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Abstract

Finding a common factor of two multivariate polynomials with approximate coefficients is
a problem in symbolic-numeric computing. Taking a tropical view of this problem leads to
efficient preprocessing techniques, applying polyhedral methods on the exact exponents with
numerical techniques on the approximate coefficients. With Maple we will illustrate our use
of tropical algebraic geometry.

1 Introduction

Tropical algebraic geometry is a relatively new language to study skeletons of algebraic varieties.
Introductions to tropical algebraic geometry are in [54] and [62, Chapter 9]. Computational
aspects are addressed in [6] and [65]. One goal of this paper is to explain some new words of this
language, and to show how a general purpose computer algebra system like Maple is useful to
explore and illustrate tropical algebraic geometry. For software dedicated to tropical geometry,
we refer to Gfan [27, 28], a SINGULAR library [29], and TrIm [63].

The roots of tropical algebraic geometry run as deep as the work of Puiseux [52] and Os-
trowski [47], therefore our focus is on answering a practical question in computer algebra: when
do two polynomials have a common factor? Viewing this question in tropical algebraic geometry
leads to a symbolic-numeric algorithm. In particular, we will say that tropisms give the germs
to grow the tentacles of the common amoeba. The paper is structured in four parts, each part
explaining one of the key concepts of the tropical sentence.

Our perspective on tropical algebraic geometry originates from polyhedral homotopies [25],
[39], [69] to solve polynomial systems implementing Bernshtein’s first theorem [4]. Another related
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approach that led to tropical mathematics is idempotent analysis [41]. In [53], a Maple package
is presented for a tropical calculus with application to differential boundary value problems.

Related work on our problem concerns the factorization of sparse polynomials via Newton
polytopes [1], [16], [19]; approximate factorization [11], [10], [18], [33], [59], and the GCD of
polynomials with approximate coefficients [74]. The polynomial absolute factorization is also ad-
dressed in [8] and the lectures in [9] offer a very good overview. Criteria based on polytopes for
the irreducibility of polynomials date back to Ostrowski [47]. In this paper we restrict our exam-
ples to polynomials in two variables and refer to polygons instead of polytopes. The terminology
extends to general dimensions and polytopes, see [75].

That two polynomials with approximate coefficients have a common factor is quite an ex-
ceptional situation. Therefore it is important to have efficient preprocessing criteria to decide
quickly. The preprocessing method we develop in this paper attempts to build a Puiseux expan-
sion starting at a common root at infinity. To determine whether a root at infinity is isolated
or not we apply the Newton-Puiseux method, extending the proof outlined by Robert Walker
in [71], see also [14], towards Joseph Maurer’s general method [42] for space curves. A more
algorithmic method than [42] is given in [2] along with an implementation in CoCoA. CASA [23]
computes Puiseux series over the rational numbers, see also [57, Appendix A]. General fractional
power series solutions are described in [43]. See [30], [31] and [51] for recent symbolic algorithms,
and [49], [50] for a symbolic-numeric approach. The complexity for computing Puiseux expansions
for plane curves is polynomial [72] in the degrees. As an alternative to Puiseux series, extended
Hensel series are discussed in [56], with good numerical convergence reported in [26].

We show that via suitable coordinate transformations, the problem of deciding whether there is
a common factor is reduced to univariate root finding, with the univariate polynomials supported
on edges of the Newton polygons of the given equations. Also in the computation of the second
term of the Puiseux series expansion, we do not need to utilize all coefficients of the given
polynomials. In the worst case, the cost of deciding whether there is a factor is a cubic polynomial
in the number of monomials of the given polynomials.

Certificates for the existence of a common factor consist of exact and approximate data: the
exponents and coefficients of the first two terms of a Puiseux series expansion of the factor at
a common root at infinity. The leading exponents of the Puiseux expansion form a so-called
tropism [42]. The coefficients are numerical solutions of overdetermined systems. If a more
explicit form of the common factor is required, more terms in the Puiseux expansion can be
computed up to precision needed for the application of sparse interpolation techniques, see [13],
[21], [32], and [36].

The ConvexHull and subs commands of Maple are very valuable in implementing an interac-

tive prototype of the preprocessing algorithm. For explaining the intuition behind the algorithm,
we start illustrating amoebas and the tentacles. Once we provide an abstraction for the tentacles
we give an outline of the algorithm and sketch its cost. The Maple code served as a prototype
for an implementation in PHCpack [67].
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2 Amoebas

Looking at the asymptotics of varieties gives a natural explanation for the Newton polygon. This
polygon will provide a first classification of the approximate coefficients of the given polynomials.
This means that at first we may ignore coefficients of monomials whose exponents lie in the
interior of the Newton polygon.

2.1 Asymptotics of Varieties

Our input data are polynomials in two variables x and y. The set of values for x and y that make
the polynomials zero is called a variety. Varieties are the main objects in algebraic geometry. In
1971, G.M. Bergman [3] considered logarithms of varieties. In tropical algebraic geometry, we
look at the asymptotics of varieties.

log : C"xC" — R xR

(z,y)  — (og(lz]),log(ly))) (1)

Because the logarithm is undefined at zero, we exclude the coordinate axes restricting the domain
of our polynomials to the torus (C*)?, C* = C\ {0}. Following [20], we arrive at our first new

word [70].

