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Introduction

Our main objective: development of a polyhedral method to solve systems
of polynomials

solving for d-dimensional solution sets, d ≥ 2

We focus initially on

binomial systems, i.e. toric ideals

unimodular coordinate transformations to work with points at infinity

Smith normal form
Hermite normal form

We then extend these ideas to

general polynomial systems

We use

cones of tropisms

Puiseux series

to connect tropisms with d-dimensional solution sets

In the process, we emphasize the exploitation of symmetry
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Fundamental Theorem

Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

ω ∈ Trop(I ) ∩Qn ⇐⇒ ∃p ∈ V (I ) : −val(p) = ω ∈ Qn.

Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
An Algorithm for Lifting Points in a Tropical Variety. Collect. Math. vol.
59, no. 2, pages 129–165, 2008.

Rephrasing the Theorem:

Rational vector in the tropical variety corresponds to the leading powers of
a Puiseux series, converging to a point in the algebraic variety.

Our understanding of the Fundamental Theorem of Tropical Algebraic
Geometry

comes from polyhedral homotopies
we see it as a generalization of Bernshtein’s Theorem B
we use Bernshtein’s Theorem A &B to solve polynomial systems with
polyhedral methods

Our approach is inspired by the Fundamental Theorem of Tropical
Algebraic Geometry
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Cyclic n-roots Polynomial Systems

The cyclic n-roots polynomial systems are benchmark problems for polynomial
system solvers.

F (x) = Cn(x) =



x0 + x1 + · · ·+ xn−1 = 0

x0x1 + x1x2 + · · ·+ xn−2xn−1 + xn−1x0 = 0

i = 3, 4, . . . , n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

Cyclic n-roots polynomial systems:

square systems: we expect isolated solutions
we find positive dimensional solution sets

Lemma (Backelin)

If m2 divides n, then the dimension of the cyclic n-roots polynomial system is at
least m − 1.

J. Backelin: Square multiples n give infinitely many cyclic n-roots. Reports,
Matematiska Institutionen, Stockholms Universitet, 1989.
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Algorithm Outline for Solving of Binomial Systems

We represent a binomial system in the following way:

xA − c = 0 for i =0, 1, . . . , k − 1

where A ∈ Zk×n, c=(c0, c1, . . . , ck−1)T , ci ∈ C \ 0.

If the rank(A) = k, then k is the codimension of the solution set.
Otherwise, xA − c = 0 has no (n − k)-dimensional solution set.

For an input (A, c), with rank(A) = k, we describe the solution set of the
binomial system by

a square matrix M

computed values for the last (n-k) variables
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Algorithm Outline for Solving of Binomial Systems

INPUT: (A, c)
1. Compute the null space B of A, d = n − k .
2. Compute the Smith Normal Form (U,S ,V ) of B.
3. Depending on U and S, do one of the following:

3.1. If U = I , then M = V−1

3.2. If U 6= I and S has 1’s on the diagonal, then extend U−1 with an identity
matrix to obtain an n × n matrix E that has U−1 in its first d rows.
Then M = EV−1.

3.3. In all other cases:
3.3.1. Compute Hermite Normal Form of B, UB = H, det(U) = ±1,

U ∈ Zn×n. We assume that B has full rank and that the
columns of B have been permuted, s.t. H has only non-zero
elements on its diagonal.

3.3.2. Let D be a diagonal matrix of the same dimension as U, which
takes its elements from the corresponding diagonal elements of H.
Then,

M =

[
D−1 B
0 I

]
4. After the coordinate transformation x = zM , solve the resulting binomial system in k

equations and k unknowns. Return M and the solutions of the transformed binomial
system.
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Solving Binomial Systems

Consider the binomial system:{
x4

0 x5
1 x3

2 x8
3 x7

4 − 1 = 0
x11

0 x10
1 x9

2 x4
3 x8

4 − 1 = 0

Writing the exponents in form of a matrix

A =

[
4 5 3 8 7

11 10 9 4 8

]
We are looking for the null space of A
Three linearly independent vectors satisfy Av = 0

B =

 1 1 −1 1 −2
2 1 −4 −1 1
3 −2 −1 1 −1

 ABT = 0
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Solving Binomial Systems

We want to generate an unimodular matrix M, whose first rows consist of
the vectors of matrix B.

