduced, free of multiplicities

in general position with respect to

x1 = 0 (space curves)
x1 = 0 and x2 = 0 (2D surfaces)
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Fundamental Theorem

Theorem (Fundamental Theorem Of Tropical Algebraic Geometry)

ω ∈ Trop(I ) ∩Qn ⇐⇒ ∃p ∈ V (I ) : −val(p) = ω ∈ Qn.

Rephrasing the Theorem:

Every rational vector in the tropical variety corresponds to the leading
powers of a Puiseux series, converging to a point in the algebraic variety.

For a constructive proof of the Fundamental Theorem, we refer to
Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
An Algorithm for Lifting Points in a Tropical Variety.
Collect. Math. vol. 59, no. 2, pages 129–165, 2008.

We see Fundamental Theorem of Tropical Algebraic Geometry as a
generalization of Bernshtein’s Theorem B.
We use Bernshtein’s Theorem A &B as a way to solve polynomial systems
with polyhedral methods.
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Cyclic n-roots Polynomial Systems

The cyclic n-roots polynomial systems are benchmark problems for
polynomial system solvers.

F (x) =




f1 = x0 + x1 + · · ·+ xn−1 = 0

f2 = x0x1 + x1x2 + · · ·+ xn−2xn−1 + xn−1x0 = 0

i = 3, 4, . . . , n − 1 :
n−1∑
j=0

i∏
k=j

xk mod n = 0

fn = x0x1x2 . . . xn−1 − 1 = 0

cyclic n-roots polynomial systems:

square systems: we expect isolated solutions

for cyclic 4, 8, 12, 24-roots, we have space curves

for cyclic 9-roots we have a 2D surface

J. Backelin: Square multiples n give infinitely many cyclic n-roots.
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.
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Basic Definitions

Polynomial System

F (x) =




f1 = 0
f2 = 0

...
fk = 0

x = (x1, x2, . . . , xn), fi ∈ C[x]

We define the support sets of F(x) = 0 to be:

(A1,A2, . . . ,Ak) = (Supp(f1),Supp(f2), . . . ,Supp(fk))

with Ai = ((a11, a12, . . . , a1n), (a21, a22, . . . , a2n), . . . , (aN1, aN2, . . . , aNn)),
where N is the number of monomials in fi , aj ∈ Z and (aj1, aj2, . . . , ajn)
are exponents of a monomial in fi .

Support set Ai of fi spans the Newton polytope as Pi = ConvexHull(Ai )
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The Cayley Embedding & Polytope

Cayley embedding CE of the set A

CE (A1,A2, . . .Ak) = (A1 × {0}k−1) ∪
k−1⋃
i=1

(Ai+1 × ei )

where ei denotes the i th vector of the standard basis.

Cayley polytope

C∆ = conv(CE ) ⊂ Rn+k−1

NOTE

We use the Cayley polytope as a way to combine all individual polytopes
into one polytope.

We use cddlib of K. Fukuda to find facet normals of the Cayley polytope.
We will refer to the facet normals as pretropisms.
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Tropisms and Space Curves

Definition (Pretropism)

A pretropism is a normal vector to at least an edge of each polytope.

a pretropism might generate a Puiseux series expansion of a space curve

Let V = (v1, v2, . . . , vn) be a pretropism, wi > 0, bi , ci ∈ C:

G (x, t) =




x1 = tv1(b1 + c1t
w1 + . . . )

x2 = tv2(b2 + c2t
w2 + . . . )

x3 = tv3(b3 + c3t
w3 + . . . )

...

xn = tvn(bn + cnt
wn + . . . )

Definition (Tropism)

A tropism is a pretropism which is the leading exponent vector of a
Puiseux series expansion for a curve, expanded about t = 0.
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Initial Ideal

Definition (Initial Form)

Let f be a polynomial with support A and let V be a pretropism. Then
the initial form inV (f ) is the sum of all monomials in f , where the inner
product 〈a,V 〉 reaches its minimum at least twice over a ∈ A.

Initial Form System

For a system F (x) = 0, F = (f1, f2, . . . , fk), and pretropism V , the initial
form system is defined by inV (F ) = (inV (f1), inV (f2), . . . , inV (fk)).

