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Talk Outline

a new polyhedral method

o development of positive dimensional solution sets
@ for square systems and systems with more equations than unknowns
o i.e. systems where positive dimensional solution sets are not expected
in applications
@ cyclic n-roots problem

main result

@ tropical version of Backelin’s Lemma
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Polyhedral Method Description

origins of the method

@ polyhedral homotopies and the work of Bernshtein

@ Bernshtein's Theorems A & B

@ solve systems with Puiseux series and Bernshtein's Theorems A & B
main aim

@ to generalize polyhedral homotopies

@ zero-dimensional solution sets — general algebraic sets

we are inspired in part by the constructive proof of

Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

we Trop(l)NQ" < Fpe V(I): —val(p) =w € Q".

A.N. Jensen, H. Markwig, T. Markwig. An Algorithm for Lifting Points in a
Tropical Variety. Collect. Math. vol. 59, no. 2, pages 129-165, 2008.
rephrasing the theorem

rational vector in the tropical variety corresponds to the leading powers of a
Puiseux series, converging to a point in the algebraic variety.

o we understand the fundamental theorem via polyhedral homotopies
@ we see it as a generalization of Bernshtein's Theorem B
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General Definitions
Definition (Polynomial System

)
fo(x) =0
Flx) = fl(x) =0
f,,_l(x) =0

v

Definition (Laurent Polynomial)

f(x) = Z ax?, e C\ {0}, x*=xFoxi.. ~x,ﬂf_af’1
acA

Definition (Support Set)
The set of exponents A; is called the support set of f;.

Definition (Newton Polytope)

Let A; be the support set of the polynomial f; € F(x) = 0. Then,
the Newton polytope of f; is the convex hull of A;, denoted P;.
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General Definitions

Definition (Initial Form)

Let f(x) = Z cax® be a Laurent polynomial, v € Z" a non-zero vector and let (-, -)

acA
denote the usual inner product. Then, the initial form with respect to v is given by

iny(f(x)) = Z @ o min {{(a,v) | a € A}

acA, m=(ayv)

where the minimal value m has been achieved at least twice.

V.

Definition (Initial Form System)

For a system of polynomials F(x) = 0, the initial form system is defined by
iny(F(x)) = (iny(fo), iny(f1), - .., iny(fa—1)) = 0. |
Definition (Pretropism)

A pretropism v € 7" is a vector, common to all Newton polytopes of the
polynomial system. A pretropism leads to an initial form system.

v

Definition (Tropism)
A tropism is a pretropism, which is the leading exponent vector in a Puiseux series
expansion of a curve, expanded about t = 0.

»
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The Cayley Embedding & Polytope For Square Systems

We obtain pretropisms for polynomial systems using the Cayley polytope.
Cayley Embedding
Ce = (Ao X {0}) U (Al X {el}) U-.-u (An—l X {e,,_l})

where ey is the k-th (n — 1)-dimensional standard unit vector.

Cayley Polytope

Ca = ConvexHull(Cg)

We use the Cayley polytope as a way to combine all individual Newton
polytopes into one Cayley polytope and obtain their common facet
normals. )

We use cddlib of K. Fukuda to find facet normals of the Cayley polytope.
Alternative: gfan, developed by A.N. Jensen, finds cones of pretropisms.
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Tropisms and d-Dimensional Surfaces

For d-dimensional solution sets we have cones of tropisms.

Definition (Cone of Tropisms)

A cone of tropisms is a polyhedral cone, spanned by tropisms.

® vy, V1,..., V4_1 span a d-dimensional cone of tropisms
o dimension of the cone is the dimension of the solution set

Let vo = (Vo,1)> (0,2)+--» V(o,n-1))s V1 = (V(1,0)s Y(1.1)s -+ > Y(1n-1))s -+
Vg—1 = (V(dfl,O)v V(d—1,1) - > V(d,]”,,,l)) be d tropisms. Let rp,r1,...,r,—1 be
the solutions of the initial form system iny,(iny, (- - - iny, ,(F)---))(x) = 0.

d tropisms generate a Puiseux series expansion of a d-dimensional surface

V(0,0) , V(1,0 V(d—1,0 W(0,0 W(1,0
X0 =t "1t T (o + ooty D+ caopty D L)
V(01) (1,1 | V(d 1,1)
1 .

