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Abstract

We present a polyhedral algorithm to manipulate positive dimensional solution sets. Using
facet normals to Newton polytopes as pretropisms, we focus on the first two terms of a Puiseux
series expansion. The leading powers of the series are computed via the tropical prevariety.
This polyhedral algorithm is well suited for exploitation of symmetry, when it arises in systems
of polynomials. Initial form systems with pretropisms in the same group orbit are solved only
once, allowing for a systematic filtration of redundant data. Computations with cddlib, Gfan,
PHCpack, and Sage are illustrated on cyclic n-roots polynomial systems.

Keywords. Algebraic set, Backelin’s Lemma, cyclic n-roots, initial form, Newton poly-
tope, polyhedral method, polynomial system, Puiseux series, symmetry, tropism, tropical
prevariety.

1 Introduction

We consider a polynomial system f(x) = 0, x = (x0, x1, . . . , xn−1), f = (f1, f2, . . . , fN ), fi ∈ C[x],
i = 1, 2, . . . , N . Although in many applications the coefficients of the polynomials are rational
numbers, we allow the input system to have approximate complex numbers as coefficients. For
N = n (as many equations as unknowns), we expect in general to find only isolated solutions. In
this paper we focus on cases N ≥ n where the coefficients are so special that f(x) = 0 has an
algebraic set as a solution.

Our approach is based on the following observation: if the solution set of f(x) = 0 has a
space curve, then this space curve extends from C∗ = C \ {0} to infinity. In particular, the space
curve intersects hyperplanes at infinity at isolated points. We start our series development of the
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space curve at these isolated points. Computing series developments for solutions of polynomial
systems is a hybrid symbolic-numeric method, appropriate for inputs which consist of approximate
numbers (the coefficients) and exact data (the exponents).

In this paper we will make various significant assumptions. First we assume that the alge-
braic sets we consider are reduced, that is: free of multiplicities. Moreover, an algebraic set of
dimension d is in general position with respect to the first d coordinate planes. For example, we
assume that a space curve is not contained in a plane perpendicular to the first coordinate axis.
Thirdly, we assume the algebraic set of dimension d to intersect the first d coordinate planes at
regular solutions.

Our approach consists of two stages. The computation of the candidates for the leading powers
of the Puiseux series is followed by the computation of the leading coefficients and the second
term of the Puiseux series, if the leading term of the series does not already entirely satisfy the
system. Following our assumptions, the second term of the Puiseux series indicates the existence
of a space curve. If the system is invariant to permutation of the variables, then it suffices to
compute only the generators of the solution orbits. We then develop the Puiseux series only
at the generators. Although our approach is directed at general algebraic sets, our approach of
exploiting symmetry applies also to the computation of all isolated solutions. Our main example
is one family of polynomial systems, the cyclic n-roots system.
Related Work. Our approach is inspired by the constructive proof of the fundamental theorem
of tropical algebraic geometry in [32] (an alternative proof is in [39]) and related to finiteness
proofs in celestial mechanics [27], [30]. The initial form systems allow the elimination of variables
with the application of coordinate transformations, an approach presented in [29] and related
to the application of the Smith normal form in [25]. The complexity of polyhedral homotopies
is studied in [33] and generalized to affine solutions in [28]. Generalizations of the Newton-
Puiseux theorem [43], [58], can be found in [5], [7], [37], [38], [45], and [47]. A symbolic-numeric
computation of Puiseux series is described in [40], [41], and [42]. Algebraic approaches to exploit
symmetry are [13], [20], [23], and [50]. The cyclic n-roots problem is a benchmark for polynomial
system solvers, see e.g: [9], [13], [14], [16], [17], [18], [20], [35], [50], and relevant to operator
algebras [10], [26], [54]. Our results on cyclic 12-roots correspond to [46].
Our Contributions. This paper is a thorough revision of the unpublished preprint [2], originat-
ing in the dissertation of the first author [1], which extended [3] from the plane to space curves.
In [4] we gave a tropical version of Backelin’s Lemma in case n = m2, in this paper we generalize
to the case n = `m2. Our approach improves homotopies to find all isolated solutions. Exploiting
symmetry we compute only the generating cyclic n-roots, more efficiently than the symmetric
polyhedral homotopies of [57].

2 Initial Forms, Cyclic n-roots, and Backelin’s Lemma

In this section we introduce our approach on the cyclic 4-roots problem. For this problem we
can compute an explicit representation for the solution curves. This explicit representation as
monomials in the independent parameters for positive dimensional solution sets generalizes into
the tropical version of Backelin’s Lemma.
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2.1 Newton Polytopes, Initial Forms, and Tropisms

In this section we first define Newton polytopes, initial forms, pretropisms, and tropisms. The
sparse structure of a polynomial system is captured by the sets of exponents and their convex
hulls.

