Solving Polynomial Systems in Noether Position with Puiseux Series

Danko Adrovic (joint work with Jan Verschelde) University of Illinois at Chicago

www.math.uic.edu/~adrovic

2013 SIAM Conference on Applied Algebraic Geometry - Algorithms in Numerical Algebraic Geometry -Colorado State University Fort Collins, Colorado

Talk Outline

a new polyhedral method

- development of positive dimensional solution sets
- for square systems and systems with more equations than unknowns
 - i.e. systems where positive dimensional solution sets are not expected

in applications

- cyclic n-roots problem
- main result
 - tropical version of Backelin's Lemma

Polyhedral Method Description

origins of the method

- polyhedral homotopies and the work of Bernshtein
- Bernshtein's Theorems A & B
- solve systems with Puiseux series and Bernshtein's Theorems A & B

<u>main aim</u>

- to generalize polyhedral homotopies
- $\bullet\,$ zero-dimensional solution sets \rightarrow general algebraic sets

we are inspired in part by the constructive proof of

Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

 $\omega \in Trop(I) \cap \mathbb{Q}^n \iff \exists p \in V(I) : -val(p) = \omega \in \mathbb{Q}^n.$

A.N. Jensen, H. Markwig, T. Markwig. *An Algorithm for Lifting Points in a Tropical Variety*. Collect. Math. vol. 59, no. 2, pages 129–165, 2008. rephrasing the theorem

rational vector in the tropical variety corresponds to the leading powers of a Puiseux series, converging to a point in the algebraic variety.

- we understand the fundamental theorem via polyhedral homotopies
- we see it as a generalization of Bernshtein's Theorem B

General Definitions

Definition (Polynomial System)

$$F(\mathbf{x}) = \begin{cases} f_0(\mathbf{x}) = 0\\ f_1(\mathbf{x}) = 0\\ \vdots\\ f_{n-1}(\mathbf{x}) = 0 \end{cases}$$

Definition (Laurent Polynomial)

$$f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad c_{\mathbf{a}} \in \mathbb{C} \setminus \{0\}, \quad \mathbf{x}^{\mathbf{a}} = x_0^{\pm a_0} x_1^{\pm a_1} \cdots x_{n-1}^{\pm a_{n-1}}$$

Definition (Support Set)

The set of exponents A_i is called the **support set** of f_i .

Definition (Newton Polytope)

Let A_i be the support set of the polynomial $f_i \in \mathbf{F}(\mathbf{x}) = \mathbf{0}$. Then, the **Newton polytope** of f_i is the convex hull of A_i , denoted P_i .

General Definitions

Definition (Initial Form)

Let $f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$ be a Laurent polynomial, $\mathbf{v} \in \mathbb{Z}^n$ a non-zero vector and let $\langle \cdot, \cdot \rangle$

denote the usual inner product. Then, the **initial form** with respect to \mathbf{v} is given by

$$in_{\mathbf{v}}(f(\mathbf{x})) = \sum_{\mathbf{a} \in A, \ m = \langle \mathbf{a}, \mathbf{v} \rangle} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \qquad m = \min\left\{ \langle \mathbf{a}, \mathbf{v} \rangle \mid \mathbf{a} \in A \right\}$$

where the minimal value m has been achieved <u>at least twice</u>.

Definition (Initial Form System)

For a system of polynomials $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, the **initial form system** is defined by $in_{\mathbf{v}}(\mathbf{F}(\mathbf{x})) = (in_{\mathbf{v}}(f_0), in_{\mathbf{v}}(f_1), \dots, in_{\mathbf{v}}(f_{n-1})) = \mathbf{0}$.

Definition (Pretropism)

A **pretropism** $\mathbf{v} \in \mathbb{Z}^n$ is a vector, common to all Newton polytopes of the polynomial system. A pretropism leads to an initial form system.

