Tropisms, Surfaces and the Puiseux Series

Danko Adrovic and Jan Verschelde

University of Illinois at Chicago
www.math.uic.edu/~adrovic www.math.uic.edu/~jan

2012 SIAM Conference on Discrete Mathematics
- Combinatorial and Tropical Algebraic Geometry Dalhousie University
Halifax, Nova Scotia, Canada

Introduction

Our main objective: development of a polyhedral method to solve systems of polynomials

• solving for d-dimensional solution sets, $d \ge 2$

We focus initially on

- binomial systems, i.e. toric ideals
- unimodular coordinate transformations to work with points at infinity
 - Smith normal form
 - Hermite normal form

We then extend these ideas to

general polynomial systems

We use

- cones of tropisms
- Puiseux series
- to connect tropisms with *d*-dimensional solution sets

In the process, we emphasize the exploitation of symmetry

Fundamental Theorem

Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

$$\omega \in Trop(I) \cap \mathbb{Q}^n \iff \exists p \in V(I) : -val(p) = \omega \in \mathbb{Q}^n.$$

Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: *An Algorithm for Lifting Points in a Tropical Variety*. Collect. Math. vol. 59, no. 2, pages 129–165, 2008.

Rephrasing the Theorem:

Rational vector in the tropical variety corresponds to the leading powers of a Puiseux series, converging to a point in the algebraic variety.

Our understanding of the Fundamental Theorem of Tropical Algebraic Geometry

- comes from polyhedral homotopies
- we see it as a generalization of Bernshtein's Theorem B
- we use *Bernshtein's Theorem A &B* to solve polynomial systems with polyhedral methods

Our approach is inspired by the Fundamental Theorem of Tropical Algebraic Geometry

Cyclic n-roots Polynomial Systems

The cyclic n-roots polynomial systems are benchmark problems for polynomial system solvers.

$$F(\mathbf{x}) = C_n(\mathbf{x}) = \begin{cases} x_0 + x_1 + \dots + x_{n-1} = 0 \\ x_0 x_1 + x_1 x_2 + \dots + x_{n-2} x_{n-1} + x_{n-1} x_0 = 0 \\ i = 3, 4, \dots, n-1 : \sum_{j=0}^{n-1} \prod_{k=j}^{j+i-1} x_{k \mod n} = 0 \\ x_0 x_1 x_2 \dots x_{n-1} - 1 = 0. \end{cases}$$

Cyclic n-roots polynomial systems:

- square systems: we expect isolated solutions
- we find positive dimensional solution sets

Lemma (Backelin)

If m^2 divides n, then the dimension of the cyclic n-roots polynomial system is at least m-1.

J. Backelin: *Square multiples n give infinitely many cyclic n-roots*. Reports, Matematiska Institutionen, Stockholms Universitet, 1989.

Algorithm Outline for Solving of Binomial Systems

We represent a binomial system in the following way:

$$\mathbf{x}^{A} - \mathbf{c} = 0$$
 for $i = 0, 1, ..., k - 1$

where
$$A \in \mathbb{Z}^{k \times n}$$
, $\mathbf{c} = (c_0, c_1, \dots, c_{k-1})^T$, $c_i \in \mathbb{C} \setminus 0$.

If the rank(A) = k, then k is the codimension of the solution set.

Otherwise, $\mathbf{x}^A - \mathbf{c} = 0$ has no (n - k)-dimensional solution set.

For an input (A, \mathbf{c}) , with rank(A) = k, we describe the solution set of the binomial system by

- a square matrix M
- computed values for the last (n-k) variables

Algorithm Outline for Solving of Binomial Systems

INPUT: (A, \mathbf{c})

- 1. Compute the null space B of A, d = n k.
- 2. Compute the Smith Normal Form (U, S, V) of B.
- 3. Depending on $\ensuremath{\mathsf{U}}$ and $\ensuremath{\mathsf{S}}$, do one of the following:
 - 3.1. If U = I, then $M = V^{-1}$
 - 3.2. If $U \neq I$ and S has 1's on the diagonal, then extend U^{-1} with an identity matrix to obtain an $n \times n$ matrix E that has U^{-1} in its first d rows. Then $M = EV^{-1}$.
 - 3.3 In all other cases:
 - 3.3.1. Compute Hermite Normal Form of B, UB = H, $det(U) = \pm 1$, $U \in \mathbb{Z}^{n \times n}$. We assume that B has full rank and that the columns of B have been permuted, s.t. H has only non-zero elements on its diagonal.
 - 3.3.2. Let D be a diagonal matrix of the same dimension as U, which takes its elements from the corresponding diagonal elements of H. Then,

$$M = \begin{bmatrix} D^{-1} & B \\ \mathbf{0} & I \end{bmatrix}$$

4. After the coordinate transformation $\mathbf{x} = \mathbf{z}^M$, solve the resulting binomial system in k equations and k unknowns. Return M and the solutions of the transformed binomial system.