(I’1+C(01)t0(')+C(11)t -|—)
=100 5 ( + ooty P + quayty P+ )

X1 =ty

V(0,n—1) ,V(1,n—1 V(d—1,n—1 W(0,n—1 W(1,n—1
Xpo1 =t I T (4 oty T gty ) )
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Unimodular Coordinate Transformation

Definition (Unimodular Coordinate Transformation)

Let M € Z"*" be a matrix with det(M) = +1. Then, the unimodular coordinate

transformation is a power transformation of the form x = zM.

matrix M

@ contains the d dimensional cone tropisms in their first d rows
@ used to transform

o initial form systems i.e. in,(F)(x = zM)) — isolated solutions at infinity
o polynomial systems — second term in the Puiseux series

o x = zM puts solution sets in a specific format
Our method to obtain matrix M uses the computation of:

@ Smith Normal Form (for series with integer exponents)

o Hermite Normal Form (for series with fractional exponents)
Related result: E. Hubert and G. Labahn. Rational invariants of scalings
from Hermite normal forms. In Proceedings of ISSAC 2012, pages 219226.
ACM, 2012.
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General Algebraic Sets

Assumptions on the solution sets we can find

Proposition If F(x) = 0 is in Noether position and defines a d-dimensional
solution set in C", intersecting the first d coordinate planes in regular isolated
points, then there are d linearly independent tropisms vg,vi,...v4_1 € Q" so that
the initial form system iny,(iny, (- - iny,_,(F)---))(x = zM) = 0 has a solution

c € (C\ {0})"~9. This solution and the tropisms are the leading coefficients and
powers of a generalized Puiseux series expansion for the algebraic set:

%
X = too,o
% %
x = too,l t11,1
_ Vo,d—1 ,V1,d—1 Vd—1,d—1
Xd-1 =ty ety
Vo,d , Vi,d Vd—1,d
X4 = COt() tl R iy + ..
V0,d+1 . V1,d+1 Vd—1,d+1
Xd+1 — Clt() t]. ...td_l +...
Vo,n—1 ,V1,n—1 Vd—1,n—1
Xn — Cn—d—lto tl e d1 J’_ .
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Cyclic n-roots Problem

Xo+x1 4+ xp-1=0

XoX1 + X1X2 4+« -+ + Xp—2Xp—1 + Xp—1x0 =0
-1 j+i-1

C(x) =
() i=34,...0-1:3 J] % modn=0
=0 k5

X0X1X2 *** Xp—1 — 1=0.

@ benchmark problem in the field of computer algebra (pop. by J. Davenport)
o extremely hard to solve for n > 8
@ square systems

o we expect isolated solutions
o we find positive dimensional solution sets

Lemma (Backelin)

If m? divides n, then the dimension of the cyclic n-roots polynomial system is at
least m — 1.

J. Backelin: Square multiples n give infinitely many cyclic n-roots.
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.
J. Davenport. Looking at a set of equations.
Technical Report 87-06, Bath Computer Science, 1987.
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Cyclic 8-Roots System

an illustration:

for pretropism v = (1,—-1,0,1,0,0, —1,0), the initial form system is

iny(Cg)(x) =

and the corresponding unimodular coordinate transformation x = z"':

x1+x6=0

x1%2 + X5x6 + xex7 = 0

XaX5Xe + Xsxex7 = 0

XoX1X6X7 + XaXsx6x7 = 0

X0X1X2X6X7 + XoX1X5X6X7 = 0

X0X1X2X5X6X7 + X0X1X4X5X6X7 + X1X2X3X4X5X6 = O
X0X1X2XaX5X6X7 + X1X2X3X4X5X6X7 = 0

XoX1X2X3X4X5X6X7 — 1 = 0

-1

[eNeNeNoNoNol S
[eNeNeNoNeNel S
[« NeNeNeNeN k=]
OO OO, OO+
OO O H+HOOOOo
[sNel  eNeNoNeNe
(=N N eNeNeNoNe]
H O OOOOOoOOo