Definition (Tropism)

A **tropism** is a pretropism, which is the leading exponent vector in a Puiseux series expansion of a curve, expanded about $t \approx 0$.

The Cayley Embedding & Polytope For Square Systems

We obtain pretropisms for polynomial systems using the Cayley polytope.

Cayley Embedding

$$C_E = (A_0 \times \{\mathbf{0}\}) \cup (A_1 \times \{\mathbf{e}_1\}) \cup \cdots \cup (A_{n-1} \times \{\mathbf{e}_{n-1}\})$$

where \mathbf{e}_k is the k-th (n-1)-dimensional standard unit vector.

Cayley Polytope

$$C_{\Delta} = ConvexHull(C_E)$$

Remark

We use the Cayley polytope as a way to combine all individual Newton polytopes into one Cayley polytope and obtain their **common** facet normals.

We use **cddlib** of *K. Fukuda* to find facet normals of the Cayley polytope. Alternative: **gfan**, developed by *A.N. Jensen*, finds cones of pretropisms.

Danko Adrovic (UIC)

Solving Polynomial Systems

Tropisms and d-Dimensional Surfaces

For d-dimensional solution sets we have cones of tropisms.

Definition (Cone of Tropisms)

A cone of tropisms is a polyhedral cone, spanned by tropisms.

- $v_0, v_1, \ldots, v_{d-1}$ span a *d*-dimensional cone of tropisms
- dimension of the cone is the dimension of the solution set

Let $v_0 = (v_{(0,1)}, v_{(0,2)}, \dots, v_{(0,n-1)}), v_1 = (v_{(1,0)}, v_{(1,1)}, \dots, v_{(1,n-1)}), \dots, v_{d-1} = (v_{(d-1,0)}, v_{(d-1,1)}, \dots, v_{(d-1,n-1)})$ be d tropisms. Let r_0, r_1, \dots, r_{n-1} be the solutions of the initial form system $in_{\mathbf{v}_0}(in_{\mathbf{v}_1}(\cdots in_{\mathbf{v}_{d-1}}(F)\cdots))(\mathbf{x}) = \mathbf{0}$.

d tropisms generate a Puiseux series expansion of a d-dimensional surface

$$\begin{aligned} x_0 &= t_0^{v_{(0,0)}} t_1^{v_{(1,0)}} \cdots t_{d-1}^{v_{(d-1,0)}} (r_0 + c_{(0,0)} t_0^{w_{(0,0)}} + c_{(1,0)} t_1^{w_{(1,0)}} + \dots) \\ x_1 &= t_0^{v_{(0,1)}} t_1^{v_{(1,1)}} \cdots t_{d-1}^{v_{(d-1,1)}} (r_1 + c_{(0,1)} t_0^{w_{(0,1)}} + c_{(1,1)} t_1^{w_{(1,1)}} + \dots) \\ x_2 &= t_0^{v_{(0,2)}} t_1^{v_{(1,2)}} \cdots t_{d-1}^{v_{(d-1,2)}} (r_2 + c_{(0,2)} t_0^{w_{(0,2)}} + c_{(1,2)} t_1^{w_{(1,2)}} + \dots) \end{aligned}$$

$$x_{n-1} = t_0^{v_{(0,n-1)}} t_1^{v_{(1,n-1)}} \cdots t_{d-1}^{v_{(d-1,n-1)}} (r_{n-1} + c_{(0,n-1)} t_0^{w_{(0,n-1)}} + c_{(1,n-1)} t_1^{w_{(1,n-1)}} + \dots)$$

Unimodular Coordinate Transformation

Definition (Unimodular Coordinate Transformation)

Let $M \in \mathbb{Z}^{n \times n}$ be a matrix with $det(M) = \pm 1$. Then, the unimodular coordinate transformation is a power transformation of the form $\mathbf{x} = \mathbf{z}^{M}$.