Solving initial form system leads to solutions at infinity that are isolated,
or to the leading coefficients of the Puiseux expansion of a curve.

Puiseux series expansion of a curve: solutions at infinity, denoted by bi

Let V = (v1, v2, . . . , vn) be a pretropism and let t denote a free variable:

xi = tvi (bi + ci t
wi + · · · ), i = 1, 2, . . . , n.
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Cyclic 4-Roots System

The only pretropism is (1,−1, 1,−1)

Cyclic 4-Roots Initial Form In Direction (1,−1, 1,−1)

in(1,−1,1,−1)(F )(x) =




x1 + x3 = 0

x0x1 + x0x3 + x1x2 + x2x3 = 0

x0x1x3 + x1x2x3 = 0

x0x1x2x3 − 1 = 0

Using U to transform in(1,−1,1,−1)(F ):

U =



1 −1 1 −1
0 1 0 0
0 0 1 0
0 0 0 1




x0 = z0; x1 =
z1
z0
; x2 = z0z2; x3 =

z3
z0

in(1,−1,1,−1)(F )(z) =


z1/z0 + z3/z0 = 0

z1z2 + z2z3 + z1 + z3 = 0

z1z2z3/z0 + z1z3/z0 = 0

z1z2z3 − 1 = 0
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Cyclic 4-Roots System

Cyclic 4-Root Polynomial System Transformed

in(1,−1,1,−1)(F )(z) =




z1 + z3 = 0

z1z2 + z2z3 + z1 + z3 = 0

z1z2z3 + z1z3 = 0

z1z2z3 − 1 = 0

Solutions of the transformed initial form system are
(z1 = 1, z2 = −1, z3 = −1) and (z1 = −1, z2 = −1, z3 = 1). Let z0 = t:

For cyclic 4-roots, the initial terms of the series are exact solutions


x0 = t1

x1 = t−1

x2 = −t1

x1 = −t−1

and




x0 = t1

x1 = −t−1

x2 = −t1

x1 = t−1
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Cyclic 5-Roots System

Cyclic 5-Roots Polynomial System

F (x) =




x0 + x1 + x2 + x3 + x4 = 0

x0x1 + x0x4 + x1x2 + x2x3 + x3x4 = 0

x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 = 0

x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x0x2x3x4 + x1x2x3x4 = 0

x0x1x2x3x4 − 1 = 0

has only isolated solutions

all Newton polytopes are in generic position

mixed volume is sharp and equals 70.

We want to exploit the cyclic permutation symmetry.
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Cyclic 5-Roots System

First 4 Equations of Cyclic 5-Roots Polynomial System

F (x) =




x0 + x1 + x2 + x3 + x4 = 0

x0x1 + x0x4 + x1x2 + x2x3 + x3x4 = 0

x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 = 0

x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x0x2x3x4 + x1x2x3x4 = 0

homogeneous system, i.e. embedded in projective space

the solutions are lines

tropism (1,1,1,1,1) or (−1,−1,−1,−1,−1), via unimodular
coordinate transformation:

eliminate one variable from the system
return the system to affine space
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Cyclic 5-Roots System

Unimodular matrix:

U =




1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




Coordinate transformation:

x0 = z0

x1 = z0z1

x2 = z0z2

x3 = z0z3

x4 = z0z4

in(1,1,1,1,1)(F )(z) =




z1 + z2 + z3 + z4 + 1 = 0

z1z2 + z2z3 + z3z4 + z1 + z4 = 0

z1z2z3 + z2z3z4 + z1z2 + z1z4 + z3z4 = 0

z1z2z3z4 + z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = 0
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Cyclic 5-Roots System

in(1,1,1,1,1)(F )(z) =




z1 + z2 + z3 + z4 + 1 = 0

z1z2 + z2z3 + z3z4 + z1 + z4 = 0

z1z2z3 + z2z3z4 + z1z2 + z1z4 + z3z4 = 0

z1z2z3z4 + z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = 0

has 14 isolated solutions, e.g.: z1 = c1, z2 = c2, z3 = c3, z4 = c4.
For z0 = t, in the original coordinates we have

x0 = t, x1 = tc1, x2 = tc2, x3 = tc3, x4 = tc4,

as representations for the 14 solution lines.
Substituting into the omitted equation x0x1x2x3x4 − 1 = 0, yields a
univariate polynomial in t of the form kt5 − 1 = 0, where k is a constant.
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Cyclic 5-Roots System