0
M

X0 = 20,X1 = 21/20, X2 = 20,X3 = 2023, X4 = Z4,X5 = Z5,X6 = 26/20,X7 = 21
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Cyclic 8-Roots System

z1+26=0

712y + 2526 + 2627 = 0
242526 + 252627 = 0
ine(Co)(2) = 24252627 + 212627 = 0
21202627 + 21252627 = 0

212223242526 + 2122252627 + 2124252627 — 0

2122232425227 + 212224252627 — 0

21202324252627 — 1 = 0

Solving iny(Cs)(z), we obtain 8 solutions (all in the same orbit). We select

t ' 1 1 1+i
20 =U02=—1L,22=—F —5,Z3=—1,z4 = 1,
2 2
1 .
25:§+é726:l',27:—1—l.,l-:\/?1.

o these are the leading coefficients in the Puiseux series of the space curve
@ next step is to find the second term
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Cyclic 8-Roots System

Proposition /f the initial root does not satisfy the entire transformed
polynomial system, then there must be at least one nonzero constant
exponent a;, forming monomial c;t%.

illustration

-1 . 1
7757”3:717"4: 1+’7r5 :§+§7
Substituting the form z; = r; + k;t"¥, i=1 ... n—1, into the transformed
system Cg(z), yields

rlz—i7r2: r6:i)r7:717i

() + o
() + ..
() + o
At + () + .
() + o
() + ..
() + o
() + o

in this case ¢;t% = 4t1
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Cyclic 8-Roots System

Taking solution at
infinity, we build a
series of the form:

Zp =1
z1 = —1 + kit
-1 I
= — — — + kot
b)) 5 2+2
z3 = —1 + kst
zp =141+ kgt
1
= —+ -+ kst
Zs5 2+2+5
ze = | + ket

Z7=(—1—I)+k7t

Danko Adrovic (UIC)

Plugging series form The second term in
into transformed the series, still in the
system, collecting all ~ transformed

coefficients of t! and coordinates:
solving, yields

Zo=1
kg =—-1—1 2 =—1+(-1-Nt
ky = © n=_t_1. 1,
2 2 2 2
k3 0 232—1
ky = —1 zz=1+1-—1t
k=t S .
2 2 2 2
ke =1+1 z6=1+(1+ Nt
kz =1 zz7=(-1-1)+t
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Cyclic 4,8,12-roots problem

Often, first term in the Puiseux satisfies the entire system:

cyclic 4-roots:
tropism: (1,-1,1,-1)

Xg =1, x31 = til, Xp = —t, X3 = —t1

cyclic 8-roots:

tropism: (1,-1,1,-1,1,-1,1,-1)

Xp=1t, X1 = til, Xp = it, x3 = I.til, X4 = —t, X5 = —til,

Xe = —It, x7 = —it™1
cyclic 12-roots:

tropism: (1,-1,1,-1, 1,-1,1-1,1,-1,1,-1)
1+T\/§i)t' X3

xo=1t x1=1t"1 xo=( ,
xa = (F52E 3 = (RN 66 = —t, g = —t 7,
Xg = (—1—2\/§I)t’ Xg = (—1—2\/§l)t—1' X10 = (1—§/§:)tv x11 = (l—s/gl)t—l

(e

Observing structure among
@ tropism
o coefficients
o numerical solver PHCpack was used
n

o we recognize the coefficients as 3-roots of unity
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Cyclic n-roots problem: n = 4/¢ case

Proposition
For n = 44, there is a one-dimensional set of cyclic n-roots, represented
exactly as

Xo) = Ukt
_ -1
Xok4+1 = Ukt
2wk .
~n 4k
fork=0,....,5—landuy=e2 =en .

taking random linear combination of the solutions

aot+art st tast t 4 Fap ottt a1t t =0, q€C
and simplifying

Bot?+p1 =0, BjeC

we see that all space curves are quadratic.
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Cyclic 9-Roots Polynomial System

for the cyclic 9-roots system, there is a cone of pretropisms, generated by
Vo = (17 1,-2,1,1,-2,1,1, _2)
vi =(0,1,-1,0,1,-1,0,1,-1).