matrix M

- contains the d dimensional cone tropisms in their first d rows
- used to transform
 - initial form systems i.e. $in_v(F)(\mathbf{x} = \mathbf{z}^M)) \rightarrow$ isolated solutions at infinity
 - $\bullet\,$ polynomial systems \rightarrow second term in the Puiseux series
- $\mathbf{x} = \mathbf{z}^M$ puts solution sets in a specific format

Our method to obtain matrix M uses the computation of:

- Smith Normal Form (for series with integer exponents)
- Hermite Normal Form (for series with fractional exponents)

<u>Related result</u>: E. Hubert and G. Labahn. *Rational invariants of scalings from Hermite normal forms*. In Proceedings of ISSAC 2012, pages 219226. ACM, 2012.

General Algebraic Sets

Assumptions on the solution sets we can find

Proposition If $F(\mathbf{x}) = \mathbf{0}$ is in Noether position and defines a d-dimensional solution set in \mathbb{C}^n , intersecting the first d coordinate planes in regular isolated points, then there are d linearly independent tropisms $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{d-1} \in \mathbb{Q}^n$ so that the initial form system $in_{\mathbf{v}_0}(in_{\mathbf{v}_1}(\cdots in_{\mathbf{v}_{d-1}}(F)\cdots))(\mathbf{x} = \mathbf{z}^M) = \mathbf{0}$ has a solution $\mathbf{c} \in (\mathbb{C} \setminus \{0\})^{n-d}$. This solution and the tropisms are the leading coefficients and powers of a generalized Puiseux series expansion for the algebraic set:

$$\begin{aligned} x_0 &= t_0^{v_{0,0}} \\ x_1 &= t_0^{v_{0,1}} t_1^{v_{1,1}} \\ &\vdots \\ x_{d-1} &= t_0^{v_{0,d-1}} t_1^{v_{1,d-1}} \cdots t_{d-1}^{v_{d-1,d-1}} \\ x_d &= c_0 t_0^{v_{0,d}} t_1^{v_{1,d}} \cdots t_{d-1}^{v_{d-1,d}} + \cdots \\ x_{d+1} &= c_1 t_0^{v_{0,d+1}} t_1^{v_{1,d+1}} \cdots t_{d-1}^{v_{d-1,d+1}} + \cdots \\ &\vdots \\ x_n &= c_{n-d-1} t_0^{v_{0,n-1}} t_1^{v_{1,n-1}} \cdots t_{d-1}^{v_{d-1,n-1}} + \cdots \end{aligned}$$

Cyclic n-roots Problem

$$C_{n}(\mathbf{x}) = \begin{cases} x_{0} + x_{1} + \dots + x_{n-1} = 0\\ x_{0}x_{1} + x_{1}x_{2} + \dots + x_{n-2}x_{n-1} + x_{n-1}x_{0} = 0\\ i = 3, 4, \dots, n-1 : \sum_{j=0}^{n-1} \prod_{k=j}^{j+i-1} x_{k \mod n} = 0\\ x_{0}x_{1}x_{2} \cdots x_{n-1} - 1 = 0. \end{cases}$$

- benchmark problem in the field of computer algebra (pop. by J. Davenport)
- extremely hard to solve for $n \ge 8$
- square systems
 - we expect isolated solutions
 - we find positive dimensional solution sets

Lemma (Backelin)

If m^2 divides n, then the dimension of the cyclic n-roots polynomial system is at least m - 1.

J. Backelin: Square multiples n give infinitely many cyclic n-roots. Reports, Matematiska Institutionen, Stockholms Universitet, 1989.