Out of the 14 solutions:

10 are of the form t5 − 1

accounting for 10× 5 = 50 solutions

2 are of the form (−122.99186938124345)t5 − 1

accounting for 2× 5 = 10 solutions

2 are of the form (−0.0081306187557833118)t5 − 1

accounting for 2× 5 = 10 solutions

Accounting for all 70 solutions of the cyclic 5-roots system.

NOTE

Additional symmetry: 1
(−122.99186938124345) ≈ −0.0081306187557833118.
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Cyclic 8-Roots System

Cyclic 8-roots system:

831 facet normals (computed with cddlib)

29 pretropism generators

5 lead to initial forms with solutions

(1,−1, 0, 1, 0, 0,−1, 0)
(1,−1, 1,−1, 1,−1, 1,−1)
(1, 0,−1, 0, 0, 1, 0,−1)
(1, 0,−1, 1, 0,−1, 0, 0)
(1, 0, 0,−1, 0, 1,−1, 0)

For the initial form solutions we used the blackbox solver of PHCpack.
Symbolic manipulations for the computation of the second term of the
Puiseux series were done with Sage.
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Cyclic 8-Roots System

For the pretropism V = (1,−1, 0, 1, 0, 0,−1, 0), the initial form system is

inV (F )(x) =




x1 + x6 = 0

x1x2 + x5x6 + x6x7 = 0

x4x5x6 + x5x6x7 = 0

x0x1x6x7 + x4x5x6x7 = 0

x0x1x2x6x7 + x0x1x5x6x7 = 0

x0x1x2x5x6x7 + x0x1x4x5x6x7 + x1x2x3x4x5x6 = 0

x0x1x2x4x5x6x7 + x1x2x3x4x5x6x7 = 0

x0x1x2x3x4x5x6x7 − 1 = 0

V defines the unimodular coordinate transformation: x0 = z0,
x1 = z1/z0, x2 = z2, x3 = z0z3, x4 = z4, x5 = z5, x6 = z6/z0, x7 = z7.
Using the new coordinates, we transform the initial form system inV (F )(x).
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Cyclic 8-Roots System

inV (F )(z) =




z1 + z6 = 0

z1z2 + z5z6 + z6z7 = 0

z4z5z6 + z5z6z7 = 0

z4z5z6z7 + z1z6z7 = 0

z1z2z6z7 + z1z5z6z7 = 0

z1z2z3z4z5z6 + z1z2z5z6z7 + z1z4z5z6z7 = 0

z1z2z3z4z5z6z7 + z1z2z4z5z6z7 = 0

z1z2z3z4z5z6z7 − 1 = 0

Solving inV (F )(z), we obtain 8 solutions (all in the same orbit). We select

z0 = t, z1 = −I , z2 =
−1

2
− I

2
, z3 = −1, z4 = 1 + I ,

z5 =
1

2
+

I

2
, z6 = I , z7 = −1− I , I =

√−1.
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Cyclic 8-Roots System

Taking solution at
infinity, we build a
series of the form:

z0 = t

z1 = −I + c1t

z2 =
−1

2
− I

2
+ c2t

z3 = −1 + c3t

z4 = 1 + I + c4t

z5 =
1

2
+

I

2
+ c5t

z6 = I + c6t

z7 = (−1− I ) + c7t

Plugging series form
into transformed
system, collecting all
coefficients of t1,
solving yields

c1 = −1− I

c2 =
1

2
c3 = 0

c4 = −1

c5 =
−1

2
c6 = 1 + I

c7 = 1

The second term in
the series, still in the
transformed
coordinates:

z0 = t

z1 = −I + (−1− I )t

z2 =
−1

2
− I

2
+

1

2
t

z3 = −1

z4 = 1 + I − t

z5 =
1

2
+

I

2
− 1

2
t

z6 = I + (1 + I )t

z7 = (−1− I ) + t
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Cyclic 8-Roots System