x4+ x5+xg=0

Xoxg + Xx2x3 + x5x6 = 0

XoX1X2 + XoX1X8 + XoX7Xg + X1X2X3 + X2X3X4 + X3X4X5
+Xax5X6 + X5X6X7 + Xex7Xg = 0

XoX1X2Xg + XoX3X4X5 + XsXeXx7Xg = 0

Invl(InVU(Cg))(x) _ X0X1X2X3Xg + XoX5XgX7X8 + X2X3X4X5Xe — 0
X0X1X2X3X4X5 1 XoX1X2X3X4Xg + XoX1X2X3X7X8

+XoX1X2X6X7Xg + X0X1X5X6X7Xg + X0XaX5X6X7Xg + X1X2X3X4X5X6
+X2X3X4X5X6X7 + X3X4X5X6X7Xg = 0

X0X1X2X3X4X5Xg + X0X1X2X5X6X7Xg + X2 X3X4X5XX7Xg = 0
X0X1X2X3X4X5X6Xg |+ X0X1X2X3X5X6X7Xg + XoXoX3X4X5Xex7Xg = 0
XoX1XoX3XaX5XgX7Xg — 1 =0

For one of the first solutions of the cyclic 9-roots polynomial system, we refer to
J. C. Faugere, A new efficient algorithm for computing Grébner bases (Fy).
Journal of Pure and Applied Algebra, Vol. 139, Number 1-3, Pages 61-88, Year
1999. Proceedings of MEGA'98, 22-27 June 1998, Saint-Malo, France.
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Cyclic 9-Roots Polynomial System Cont.

w=(11-2,1,1,-2,1,1,-2)
vy =(0,1,-1,0,1,-1,0,1,-1)
The unimodular coordinate transformation x = z™ acts on the exponents.
The new coordinates are given by

X0 = 20

11 -2 11 -2 1 1 -2 X1 = 2021
01 -101-101 -1 X =252z ‘2
00 1 00 0 00 0 x5 = 2023
00 0 10 0 00 0 s

M=100 0 01 0 00 0 e
00 0 00 1 00 0 X5 =252 25
00 0 00 0 10 O X6 = 202
00 000 0 01 0 o = 207177
00 0 00 0 00 1]

Xg = 20_221_123

We use the coordinate change to transform the initial form system and the

original cyclic 9-roots system.
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Cyclic 9-Roots Polynomial System Cont.

The transformed initial form system iny, (iny,(Co))(z) is given by

Z+z5+23=0

2073+ 7525 + 23 =0

207324 + 232425 + ZaZ526 + 252627 + 262728 + 2023 + 2728 + 20 + 28 =0
20732475 + 25262778 + 2228 = 0

2073247526 + 25262728 + 222378 = 0

2027324252627 + Z32425262Z728 + 2073242526 + ZaZnZpZ728 + Z0Z3242Z5 + 22232428
420232728 + 20262728 + 25262728 = 0

23242627 + 2324 + 2627 =0

2427+ 24+ 27 =0

2073247522728 — 1 =0

Its solution is
1 \/5' :_l+@7z47 ’+\g’725:1726:—%—@»

2727%7@, 75 = — 2 ‘[’ , Where i = /—1.

While we used a numerical solver PHCpack, we recognized the solution as

the 3" roots of unity.
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Cyclic 9-Roots Polynomial System Cont.

The following assignment satisfies cyclic 9-roots polynomial system entirely.

zp = 1o
Z1=1
1 V3i
Zp = ——= — —/—
27727
1 V3i
BT
1 V3i
#-Tt Ty
Z5—1
L1 V3i
R R
1 V3i
77 — —— — ——
! 2 2
1 V3i
SR
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X0 = 20

X1 = 2021

X = 20_221_122
X3 = 2023

X4 = 202124

X5 = 20_221_125
Xo = 2026
X7 = 202127

Xg = 20_221_123

Solving Polynomial Systems

X0 =

X1

Xp =

X3 =

X4 =

X5

Xp =

X7 =

Xg =
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Cyclic 9-Roots Polynomial System Cont.