J. Davenport. Looking at a set of equations.

Technical Report 87-06, Bath Computer Science, 1987.

an illustration:

for pretropism $\mathbf{v} = (1, -1, 0, 1, 0, 0, -1, 0)$, the initial form system is

$$in_{\mathbf{v}}(C_{\mathbf{B}})(\mathbf{x}) = \begin{cases} x_1 + x_6 = 0\\ x_1x_2 + x_5x_6 + x_6x_7 = 0\\ x_4x_5x_6 + x_5x_6x_7 = 0\\ x_0x_1x_5x_7 + x_4x_5x_6x_7 = 0\\ x_0x_1x_2x_6x_7 + x_0x_1x_5x_6x_7 = 0\\ x_0x_1x_2x_5x_6x_7 + x_0x_1x_4x_5x_6x_7 + x_1x_2x_3x_4x_5x_6 = 0\\ x_0x_1x_2x_3x_4x_5x_6x_7 - 1 = 0 \end{cases}$$
$$M = \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 & -1 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and the corresponding unimodular coordinate transformation $\mathbf{x} = \mathbf{z}^{M}$:

 $x_0 = z_0, x_1 = z_1/z_0, x_2 = z_2, x_3 = z_0z_3, x_4 = z_4, x_5 = z_5, x_6 = z_6/z_0, x_7 = z_7$

$$in_{\mathbf{v}}(C_8)(\mathbf{z}) = \begin{cases} z_1 + z_6 = 0\\ z_1 z_2 + z_5 z_6 + z_6 z_7 = 0\\ z_4 z_5 z_6 + z_5 z_6 z_7 = 0\\ z_4 z_5 z_6 z_7 + z_1 z_6 z_7 = 0\\ z_1 z_2 z_6 z_7 + z_1 z_5 z_6 z_7 = 0\\ z_1 z_2 z_3 z_4 z_5 z_6 + z_1 z_2 z_5 z_6 z_7 + z_1 z_4 z_5 z_6 z_7 = 0\\ z_1 z_2 z_3 z_4 z_5 z_6 z_7 - 1 z_0 z_1 z_2 z_3 z_4 z_5 z_6 z_7 - 1 = 0 \end{cases}$$

Solving $in_{\mathbf{v}}(C_8)(\mathbf{z})$, we obtain 8 solutions (all in the same orbit). We select

$$z_0 = t, z_1 = -i, z_2 = \frac{-1}{2} - \frac{i}{2}, z_3 = -1, z_4 = 1 + i,$$

$$z_5 = \frac{1}{2} + \frac{i}{2}, z_6 = i, z_7 = -1 - i, i = \sqrt{-1}.$$

these are the leading coefficients in the Puiseux series of the space curve
next step is to find the second term

Danko Adrovic (UIC)

Solving Polynomial Systems

Proposition If the initial root does not satisfy the entire transformed polynomial system, then there must be at least one nonzero constant exponent a_i , forming monomial $c_i t^{a_i}$.

<u>illustration</u>

$$r_1 = -i, r_2 = \frac{-1}{2} - \frac{i}{2}, r_3 = -1, r_4 = 1 + i, r_5 = \frac{1}{2} + \frac{i}{2}, r_6 = i, r_7 = -1 - i$$

Substituting the form $z_i = r_i + k_i t^w$, $i = 1 \dots n-1$, into the transformed system $C_8(\mathbf{z})$, yields

$$\begin{array}{l}t^{w}(...) + ...\\t^{2}(...) + ...\\t^{w}(...) + ...\\4t + t^{w}(...) + ...\\t^{w}(...) + ...\\t^{2}(...) + ...\\t^{w}(...) + ...\\t^{w}(...) + ...\\t^{w}(...) + ...\end{array}$$

in this case $c_i t^{a_i} = 4t^1$

Taking solution at infinity, we build a series of the form:

 $z_0 = t$ $z_1 = -I + k_1 t$ $z_2 = \frac{-1}{2} - \frac{1}{2} + k_2 t$ $z_3 = -1 + k_3 t$ $z_{A} = 1 + I + k_{A}t$ $z_5 = \frac{1}{2} + \frac{l}{2} + k_5 t$ $z_6 = I + k_6 t$ $z_7 = (-1 - I) + k_7 t$ Plugging series form into transformed system, collecting all coefficients of t^1 and solving, yields