Definition 2.1. Formally we denote a polynomial f ∈ C[x] as

f(x) =
∑
a∈A

caxa, ca ∈ C∗, xa = xa0
0 x

a1
1 · · ·x

an−1

n−1 , (1)

and we call the set A of exponents the support of f . The convex hull of A is the Newton
polytope of f . The tuple of supports A = (A1, A2, . . . , AN ) span the Newton polytopes P =
(P1, P2, . . . , PN ) of the polynomials f = (f1, f2, . . . , fN ) of the system f(x) = 0.

The development of a series starts at a solution of an initial form of the system f(x) = 0,
with supports that span faces of the Newton polytopes of f .

Definition 2.2. Let v 6= 0, denote 〈a,v〉 = a0v0+a1v1+· · ·+an−1vn−1, and let f be a polynomial
supported on A. Then, the initial form of f in the direction of v is

inv(f) =
∑

a ∈ inv(A)

caxa, where inv(A) = { a ∈ A | 〈a,v〉 = min
b∈A
〈b,v〉 }. (2)

The initial form of a system f(x) = 0 with polynomials in f = (f1, f2, . . . , fN ) in the direction of v
is denoted by inv(f) = (inv(f1), inv(f2), . . . , inv(fN )). If the number of monomials with nonzero
coefficient in each inv(fk), for all k = 1, 2, . . . , N , is at least two, then v is a pretropism.

The notation inv(f) follows [53], where v represents a weight vector to order monomials. The
polynomial inv(f) is homogeneous with respect to v. Therefore, in solutions of inv(f)(x) = 0
we can set x0 to the free parameter t. In [12] and [34], initial form systems are called truncated
systems.

Faces of Newton polytopes P spanned by two points are edges and all vectors v that lead
to the same inv(P ) (the convex hull of inv(A)) define a polyhedral cone (see e.g. [59] for an
introduction to polytopes).

Definition 2.3. Given a tuple of Newton polytopes P of a system f(x) = 0, the tropical prevariety
of f is the common refinement of the normal cones to the edges of the Newton polytopes in P.

Our definition of a tropical prevariety is based on the algorithmic characterization in [11,
Algorithm 2], originating in [44]. Consider for example the special case of two polytopes P1 and
P2 and take the intersection of two cones, normal to two edges of the two polytopes. If the
intersection is not empty, then the intersection contains a vector v that defines a tuple of two
edges (inv(P1), inv(P2)).

Definition 2.4. For space curves, the special role of x0 is reflected in the normal form of the
Puiseux series: {

x0 = tv0

xi = tvi(yi + zit
wi(1 +O(t)), i = 1, 2, . . . , n− 1,

(3)

where the leading powers v = (v0, v1, . . . , vn−1) define a tropism.
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In the definition above, it is important to observe that the tropism v defines as well the initial
form system inv(f)(x) = 0 that has as solution the initial coefficients of the Puiseux series.

Every tropism is a pretropism, but not every pretropism is a tropism, because pretropisms
depend only on the Newton polytopes. For a d-dimensional algebraic set, a d-dimensional poly-
hedral cone of tropisms defines the exponents of Puiseux series depending on d free parameters.

2.2 The Cyclic n-roots Problem

For n = 3, the cyclic n-roots system originates naturally from the elementary symmetric functions
in the roots of a cubic polynomial. For n = 4, the system is

f(x) =


x0 + x1 + x2 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0
x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0

x0x1x2x3 − 1 = 0.

(4)

The permutation group which leaves the equations invariant is generated by (x0, x1, x2, x3) →
(x1, x2, x3, x0) and (x0, x1, x2, x3) → (x3, x2, x1, x0). In addition, the system is equi-invariant
with respect to the action (x0, x1, x2, x3)→ (x−1

0 , x−1
1 , x−1

2 , x−1
3 ).

With v = (+1,−1,+1,−1), there is a unimodular coordinate transformation M , denoted by
x = zM :

inv(f)(x) =


x1 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0
x1x2x3 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

x = zM :


x0 = z+1

0

x1 = z−1
0 z1

x2 = z+1
0 z2

x3 = z−1
0 z3

(5)

with

M =


+1 −1 +1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 . (6)

The system inv(f)(z) = 0 has two solutions. These two solutions are the leading coefficients
in the Puiseux series. In this case, the leading term of the series vanishes entirely at the system so
we write two solution curves as

(
t,−t−1,−t, t−1

)
and

(
t, t−1,−t,−t−1

)
. To compute the degree

of the two solution curves, we take a random hyperplane in C4: c0x0 +c1x1 +c2x2 +c3x3 +c5 = 0,
ci ∈ C∗. Then the number of points on the curve and on the random hyperplane equals the
degree of the curve. Substituting the representations we obtained for the curves into the random
hyperplanes gives a quadratic polynomial in t (after clearing the denominator t−1), so there are
two quadric curves of cyclic 4-roots.