In certain instances one term in the Puiseux series satisfies the entire
system. The initial form in direction V = (1,−1, 1,−1, 1,−1, 1,−1) is
inV (F )(x) =




x1 + x3 + x5 + x7 = 0

x0x1 + x0x7 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 = 0

x0x1x7 + x1x2x3 + x3x4x5 + x5x6x7 = 0

x0x1x2x3 + x0x1x2x7 + x0x1x6x7 + x0x5x6x7

+ x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x4x5x6x7 = 0

x0x1x2x3x7 + x0x1x5x6x7 + x1x2x3x4x5 + x3x4x5x6x7 = 0

x0x1x2x3x4x5 + x0x1x2x3x4x7 + x0x1x2x3x6x7 + x0x1x2x5x6x7

+ x0x1x4x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x6 + x2x3x4x5x6x7 = 0

x0x1x2x3x4x5x7 + x0x1x2x3x5x6x7 + x0x1x3x4x5x6x7 + x1x2x3x4x5x6x7 = 0

x0x1x2x3x4x5x6x7 − 1 = 0
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Cyclic 8-Roots System

The unimodular matrix

U =




1 −1 1 −1 1 −1 1 −1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




and its corresponding coordinate transformation:

x0 = z0, x1 = z1/z0, x2 = z0z2, x3 = z3/z0,

x4 = z0z4, x5 = z5/z0, x6 = z0z6, x7 = z7/z0.

Danko Adrovic, Jan Verschelde (UIC) Polyhedral Methods for Algebraic Sets SIAM AG 2011, 6-9 October 21 / 36



Cyclic 8-Roots System

Initial form for V = (1,−1, 1,−1, 1,−1, 1,−1) after transformation,
inV (F )(z)

=




z1 + z3 + z5 + z7 = 0

z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z7 + z1 + z7 = 0

z1z2z3 + z3z4z5 + z5z6z7 + z1z7 = 0

z1z2z3z4 + z2z3z4z5 + z3z4z5z6 + z4z5z6z7 + z1z2z3

+ z1z2z7 + z1z6z7 + z5z6z7 = 0

z1z2z3z4z5 + z3z4z5z6z7 + z1z2z3z7 + z1z5z6z7 = 0

z1z2z3z4z5z6 + z2z3z4z5z6z7 + z1z2z3z4z5 + z1z2z3z4z7

+ z1z2z3z6z7 + z1z2z5z6z7 + z1z4z5z6z7 + z3z4z5z6z7 = 0

z1z2z3z4z5z6z7 + z1z2z3z4z5z7 + z1z2z3z5z6z7 + z1z3z4z5z6z7 = 0

z1z2z3z4z5z6z7 − 1 = 0

We then solve inV (F )(z).
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Cyclic 8-Roots System

Initial form system inV (F )(z) has 72 solutions. In particular

z0 = t

z1 = −1

z2 = I

z3 = −I

z4 = −1

z5 = 1

z6 = −I

z7 = I

I =
√−1

x0 = t

x1 = −1/t

x2 = It

x3 = −I/t

x4 = −t

x5 = 1/t

x6 = −It

x7 = I/t

satisfies the entire cyclic 8-roots polynomial system.
Applying symmetry, we can find the remaining 7 as well.
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Cyclic 8-Roots System

Definition (Branch Degree)

Let V = (v1, v2, . . . , vm) be a tropism and let R be the set of initial roots
of the initial form system inV (F )(z). Then the degree of the branch is

#R × | m
max
i=1

vi −
m
min
i=1

vi |

Tropisms, their cyclic permutations, and degrees:

(1,−1, 1,−1, 1,−1, 1,−1) 8× 2 = 16
(1,−1, 0, 1, 0, 0,−1, 0) → (1, 0, 0,−1, 0, 1,−1, 0) 8× 2 + 8× 2 = 32
(1, 0,−1, 0, 0, 1, 0,−1) → (1, 0,−1, 1, 0,−1, 0, 0) 8× 2 + 8× 2 = 32
(1, 0,−1, 1, 0,−1, 0, 0) → (1, 0,−1, 0, 0, 1, 0,−1) 8× 2 + 8× 2 = 32
(1, 0, 0,−1, 0, 1,−1, 0) → (1,−1, 0, 1, 0, 0,−1, 0) 8× 2 + 8× 2 = 32