B =

 1 1 −1 1 −2
2 1 −4 −1 1
3 −2 −1 1 −1

 ABT = 0

M =


1 1 −1 1 −2
2 1 −4 −1 1
3 −2 −1 1 −1

n3,0 n3,1 n3,2 n3,3 n3,4

n4,0 n4,1 n4,2 n4,3 n4,4

 ni ,j ∈ N

det(M)± 1

We use the matrix M as power transformation, to change the coordinates
of the binomial system via:

x = zM
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Solving Binomial Systems

The Smith Normal Form: S = UBV or B = U−1SV−1

B =

 1 1 −1 1 −2
2 1 −4 −1 1
3 −2 −1 1 −1

 ABT = 0

Computing the Smith Normal Form of B with Sage, yields matrices

S =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 U =

 1 0 0
0 1 0
0 0 1

 det(U) = ±1

V =


7 6 −1 7 15
5 4 −1 5 10
6 5 −1 6 13
−5 −5 1 −4 −12

0 0 0 1 0

 det(V ) = ±1
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Solving Binomial Systems

We can compute the unimodular matrix M, using the Smith Normal Form
computation. Because

S had only 1’s on the diagonal

U = I, the identity matrix

The unimodular matrix M = V−1

M = V−1 =


1 1 −1 1 −2
2 1 −4 −1 1
3 −2 −1 1 −1
0 0 0 0 1
−1 −1 2 0 0

 det(M) = ±1

By having v0, v1, v2 ∈ B in the first three rows of M, we will eliminate
the first three variables in the binomial system, after the unimodular
coordinate transformation.
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Solving Binomial Systems

The unimodular coordinate transformation acts on the exponents: x = zM .

M =


1 1 −1 1 −2
2 1 −4 −1 1
3 −2 −1 1 −1
0 0 0 0 1
−1 −1 2 0 0




x0 = z0z2
1 z3

2 z−1
4

x1 = z0z1z−2
2 z−1

4

x2 = z−1
0 z−4

1 z−1
2 z2

4

x3 = z0z−1
1 z2

x4 = z−2
0 z1z−1

2 z3{
x4

0 x5
1 x3

2 x8
3 x7

4 − 1 = 0
x11

0 x10
1 x9

2 x4
3 x8

4 − 1 = 0

{
z7

3 z−3
4 − 1 = 0

z8
3 z−3

4 − 1 = 0

Solving the transformed system yields 3 isolated solutions in C \ 0 for the
variables z3, z4. Returning these solutions to original coordinates, via the
transformation, we obtain the representations of the three-dimensional
solution set of the original binomial system.
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Solving Binomial Systems

Consider the binomial system:{
x0x2

1 x3
2 x3x7

4 − 1 = 0
x3

0 x5
1 x8

2 x3x2
4 − 1 = 0

Writing the exponents in form of a matrix

A =

[
1 2 3 1 7
3 5 8 1 2

]
We are looking for the null space of A
Three linearly independent vectors satisfy Av = 0

B =

 6 6 −7 10 −1
1 −14 9 −7 1
2 −3 1 1 0

 ABT = 0
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Solving Binomial Systems

We want to generate an unimodular matrix M, whose first rows consist of
the vectors of matrix B.

B =

 6 6 −7 10 −1
1 −14 9 −7 1
2 −3 1 1 0

 ABT = 0

M =


6 6 −7 10 −1
1 −14 9 −7 1
2 −3 1 1 0

n3,0 n3,1 n3,2 n3,3 n3,4

n4,0 n4,1 n4,2 n4,3 n4,4

 ni ,j ∈ N

det(M)± 1

We use the matrix M as power transformation, to change the coordinates
of the binomial system via:

x = zM
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Solving Binomial Systems