Definition 2.1 (Gel’fand, Kapranov, and Zelevinsky 1994) The amoeba of a variety is its
image under the log map.

Example 2.2 To see what amoebas look like, we use the plotting capabilities of Maple. We use

gre”—5m. (2)

polar coordinates to plot a linear variety:

f= %x%—%y—l:() A= [ln(‘rew‘),ln<

In Figure 1 we see the result of a Maple plot.

:= 1/2%x + 1/6%y - 1:

:= solve(f,y):

:= map(log,map(abs, [x,s])):

:= subs(x=r*xexp(I*theta),L);

Ap := seq(plot([op(subs(theta=k*Pi/200,4A)),
r=-100..100] ,thickness=6) ,k=0..99):

> plots[display] (Ap,axes=none) ;

V V V V V
= n

Figure 1: The amoeba of a linear polynomial, with all Maple commands at the right.



2.2 Compactifying Amoebas leads to Newton Polytopes

We compactify the amoeba of f~1(0) by taking lines perpendicular to the tentacles. As each line
cuts the plane in half, we keep those halves of the plane where the amoeba lives. The intersection
of all half planes defines a polygon. The resulting polygon is the Newton polygon of f. There
is a map [60] that sends every point in the variety to the interior of the Newton polygon of the
defining polynomial equation.

Example 2.3 (Example 2.2 continued) For the amoeba in Figure 1, its compactification is
shown in Figure 2. In Figure 2 we recognize the shape of the triangle, the Newton polygon of a
linear polynomial.

* (0,1)

(0,0) (1,0)

Figure 2: The compactification of the amoeba: the edges of the Newton polygon (displayed at
the right) are perpendicular to the tentacles of the amoeba.

This geometric derivation of the Newton polygon coincides with the more formal definition.

Definition 2.4 For f(x,y) = Z ci,jxiyj, c;,; € C*. Ais the support of f. The convex hull of
(i,5)€A
A is the Newton polygon.

The Newton polygon models the sparse structure of a polynomial. Most polynomials arising
in practical applications have few monomials with nonzero coefficients and are called sparse.
The Newton polygon assigns additional significance to the coefficients. Coefficients associated
to monomials whose exponents span a vertex of the Newton polygon are more important than
coeflicients whose exponents lie in the interior of the Newton polygon.

Plotting amoebas is actually computationally quite involved — the use of homotopy continua-
tion methods [67] is suggested in [64]. A computer program to plot amoebas is presented in [38].
See [45], [46], and [48] for more about amoebas. We will see that the asymptotics of the amoebas
will lead to a natural reduction of our problem to smaller polynomials in one variable.



3 Tentacles

The tentacles of the amoeba stretch out to infinity and are represented by the inner normals,
perpendicular to the edges of the Newton polygon.

3.1 Directions of Tentacles towards Infinity

Our problem may be stated as follows: Given two polynomials in two variables with approzximate
complex coefficients, is there a common factor?

Looking at the problem from a tropical point of view, we first have the amoeba of the common
factor in mind and we consider its tentacles. Following [70], a tentacle is a rapidly thinning end
of the amoeba. More formally, along [44, Remark 9], we consider the closure A of the amoeba in
the toric variety [12] associated to the Newton polygon of the defining polynomial of the amoeba.
Then the tentacles of the amoeba correspond to the intersections of A with the edges of the
Newton polygon. In the plane, these intersections are isolated points.

The tropical view will lead to solving the problem first at infinity, providing an efficient
preprocessing criterion. Figure 3 illustrates the geometric idea of Proposition 3.1.

Figure 3: The amoebas of (%x + %y +1)(z+y+1) and (%x + %y + 1) (zy+y+ %), respectively at
the left and right. The amoeba of a product is the union of the amoebas of the factors. Observe
the directions of the tentacles.

Proposition 3.1 Let f and g be two polynomials. If the amoebas of f and g have no tentacle
stretching out to infinity in the same direction, then f and g have no common factor.

Proof. We proceed by contraposition, assuming f and g have a common factor, say r, and we
write f = rf; and ¢ = rg1. The tentacles of the amoebas of f and g will contain the tentacles
of the common factor r because of f~1(0) = r~1(0) U f;*(0) and therefore Ay = A, U Ay,
where the amoebas of f, r, and f; are denoted respectively by Af, A,, and Ay, . Similarly, for g:
Ay = A, UAy . So Ay and Ay contain both A, and the same intersection points with the edges
of the Newton polygons and therefore tentacles stretching out in the same directions. O



Verifying the conditions of Proposition 3.1 seems nontrivial at first. However, we represent
the tentacles by inner normals, perpendicular to the lines at infinity corresponding to the edges
of the Newton polygons. Because the factor is common to both polynomials, the normals must
be common to both polygons. So if there is a factor, there must be at least one pair of edges
with the same inner normal vector. Such inner normal vector is a tropism, defined below.

3.2 Normal Fans and Tropicalization

The inward pointing normal vectors to the edges represent the tentacles of the amoeba.

Example 3.2 Consider for example

f — .%'By —|—.%'2y3 —|—.%'5y3 —|—.7J4y5 —|—.%'2y7 —|—.%'3y7. (3)

In Figure 4 we show the Newton polygon of f and its normal fan.

Figure 4: The Newton polygon and its normal fan.