 $k_{1} = -1 - I$ $k_{2} = \frac{1}{2}$ $k_{3} = 0$ $k_{4} = -1$ $k_{5} = \frac{-1}{2}$ $k_{6} = 1 + I$ $k_{7} = 1$

The second term in the series, still in the transformed coordinates:

 $z_0 = t$ $z_1 = -I + (-I - I)t$ $z_2 = \frac{-1}{2} - \frac{1}{2} + \frac{1}{2}t$ $z_3 = -1$ $z_{4} = 1 + I - t$ $z_5 = \frac{1}{2} + \frac{1}{2} - \frac{1}{2}t$ $z_6 = I + (1 + I)t$ $z_7 = (-1 - 1) + t$

Cyclic 4,8,12-roots problem

Often, first term in the Puiseux satisfies the entire system:

cyclic 4-roots: tropism: (1,-1,1,-1) $x_0 = t$, $x_1 = t^{-1}$, $x_2 = -t$, $x_3 = -t^{-1}$ cyclic 8-roots: tropism: (1,-1,1,-1,1,-1,1,-1) $x_0 = t, x_1 = t^{-1}, x_2 = it, x_3 = it^{-1}, x_4 = -t, x_5 = -t^{-1}$ $x_6 = -it$. $x_7 = -it^{-1}$ cyclic 12-roots: tropism: (1,-1,1,-1, 1,-1,1,-1,1,-1,1,-1) $x_0 = t, x_1 = t^{-1}, x_2 = (\frac{1+\sqrt{3}i}{2})t, x_3 = (\frac{1+\sqrt{3}i}{2})t^{-1},$ $x_4 = \left(\frac{-1+\sqrt{3}i}{2}\right)t, x_5 = \left(\frac{-1+\sqrt{3}i}{2}\right)t^{-1}, x_6 = -t, x_7 = -t^{-1}$ $x_8 = (\frac{-1-\sqrt{3}i}{2})t, x_9 = (\frac{-1-\sqrt{3}i}{2})t^{-1}, x_{10} = (\frac{1-\sqrt{3}i}{2})t, x_{11} = (\frac{1-\sqrt{3}i}{2})t^{-1}$

Observing structure among

- tropism
- coefficients
 - numerical solver PHCpack was used
 - we recognize the coefficients as $\frac{n}{2}$ -roots of unity

Cyclic n-roots problem: $n = 4\ell$ case

Proposition

For $n = 4\ell$, there is a one-dimensional set of cyclic n-roots, represented exactly as

$$egin{array}{rcl} x_{2k} &=& u_k t \ x_{2k+1} &=& u_k t^{-1} \end{array}$$

for $k = 0, \dots, \frac{n}{2} - 1$ and $u_k = e^{\frac{i2\pi k}{2}} = e^{\frac{i4\pi k}{n}}$.

taking random linear combination of the solutions

$$\alpha_0 t + \alpha_1 t^{-1} + \alpha_2 t + \alpha_3 t^{-1} + \dots + \alpha_{n-2} t + \alpha_{n-1} t^{-1} = 0, \quad \alpha_j \in \mathbb{C}$$

and simplifying

$$\beta_0 t^2 + \beta_1 = 0, \quad \beta_j \in \mathbb{C}$$

we see that all space curves are quadratic.

for the cyclic 9-roots system, there is a cone of pretropisms, generated by $v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$ $v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1).$