2.3 A Tropical Version of Backelin’s Lemma

In [4], we gave an explicit representation for the solution sets of cyclic n-roots, in case n = m2,
for any natural number m ≥ 2. Below we state Backelin’s Lemma [6], in its tropical form.
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Lemma 2.5 (Tropical Version of Backelin’s Lemma). For n = m2`, where ` ∈ N \ {0} and ` is
no multiple of k2, for k ≥ 2, there is an (m − 1)-dimensional set of cyclic n-roots, represented
exactly as

xkm+0 = ukt0
xkm+1 = ukt0t1
xkm+2 = ukt0t1t2

...
xkm+m−2 = ukt0t1t2 · · · tm−2

xkm+m−1 = γukt−m+1
0 t−m+2

1 · · · t−2
m−3t

−1
m−2

(7)

for k = 0, 1, 2, . . . ,m − 1, free parameters t0, t1, . . . , tm−2, constants u = e
i2π
m` , γ = e

iπβ
m` , with

β = (α mod 2), and α = m(m`− 1).

Proof. By performing the change of variables y0 = t0, y1 = t0t1, y2 = t0t1t2, . . ., ym−2 =
t0t1t2 · · · tm−2, ym−1 = γt−m+1

0 t−m+2
1 · · · t−2

m−3t
−1
m−2, the solution (7) can be rewritten as

xkm+j = ukyj , j = 0, 1, . . . ,m− 1. (8)

The solution (8) satisfies the cyclic n-roots system by plain substitution as in the proof of [19,
Lemma 1.1], whenever the last equation x0x1x2 · · ·xn−1−1 = 0 of the cyclic n-roots problem can
also be satisfied.

We next show that we can always satisfy the equation x0x1x2 · · ·xn−1 − 1 = 0 with our
solution. First, we perform an additional change of coordinates to separate the γ coefficient.
We let y0 = Y0, y1 = Y1, . . ., ym−2 = Ym−2, ym−1 = γYm−1. Then on substitution of (8) into
x0x1x2 · · ·xn−1 − 1 = 0, we get

(γm` u0u0 · · ·u0︸ ︷︷ ︸
m

u1u1 · · ·u1︸ ︷︷ ︸
m

· · ·um`−1um`−1 · · ·um`−1︸ ︷︷ ︸
m

Y m`
0 Y m`

1 Y m`
2 · · ·Y m`

m−2Y
m`
m−1)− 1 = 0

(γm` um(0+1+2+···+(m`−1)) Y m`
0 Y m`

1 Y m`
2 · · ·Y m`

m−2Y
m`
m−1)− 1 = 0

(γ u
m(m`−1)

2 Y0Y1Y2 · · ·Ym−2Ym−1)m` − 1 = 0.

(9)
The last equation in (9) has now the same form as in [19, Lemma 1.1]. We are done if we can
satisfy it. We next show that it can always be satisfied with our solution.

Since all the tropisms in the cone add up to zero, the product (Y0Y1Y2 · · ·Ym−2Ym−1), which
consists of free parameter combinations, equals to 1. Since (Y0Y1Y2 · · ·Ym−2Ym−1) = 1, we are
left with

(γ u
m(m`−1)

2 )m` − 1 = 0. (10)

We distinguish two cases:

1. γ = 1, implied by (m is even, ` is odd) or (m is odd, ` is odd) or (m is even, ` is even).
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To show that (10) is satisfied, we rewrite (10):

(u
m(m`−1)

2 )m` − 1 = 0 ⇔ (u
m2`(m`−1)

2 )− 1 = 0 ⇔ ((um`)
m(m`−1)

2 )− 1 = 0, (11)

which is satisfied by u = e
i2π
m` and m(m`− 1) being even.

2. γ 6= 1, implied by (m is odd, ` is even).

To show that our solution satisfies (10), we rewrite (10):

(γ u
m(m`−1)

2 )m`− 1 = 0 ⇔ (γ u
m2`

2 u
−m
2 )m`− 1 = 0 ⇔ (γ (um`)

m
2 u

−m
2 )m`− 1 = 0.