The collection of inner normals to the edges of the Newton polygon forms a tropicalization
of f, denoted by Trop(f). To formalize this notion, we introduce the following definitions.

Exponents and direction vectors are related through duality via the inner product.

Definition 3.3 The inner product is

(-, 72 x 7.2 — 7
((,4), (w,v)) = iu+jo.

Given a vector (u,v), (-, (u,v)) ranks the points (z,7). For (u,v) = (1,1), we have the usual
degree of z'y7. So the direction of the tentacles are grading the points in the support.

Example 3.4 (Example 3.2 continued) In Figure 5 we look at the support in the direc-
tion (—1,+1) and grade every point of the support using the inner product of its coordinates
with (—1,4+1).



a / 1 xi+(+1) xj=+5
1 —1xi+(+1) xj=+4
s e —1xi+(+1) xj=+3
aq s —1xi+(+1) xj=+2
{2 —1xi+(+1) xj=+1
24 —1xi+(+1)xj=0

o —“1xi+(+1) xj=-1
. N M —1Ixi+(+1)xj=-2

Figure 5: Grading the points in the support along (—1,+1).

The degree of 2y’ in the direction (u,v) is the value of the inner product {((i,7), (u,v)). In
Maple we compute weighted degrees as follows:

Groebner [WeightedDegree] (f, [-1,+1], [x,y]);

hinting at the connection between Grébner bases and Newton polytopes [61]. This grading leads
to homogeneous coordinates, see [12] and [68].

We arrive at a tropicalization of a polynomial via the normal fan to the Newton polygon of
the polynomial.

Definition 3.5 Let P be the Newton polygon of f. The inner product is denoted by (-,-). The
normal cone to a vertex p of P is

{ veR*\ {0} | (p,v) = min(q,v) }. (5)
qeP
The normal cone to an edge spanned by p1 and ps is

{veR*\ {0} | (p1,v) = (p2,v) = gleig<q,V> }- (6)

The normal fan of P is the collection of all normal cones to vertices and edges of P. Given f, a
tropicalization of f, denoted by Trop(f), is a finite collection of inner normals (u,v), its compo-
nents relatively prime: ged(u,v) = 1, to the edges of the Newton polygon P of f.

We speak of a tropicalization (a instead of the) because in the general construction of a tropical
variety of an ideal [62, §9.4], one often introduces an auxiliary variable ¢. In our setting, this ¢ does
not occur, so our tropicalizations are more restricted. In particular, in [48], the tropicalization
f7 of a Laurent polynomial f with support A is defined as

f7(x) = max{ log|ca| + (a,x) } for f(x)= anACaXaaCa €C. (7)

We prefer min over max because we consider Puiseux series around zero. Ignoring coefficient size:
O(ca) = 1 and omitting log |ca| from the definition of f7, the tropical variety (f7)~'(0) consists
of those points v where at least two of the monomials have the extremal value (a, v).



4 Tropisms

The tropical view will lead to an efficient preprocessing stage to determine whether two polyno-
mials have a common factor.

4.1 Turning the Varieties in a Particular Direction

The answer to our original question “Do two polynomials have a common factor?’ first depends on
the relative orientations of the Newton polygons. We compute tropicalizations of the polynomials
and obtain an efficient preprocessing step independent of the coefficients.

We first want to exclude the situations where there is no common factor, already implied by
the Newton polygons in relative general position. This is a direct consequence of Bernshtein’s
second theorem [4]. For completeness, we state this theorem here for Newton polygons.

Theorem 4.1 Let f and g be two polynomials in x and y. If Trop(f) N Trop(g) = 0 then the
system f(z,y) = 0= g(x,y) has no solutions at infinity.

We will prove Theorem 4.1 later, after Definition 4.6. Now we can make Proposition 3.1
effective:

Proposition 4.2 If for two polynomials f and g: Trop(f) N Trop(g) =0, then f and g have no
common factor.

Proof. By Theorem 4.1, Trop(f) N Trop(g) = () implies there is no common root at infinity.
However, if f and g had a common factor, they would have a common root at infinity as well.
This common root would then correspond to one of the ends of the tentacles of the amoeba of
the common factor as in Proposition 3.1. O

Example 4.3 For our first pair of two random polynomials (each of degree 15), their tropical-
izations are shown in Figure 6.

Example 4.4 In our second example we generated a factor of degree 5 and multiplied the factor
with two random polynomials f and g of degree 10. A tropicalization of the factor and the two
polynomials f and g are shown in Figure 7.

A dictionary definition of a tropism is the turning of all or part of an organism in a particular
direction in response to an external stimulus. Tropisms were introduced mathematically in 1980
by Joseph Maurer [42] who generalized Puiseux expansions for space curves. We adapt his
definition for use to our problem.

Definition 4.5 Let P and ) be Newton polygons of f and g. A tropism is an inner normal
perpendicular to one edge of P and one edge of Q.



Figure 6: The first two pictures from the left represent the normal fans of two polynomials. By
superposition of the fans at the far right we see there are no common directions. Therefore, for
all nonzero coeflicients, the polynomials can have no common factor.