$$In_{v_1}(In_{v_0}(C_9))(\mathbf{x}) = \begin{cases} x_2 + x_5 + x_8 = 0 \\ x_0x_8 + x_2x_3 + x_5x_6 = 0 \\ x_0x_1x_2 + x_0x_1x_8 + x_0x_7x_8 + x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 \\ +x_4x_5x_6 + x_5x_6x_7 + x_6x_7x_8 = 0 \\ x_0x_1x_2x_8 + x_2x_3x_4x_5 + x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_8 + x_0x_5x_6x_7x_8 + x_2x_3x_4x_5x_6 = 0 \\ x_0x_1x_2x_3x_4x_5 + x_0x_1x_2x_3x_4x_8 + x_0x_1x_2x_3x_7x_8 \\ +x_0x_1x_2x_6x_7x_8 + x_0x_1x_5x_6x_7x_8 + x_0x_4x_5x_6x_7x_8 + x_1x_2x_3x_4x_5x_6 \\ +x_2x_3x_4x_5x_6x_7 + x_3x_4x_5x_6x_7x_8 + x_0x_4x_5x_6x_7x_8 + x_1x_2x_3x_4x_5x_6 \\ x_0x_1x_2x_3x_4x_5x_8 + x_0x_1x_2x_5x_6x_7x_8 + x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_7 + x_3x_4x_5x_6x_7x_8 + x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_8 + x_0x_1x_2x_3x_5x_6x_7x_8 + x_0x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_8 + x_0x_1x_2x_3x_5x_6x_7x_8 + x_0x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_8 + x_0x_1x_2x_3x_5x_6x_7x_8 + x_0x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_7x_8 - 1 = 0 \end{cases}$$

For one of the first solutions of the cyclic 9-roots polynomial system, we refer to J. C. Faugère, *A new efficient algorithm for computing Gröbner bases* (F_4). Journal of Pure and Applied Algebra, Vol. 139, Number 1-3, Pages 61-88, Year 1999. Proceedings of MEGA'98, 22–27 June 1998, Saint-Malo, France.

Danko Adrovic (UIC)

Solving Polynomial Systems

$$v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$$

 $v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1)$

The unimodular coordinate transformation $x = z^M$ acts on the exponents. The new coordinates are given by

 $X_0 = Z_0$

$$M = \begin{bmatrix} 1 & 1 & -2 & 1 & 1 & -2 & 1 & 1 & -2 \\ 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$X_{1} = z_{0}z_{1}$$

$$x_{2} = z_{0}^{-2}z_{1}^{-1}z_{2}$$

$$x_{3} = z_{0}z_{3}$$

$$x_{4} = z_{0}z_{1}z_{4}$$

$$x_{5} = z_{0}^{-2}z_{1}^{-1}z_{5}$$

$$x_{6} = z_{0}z_{6}$$

$$x_{7} = z_{0}z_{1}z_{7}$$

$$x_{8} = z_{0}^{-2}z_{1}^{-1}z_{8}$$

We use the coordinate change to transform the initial form system and the original cyclic 9-roots system.

The transformed initial form system $in_{v_1}(in_{v_0}(C_9))(\mathbf{z})$ is given by

 $\begin{cases} z_2 + z_5 + z_8 = 0\\ z_2 z_3 + z_5 z_6 + z_8 = 0\\ z_2 z_3 z_4 + z_3 z_4 z_5 + z_4 z_5 z_6 + z_5 z_6 z_7 + z_6 z_7 z_8 + z_2 z_3 + z_7 z_8 + z_2 + z_8 = 0 \end{cases}$ $z_2 z_3 z_4 z_5 + z_5 z_6 z_7 z_8 + z_2 z_8 = 0$ $z_2 z_3 z_4 z_5 z_6 + z_5 z_6 z_7 z_8 + z_2 z_3 z_8 = 0$ $z_2 z_3 z_4 z_5 z_6 z_7 + z_3 z_4 z_5 z_6 z_7 z_8 + z_2 z_3 z_4 z_5 z_6 + z_4 z_5 z_6 z_7 z_8 + z_2 z_3 z_4 z_5 + z_2 z_3 z_4 z_8$ $\begin{aligned} +z_{2}z_{3}z_{7}z_{8} + z_{2}z_{6}z_{7}z_{8} + z_{5}z_{6}z_{7}z_{8} = 0\\ z_{3}z_{4}z_{6}z_{7} + z_{3}z_{4} + z_{6}z_{7} = 0\\ z_{4}z_{7} + z_{4} + z_{7} = 0\\ z_{2}z_{3}z_{4}z_{5}z_{6}z_{7}z_{8} - 1 = 0 \end{aligned}$