Consider the binomial system:

$$\left\{ \begin{array}{l} x_0^4 x_1^5 x_2^3 x_3^8 x_4^7 - 1 = 0 \\ x_0^{11} x_1^{10} x_2^9 x_3^4 x_4^8 - 1 = 0 \end{array} \right.$$

Writing the exponents in form of a matrix

$$A = \left[\begin{array}{ccccc} 4 & 5 & 3 & 8 & 7 \\ 11 & 10 & 9 & 4 & 8 \end{array} \right]$$

We are looking for the null space of A

Three linearly independent vectors satisfy $A\mathbf{v} = 0$

$$B = \begin{bmatrix} 1 & 1 & -1 & 1 & -2 \\ 2 & 1 & -4 & -1 & 1 \\ 3 & -2 & -1 & 1 & -1 \end{bmatrix} \quad AB^{T} = 0$$

We want to generate an unimodular matrix M, whose first rows consist of the vectors of matrix B.

$$B = \begin{bmatrix} 1 & 1 & -1 & 1 & -2 \\ 2 & 1 & -4 & -1 & 1 \\ 3 & -2 & -1 & 1 & -1 \end{bmatrix} \quad AB^{T} = 0$$

$$M = \begin{bmatrix} 1 & 1 & -1 & 1 & -2 \\ 2 & 1 & -4 & -1 & 1 \\ 3 & -2 & -1 & 1 & -1 \\ n_{3,0} & n_{3,1} & n_{3,2} & n_{3,3} & n_{3,4} \\ n_{4,0} & n_{4,1} & n_{4,2} & n_{4,3} & n_{4,4} \end{bmatrix} \quad n_{i,j} \in \mathbb{N}$$

$$det(M) \pm 1$$

We use the matrix M as power transformation, to change the coordinates of the binomial system via:

$$\mathbf{x} = \mathbf{z}^M$$

The Smith Normal Form: S = UBV or $B = U^{-1}SV^{-1}$

$$B = \begin{bmatrix} 1 & 1 & -1 & 1 & -2 \\ 2 & 1 & -4 & -1 & 1 \\ 3 & -2 & -1 & 1 & -1 \end{bmatrix} \quad AB^{T} = 0$$

Computing the Smith Normal Form of B with Sage, yields matrices

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad det(U) = \pm 1$$

$$V = \begin{bmatrix} 7 & 6 & -1 & 7 & 15 \\ 5 & 4 & -1 & 5 & 10 \\ 6 & 5 & -1 & 6 & 13 \\ -5 & -5 & 1 & -4 & -12 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad det(V) = \pm 1$$

We can compute the unimodular matrix M, using the Smith Normal Form computation. Because

- S had only 1's on the diagonal
- U = I, the identity matrix

The unimodular matrix $M = V^{-1}$

$$M = V^{-1} = \begin{bmatrix} 1 & 1 & -1 & 1 & -2 \\ 2 & 1 & -4 & -1 & 1 \\ 3 & -2 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & -1 & 2 & 0 & 0 \end{bmatrix} \quad det(M) = \pm 1$$

By having $v_0, v_1, v_2 \in B$ in the first three rows of M, we will eliminate the first three variables in the binomial system, after the unimodular coordinate transformation.

The unimodular coordinate transformation acts on the exponents: $\mathbf{x} = \mathbf{z}^{M}$.

$$M = \begin{bmatrix} 1 & 1 & -1 & 1 & -2 \\ 2 & 1 & -4 & -1 & 1 \\ 3 & -2 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & -1 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 = z_0 z_1^2 z_2^3 z_4^{-1} \\ x_1 = z_0 z_1 z_2^{-2} z_4^{-1} \\ x_2 = z_0^{-1} z_1^{-4} z_2^{-1} z_2^2 \\ x_3 = z_0 z_1^{-1} z_2 \\ x_4 = z_0^{-2} z_1 z_2^{-1} z_3 \end{bmatrix}$$
$$\begin{cases} x_0^4 x_1^5 x_2^3 x_3^8 x_4^7 - 1 = 0 \\ x_0^{11} x_1^{10} x_2^9 x_3^4 x_4^8 - 1 = 0 \end{bmatrix} \begin{cases} z_3^7 z_4^{-3} - 1 = 0 \\ z_3^8 z_4^{-3} - 1 = 0 \end{cases}$$

Solving the transformed system yields 3 isolated solutions in $\mathbb{C}\setminus 0$ for the variables z_3 , z_4 . Returning these solutions to original coordinates, via the transformation, we obtain the representations of the three-dimensional solution set of the original binomial system.