Using the general terminology of [75], tropisms correspond to the one dimensional cones in
the common refinement of the normal fans of the polygons. Note that tropisms in the original
sense as used in [42] correspond to leading exponents of actual Puiseux series and that our inner
normals may not lead to Puiseux series. Tropisms also occur in singularity theory [37]. In
a stricter use of terminology, we would label the inner normals of Definition 4.5 as candidate
tropisms or pretropisms. The “pre” of pretropism refers to the tropical prevariety, obtained as
the intersection of tropical hypersurfaces [54].

4.2 Certificates for Numerical Computations

Tropisms are important because they give a first exact certificate for the existence of a common
factor. Selecting those monomials which span the edges picked out by the tropism defines a
polynomial system which admits a solution in (C*)2.

Definition 4.6 Let (u,v) be a direction vector. Consider f = Z cmxiyj. The initial form of
(1.4)eA
f in the direction (u,v) is

in(u,v)(f) = Z Cijiyj’ (8)
(i,j) € A
((2,4); (u,v)) = m

where m = min{ ((4, j), (u,v)) | (i,j) € A }.

The direction (u,v) is the normal vector to the line wi + vj = m which contains the edge of the
Newton polygon of f. This edge is the Newton polygon of in(, . (f)-

The terminology of initial forms corresponds to the Grobner basics [61]. In [55], in(,,.)(f)
is called an initial term polynomial. We call a tuple of initial forms an initial form system.
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Figure 7: The normal fan at the left is the normal fan of the factor common to two polynomials f
and g. The normal fans of f and g are displayed in the middle and at the right. We recognize
the fan at the left as a part of the other fans.

Initial form systems are called truncated systems in [7] and [34]. At this point we can show how
Theorem 4.1 is a direct consequence of [4, Theorem B].

Proof of Theorem 4.1. Rephrasing part (a) of [4, Theorem B], using our notations and
restricting to two polynomials f and ¢ in  and y: If the system defined by the equations
iny(f)(z,y) = 0 and iny(g)(z,y) = 0 does not have any roots in (C*)? for any v # (0,0), then
all roots of the system defined by f(z,y) = 0 and g(z,y) = 0 are isolated and their number
equals the mixed volume of the polygons spanned by the supports of f and g. The condition
Trop(f) N Trop(g) = @ implies there is no v so that iny(f) and iny(g) have each at least two
monomials. Equivalently, for all v # (0,0), in(f) or iny(g) (possibly both for general v, but at
least one of them for particular choices of v) consist only of one monomial. Therefore the system
defined by the equations iny(f)(x,y) = 0 and iny(g)(x,y) = 0 does not have any roots in (C*)2.
Hence, the system defined by f(x,y) = 0 and g(z,y) = 0 has no roots at infinity. O

Example 4.7 (Example 4.4 continued) For the common factor r, the polynomials f and g
generated using Maple’s randpoly were

ro= 2y 4+ 2%y + 9xy® + Tty + 2ty + 923y, (9)
f o= r (69010 + 62%9° + 52ty + 323y + 5yt + 5y5) ; (10)
g = r(2" 4527 + 2% + 82%% + 62® + 5y°) . (11)

Because we exclude the coordinate axes, the factor zy of r is considered trivial and is not reported
as a separate factor. In Figure 8 we show the initial forms of the two polynomials defined by the
tropism (1, 0).

Because the tropism is a standard basis vector (1,0), the initial form system it determines
consists of two polynomials in one variable after canceling monomial factors:

{ in ) (f) =2 (59°(y + 1)(2 + 9y)) = 0 (12)
in1,0)(9) = = (59°(2+ 9y)) = 0

10



Take (1,0) as one of the 4 directions:

in(0y(r) = 22y + 9z y?

Initial forms of f and g:

in(lvo) (f) = 55xy6 + 10.%'y5 + 451’y7 = in(LO) (r)(5y4 + 5y5)

in g)(g) = 102y® 4 452y" = ing o(r)(54°)

Figure 8: The normal fan of the common factor and the initial form systems corresponding to
the direction (1,0).

and then y = —2/9 represents the common root at infinity. Note that the z-coordinate for this
root at infinity equals zero. Excluding coordinate axes, x = 0 is considered at infinity.

In general the common root at infinity will be an approximate root and with a-theory [5] we
can bound the radius of convergence for Newton’s method. For polynomials p in one variable,

the gamma function v(p, z) can be computed in a straightforward manner for any regular root z,

1/(k-1)
as the maximum of ‘% , for all k£ ranging from 2 to the degree of p. Then a lower

bound for the radius of convergence for Newton’s method is (3 — v/7)/(2y(p, 2)). In [58], this
notion of approximate zeroes was extended to include approximate functions, when the Newton
operator cannot be evaluated exactly. An alternative to this approach is take one root of the first

polynomial and compute how much the coefficients of the second polynomial must change for it
to have the same root [24]. In addition to the first certificate, the exact tropism, the common root
at infinity is the second approximate certificate for a potential common factor of two polynomials.

For general tropisms, not equal to basis vectors, we perform unimodular transformations in
the space of the exponents to reduce the initial form system to a system of two polynomial in one
variable. In [7], the coordinate transformations resulting from those unimodular transformations
are called power transformations and they power up the field of “Power Geometry”.

Example 4.8 (Example 4.4 continued) Investigating the direction (—1, —1):
{ in_q_1)(f) = bda3y? + 6atty = (aty + 92%y?) 627

(13)
in_q_1(g) = 7229 +821% = (aty + 927y?) 88

-1 -1

Using the unimodular matrix M = [ 0 —1

}, ged(=1,—-1) = (=1)(—=1) + 0(—1) = 1, we will

change coordinates.