TOTAL = 144

144 is the degree of the solution curve of the cyclic 8-root system.
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Cyclic 8-Roots System-Zero Dimensional Part

To find the isolated cyclic 8-roots exploiting symmetry
we proceed in a similar way as for the cyclic 5-roots system

The first 7 equations of the cyclic 8-roots system

are a homogeneous system, i.e.: as in projective space

the isolated solutions correspond to lines

tropism (1,1,1,1,1,1,1,1) or (−1,−1,−1,−1,−1,−1,−1,−1), via
unimodular coordinate transformation:

eliminate one variable from the system
return the system to affine space
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Cyclic 8-Roots System-Zero Dimensional Part

After unimodular coordinate transformation,
we find 144 isolated solutions of the first 7 equations.

For a solution (c1, c2, . . . , c7), the line in the original coordinates is

x0 = t, x1 = c1t, x2 = c2t, x3 = c3t,

x4 = c4t, x5 = c5t, x6 = c6t, x7 = c7t.

Substituting into the omitted equation x0x1x2x3x4x5x6x7 − 1 = 0, yields a
univariate polynomial in t of the form kt8 − 1 = 0, where k is a constant.
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Cyclic 8-Roots System

Among the 144 solutions, univariate polynomial ki t
8 − 1 = 0, for a

constant ki , may occur numerous times, as in the cyclic 5-roots case.
If ki t

8 − 1 = 0 occurs R times:

it contributes 8× R solutions to 1152

144× 8 = 1152 is the number of isolated cyclic 8-roots

We repeat this calculation for each unique occurrence of ki t
8 − 1 = 0 and

so obtain all the 1152 isolated solutions of the cyclic 8-roots system.
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Cyclic 12-Roots Polynomial System

The only tropisms is V = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1).
The generating solutions to the quadratic space curve solutions of the cyclic
12-roots problem are on the next slide.
They are given in the transformed coordinates.
For any solution generator (r1, r2, . . . , r11):

z0 = t, z1 = r1, z2 = r2, z3 = r3, z4 = r4, z5 = r5,

z6 = r6, z7 = r7, z8 = r8, z9 = r9, z10 = r10, z11 = r11

we return it to the original coordinates we obtain

x0 = t, x1 =
r1
t
, x2 = r2t, x3 =

r3
t
, x4 = r4t, x5 =

r5
t

x6 = r6t, x7 =
r7
t
, x8 = r8t, x9 =

r9
t
, x10 = r10t, x11 =

r11
t

Applying definition for the branch degree,

#R × | m
max
i=1

vi −
m
min
i=1

vi |,
we see that all space curves are quadric.

R. Sabeti. Numerical-symbolic exact irreducible decomposition of cyclic-12.
LMS Journal of Computation and Mathematics, 14:155172, 2011.
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Cyclic 12-Roots Polynomial System Cont.
Generators of the roots of the initial form system InV (C12)(z) = 0.