. 2mi o,
Letting u = e3 and yo = to, y1 = tot1, y2 = t; 2t’1 L2
we can rewrite the exact solution as

Xo = to x3 = tou X = t0u2
x1 = tot1 X4 = totou X7 = t0t2u2
X =ty 2t P xs =ty 2t xg =ty 2ty tu

X0 =Yo X3=)YoUu Xe = }’0“2
=Y1 X4 =y1u X7 = }/1112
=y 5=y xg =y’
and put it in the same format as in the proof of Backelin's Lemma, given in
J. C. Faugere, Finding all the solutions of Cyclic 9 using Grébner basis
techniques. In Computer Mathematics: Proceedings of the Fifth Asian
Symposium (ASCM), pages 1-12. World Scientific, 2001.

degree of the solution component

aqty + aptoty + a3t62tf1 =
2.1 a;€C
agty + astots + aety “ty =0

Simplifying, the system becomes

2t1 ﬁ1 =0

t—f2=0

As the simplified system has 3 solutions, the cyclic 9 solution component
is a cubic surface. With the cyclic permutation, we obtain an orbit of 6
cubic surfaces, which satisfy the cyclic 9-roots system.
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Cyclic 16-Roots Polynomial System

Extending the pattern we observed among tropisms of the cyclic 9-roots,
Yo = (17 1,-2,1,1,-2,1,1, _2)
vi =(0,1,-1,0,1,-1,0,1,-1)
we can get the correct cone of tropisms for the cyclic 16-roots.
w=1(1,1,1,-3,1,1,1,-3,1,1,1,-3,1,1,1,-3)
Vi = (07 17 15 _2) O, 17 17 _2) Oa 1? 1) _27 07 15 1’ _2)
v =(0,0,1,-1,0,0,1,-1,0,0,1,—-1,0,0,1, 1)
Extendlng the solutlons at infinity pattern,
cyclic 9-roots: u=-e 5 cyclic 16-roots: u=e &
The 3-dimensional solution component of the cyclic 16-roots is given by:

Xp =ty Xq = Uty Xg = U2t0 X12 = u3t0
X1 = totr X5 = utpty X9 = u2t0t1 X13 = u3t0t1
Xp = tot1tp Xe = utptito X10 = U2t0t1t2 X14 = Ll3t0t1 to

3;,—3,-2,-1
Cty3 %

—3,-2,-1 2,-3,-2,-1
uty Tty Tty T X1 = uty Tt Tt Xxis

X3 =ty 3t 2 xg

This 3-dimensional cyclic 16-root solution component is a quartic surface.

Using cyclic permutation, we obtain 2 x4 = 8 components of degree 4.
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Cyclic n-Roots Polynomial System: n = m?

case

We now generalize the previous results for the cyclic n-roots systems.

Proposition For n = m?, there is a (m — 1)-dimensional set of cyclic n-roots,

represented exactly as

Xkm+0 = Uklp
Xkm+1 = Uktoty
Xkm+2 ugtotitr
Xkm+m—2 = Ugtotity---tm_2
—m+1,—m+2 —2 ,-1
Xkm+m—1 Uty t Sttt
for k = 071’27___7,77_ 1and uy = ei2kﬂ'/m_

Proposition The (m — 1)-dimensional solutions set has degree equal to m.

Applying cyclic permutation, we can find 2m components of degree m.

Danko Adrovic (UIC)
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Tropical Lemma of Backelin

Lemma (Backelin)

If m? divides n, then the dimension of the cyclic n-roots polynomial system is at

least m — 1.

V.

Lemma (Tropical Version of Backelin's Lemma)

For n = m?(, where ¢ € N\ {0} and ¢ is no multiple of k?, for k > 2, there is
an (m — 1)-dimensional set of cyclic n-roots, represented exactly as

_ .k
Xkm+0 = U"tg
k
Xkm+1 = U toty
_ .k
Xkm+2 = U totity
(1)
_ ok
Xkm+m—2 = U totity---tm_2
_ k p—m+1 ,—m+2 -2 -1
Xkm+m—1 = YUty t ot Tatn o
2T
for k ;ﬂO, 1,2,...,m—1, free parameters ty, t1, ..., tm—p, constants u = eme,
v =em, with 8 = (a mod 2), and a = m(mf — 1).
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