The Smith Normal Form: S = UBV or B = U−1SV−1

B =

 6 6 −7 10 −1
1 −14 9 −7 1
2 −3 1 1 0

 ABT = 0

Computing the Smith Normal Form of B with Sage, yields matrices

S =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 U =

 0 1 0
0 0 1
1 0 0

 det(U) = ±1

V =


3 14 −5 −8 19
4 25 −9 −13 31
6 42 −15 −21 50
0 6 −2 −2 5
0 0 0 1 0

 det(V ) = ±1

While S has 1’s on the diagonal, U 6= I → M 6= V−1
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Solving Binomial Systems

U =

 0 1 0
0 0 1
1 0 0

 det(U) = ±1

Inverting matrix U and extending matrix U−1 → E:

U−1 =

 0 0 1
1 0 0
0 1 0

 E =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 det(E ) = ±1

We can obtain the unimodular matrix M, via

M = EV−1
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Solving Binomial Systems

V =


3 14 −5 −8 19
4 25 −9 −13 31
6 42 −15 −21 50
0 6 −2 −2 5
0 0 0 1 0

 E =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1



M = EV−1 =


6 6 −7 10 −1
1 −14 9 −7 1
2 −3 1 1 0
0 0 0 0 1
0 6 −4 3 0


By having v0, v1, v2 ∈ B in the first three rows of M, we will eliminate
the first three variables in the binomial system, after the unimodular
coordinate transformation.
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Solving Binomial Systems

The unimodular coordinate transformation acts on the exponents: x = zM .

M =


6 6 −7 10 −1
1 −14 9 −7 1
2 −3 1 1 0
0 0 0 0 1
0 6 −4 3 0




x0 = z6
0 z1z2

2

x1 = z6
0 z−14

1 z−3
2 z6

4

x2 = z−7
0 z9

1 z2z−4
4

x3 = z10
0 z−7

1 z2z3
4

x4 = z−1
0 z1z3{

x0x2
1 x3

2 x3x7
4 − 1 = 0

x3
0 x5

1 x8
2 x3x2

4 − 1 = 0
→

{
z7

3 z3
4 − 1 = 0

z2
3 z4 − 1 = 0

Solving the transformed system yields one solution z3 = 1, z4 = 1.
Returning this solution to the original coordinates, we obtain a solution of
the original binomial system.

x0 = z6
0 z1z2

2

x1 = z6
0 z−14

1 z−3
2

x2 = z−7
0 z9

1 z2

x3 = z10
0 z−7

1 z2

x4 = z−1
0 z1
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Solving Binomial Systems

Consider the binomial system:
x5

0 x1
1 x2

2 x3
3 x2

4 − 1 = 0
x1

0 x1
1 x1

2 x1
3 x2

4 − 1 = 0
x1

0 x1
1 x5

2 x1
3 x7

4 − 1 = 0

Writing the exponents in form of a matrix

A =

 5 1 2 3 2
1 1 1 1 2
1 1 5 1 7


We are looking for the null space of A
Two linearly independent vectors satisfy Av = 0

B =

[
2 −9 −10 1 8

15 −7 −20 −20 16

]
ABT = 0
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Solving Binomial Systems

We want to generate an unimodular matrix M, whose first rows consist of
the vectors of matrix B.

B =

[
2 −9 −10 1 8

15 −7 −20 −20 16

]
ABT = 0

M =


2 −9 −10 1 8

15 −7 −20 −20 16
n2,0 n2,1 n2,2 n2,3 n2,4

n3,0 n3,1 n3,2 n3,3 n3,4

n4,0 n4,1 n4,2 n4,3 n4,4

 ni ,j ∈ N

det(M)± 1

We use the matrix M as a power transformation, to change the
coordinates of the binomial system via:

x = zM
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Solving Binomial Systems

The Smith Normal Form: S = UBV or B = U−1SV−1

B =

[
2 −9 −10 1 8

15 −7 −20 −20 16

]
ABT = 0

Computing the Smith Normal Form of B with Sage, yields matrices

S =

[
1 0 0 0 0
0 11 0 0 0

]

U =

[
1 0
−2 1

]
det(U) = ±1

V =


11 −1 −88 −13 10
−11 2 88 15 −10

12 −2 −96 −16 11
0 0 0 1 0
0 0 1 0 0

 det(V ) = ±1
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Solving Binomial Systems