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11
1
2 +

√
3
2 I 1

2 −
√
3
2 I 1 −1

2 −
√
3
2 I 1

2 −
√
3
2 I −1 −1

2 −
√
3
2 I −1

2 +
√
3
2 I −1 1

2 +
√
3
2 I −1

2 +
√
3
2 I

1
2 +

√
3
2 I −1 1 1 1

2 −
√
3
2 I −1 −1

2 −
√
3
2 I 1 −1 −1 −1

2 +
√
3
2 I

1
2 +

√
3
2 I 1

2 +
√
3
2 I −1

2 −
√
3
2 I 1 1

2 −
√
3
2 I −1 −1

2 −
√
3
2 I −1

2 +
√
3
2 I 1

2 +
√
3
2 I −1 −1

2
1
2 −

√
3
2 I −1 −1

2 −
√
3
2 I 1 −1 −1 −1

2 +
√
3
2 I 1 1

2 +
√
3
2 I −1 1

−1
2 −

√
3
2 I 1

2 −
√
3
2 I −1 −1

2 +
√
3
2 I −1

2 −
√
3
2 I −1 1

2 −1
2 +

√
3
2 I 1 1

2 −
√
3
2 I 1

2 +
√
3
2 I

1 1
2 −

√
3
2 I −1 1 −1

2 −
√
3
2 I −1 −1 −1

2 +
√
3
2 I 1 −1 1

2 +
√
3
2 I

−1
2 +

√
3
2 I 1

2 −
√
3
2 I 1

2 +
√
3
2 I −1

2 −
√
3
2 I −1

2 −
√
3
2 I −1 1

2 +
√
3
2 I −1

2 +
√
3
2 I −1

2 +
√
3
2 I 1

2 +
√
3
2 I 1

2 +
√
3
2 I

−1
2 −

√
3
2 I −1 1

2 −
√
3
2 I 1 1 −1 1

2 +
√
3
2 I 1 −1

2 +
√
3
2 I −1 −1

1 −1 1
2 +

√
3
2 I −1

2 −
√
3
2 I −1

2 −
√
3
2 I −1 −1 1 −1

2 −
√
3
2 I 1

2 +
√
3
2 I 1

2 +
√
3
2 I

−1
2 +

√
3
2 I 1

2 −
√
3
2 I 1

2 −
√
3
2 I −1

2 −
√
3
2 I −1

2 +
√
3
2 I −1 1

2 −1
2 +

√
3
2 I −1

2 +
√
3
2 I 1

2 +
√
3
2 I 1

2 −
√
3
2 I

−1
2 +

√
3
2 I 1

2 −
√
3
2 I 1

2 +
√
3
2 I −1

2 −
√
3
2 I 1 −1 1

2 −1
2 +

√
3
2 I −1

2 −
√
3
2 I 1

2 +
√
3
2 I −1

−1
2

1
2 −

√
3
2 I 1

2 −
√
3
2 I 1 1 −1 1

2 −
√
3
2 I −1

2 +
√
3
2 I −1

2 +
√
3
2 I −1 −1

1
2 −

√
3
2 I 1

2 −
√
3
2 I −1

2 −
√
3
2 I −1

2 +
√
3
2 I 1

2 −
√
3
2 I −1 −1

2 +
√
3
2 I −1

2 +
√
3
2 I 1

2 +
√
3
2 I 1

2 +
√
3
2 I −1

2 +
√
3
2 I

1
2 +

√
3
2 I 1

2 −
√
3
2 I −1

2 −
√
3
2 I −1

2 −
√
3
2 I 1

2 +
√
3
2 I −1 −1

2 −
√
3
2 I −1

2 −
√
3
2 I 1

2 +
√
3
2 I 1

2 +
√
3
2 I −1

2 −
√
3
2 I

−1
2 +

√
3
2 I −1 −1 −1

2 −
√
3
2 I 1 −1 1

2 −
√
3
2 I 1 1 1

2 +
√
3
2 I −1

1
2 +

√
3
2 I −1 −1

2 +
√
3
2 I −1

2 −
√
3
2 I 1

2 −
√
3
2 I −1 −1

2 −
√
3
2 I 1 1

2 −
√
3
2 I 1

2 −
√
3
2 I −1

2 +
√
3
2 I

1 1
2 −

√
3
2 I 1

2 −
√
3
2 I −1

2 −
√
3
2 I −1

2 −
√
3
2 I −1 −1 −1

2 +
√
3
2 I −1

2 +
√
3
2 I 1

2 +
√
3
2 I 1

2 +
√
3
2 I

−1 −1 −1
2 −

√
3
2 I −1

2 −
√
3
2 I 1

2 +
√
3
2 I −1 1 1 1

2
1
2 −1

2 −
√
3
2 I

−1 1
2 1 1 1

2 −1 1 −1
2 +

√
3
2 I −1 −1 −1

2 −
√
3
2 I

−1
2 −

√
3
2 I 1

2 −
√
3
2 I 1

2 −
√
3
2 I 1 −1

2 −1 1
2 +

√
3
2 I −1

2 +
√
3
2 I −1

2 −
√
3
2 I −1 1

2 −
√
3
2 I
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Cyclic 24-Roots Polynomial System