Definition 4.9 For a tropism (u,v) normalized so the greatest common divisor ged(u,v) = 1,
the unimodular matrix M

u v

M:[—z k

} , ged(u,v) =1 =ku+lv=det(M) (14)

11



defines the unimodular coordinate transformation x = X*Y ! and y = X°Y*,
Note that for a monomial 2%, the coordinate transformation yields
(Xuy—l)a(vak)b — Xau—l—bvy—la-i—kb — X((a,b),(u,v))y—la-i—kb, (15)

so after the coordinate transformation, the monomials in the initial forms all have the same
minimal degree in X.

Example 4.10 (Example 4.8 continued) We perform the change of coordinates:
in_y_y(f)z=X"1y=X"Y"1) = (54Y +6)/(X'°Y?)
(16)
in_y_p(g)z=X"1y=X"1v"1) = (7248Y)/(XY0)

This change of coordinates reduces the initial form system to a system of two polynomials in one

variable. For the example, Y = —1/9 represents the common root at infinity. Going back to the
original coordinates:
X =t r=X""! r=1t"1!
{ Y =-1/9 ( y=X"1ty-! > - { y=—9t"1 (1)

As t goes to 0 we have indeed a root going off to infinity.

For every tentacle of the common factor we can associate a degree as follows. Considering
again the common factor r from (9), the amoeba for r has four tentacles, see Figure 8, reflected
by its tropicalization

Trop(r) = { (1,0),(0,1),(—-1,-1),(0,-1) }. (18)
In Table 1 we list the degrees associated to each tentacle of the common factor. We count the
number of nonzero solutions of the initial forms, after proper unimodular coordinate transfor-
mation. To make the correspondence with the usual degree, observe that we ignore monomial
factors.

(u,v) in(y,v) (1) degree
(1,0) 2zy + 9zy? 1
(0,1) 2xy + 2%y + Trdy + oy 3
(—=1,-1) zty + 9x3y? 1
(0, —1) 9zy? 4 9z3y> 2

Table 1: Degrees associated to each vector in Trop(r).

Summing the vectors in the first column of Table 1 yields zero. In general, the inner normals
to the edges of the Newton polygon satisfy what is known as the balancing condition [54]: with
every vector vy of the tropicalization one can assign a multiplicy my so that all my X vi’s sum
up to zero. This balancing is used in [22] to factor tropical polynomials. Thus we do not need
all tropisms to represent a factor. In the extreme case of a binomial factor, e.g.:  — y, we will
find the tropisms (1,1) and (—1,—1), corresponding to (z = t,y = t) and (z =t~ 1,y = t71)
respectively.

12



4.3 A Preprocessing Algorithm and its Cost

That two polynomials with approximate coefficients have a common factor does not happen that
often. Therefore, it is important to be able to decide quickly in case there is no common factor.
The stages in a preprocessing algorithm are sketched in Figure 9.

inner normals

|

1. compute pretropisms O

no tropism

= no root at oo )
singular roots

= deflate factor

2. solve initial forms O

no root at oo

= no series
3. evaluate initial terms O

initial term satisfies
= a binomial factor
4. compute 2nd term O

A A

no series

= no factor
series

Figure 9: A staggered approach for a regular common factor of two polynomials in two variables.

In Figure 9 we distinguish four computational steps. We will address the cost of the first two
steps in the following propositions.

Proposition 4.11 Let f and g be two polynomials given by respectively n and m monomials.
The cost of computing tropisms Trop(f) N Trop(g) is O(nlog(n)) + O(mlog(m)).

Proof. 1t takes O(nlog(n)) operations for computing a tropicalization Trop(f) because computing
the convex hull of a set of n points amounts to sorting the points in the support. Likewise,
computing Trop(g) takes O(mlog(n)) operations. Merging sorted lists of normals to find the
tropisms in Trop(f) N Trop(g) takes linear time in the length of the lists. O

This preprocessing step has the lowest complexity and as the algorithm operates only on the
exponents the outcome is exact. The absence of tropisms is an exact certificate that there is no
common factor, for any nonzero choice of the coeflicients of the polynomials.

In case we have tropisms, we solve initial form systems. The cost of the second preprocessing
stage is as follows.

13



Proposition 4.12 Let f and g be two polynomials given by respectively n and m monomials. For
every tropism t € Trop(f) N Trop(g) it takes at most O((n + m)3) operations to find a common
solution in (C*)? to the initial form system defined by v.

Proof. For a tropism v, we solve the initial form system. In particular, an initial root z satisfies

iny(f)(z) =0 2
{0 =e @ e
We perform a unimodular transformation so the tropism we consider is a unit vector, (1,0) or (0,1).
This implies that the two equations in the initial form system are defined by two polynomials
in one variable. To decide whether two polynomials in one variable admit a common solution
we determine the rank of the Sylvester matrix. Using singular value decomposition, the cost
of this rank determination is cubic in the size of the matrix. For rank deficient matrices, the
singular vectors give the coefficients of the common factor. The roots of this common factor are
the eigenvalues of a companion matrix. The cost of methods to compute eigenvalues is also cubic
in the dimension of the matrix. O

Even as the cost estimates in the propositions are conservative, they give a good polynomial
complexity. Actually, in the best case, the initial forms are supported on two points only and
instead of a rank determination, we can just take primitive roots. The cost estimates of Proposi-
tion 4.12 cover the very worst situation where the Newton polygons are triangles and one of the
edges contains all exponent vectors except for one.