Consider the binomial system:

$$\begin{cases} x_0 x_1^2 x_2^3 x_3 x_4^7 - 1 = 0 \\ x_0^3 x_1^5 x_2^8 x_3 x_4^2 - 1 = 0 \end{cases}$$

Writing the exponents in form of a matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 1 & 7 \\ 3 & 5 & 8 & 1 & 2 \end{array} \right]$$

We are looking for the null space of A

Three linearly independent vectors satisfy $A\mathbf{v} = 0$

$$B = \begin{bmatrix} 6 & 6 & -7 & 10 & -1 \\ 1 & -14 & 9 & -7 & 1 \\ 2 & -3 & 1 & 1 & 0 \end{bmatrix} \quad AB^{T} = 0$$

We want to generate an unimodular matrix M, whose first rows consist of the vectors of matrix B.

$$B = \begin{bmatrix} 6 & 6 & -7 & 10 & -1 \\ 1 & -14 & 9 & -7 & 1 \\ 2 & -3 & 1 & 1 & 0 \end{bmatrix} \quad AB^{T} = 0$$

$$M = \begin{bmatrix} 6 & 6 & -7 & 10 & -1 \\ 1 & -14 & 9 & -7 & 1 \\ 2 & -3 & 1 & 1 & 0 \\ n_{3,0} & n_{3,1} & n_{3,2} & n_{3,3} & n_{3,4} \\ n_{4,0} & n_{4,1} & n_{4,2} & n_{4,3} & n_{4,4} \end{bmatrix} \quad n_{i,j} \in \mathbb{N}$$

$$det(M) \pm 1$$

We use the matrix M as power transformation, to change the coordinates of the binomial system via:

$$\mathbf{x} = \mathbf{z}^M$$

The Smith Normal Form: S = UBV or $B = U^{-1}SV^{-1}$

$$B = \begin{bmatrix} 6 & 6 & -7 & 10 & -1 \\ 1 & -14 & 9 & -7 & 1 \\ 2 & -3 & 1 & 1 & 0 \end{bmatrix} \quad AB^{T} = 0$$

Computing the Smith Normal Form of B with Sage, yields matrices

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad det(U) = \pm 1$$

$$V = \begin{bmatrix} 3 & 14 & -5 & -8 & 19 \\ 4 & 25 & -9 & -13 & 31 \\ 6 & 42 & -15 & -21 & 50 \\ 0 & 6 & -2 & -2 & 5 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad det(V) = \pm 1$$

While S has 1's on the diagonal, $U \neq I \rightarrow M \neq V^{-1}$

$$U = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \ \end{array}
ight] \qquad det(U) = \pm 1$$

Inverting matrix U and extending matrix $U^{-1} \rightarrow E$:

$$U^{-1} = \left[egin{array}{cccc} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight] \quad E = \left[egin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{array}
ight] \quad det(E) = \pm 1$$

We can obtain the unimodular matrix M, via

$$M = EV^{-1}$$

$$V = \begin{bmatrix} 3 & 14 & -5 & -8 & 19 \\ 4 & 25 & -9 & -13 & 31 \\ 6 & 42 & -15 & -21 & 50 \\ 0 & 6 & -2 & -2 & 5 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad E = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M = EV^{-1} = \begin{bmatrix} 6 & 6 & -7 & 10 & -1 \\ 1 & -14 & 9 & -7 & 1 \\ 2 & -3 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 6 & -4 & 3 & 0 \end{bmatrix}$$

By having $v_0, v_1, v_2 \in B$ in the first three rows of M, we will eliminate the first three variables in the binomial system, after the unimodular coordinate transformation.

The unimodular coordinate transformation acts on the exponents: $\mathbf{x} = \mathbf{z}^{M}$.

$$M = \begin{bmatrix} 6 & 6 & -7 & 10 & -1 \\ 1 & -14 & 9 & -7 & 1 \\ 2 & -3 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 6 & -4 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_0 = z_0^6 z_1 z_2^2 \\ x_1 = z_0^6 z_1^{-14} z_2^{-3} z_4^6 \\ x_2 = z_0^{-7} z_1^9 z_2 z_4^{-4} \\ x_3 = z_0^{10} z_1^{-7} z_2 z_4^3 \\ x_4 = z_0^{-1} z_1 z_3 \end{bmatrix}$$
$$\begin{cases} x_0 x_1^2 x_2^3 x_3 x_4^7 - 1 = 0 \\ x_0^3 x_1^5 x_2^8 x_3 x_4^2 - 1 = 0 \end{bmatrix} \rightarrow \begin{cases} z_3^7 z_4^3 - 1 = 0 \\ z_3^2 z_4 - 1 = 0 \end{cases}$$

Solving the transformed system yields one solution $z_3=1,\,z_4=1.$ Returning this solution to the original coordinates, we obtain a solution of the original binomial system.

$$\begin{cases} x_0 = z_0^6 z_1 z_2^2 \\ x_1 = z_0^6 z_1^{-14} z_2^{-3} \\ x_2 = z_0^{-7} z_1^9 z_2 \\ x_3 = z_0^{10} z_1^{-7} z_2 \\ x_4 = z_0^{-1} z_1 \end{cases}$$