Its solution is

$$\begin{aligned} z_2 &= -\frac{1}{2} - \frac{\sqrt{3}i}{2}, \ z_3 &= -\frac{1}{2} + \frac{\sqrt{3}i}{2}, \ z_4 &= -\frac{1}{2} + \frac{\sqrt{3}i}{2}, \ z_5 &= 1, \ z_6 &= -\frac{1}{2} - \frac{\sqrt{3}i}{2}, \\ z_7 &= -\frac{1}{2} - \frac{\sqrt{3}i}{2}, \ z_8 &= -\frac{1}{2} + \frac{\sqrt{3}i}{2}, \end{aligned}$$
 where $i = \sqrt{-1}.$

While we used a numerical solver PHCpack, we recognized the solution as the 3^{rd} roots of unity.

The following assignment satisfies cyclic 9-roots polynomial system entirely.

$$\begin{array}{lll} z_{0} = t_{0} & x_{0} = t_{0} \\ z_{1} = t_{1} & x_{1} = t_{0}t_{1} \\ z_{2} = -\frac{1}{2} - \frac{\sqrt{3}i}{2} & x_{0} = z_{0} \\ x_{1} = z_{0}z_{1} & x_{2} = t_{0}^{-2}t_{1}^{-1}(-\frac{1}{2} - \frac{\sqrt{3}i}{2}) \\ z_{3} = -\frac{1}{2} + \frac{\sqrt{3}i}{2} & x_{2} = z_{0}^{-2}z_{1}^{-1}z_{2} & x_{3} = t_{0}(-\frac{1}{2} + \frac{\sqrt{3}i}{2}) \\ z_{4} = -\frac{1}{2} + \frac{\sqrt{3}i}{2} & x_{3} = z_{0}z_{3} \\ z_{5} = 1 & x_{5} = z_{0}^{-2}z_{1}^{-1}z_{5} & x_{5} = t_{0}^{-2}t_{1}^{-1} \\ z_{6} = -\frac{1}{2} - \frac{\sqrt{3}i}{2} & x_{6} = z_{0}z_{6} \\ x_{7} = z_{0}z_{1}z_{7} & x_{6} = t_{0}(-\frac{1}{2} - \frac{\sqrt{3}i}{2}) \\ z_{7} = -\frac{1}{2} - \frac{\sqrt{3}i}{2} & x_{8} = z_{0}^{-2}z_{1}^{-1}z_{8} & x_{7} = t_{0}t_{1}(-\frac{1}{2} - \frac{\sqrt{3}i}{2}) \\ z_{8} = -\frac{1}{2} + \frac{\sqrt{3}i}{2} & x_{8} = z_{0}^{-2}z_{1}^{-1}z_{8} & x_{8} = t_{0}^{-2}t_{1}^{-1}(-\frac{1}{2} + \frac{\sqrt{3}i}{2}) \end{array}$$

Letting $u = e^{\frac{2\pi i}{3}}$ and $y_0 = t_0$, $y_1 = t_0 t_1$, $y_2 = t_0^{-2} t_1^{-1} u^2$ we can rewrite the exact solution as

and put it in the same format as in the proof of Backelin's Lemma, given in J. C. Faugère, *Finding all the solutions of Cyclic 9 using Gröbner basis techniques.* In Computer Mathematics: Proceedings of the Fifth Asian Symposium (ASCM), pages 1-12. World Scientific, 2001.

degree of the solution component

$$\begin{aligned} &\alpha_1 t_0 + \alpha_2 t_0 t_1 + \alpha_3 t_0^{-2} t_1^{-1} = 0 \\ &\alpha_4 t_0 + \alpha_5 t_0 t_1 + \alpha_6 t_0^{-2} t_1^{-1} = 0 \end{aligned} \quad \alpha_i \in \mathbb{C} \end{aligned}$$

Simplifying, the system becomes

$$t_0^{-2}t_1^{-1} - \beta_1 = 0$$

$$t_1 - \beta_2 = 0$$

As the simplified system has 3 solutions, the cyclic 9 solution component is a **cubic** surface. With the cyclic permutation, we obtain an orbit of 6 cubic surfaces, which satisfy the cyclic 9-roots system.