Extending the tropism V12 = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1) of the
cyclic 12-roots polynomial system to V24 =
(1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1),
we obtain a valid tropisms for the cyclic 24-roots.
Exploiting the symmetry of the solution generators of the cyclic 12, we can
solve the cyclic 24-roots in direction of V24 and obtain exact representation
of one of its components!

x0 = t, x1 = t−1(
√
3
2 + I

2 ), x2 = t(12 −
√
3I
2 ), x3 = t−1(−

√
3
2 + I

2),

x4 = −t, x5 = t−1(
√
3
2 − I

2), x6 = t, x7 = t−1(−
√
3
2 − I

2 ),
x8 = t(1.86602540378444 − 3.23205080756888 ∗ I ),
x9 = t−1(0.232050807568877 − 0.133974596215561 ∗ I ),
x10 = −t, x11 = t−1(−

√
3
2 + I

2 ), x12 = −t, x13 = t−1(−
√
3
2 − I

2),

x14 = t(−1
2 +

√
3I
2 ), x15 = t−1(

√
3
2 − I

2), x16 = t, x17 = t−1(−
√
3
2 + I

2),

x18 = −t, x19 = t−1(
√
3
2 + I

2),
x20 = t(−1.86602540378444 + 3.23205080756888 ∗ I ),
x21 = t−1(−0.232050807568877 + 0.133974596215561 ∗ I ),
x22 = t, x23 = t−1(

√
3
2 − I

2),
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Tropisms and Two-Dimensional Surfaces

Let U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) be two tropisms:

a pair of tropisms generate a Puiseux series expansion of a
two-dimensional surface

G (x, t1, t2) =




x1 = tu11 tv12 (b1 + c1t
α1
1 + d1t

β1
2 + . . . )

x2 = tu21 tv22 (b2 + c2t
α2
1 + d2t

β2
2 + . . . )

x3 = tu31 tv32 (b3 + c3t
α3
1 + d3t

β3
2 + . . . )

...

xn = tun1 tvn2 (bn + cnt
αn
1 + dnt

βn

2 + . . . )
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Tropisms and Two-Dimensional Surfaces

Square matrix M, with det(M) = ± 1, is composed of two tropisms U and V, and the
standard basis vectors, starting with e3.

M =




u1 u2 u3 u4 · · · un−1 un
v1 v2 v3 v4 · · · vn−1 vn
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1




x1 = zu11 zv12
x2 = zu21 zv22
x3 = zu31 zv32 z3
...

xn = zun1 zvn2 zn

z1 = t1

z2 = t2

z3 = b3 + c3t
α3
1 + d3t

β3
2 + . . .

...

zn = bn + cnt
αn
1 + dnt

βn

2 + . . .

x1 = tu11 tv12 (b1 + c1t
α1
1 + d1t

β1
2 + . . . )

x2 = tu21 tv22 (b2 + c2t
α2
1 + d2t

β2
2 + . . . )

x3 = tu31 tv32 (b3 + c3t
α3
1 + d3t

β3
2 + . . . )

...

xn = tun1 tvn2 (bn + cnt
αn
1 + dnt

βn

2 + . . . )
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Cyclic 9-Roots Polynomial System

Two pretropisms of the cyclic 9-roots polynomial system are
U = (1, 1,−2, 1, 1,−2, 1, 1,−2) and V = (0, 1,−1, 0, 1,−1, 0, 1,−1).
Computing initial form InU(C9)(x), and then InV (InU(C9))(x) yields a system:

InV (InU(C9))(x) =




x2 + x5 + x8 = 0

x0x8 + x2x3 + x5x6 = 0

x0x1x2 + x0x1x8 + x0x7x8 + x1x2x3 + x2x3x4 + x3x4x5

+x4x5x6 + x5x6x7 + x6x7x8 = 0

x0x1x2x8 + x2x3x4x5 + x5x6x7x8 = 0

x0x1x2x3x8 + x0x5x6x7x8 + x2x3x4x5x6 = 0

x0x1x2x3x4x5 + x0x1x2x3x4x8 + x0x1x2x3x7x8

+x0x1x2x6x7x8 + x0x1x5x6x7x8 + x0x4x5x6x7x8 + x1x2x3x4x5x6

+x2x3x4x5x6x7 + x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x8 + x0x1x2x5x6x7x8 + x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x8 + x0x1x2x3x5x6x7x8 + x0x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x7x8 − 1 = 0