Consider the binomial system:

$$\left\{ \begin{array}{l} x_0^5 x_1^1 x_2^2 x_3^3 x_4^2 - 1 = 0 \\ x_0^1 x_1^1 x_2^1 x_3^1 x_4^2 - 1 = 0 \\ x_0^1 x_1^1 x_2^5 x_3^1 x_4^7 - 1 = 0 \end{array} \right.$$

Writing the exponents in form of a matrix

$$A = \left[\begin{array}{ccccc} 5 & 1 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 & 2 \\ 1 & 1 & 5 & 1 & 7 \end{array} \right]$$

We are looking for the null space of A

Two linearly independent vectors satisfy $A\mathbf{v} = 0$

$$B = \begin{bmatrix} 2 & -9 & -10 & 1 & 8 \\ 15 & -7 & -20 & -20 & 16 \end{bmatrix} \quad AB^T = 0$$

We want to generate an unimodular matrix M, whose first rows consist of the vectors of matrix B.

$$B = \begin{bmatrix} 2 & -9 & -10 & 1 & 8 \\ 15 & -7 & -20 & -20 & 16 \end{bmatrix} \quad AB^{T} = 0$$

$$M = \begin{bmatrix} 2 & -9 & -10 & 1 & 8 \\ 15 & -7 & -20 & -20 & 16 \\ n_{2,0} & n_{2,1} & n_{2,2} & n_{2,3} & n_{2,4} \\ n_{3,0} & n_{3,1} & n_{3,2} & n_{3,3} & n_{3,4} \\ n_{4,0} & n_{4,1} & n_{4,2} & n_{4,3} & n_{4,4} \end{bmatrix} \quad n_{i,j} \in \mathbb{N}$$

$$det(M) \pm 1$$

We use the matrix M as a power transformation, to change the coordinates of the binomial system via:

$$\mathbf{x} = \mathbf{z}^M$$

The Smith Normal Form: S = UBV or $B = U^{-1}SV^{-1}$

$$B = \begin{bmatrix} 2 & -9 & -10 & 1 & 8 \\ 15 & -7 & -20 & -20 & 16 \end{bmatrix} \quad AB^{T} = 0$$

Computing the Smith Normal Form of B with Sage, yields matrices

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \quad det(U) = \pm 1$$

$$V = \begin{bmatrix} 11 & -1 & -88 & -13 & 10 \\ -11 & 2 & 88 & 15 & -10 \\ 12 & -2 & -96 & -16 & 11 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad det(V) = \pm 1$$

We can not compute the unimodular matrix M, using the Smith Normal Form

- S did not have only 1's on the diagonal
- U was not the identity matrix

We can use the Hermite Normal Form to rescale elements of matrix B:

$$B = \begin{bmatrix} 2 & -9 & -10 & 1 & 8 \\ 15 & -7 & -20 & -20 & 16 \end{bmatrix} \quad AB^{T} = 0$$

Hermite Normal Form of B:

$$H = \left[\begin{array}{cccc} 1 & 56 & 50 & -27 & -40 \\ 0 & 121 & 110 & -55 & -88 \end{array} \right]$$

$$M = \left[egin{array}{cccccc} 2 & -9 & -10 & 1 & 8 \ rac{15}{121} & -rac{7}{121} & -rac{20}{121} & -rac{20}{121} & rac{16}{121} \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{array}
ight] \quad det(M) = \pm 1$$

$$M = \begin{bmatrix} 2 & -9 & -10 & 1 & 8 \\ \frac{15}{121} & -\frac{7}{121} & -\frac{20}{121} & -\frac{20}{121} & \frac{16}{121} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The unimodular coordinate transformation acts on the exponents: $\mathbf{x} = \mathbf{z}^{M}$.

$$\begin{cases} x_0 = z_0^2 z_1^{\frac{15}{121}} \\ x_1 = z_0^{-9} z_1^{-\frac{7}{121}} \\ x_2 = z_0^{-10} z_1^{-\frac{20}{121}} z_2^1 \\ x_3 = z_0^1 z_1^{-\frac{20}{121}} z_3^1 \\ x_4 = z_0^8 z_1^{\frac{16}{121}} z_4^1 \end{cases}$$

Using the new coordinates

$$\begin{cases} x_0 = z_0^2 z_1^{\frac{15}{121}} \\ x_1 = z_0^{-9} z_1^{-\frac{7}{121}} \\ x_2 = z_0^{-10} z_1^{-\frac{20}{121}} z_2^1 \\ x_3 = z_0^1 z_1^{-\frac{20}{121}} z_3^1 \\ x_4 = z_0^8 z_1^{\frac{16}{121}} z_4^1 \end{cases}$$

$$(1)$$

we transform the binomial system

$$\begin{cases} x_0^5 x_1^1 x_2^2 x_3^3 x_4^2 - 1 = 0 \\ x_0^1 x_1^1 x_2^1 x_3^1 x_4^2 - 1 = 0 \\ x_0^1 x_1^1 x_2^5 x_3^1 x_4^7 - 1 = 0 \end{cases} \rightarrow \begin{cases} z_2^2 z_3^3 z_4^2 - 1 = 0 \\ z_2 z_3 z_4^2 - 1 = 0 \\ z_2^5 z_3 z_4^7 - 1 = 0 \end{cases}$$

Solving the transformed system yields 11 isolated solutions for the variables z_2 , z_3 , z_4 . Returning these solutions to original coordinates via the transformation (1), we obtain the fractional representations of the two-dimensional solution set of the original binomial system.