We can not compute the unimodular matrix M, using the Smith Normal
Form

S did not have only 1’s on the diagonal
U was not the identity matrix

We can use the Hermite Normal Form to rescale elements of matrix B:

B =

[
2 −9 −10 1 8

15 −7 −20 −20 16

]
ABT = 0

Hermite Normal Form of B:

H =

[
1 56 50 −27 −40
0 121 110 −55 −88

]

M =


2 −9 −10 1 8

15
121 − 7

121 − 20
121 − 20

121
16

121
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 det(M) = ±1
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Solving Binomial Systems

M =


2 −9 −10 1 8

15
121 − 7

121 − 20
121 − 20

121
16

121
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The unimodular coordinate transformation acts on the exponents: x = zM .

x0 = z2
0 z

15
121

1

x1 = z−9
0 z

− 7
121

1

x2 = z−10
0 z

− 20
121

1 z1
2

x3 = z1
0 z
− 20

121
1 z1

3

x4 = z8
0 z

16
121

1 z1
4
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Solving Binomial Systems

Using the new coordinates

x0 = z2
0 z

15
121

1

x1 = z−9
0 z

− 7
121

1

x2 = z−10
0 z

− 20
121

1 z1
2

x3 = z1
0 z
− 20

121
1 z1

3

x4 = z8
0 z

16
121

1 z1
4

(1)

we transform the binomial system
x5

0 x1
1 x2

2 x3
3 x2

4 − 1 = 0
x1

0 x1
1 x1

2 x1
3 x2

4 − 1 = 0
x1

0 x1
1 x5

2 x1
3 x7

4 − 1 = 0
→


z2

2 z3
3 z2

4 − 1 = 0
z2z3z2

4 − 1 = 0
z5

2 z3z7
4 − 1 = 0

Solving the transformed system yields 11 isolated solutions for the
variables z2 , z3, z4. Returning these solutions to original coordinates via
the transformation (1), we obtain the fractional representations of the
two-dimensional solution set of the original binomial system.
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Polynomial System: Basic Definitions

We want to extend the method we used on binomial systems to general
polynomial systems.

Polynomial System

F (x) =


f0(x) = 0
f1(x) = 0
...
fn−1(x) = 0

x = (x0, x1, . . . , xn−1), fi ∈ C[x]

A Polynomial

f (x) =
∑
a∈A

cax
a, ca ∈ C \ 0, xa = xa0

0 xa1
1 · · · x

an−1

n−1

The set Ai of exponents is called the support of fi .
Pi = ConvexHull(Ai ) is the Newton polytope of fi .
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The Cayley Embedding & Polytope For Square Systems

Cayley Embedding

CE = (A0 × {0}) ∪ (A1 × {e1}) ∪ · · · ∪ (An−1 × {en−1})

where ek is the k-th (n − 1)-dimensional unit vector.

Cayley Polytope

C∆ = ConvexHull(CE )

NOTE

We use the Cayley polytope as a way to combine all individual polytopes
into one polytope.

We use cddlib of K. Fukuda to find facet normals of the Cayley polytope.

Danko Adrovic, Jan Verschelde (UIC) Polyhedral Methods for Algebraic Sets SIAM DM 2012, June 18-21 25 / 38



Tropisms and Initial Form Systems

Definition (Pretropism)

A pretropism is a normal vector (a facet normal) to at least an edge of each
polytope.

Definition (Initial Form)

Let fi be a polynomial with support Ai and let v be a pretropism. Then the
initial form inv(fi ) is the sum of all monomials in fi , where the inner product
〈a, v〉 reaches its minimum at least twice over a ∈ Ai .

Initial Form System

For a system F (x) = 0, F = (f0, f1, . . . , fn−1), and pretropism v, the initial
form system is defined by inv(F ) = (inv(f0), inv(f1), . . . , inv(fn−1)).

Solving initial form system leads to solutions at infinity.