For one of the first solutions of the cyclic 9-roots polynomial system, we refer to
J. C. Faugère, A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, Vol. 139, Number 1-3, Pages 61-88, Year
1999. Proceedings of MEGA’98, 22–27 June 1998, Saint-Malo, France.
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Cyclic 9-Roots Polynomial System Cont.

U =( 1, 1, -2, 1, 1, -2, 1, 1, -2 )
V =( 0, 1, -1, 0, 1, -1, 0, 1, -1 )
The unimodular coordinate transformation M : C[x] → C[z] acts on the
exponents. The new coordinates are given by

M =




1 1 −2 1 1 −2 1 1 −2
0 1 −1 0 1 −1 0 1 −1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




x0 = z0

x1 = z0z1

x2 = z−2
0 z−1

1 z2

x3 = z0z3

x4 = z0z1z4

x5 = z−2
0 z−1

1 z5

x6 = z0z6

x7 = z0z1z7

x8 = z−2
0 z−1

1 z8

We use the coordinate change to transform the initial form system and the
original cyclic 9-roots system.
Danko Adrovic, Jan Verschelde (UIC) Polyhedral Methods for Algebraic Sets SIAM AG 2011, 6-9 October 34 / 36



Cyclic 9-Roots Polynomial System Cont.

The transformed initial form system InV (InU(C9))(z) is given by




z2 + z5 + z8 = 0

z2z3 + z5z6 + z8 = 0

z2z3z4 + z3z4z5 + z4z5z6 + z5z6z7 + z6z7z8 + z2z3 + z7z8 + z2 + z8 = 0

z2z3z4z5 + z5z6z7z8 + z2z8 = 0

z2z3z4z5z6 + z5z6z7z8 + z2z3z8 = 0

z2z3z4z5z6z7 + z3z4z5z6z7z8 + z2z3z4z5z6 + z4z5z6z7z8 + z2z3z4z5 + z2z3z4z8

+z2z3z7z8 + z2z6z7z8 + z5z6z7z8 = 0

z3z4z6z7 + z3z4 + z6z7 = 0

z4z7 + z4 + z7 = 0

z2z3z4z5z6z7z8 − 1 = 0

Its solution is
z2 = −1

2 −
√
3I
2 , z3 = −1

2 +
√
3I
2 , z4 = −1

2 +
√
3I
2 , z5 = 1, z6 = −1

2 −
√
3I
2 ,

z7 = −1
2 −

√
3I
2 , z8 = −1

2 +
√
3I
2 , where I =

√−1.
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Cyclic 9-Roots Polynomial System Cont.

The following assignment satisfies cyclic 9-roots polynomial system entirely.

x0 = z0

x1 = z0z1

x2 = z−2
0 z−1

1 z2

x3 = z0z3

x4 = z0z1z4

x5 = z−2
0 z−1

1 z5

x6 = z0z6

x7 = z0z1z7

x8 = z−2
0 z−1

1 z8

z0 = t1

z1 = t2

z2 = −1

2
−

√
3I

2

z3 = −1

2
+

√
3I

2

z4 = −1

2
+

√
3I

2
z5 = 1

z6 = −1

2
−

√
3I

2

z7 = −1

2
−

√
3I

2

z8 = −1

2
+

√
3I

2

x0 = t1

x1 = t1t2

x2 = t−2
1 t−1

2 (−1

2
−

√
3I

2
)

x3 = t1(−1

2
+

√
3I

2
)

x4 = t1t2(−1

2
+

√
3I

2
)

x5 = t−2
1 t−1

2

x6 = t1(−1

2
−

√
3I

2
)

x7 = t1t2(−1

2
−

√
3I

2
)

x8 = t−2
1 t−1

2 (−1

2
+

√
3I

2
)
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