Polynomial System: Basic Definitions

We want to extend the method we used on binomial systems to general polynomial systems.

Polynomial System

$$F(\mathbf{x}) = \begin{cases} f_0(\mathbf{x}) = 0 \\ f_1(\mathbf{x}) = 0 \\ \vdots \\ f_{n-1}(\mathbf{x}) = 0 \end{cases} \quad \mathbf{x} = (x_0, x_1, \dots, x_{n-1}), \ f_i \in \mathbb{C}[\mathbf{x}]$$

A Polynomial

$$f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad c_{\mathbf{a}} \in \mathbb{C} \setminus 0, \quad \mathbf{x}^{\mathbf{a}} = x_0^{a_0} x_1^{a_1} \cdots x_{n-1}^{a_{n-1}}$$

The set A_i of exponents is called the support of f_i .

 $P_i = \text{ConvexHull}(A_i)$ is the Newton polytope of f_i .

The Cayley Embedding & Polytope For Square Systems

Cayley Embedding

$$C_E = (A_0 \times \{\mathbf{0}\}) \cup (A_1 \times \{\mathbf{e}_1\}) \cup \cdots \cup (A_{n-1} \times \{\mathbf{e}_{n-1}\})$$

where \mathbf{e}_k is the k-th (n-1)-dimensional unit vector.

Cayley Polytope

$$C_{\Delta} = ConvexHull(C_E)$$

NOTE

We use the Cayley polytope as a way to combine all individual polytopes into one polytope.

We use **cddlib** of *K. Fukuda* to find facet normals of the Cayley polytope.

Tropisms and Initial Form Systems

Definition (Pretropism)

A **pretropism** is a normal vector (a facet normal) to at least an edge of each polytope.

Definition (Initial Form)

Let f_i be a polynomial with support A_i and let \mathbf{v} be a pretropism. Then the **initial form** $in_{\mathbf{v}}(f_i)$ is the sum of all monomials in f_i , where the inner product $\langle \mathbf{a}, \mathbf{v} \rangle$ reaches its minimum at least twice over $\mathbf{a} \in A_i$.

Initial Form System

For a system $F(\mathbf{x}) = \mathbf{0}$, $F = (f_0, f_1, \dots, f_{n-1})$, and pretropism \mathbf{v} , the **initial** form system is defined by $in_{\mathbf{v}}(F) = (in_{\mathbf{v}}(f_0), in_{\mathbf{v}}(f_1), \dots, in_{\mathbf{v}}(f_{n-1}))$.

Solving initial form system leads to solutions at infinity.

Definition (Tropism)

A **tropism** is a pretropism, which is the leading exponent vector of a Puiseux series expansion for a curve, expanded about $t \approx 0$.

Tropisms and d-Dimensional Surfaces

Let
$$v_0 = (v_{(0,1)}, v_{(0,2)}, \dots, v_{(0,n-1)}), v_1 = (v_{(1,0)}, v_{(1,1)}, \dots, v_{(1,n-1)}), \dots, v_{d-1} = (v_{(d-1,0)}, v_{(d-1,1)}, \dots, v_{(d-1,n-1)})$$
 be d tropisms:

d tropisms generate a Puiseux series expansion of a d-dimensional surface

$$x_{0} = t_{0}^{V(0,0)} t_{1}^{V(1,0)} \cdots t_{d-1}^{V(d-1,0)} (r_{0} + c_{(0,0)} t_{0}^{w_{(0,0)}} + c_{(1,0)} t_{1}^{w_{(1,0)}} + \dots)$$

$$x_{1} = t_{0}^{V(0,1)} t_{1}^{V(1,1)} \cdots t_{d-1}^{V(d-1,1)} (r_{1} + c_{(0,1)} t_{0}^{w_{(0,1)}} + c_{(1,1)} t_{1}^{w_{(1,1)}} + \dots)$$

$$x_{2} = t_{0}^{V(0,2)} t_{1}^{V(1,2)} \cdots t_{d-1}^{V(d-1,2)} (r_{2} + c_{(0,2)} t_{0}^{w_{(0,2)}} + c_{(1,2)} t_{1}^{w_{(1,2)}} + \dots)$$

$$\vdots$$

$$x_{n-1} = t_{0}^{V(0,n-1)} t_{1}^{V(1,n-1)} \cdots t_{d-1}^{V(d-1,n-1)} (r_{n-1} + c_{(0,n-1)} t_{0}^{w_{(0,n-1)}} + c_{(1,n-1)} t_{1}^{w_{(1,n-1)}} + \dots)$$

- $v_0, v_1, \ldots, v_{d-1}$ span a **cone** of tropisms.
- dimension of the cone is d, i.e. the number of free parameters.
- r_i are the solutions of initial forms, i.e. solutions at infinity.
- $t_i \approx 0$ our Puiseux series are valid around zero.