Definition (Tropism)

A tropism is a pretropism, which is the leading exponent vector of a Puiseux
series expansion for a curve, expanded about t ≈ 0.
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Tropisms and d-Dimensional Surfaces

Let v0 = (v(0,1), v(0,2), . . . , v(0,n−1)), v1 = (v(1,0), v(1,1), . . . , v(1,n−1)), . . . ,
vd−1 = (v(d−1,0), v(d−1,1), . . . , v(d−1,n−1)) be d tropisms:

d tropisms generate a Puiseux series expansion of a d-dimensional surface

x0 = t
v(0,0)

0 t
v(1,0)

1 · · · tv(d−1,0)

d−1 (r0 + c(0,0)t
w(0,0)

0 + c(1,0)t
w(1,0)

1 + . . . )

x1 = t
v(0,1)

0 t
v(1,1)

1 · · · tv(d−1,1)

d−1 (r1 + c(0,1)t
w(0,1)

0 + c(1,1)t
w(1,1)

1 + . . . )

x2 = t
v(0,2)

0 t
v(1,2)

1 · · · tv(d−1,2)

d−1 (r2 + c(0,2)t
w(0,2)

0 + c(1,2)t
w(1,2)

1 + . . . )

...

xn−1 = t
v(0,n−1)

0 t
v(1,n−1)

1 · · · tv(d−1,n−1)

d−1 (rn−1 + c(0,n−1)t
w(0,n−1)

0 + c(1,n−1)t
w(1,n−1)

1 + . . . )

v0, v1, . . . , vd−1 span a cone of tropisms.
dimension of the cone is d , i.e. the number of free parameters.
ri are the solutions of initial forms, i.e. solutions at infinity.
tj ≈ 0 - our Puiseux series are valid around zero.
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Cyclic 9-Roots Polynomial System

As an example, we will consider the cyclic 9-roots polynomial system.

We search for candidates for the cones of tropisms in the following way:

1. embed the polynomial system via the Cayley embedding
2. compute the Cayley polytope, i.e. H-rep. of the embedded system
3. remove the embedding from the Cayley polytope
4. determine which facet normals are pretropisms
5. for each pretropism, compute the initial form system

5.1. repeat steps 1. - 5. for each initial form until there are no
pretropisms, keeping track of the sequence of pretropisms,
which lead to initial form systems.

6. Return each such sequence.

One such sequence is v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2),
v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1).
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Cyclic 9-Roots Polynomial System

The cone of pretropisms for the cyclic 9-roots polynomial system was generated
by vectors v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2) and v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1).
Computing initial form inv0(C9)(x), and then inv1(inv0(C9))(x) yields a system:

Inv1(Inv0(C9))(x) =



x2 + x5 + x8 = 0

x0x8 + x2x3 + x5x6 = 0

x0x1x2 + x0x1x8 + x0x7x8 + x1x2x3 + x2x3x4 + x3x4x5

+x4x5x6 + x5x6x7 + x6x7x8 = 0

x0x1x2x8 + x2x3x4x5 + x5x6x7x8 = 0

x0x1x2x3x8 + x0x5x6x7x8 + x2x3x4x5x6 = 0

x0x1x2x3x4x5 + x0x1x2x3x4x8 + x0x1x2x3x7x8

+x0x1x2x6x7x8 + x0x1x5x6x7x8 + x0x4x5x6x7x8 + x1x2x3x4x5x6

+x2x3x4x5x6x7 + x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x8 + x0x1x2x5x6x7x8 + x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x8 + x0x1x2x3x5x6x7x8 + x0x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x7x8 − 1 = 0

For one of the first solutions of the cyclic 9-roots polynomial system, we refer to
J. C. Faugère, A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, Vol. 139, Number 1-3, Pages 61-88, Year
1999. Proceedings of MEGA’98, 22–27 June 1998, Saint-Malo, France.
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Cyclic 9-Roots Polynomial System Cont.

v0 =( 1, 1, -2, 1, 1, -2, 1, 1, -2 )
v1 =( 0, 1, -1, 0, 1, -1, 0, 1, -1 )
The unimodular coordinate transformation x = zM acts on the exponents.
The new coordinates are given by

M =



1 1 −2 1 1 −2 1 1 −2
0 1 −1 0 1 −1 0 1 −1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



x0 = z0

x1 = z0z1

x2 = z−2
0 z−1

1 z2

x3 = z0z3

x4 = z0z1z4

x5 = z−2
0 z−1

1 z5

x6 = z0z6

x7 = z0z1z7

x8 = z−2
0 z−1

1 z8

We use the coordinate change to transform the initial form system and the
original cyclic 9-roots system.
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Cyclic 9-Roots Polynomial System Cont.