For numerical calculations, it is important to note that at this preprocessing stage, only the
coefficients at the edges are involved. If the coefficients are badly scaled, then coefficients with
monomials in the interior of the Newton polygons will not cause difficulties at this stage.

For the complexity in the proof of the second proposition we used the ubiquitous singular
value decomposition but for practical purposes rank revealing algorithms [40] have a lower cost.
The accurate location of the root of the initial form systems may look complication in case this
root is multiple. However, because the initial form systems consists of univariate equations, the
methods of [73] will give satisfactory answers.

The “deflate factor” of Figure 9 means that we would work with the derivatives of f and g
in case a multiple initial root is found. For example, suppose the common factor r occurs with
multiplicity two in f: f = r2f;. Then, by % = 27“% fi+ rz% we see that r is a regular factor
of the partial derivatives of f.

Before we move to the computation of the second term of a Puiseux series of a common factor,
we point at the third stage of Figure 9, that deals with cases when no second term exists, i.e.:
when the common factor has only two monomials with nonzero coefficient. We call such factor
a binomial factor. If the evaluation of the initial term in the polynomials f and g turns out to
be zero, then we have a binomial factor. In the other direction, if there is a binomial factor,
then after a unimodular transformation it has the form X*(co + ¢;Y!) and is therefore satisfied
by (X =t,Y = z), for some zero of ¢y 4 ¢;Y'! = 0.
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5 Germs

Once we have a tropisms and an initial root at infinity, we start growing the Puiseux series for
the common factor.

5.1 How the Amoeba Grows from Infinity

We use the roots at infinity to grow the tentacles of the common factor. But first we must decide
whether the roots at infinity are isolated or not. We first define the representation of the common
factor.

Definition 5.1 Consider the curve defined by r(x,y) = 0. Except for eventual monomial factors,
r has no multiple factors. In canonical form for the tropism (1,0), a Puiseuz series for (1,0) has
the form

X =t (20)
Y = co+at”(1+0(t)), co,c1 €CHLweNw>D0.

For a general tropism (u,v) € Z2, with ged(u,v) = ku + lv = 1, a Puiseuz series for (u,v) has
the form

21
y = tlotat’l+01)F  weNw>0  y=Xxvk 21)

{ z = t“(co+at®(1+0@)~! cp,c1 € C* r= X"y~
Observe the unimodular transformation, going from the original coordinates (x,y) to (X,Y"), used
to find ¢g as a solution of the initial form system

ing1,0)(f)(t,c0) =0
{ in(1,0)(9)(t,co) =0 (22)

where the initial forms are taken from the equations f and g which define the common factor r.
In this section we will consider the calculation of the second term c;t¥ of the series.

Example 5.2 (Example 4.4 continued) We extend the solution at infinity, defined by the
initial form system for the first tropism (1,0). Because the tropism is a standard basis vector, the
Maple command sort({ £ , g }, plex, ascending) will show that the leading terms of the
polynomials f and g are indeed in( o)(f) and in( gy (9):

f = 10zy® + 45297 + 5525 + 2%( 30 other terms )
(23)
g = 45xy” + 10xy% + 22( 34 other terms )
Let f1 = f/x and g1 = g/z, then z = —2/9 is solution at infinity.
r =t
24
{ y=-3t"+Ct(1+0(t)), cecC* (24)

A nonzero value for C' will give the third certificate for a common factor. Useful Maple commands
to compute the power series are

15



zt ;= x =1t, y=-2/9 + Cxt;
flz := subs(zt,fl): glz := subs(zt,gl):
cl := coeff(flz,t,1); c2 := coeff(glz,t,1);

The constraints on the coefficient C' we obtain are

_ 1120 1120 v _
{ cl = —g317 — 59000C =0 (25)
_ 320 320 _
2 = —55005 — 51427C =0

Notice that the second coefficient C' of the Puiseux series expansion again must satisfy an overde-
termined system. Solving both equations for C' gives C' = —1/9.

r=1
{ y=—2— L1+ 0() (26)

Substituting » = t,y = —2/9 —t/9 into f; and g; gives O(¢?). The second term of the Puiseux
series is the third and last certificate for a common factor.

In general, the next term in the Puiseux series expansion might have a degree higher than
one, or there might not exist a second term at all in case the solution at infinity is isolated. There
is an explicit condition on the exponent of the second term in the Puiseux series expansion as in
Proposition 5.3.

Proposition 5.3 Given are two polynomials f and g in X and Y, after a unimodular coordinate
transformation and a multiplication or division by a monomial so f and g have the form

{ J(XY)=p(Y)+ P(X,Y), p(Y) = ing o) (f)(X,Y),
g(X, Y) = Q(Y) + Q(Xv Y)? Q(Y) = in(1,0) (g)(X, Y)

By the given form of f and g, the initial forms p and q are polynomials in'Y with nonzero constant
term. Moreover, all terms in the remainder polynomials P and Q have a positive power in X.