As an example, we will consider the cyclic 9-roots polynomial system.

We search for candidates for the cones of tropisms in the following way:

- 1. embed the polynomial system via the Cayley embedding
- 2. compute the Cayley polytope, i.e. H-rep. of the embedded system
- 3. remove the embedding from the Cayley polytope
- 4. determine which facet normals are pretropisms
- 5. for each pretropism, compute the initial form system
 - 5.1. repeat steps 1. 5. for each initial form until there are no pretropisms, keeping track of the sequence of pretropisms, which lead to initial form systems.
- 6. Return each such sequence.

One such sequence is $v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$, $v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1)$.

The cone of pretropisms for the cyclic 9-roots polynomial system was generated by vectors $v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$ and $v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1)$. Computing initial form $in_{V_0}(C_9)(\mathbf{x})$, and then $in_{V_0}(in_{V_0}(C_9))(\mathbf{x})$ yields a system:

$$In_{v_1}(In_{v_0}(C_9))(\mathbf{x}) = \begin{cases} x_2 + x_5 + x_8 = 0 \\ x_0x_8 + x_2x_3 + x_5x_6 = 0 \\ x_0x_1x_2 + x_0x_1x_8 + x_0x_7x_8 + x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 \\ +x_4x_5x_6 + x_5x_6x_7 + x_6x_7x_8 = 0 \\ x_0x_1x_2x_8 + x_2x_3x_4x_5 + x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_8 + x_0x_5x_6x_7x_8 + x_2x_3x_4x_5x_6 = 0 \\ x_0x_1x_2x_3x_4x_5 + x_0x_1x_2x_3x_4x_8 + x_0x_1x_2x_3x_7x_8 \\ +x_0x_1x_2x_6x_7x_8 + x_0x_1x_5x_6x_7x_8 + x_0x_4x_5x_6x_7x_8 + x_1x_2x_3x_4x_5x_6 \\ +x_2x_3x_4x_5x_6x_7 + x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_8 + x_0x_1x_2x_3x_5x_6x_7x_8 + x_0x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_8 + x_0x_1x_2x_3x_5x_6x_7x_8 + x_0x_2x_3x_4x_5x_6x_7x_8 = 0 \\ x_0x_1x_2x_3x_4x_5x_6x_8 + x_0x_1x_2x_3x_5x_6x_7x_8 + x_0x_2x_3x_4x_5x_6x_7x_8 = 0 \end{cases}$$

For one of the first solutions of the cyclic 9-roots polynomial system, we refer to J. C. Faugère, A new efficient algorithm for computing Gröbner bases (F_4) . Journal of Pure and Applied Algebra, Vol. 139, Number 1-3, Pages 61-88, Year 1999. Proceedings of MEGA'98, 22-27 June 1998, Saint-Malo, France.

$$v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$$

 $v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1)$

The unimodular coordinate transformation $x = z^M$ acts on the exponents. The new coordinates are given by

$$M = \begin{bmatrix} 1 & 1 & -2 & 1 & 1 & -2 & 1 & 1 & -2 \\ 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{aligned} x_1 &= z_0 z_1 \\ x_2 &= z_0^{-2} z_1^{-1} z_2 \\ x_3 &= z_0 z_3 \\ x_4 &= z_0 z_1 z_4 \\ x_5 &= z_0^{-2} z_1^{-1} z_5 \\ x_6 &= z_0 z_6 \\ x_7 &= z_0 z_1 z_7 \\ x_8 &= z_0^{-2} z_1^{-1} z_8 \end{aligned}$$

$$x_0 = z_0$$

$$x_1 = z_0 z_1$$

$$x_2 = z_0^{-2} z_1^{-1} z_2$$

$$x_3 = z_0 z_3$$

$$x_4 = z_0 z_1 z_4$$

$$x_5 = z_0^{-2} z_1^{-1} z_5$$

$$x_6 = z_0 z_6$$

$$x_7 = z_0 z_1 z_7$$

$$x_9 = z_0^{-2} z_1^{-1} z_9$$

We use the coordinate change to transform the initial form system and the original cyclic 9-roots system.