The transformed initial form system inv1(inv0(C9))(z) is given by



z2 + z5 + z8 = 0

z2z3 + z5z6 + z8 = 0

z2z3z4 + z3z4z5 + z4z5z6 + z5z6z7 + z6z7z8 + z2z3 + z7z8 + z2 + z8 = 0

z2z3z4z5 + z5z6z7z8 + z2z8 = 0

z2z3z4z5z6 + z5z6z7z8 + z2z3z8 = 0

z2z3z4z5z6z7 + z3z4z5z6z7z8 + z2z3z4z5z6 + z4z5z6z7z8 + z2z3z4z5 + z2z3z4z8

+z2z3z7z8 + z2z6z7z8 + z5z6z7z8 = 0

z3z4z6z7 + z3z4 + z6z7 = 0

z4z7 + z4 + z7 = 0

z2z3z4z5z6z7z8 − 1 = 0

Its solution is
z2 = −1

2 −
√

3I
2 , z3 = −1

2 +
√

3I
2 , z4 = −1

2 +
√

3I
2 , z5 = 1, z6 = −1

2 −
√

3I
2 ,

z7 = −1
2 −

√
3I
2 , z8 = −1

2 +
√

3I
2 , where I =

√
−1.

While we used a numerical solver PHCpack, we recognized the solution as
the 3rd roots of unity.
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Cyclic 9-Roots Polynomial System Cont.

The following assignment satisfies cyclic 9-roots polynomial system entirely.

x0 = z0

x1 = z0z1

x2 = z−2
0 z−1

1 z2

x3 = z0z3

x4 = z0z1z4

x5 = z−2
0 z−1

1 z5

x6 = z0z6

x7 = z0z1z7

x8 = z−2
0 z−1

1 z8

z0 = t1

z1 = t2

z2 = −1

2
−
√

3I

2

z3 = −1

2
+

√
3I

2

z4 = −1

2
+

√
3I

2
z5 = 1

z6 = −1

2
−
√

3I

2

z7 = −1

2
−
√

3I

2

z8 = −1

2
+

√
3I

2

x0 = t1

x1 = t1t2

x2 = t−2
1 t−1

2 (−1

2
−
√

3I

2
)

x3 = t1(−1

2
+

√
3I

2
)

x4 = t1t2(−1

2
+

√
3I

2
)

x5 = t−2
1 t−1

2

x6 = t1(−1

2
−
√

3I

2
)

x7 = t1t2(−1

2
−
√

3I

2
)

x8 = t−2
1 t−1

2 (−1

2
+

√
3I

2
)
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Cyclic 9-Roots Polynomial System Cont.

Letting u = e
2πI

3 and y0 = t0, y1 = t0t1, y2 = t−2
0 t−1

1 u2

x0 = t1

x1 = t1t2

x2 = t−2
1 t−1

2 (−1

2
−
√

3I

2
)

x3 = t1(−1

2
+

√
3I

2
)

x4 = t1t2(−1

2
+

√
3I

2
)

x5 = t−2
1 t−1

2

x6 = t1(−1

2
−
√

3I

2
)

x7 = t1t2(−1

2
−
√

3I

2
)

x8 = t−2
1 t−1

2 (−1

2
+

√
3I

2
)

x0 = t1

x1 = t1t2

x2 = t−2
1 t−1

2 u2

x3 = t1u

x4 = t1t2u

x5 = t−2
1 t−1

2

x6 = t1u2

x7 = t1t2u2

x8 = t−2
1 t−1

2 u

x0 = y0

x1 = y1

x2 = y2

x3 = y0u

x4 = y1u

x5 = y2u

x6 = y0u2

x7 = y1u2

x8 = y2u2
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Cyclic 9-Roots Polynomial System Cont.