Cyclic 16-Roots Polynomial System

Extending the pattern we observed among tropisms of the cyclic 9-roots,

$$\begin{split} &v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2) \\ &v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1) \\ &\text{we can get the correct cone of tropisms for the cyclic 16-roots.} \\ &v_0 = (1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3) \\ &v_1 = (0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2) \\ &v_2 = (0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1) \\ &\text{Extending the solutions at infinity pattern,} \\ &\text{cyclic 9-roots: } u = e^{\frac{2\pi i}{3}} \rightarrow \text{cyclic 16-roots: } u = e^{\frac{2\pi i}{4}} \\ &\text{The 3-dimensional solution component of the cyclic 16-roots is given by:} \end{split}$$

This 3-dimensional cyclic 16-root solution component is a **quartic** surface. Using cyclic permutation, we obtain 2 * 4 = 8 components of degree 4.

Danko Adrovic (UIC)

Solving Polynomial Systems

August 2^{na}, 20

Cyclic n-Roots Polynomial System: $n = m^2$ case

We now generalize the previous results for the cyclic n-roots systems.

Proposition For $n = m^2$, there is a (m - 1)-dimensional set of cyclic n-roots, represented exactly as

$$\begin{array}{rcl} x_{km+0} &=& u_k t_0 \\ x_{km+1} &=& u_k t_0 t_1 \\ x_{km+2} &=& u_k t_0 t_1 t_2 \\ &\vdots \\ x_{km+m-2} &=& u_k t_0 t_1 t_2 \cdots t_{m-2} \\ x_{km+m-1} &=& u_k t_0^{-m+1} t_1^{-m+2} \cdots t_{m-3}^{-2} t_{m-2}^{-1} \end{array}$$

for $k = 0, 1, 2, \dots, m-1$ and $u_k = e^{i2k\pi/m}$.

Proposition The (m-1)-dimensional solutions set has degree equal to m.

Applying cyclic permutation, we can find 2m components of degree m.

Lemma (Backelin)

If m^2 divides n, then the dimension of the cyclic n-roots polynomial system is at least m - 1.

Lemma (Tropical Version of Backelin's Lemma)

For $n = m^2 \ell$, where $\ell \in \mathbb{N} \setminus \{0\}$ and ℓ is no multiple of k^2 , for $k \ge 2$, there is an (m-1)-dimensional set of cyclic n-roots, represented exactly as

$$\begin{array}{rcl} x_{km+0} &=& u^{k} t_{0} \\ x_{km+1} &=& u^{k} t_{0} t_{1} \\ x_{km+2} &=& u^{k} t_{0} t_{1} t_{2} \\ &\vdots \\ x_{km+m-2} &=& u^{k} t_{0} t_{1} t_{2} \cdots t_{m-2} \\ x_{km+m-1} &=& \gamma u^{k} t_{0}^{-m+1} t_{1}^{-m+2} \cdots t_{m-3}^{-2} t_{m-2}^{-1} \end{array}$$

$$(1)$$

for k = 0, 1, 2, ..., m - 1, free parameters $t_0, t_1, ..., t_{m-2}$, constants $u = e^{\frac{i2\pi}{m\ell}}$, $\gamma = e^{\frac{i\pi\beta}{m\ell}}$, with $\beta = (\alpha \mod 2)$, and $\alpha = m(m\ell - 1)$.