The transformed initial form system $in_{v_1}(in_{v_0}(C_9))(\mathbf{z})$ is given by

$$\begin{cases} z_2 + z_5 + z_8 = 0 \\ z_2 z_3 + z_5 z_6 + z_8 = 0 \\ z_2 z_3 z_4 + z_3 z_4 z_5 + z_4 z_5 z_6 + z_5 z_6 z_7 + z_6 z_7 z_8 + z_2 z_3 + z_7 z_8 + z_2 + z_8 = 0 \\ z_2 z_3 z_4 z_5 + z_5 z_6 z_7 z_8 + z_2 z_8 = 0 \\ z_2 z_3 z_4 z_5 z_6 + z_5 z_6 z_7 z_8 + z_2 z_3 z_8 = 0 \\ z_2 z_3 z_4 z_5 z_6 z_7 + z_3 z_4 z_5 z_6 z_7 z_8 + z_2 z_3 z_4 z_5 z_6 + z_4 z_5 z_6 z_7 z_8 + z_2 z_3 z_4 z_5 + z_2 z_3 z_4 z_5 \\ + z_2 z_3 z_7 z_8 + z_2 z_6 z_7 z_8 + z_5 z_6 z_7 z_8 = 0 \\ z_3 z_4 z_6 z_7 + z_3 z_4 + z_6 z_7 = 0 \\ z_4 z_7 + z_4 + z_7 = 0 \\ z_2 z_3 z_4 z_5 z_6 z_7 z_8 - 1 = 0 \end{cases}$$

Its solution is

$$z_2 = -\frac{1}{2} - \frac{\sqrt{3}I}{2}, \ z_3 = -\frac{1}{2} + \frac{\sqrt{3}I}{2}, \ z_4 = -\frac{1}{2} + \frac{\sqrt{3}I}{2}, \ z_5 = 1, \ z_6 = -\frac{1}{2} - \frac{\sqrt{3}I}{2},$$

$$z_7 = -\frac{1}{2} - \frac{\sqrt{3}I}{2}, \ z_8 = -\frac{1}{2} + \frac{\sqrt{3}I}{2}, \ \text{where } I = \sqrt{-1}.$$

While we used a numerical solver PHCpack, we recognized the solution as the 3^{rd} roots of unity.

The following assignment satisfies cyclic 9-roots polynomial system **entirely**.

$$z_{0} = t_{1}$$

$$z_{1} = t_{2}$$

$$x_{1} = t_{1}t_{2}$$

$$x_{2} = -\frac{1}{2} - \frac{\sqrt{3}I}{2}$$

$$x_{2} = t_{1}^{-2}t_{2}^{-1}(-\frac{1}{2} - \frac{\sqrt{3}I}{2})$$

$$x_{3} = z_{0}z_{1}$$

$$x_{4} = z_{0}z_{1}z_{4}$$

$$x_{5} = z_{0}^{-2}z_{1}^{-1}z_{5}$$

$$x_{5} = z_{0}^{-2}z_{1}^{-1}z_{5}$$

$$x_{6} = z_{0}z_{6}$$

$$x_{7} = z_{0}z_{1}z_{7}$$

$$x_{8} = z_{0}^{-2}z_{1}^{-1}z_{8}$$

$$z_{1} = t_{1}t_{2}$$

$$x_{2} = t_{1}^{-2}t_{2}^{-1}(-\frac{1}{2} - \frac{\sqrt{3}I}{2})$$

$$x_{3} = t_{1}(-\frac{1}{2} + \frac{\sqrt{3}I}{2})$$

$$x_{4} = t_{1}t_{2}(-\frac{1}{2} + \frac{\sqrt{3}I}{2})$$

$$x_{5} = t_{1}^{-2}t_{2}^{-1}$$

$$x_{6} = t_{1}(-\frac{1}{2} - \frac{\sqrt{3}I}{2})$$

$$x_{7} = t_{1}t_{2}(-\frac{1}{2} - \frac{\sqrt{3}I}{2})$$

$$x_{8} = t_{1}^{-2}t_{2}^{-1}(-\frac{1}{2} + \frac{\sqrt{3}I}{2})$$

$$x_{8} = t_{1}^{-2}t_{2}^{-1}(-\frac{1}{2} + \frac{\sqrt{3}I}{2})$$

Letting
$$u = e^{\frac{2\pi l}{3}}$$
 and $y_0 = t_0$, $y_1 = t_0 t_1$, $y_2 = t_0^{-2} t_1^{-1} u^2$