Let ¢g # 0:

(27)

{ p(CO) =0, pl(CO) 7é 0, f(t,Co) 7é 0 pl — @ q/ _ @ (28)
qa(co) =0, ¢'(co) #0, g(t,co) #0 Y’ )4

Let P, € C\ {0}: P(X,cp) = P.X*(14 O(X)) and Q; € C\ {0}: Q(X,co) = @ X'(1 + O(X)).
If k =1 and Qxp'(co) — Pxq'(co) = 0, then ¢y = —Py/p'(co) = —Qk /' (co) is the coefficient of the
second term in (X =t,Y = co+ c1t¥), the leading part of a Puiseux series expansion of a reqular

common factor of f and g. If k # 1 or Qgp'(co) — Prq'(co) # 0, then f and g have no common
factor with expansion starting at (X =1t,Y = ¢p).

Proof. Let us consider the effect of substituting X =t¢,Y = ¢y+c1t"¥ into f and g, using the value
for the initial root ¢y and treating the second coefficient ¢; and the exponent w as unknowns. We

may write p(Y') as

p(Y)=a1(Y —co)(Y —ag)(Y —az)--- (Y —ay), d=deg(p),; €C,i=1,2,3,...,d. (29)
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Because c¢q is a regular root of the initial forms: p'(cp) # 0 and ¢g # oy, i = 2,3,...,d. Then:

p(Y =co+ecit”) = ai(cit”)(co + et — az)(co + 1t —az) - (co + at” —ag)  (30)
= atai(co —az)(co —az) -+ (co — aqg)(1 + O(t")) (31)
= ety (c)(1+ O(t)), (32)

Similarly: (Y = co + ¢1t™) = c1t“q'(co) (1 + O(tY)).

Substitution of X =t and Y = ¢y + ¢1t* into P(X,Y) leads to Pt*(1 + O(t)) for a nonzero
constant P;. Observe that the lowest power of ¢ does not involve c¢1, but only depends on c¢g.
If the constant P were zero, then this would imply P(t,co) = 0 for all ¢ and also f(¢,¢p) = 0,
contradicting the assumption f(¢,¢g) # 0. Note that f(t,¢p) = 0 occurs in case the common
factor is binomial, i.e.: consists only of two monomials with nonzero coefficients.

The result of substituting X =t¢,Y = ¢y + ¢1t% into f and g is then

{ f(X =t,Y =cy+c1t?) = c1t*p'(co) (1 + O(tY)) + Pptk(1+ O(t)) = 0

G(X = 1Y = o +e1t™) = at®e(eo)(1 + O(®)) + Qitl(1 + O(t)) = 0. (33)

For the dominant terms to vanish, we must have w = k = [ and solve

/
0 211
= . 34
[ q'(co) Qr 1 0 (34)
For this linear system in ¢; to have the nonzero solution ¢; = —Py/p'(co) = —Qr/q (co) the
determinant Qgp’(co) — Prq’(co) must equal zero.

To prove the second if statement of the proposition, we first observe that if Qxp’(co) —
Prq'(co) # 0, the linear system in ¢; has no solution and hence there is no Puiseux series expan-
sion of a common factor starting at (X =¢,Y = ¢p). Now we consider the case k # . If k <[,
then the determinant of the linear system in ¢; equals —Prq'(co) # 0. Otherwise, for k > [, the
determinant is Q;p'(co) # 0. Therefore if k # [, no solution for ¢; exists and there is also no
Puiseux series expansion. U

The two key assumptions of Proposition 5.3 are covered by the earlier stages in the prepro-
cessing algorithm outlined in Figure 9. In case the condition of Proposition 5.3 is satisfied and the
linear system admits a nonzero solution for ¢, then the exponent w and coefficient ¢ constitute
respectively an exact and an approximate certificate for the existence of a common factor for the
two polynomials f and g.

5.2 Regions of Convergence of Puiseux Series

We will consider the convergence of Puiseux series only for series in their canonical form, for
the tropism (1,0). Via a unimodular coordinate transformation, Puiseux series for any tropism
can be brought into this canonical form: (X =¢,Y = ¢y + 1t (1 + O(t))), for cp,c; € C* and
w € Nyw > 0. We use capital letters X and Y in the given polynomials f and g to denote the
effect of the coordinate changes.

To verify whether the second term c¢;t" is valid we substitute (X = ¢, Y = ¢o + ¢1t*) into
f and g, ignoring terms of order O(t**!) and higher, and compare the lowest power in t of

17



the result of these substitutions to the lowest powers of ¢ respectively in f(X =¢,Y = ¢) and
g(X =t,Y = ¢p). Note that, since ¢y and ¢; are approximate numbers, we disregard in the result
of this substitution terms with coefficients of magnitude less than a certain tolerance, relative to
the accuracy of the approximations for ¢y and ¢q. In cases when the common factor is as simple
as ¢ +y + 1, the series (X =¢,Y = —1 — t) will of course leave no terms in ¢ after substitution
into f and g.

For common factors for which the second term does not complete the series, we formalize the
verification by substitution as follows. Let (X =1¢,Y = ¢y +c1t™) be the start of a Puiseux series
in canonical form with w and c¢; satisfiying all the conditions of Proposition 5.3 for a regular
common factor of f and g. Then the following holds:

f(X =tY = Co) = O(tml), mq > 0, (35)
g(X =t,Y =¢p) =O0(t™), mg >0,
and
f(X =t,Y =c + Cltw) = O(tml-l-/ﬂ)’ k1 >0, (36)
g(X =t,Y =co+c1tV) = O(tm2+k2), ko > 0.