x0 = t1 x3 = t1u x6 = t1u2

x1 = t1t2 x4 = t1t2u x7 = t1t2u2

x2 = t−2
1 t−1

2 u2 x5 = t−2
1 t−1

2 x8 = t−2
1 t−1

2 u

Using this representation of the solution for points on the surface, we can
compute the degree of the surface by using two random hyperplanes in the
following way:

α1t0 + α2t0t1 + α3t−2
0 t−1

1 = 0

α4t0 + α5t0t1 + α6t−2
0 t−1

1 = 0
αi ∈ C

Simplifying, the system becomes

t−2
0 t−1

1 − β1 = 0

t1 − β2 = 0
βj ∈ C

As the simplified system has 3 solutions, the cyclic 9 solution component
is a cubic surface.
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Cyclic 9-Roots Polynomial System Cont.

Using the alternative solution format we gave earlier

x0 = y0 x3 = y0u x6 = y0u2

x1 = y1 x4 = y1u x7 = y1u2

x2 = y2 x5 = y2u x8 = y2u2

we can use the cyclic permutation (forward, backward) of the third roots of

unity u = e
2πi

3

1 u u2

u u2 1
u2 1 u
u2 u 1
u 1 u2

1 u2 u

(2)

and obtain an orbit of 6 cubic surfaces, satisfying the cyclic 9-roots system.
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Cyclic 16-Roots Polynomial System

Extending the pattern we observed among tropisms of the cyclic 9-roots,
v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2)
v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1)
we can get the correct cone of tropisms for the cyclic 16-roots.
v0 = (1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3)
v1 = (0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2)
v2 = (0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1)
Extending the solutions at infinity pattern,

cyclic 9-roots: u = e
2πi

3 → cyclic 16-roots: u = e
2πi

4

The 3-dimensional solution component of the cyclic 16-roots is given by:

x0 = t0

x1 = t0t1

x2 = t0t1t2

x3 = t−3
0 t−2

1 t−1
2

x4 = ut0

x5 = ut0t1

x6 = ut0t1t2

x7 = ut−3
0 t−2

1 t−1
2

x8 = u2t0

x9 = u2t0t1

x10 = u2t0t1t2

x11 = u2t−3
0 t−2

1 t−1
2

x12 = u3t0

x13 = u3t0t1

x14 = u3t0t1t2

x15 = u3t−3
0 t−2

1 t−1
2

This 3-dimensional cyclic 16-root solution component is a quartic surface.
Using cyclic permutation, we obtain 2 ∗ 4 = 8 components of degree 4.
Danko Adrovic, Jan Verschelde (UIC) Polyhedral Methods for Algebraic Sets SIAM DM 2012, June 18-21 36 / 38



Cyclic n-Roots Polynomial System Summary

We now formalize the previous results for the cyclic n-roots systems.
Consider the cyclic n-roots polynomial systems and let n = m2. Then

there is an (m− 1)-dimensional set of cyclic n-roots, represented exactly as

xkm+0 = ukt0

xkm+1 = ukt0t1

xkm+2 = ukt0t1t2
...

xkm+m−2 = ukt0t1t2 · · · tm−2

xkm+m−1 = ukt−m+1
0 t−m+2

1 · · · t−2
m−3t−1

m−2

(3)

for k = 0, 1, 2, . . . ,m − 1 and uk = e i2kπ/m.

the (m − 1) dimensional solution set of (3):

has degree equal to m
there are 2m components of degree m

We formally address all these results in:
Computing Puiseux Series for Algebraic Surfaces
Accepted for publication in the proceedings of ISSAC 2012.
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Conclusion

With the computational results, illustrated on the cyclic n-roots
polynomial systems, we offer a proof of concept for a new polyhedral
method to compute algebraic sets.

For more information on our polyhedral method, see

Computing Puiseux Series for Algebraic Surfaces.
arXiv:1201.3401v2 [cs.SC]. Accepted for publication in the
proceedings of ISSAC 2012.

Polyhedral Methods for Space Curves Exploiting Symmetry.
arXiv:1109.0241v1 [math.NA]

Tropical Algebraic Geometry in Maple, a preprocessing algorithm for
finding common factors to multivariate polynomials with approximate
coefficients. Journal of Symbolic Computation 46(7):755-772, 2011.
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