$$x_{0} = t_{1}$$

$$x_{1} = t_{1}t_{2}$$

$$x_{2} = t_{1}^{-2}t_{2}^{-1}\left(-\frac{1}{2} - \frac{\sqrt{3}I}{2}\right)$$

$$x_{3} = t_{1}\left(-\frac{1}{2} + \frac{\sqrt{3}I}{2}\right)$$

$$x_{4} = t_{1}t_{2}\left(-\frac{1}{2} + \frac{\sqrt{3}I}{2}\right)$$

$$x_{5} = t_{1}^{-2}t_{2}^{-1}$$

$$x_{6} = t_{1}\left(-\frac{1}{2} - \frac{\sqrt{3}I}{2}\right)$$

$$x_{7} = t_{1}t_{2}\left(-\frac{1}{2} + \frac{\sqrt{3}I}{2}\right)$$

$$x_{8} = t_{1}^{-2}t_{2}^{-1}$$

$$x_{1} = t_{1}t_{2}$$

$$x_{2} = t_{1}$$

$$x_{2} = t_{1}^{-2}t_{2}^{-1}u^{2}$$

$$x_{3} = t_{1}u$$

$$x_{3} = y_{0}u$$

$$x_{4} = t_{1}t_{2}u$$

$$x_{5} = t_{1}^{-2}t_{2}^{-1}$$

$$x_{5} = y_{2}u$$

$$x_{6} = t_{1}u^{2}$$

$$x_{7} = t_{1}t_{2}u^{2}$$

$$x_{7} = t_{1}t_{2}u^{2}$$

$$x_{8} = t_{1}^{-2}t_{2}^{-1}u$$

$$x_{8} = y_{2}u^{2}$$

$$x_0 = t_1$$
 $x_3 = t_1 u$ $x_6 = t_1 u^2$
 $x_1 = t_1 t_2$ $x_4 = t_1 t_2 u$ $x_7 = t_1 t_2 u^2$
 $x_2 = t_1^{-2} t_2^{-1} u^2$ $x_5 = t_1^{-2} t_2^{-1}$ $x_8 = t_1^{-2} t_2^{-1} u$

Using this representation of the solution for points on the surface, we can compute the degree of the surface by using two random hyperplanes in the following way:

$$\begin{aligned} \alpha_1 t_0 + \alpha_2 t_0 t_1 + \alpha_3 t_0^{-2} t_1^{-1} &= 0 \\ \alpha_4 t_0 + \alpha_5 t_0 t_1 + \alpha_6 t_0^{-2} t_1^{-1} &= 0 \end{aligned} \quad \alpha_i \in \mathbb{C}$$

Simplifying, the system becomes

$$t_0^{-2}t_1^{-1} - \beta_1 = 0 t_1 - \beta_2 = 0$$
 $\beta_j \in \mathbb{C}$

As the simplified system has 3 solutions, the cyclic 9 solution component is a cubic surface.

Using the alternative solution format we gave earlier

$$x_0 = y_0$$
 $x_3 = y_0 u$ $x_6 = y_0 u^2$
 $x_1 = y_1$ $x_4 = y_1 u$ $x_7 = y_1 u^2$
 $x_2 = y_2$ $x_5 = y_2 u$ $x_8 = y_2 u^2$

we can use the cyclic permutation (forward, backward) of the third roots of unity $u=e^{\frac{2\pi i}{3}}$

and obtain an orbit of 6 cubic surfaces, satisfying the cyclic 9-roots system.

Cyclic 16-Roots Polynomial System

Extending the pattern we observed among tropisms of the cyclic 9-roots,

$$v_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$$

$$v_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1)$$

we can get the correct cone of tropisms for the cyclic 16-roots.

$$v_0 = (1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3)$$

$$v_1 = (0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2)$$

$$v_2 = (0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1)$$

Extending the solutions at infinity pattern,

cyclic 9-roots:
$$u = e^{\frac{2\pi i}{3}} \rightarrow$$
 cyclic 16-roots: $u = e^{\frac{2\pi i}{4}}$

The 3-dimensional solution component of the cyclic 16-roots is given by:

This 3-dimensional cyclic 16-root solution component is a **quartic** surface. Using cyclic permutation, we obtain 2 * 4 = 8 components of degree 4.

Cyclic n-Roots Polynomial System Summary

We now formalize the previous results for the cyclic n-roots systems. Consider the cyclic n-roots polynomial systems and let $n = m^2$. Then

ullet there is an (m-1)-dimensional set of cyclic *n*-roots, represented exactly as

$$\begin{array}{rcl}
x_{km+0} & = & u_k t_0 \\
x_{km+1} & = & u_k t_0 t_1 \\
x_{km+2} & = & u_k t_0 t_1 t_2 \\
& \vdots \\
x_{km+m-2} & = & u_k t_0 t_1 t_2 \cdots t_{m-2} \\
x_{km+m-1} & = & u_k t_0^{-m+1} t_1^{-m+2} \cdots t_{m-3}^{-2} t_{m-2}^{-1}
\end{array} \tag{3}$$

- for k = 0, 1, 2, ..., m 1 and $u_k = e^{i2k\pi/m}$.
- the (m-1) dimensional solution set of (3):
 - has degree equal to m
 - there are 2m components of degree m

We formally address all these results in:

Computing Puiseux Series for Algebraic Surfaces

Accepted for publication in the proceedings of ISSAC 2012.

Conclusion

With the computational results, illustrated on the cyclic n-roots polynomial systems, we offer a proof of concept for a new polyhedral method to compute algebraic sets.

For more information on our polyhedral method, see

Computing Puiseux Series for Algebraic Surfaces. arXiv:1201.3401v2 [cs.SC]. Accepted for publication in the proceedings of ISSAC 2012.

Polyhedral Methods for Space Curves Exploiting Symmetry. arXiv:1109.0241v1 [math.NA]

Tropical Algebraic Geometry in Maple, a preprocessing algorithm for finding common factors to multivariate polynomials with approximate coefficients. Journal of Symbolic Computation 46(7):755-772, 2011.