This property follows from the construction of w and ¢; in the proof of Proposition 5.3.

The equations (35) and (36) indicate symbolically to what extent the values for X and Y
obtained from the start of a Puiseux series are equivalent to points sampled from the curve
defined by the common factor of f and g. The powers of ¢t obtained by substitution constitute
an algebraic tolerance on the common factor. Numerically, we have a disk centered at the point
(0,co) in C? of sufficiently small but positive radius where we may predict the value of points on
the curve defined by the common factor of f and g.

The computed (X =t¢,Y = ¢o + ¢1t?) can serve in the predictor-corrector method to sample
points from the common curve. These sampled points are then useful to compute additional
terms in the Puiseux series, or to directly apply sparse interpolation techniques to determine the
support and coefficients of the common factor.

The unimodular coordinate transformations play a very important role also in the accurate
evaluation of polynomials [15]. As the size of arguments of the polynomial functions grows, and as
the direction of the growth points along the direction of a tentacle of the amoeba, monomials on
the faces perpendicular to that direction become dominant. A weighted projective transformation
as in [68] will rescale the problem of evaluating a high degree polynomial with approximate
coefficients near a root.

We normalized the tropisms (u,v) requiring ged(u,v) = 1. Multiples of (u,v) lead to equiva-
lent Puiseux series. As we consider Puiseux series as solutions of f(x,y) = 0 and g(z,y) = 0, we
may as well consider f and g to have series for coefficients (like the input of a tropicalization).
We apply the following definition to f and g:

Definition 5.4 Let p be a polynomial in z and y with coefficients as series in ¢, converging in
some neighborhood U. Then the germ of p is V(p) = { (x(t),y(t)) € U | p(z(t),y(t)) =0 }.

For more on germs in the literature we refer to [14], [17], and [35].
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6 Implementation Aspects

For efficient implementation of the algorithm, the data structures used to represent the polyno-
mials consist of a list of exponent vectors and a coefficient table. More precisely, to represent a
polynomial f denoted as

f(x) = Z CaX? cp € C* x? = x{'23? (37)
acA

we use a list to represent the support A and a lookup table C[A] for the coefficients. The indices
of the lookup table C'4 are the exponent vectors a € A. In Maple’s index notation: Cla] = ca.

Separating the support from the coefficient allows an efficient execution of change of monomial
orders. If n = # A, then monomial orders on f are stored via permutations of the first n natural
numbers. The separation also gives an efficient way to change coordinates, i.e.: we apply the
unimodular coordinate transformation only on A. For a unimodular matrix M:

MA={Ma|acAY}. (38)

Abusing notation, for z € C*: Mz denotes the value for Y after applying the coordinate trans-
formation as in Definition 4.9.

The input polynomials f and g with respective supports Ay and A, are then represented by
two tuples: (Ay, C[A¢]) and (A4, C[Ay]). The preprocessing algorithms consists of two stages. In
the first stage, Algorithm 6.1 computes the tropisms and the roots of the corresponding initial
form systems. If the sets of roots are not empty, the exponent and coefficients of the second term
in the Puiseux expansions are computed by Algorithm 6.2 in the second stage. We define the
specifications of the algorithms below.

Algorithm 6.1 Tropisms and Initial Roots
Input : (Af,C[Ay]) and (4,4, C[A,]).
Output : T ={ (u,v) € Z*\ (0,0) | (u,v) is tropism },
R[T] = {{2z€C [ingu(f)(Mz) = 0,inq(9)(Mz) =0} | (u,v) €T }.

Every tropism in T defines a set of roots (possibly empty) of the corresponding initial form system,
after application of the unimodular coordinate transformation M. The cost of Algorithm 6.1 is
estimated by Proposition 4.11 and Proposition 4.12.
Algorithm 6.2 Second Term of Puiseux Expansion
Input : (Af, C[A¢]), (Ag,C[Ay]), T, and R[T].
Output : WIR[T]] ={ (c,w) eC*x Nt | ze€ Z e R[T] }.

The elements of the set W[R[T]] define the second term of the Puiseux series expansion. In
particular, for every (c,w) € W|[R[T]]:

X =t!
{Y:z+ctw (39)
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where (X,Y) are the new coordinates after applying the transformation of Definition 4.9. Con-
ditions on the existence of the exponent w are given in Proposition 5.3.

The Maple code served well to prototype an implementation in PHCpack [67], release 2.3.48,
making the code to find a common factor of two Laurent polynomials available to the user via
phc -f.

7 Conclusions and Extensions

Like Maple, tropical algebraic geometry is language. Sentences like tropisms give the germs to
grow the tentacles of the common amoeba express efficient preprocessing stages to detect and
compute common factors of two polynomials with approximate coefficients. In this paper we
outline a symbolic-numeric algorithm to compute Puiseux series of a common factor of two
polynomials. Seeing the problem as a system of two polynomial equations in two variables, the
algorithm is a polyhedral method to find algebraic curves. Connections with numerical algebraic
geometry are described in [66].

Among the extensions we consider for future developments are algorithms to handle singular-
ities numerically and polyhedral methods for space curves.
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