(12)

Since u = e
i2π
m` , um` = 1, we can simplify (12) further

(γ u
−m
2 )m` − 1 = 0

(e
iπ
m` (e

i2π
m` )

−m
2 )m` − 1 = 0

(e
iπ
m` (e

−iπ
` ))m` − 1 = 0

(eiπ e−iπm)− 1 = 0
(e(1−m)iπ)− 1 = 0.

(13)

Since m is odd, we can write m = 2j+1, for some j. The last equation of (13) has the form

(e(1−m)iπ)− 1 = 0 ⇔ (e(1−(2j+1))iπ)− 1 = 0 ⇔ (e(−2j)iπ)− 1 = 0. (14)

Since (e(−2j)iπ) = 1, for any j, the equation (e(−2j)iπ)− 1 = 0 is satisfied, implying (10).

Backelin’s Lemma comes to aid when applying a homotopy to find all isolated cyclic n-roots
as follows. We must decide at the end of a solution path whether we have reached an isolated
solution or a positive dimension solution set. This problem is especially difficult in the presence
of isolated singular solutions (such as 4-fold isolated cyclic 9-roots [36]). With the form of the
solution set as in Backelin’s Lemma, we solve a triangular binomial system in the parameters t
and with as x values the solution found at the end of a path. If we find values for the parameters
for an end point, then this solution lies on the solution set.

3 Exploiting Symmetry

We illustrate the exploitation of permutation symmetry on the cyclic 5-roots system. Adjusting
polyhedral homotopies to exploit the permutation symmetry for this system was presented in [57].
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3.1 The Cyclic 5-roots Problem

The mixed volume for the cyclic 5-roots system is 70, which equals the exact number of roots.
The first four equations of the cyclic 5-roots system C5(x) = 0, define solution curves:

f(x) =


x0 + x1 + x2 + x3 + x4 = 0
x0x1 + x0x4 + x1x2 + x2x3 + x3x4 = 0
x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 = 0
x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x0x2x3x4 + x1x2x3x4 = 0.

(15)

where v = (1, 1, 1, 1, 1). As the first four equations of C5 are homogeneous, the first four equations
of C5 coincide with the first four equations of inv(C5)(x) = 0. Because these four equations are
homogeneous, we have lines of solutions. After computing representations for the solution lines,
we find the solutions to the original cyclic 5-roots problem intersecting the solution lines with the
hypersurface defined by the last equation. In this intersection, the exploitation of the symmetry
is straightforward.

The unimodular matrix with v = (1, 1, 1, 1, 1) and its corresponding coordinate transformation
are

M =


1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 x = zM :


x0 = z0
x1 = z0z1
x2 = z0z2
x3 = z0z3
x4 = z0z4.

(16)

Applying x = zM to the initial form system (15) gives

inv(f)(x = zM ) =


z1 + z2 + z3 + z4 + 1 = 0
z1z2 + z2z3 + z3z4 + z1 + z4 = 0
z1z2z3 + z2z3z4 + z1z2 + z1z4 + z3z4 = 0
z1z2z3z4 + z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = 0.

(17)

The system (17) has 14 isolated solutions of the form z1 = c1, z2 = c2, z3 = c3, z4 = c4. If
we let z0 = t, in the original coordinates we have

x0 = t, x1 = tc1, x2 = tc2, x3 = tc3, x4 = tc4 (18)

as representations for the 14 solution lines.
Substituting (18) into the omitted equation x0x1x2x3x4−1 = 0, yields a univariate polynomial

in t of the form kt5 − 1 = 0, where k is a constant. Among the 14 solutions, 10 are of the
form t5 − 1. They account for 10 × 5 = 50 solutions. There are two solutions of the form
(−122.99186938124345)t5−1, accounting for 2×5 = 10 solutions and an additional two solutions
are of the form (−0.0081306187557833118)t5 − 1 accounting for 2 × 5 = 10 remaining solutions.
The total number of solutions is 70, as indicated by the mixed volume computation. Existence
of additional symmetry, which can be exploited, can be seen in the relationship between the
coefficients of the quintic polynomial, i.e. 1

(−122.99186938124345) ≈ −0.0081306187557833118.
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3.2 A General Approach

That the first n− 1 equations of cyclic n-roots system give explicit solution lines is exceptional.
For general polynomial systems we can use the leading term of the Puiseux series to compute
witness sets [49] for the space curves defined by the first n− 1 equations. Then via the diagonal
homotopy [48] we can intersect the space curves with the rest of the system. While the direct
exploitation of symmetry with witness sets is not possible, with the Puiseux series we can pick
out the generating space curves.

4 Computing Pretropisms

Following from the second theorem of Bernshtěın [8], the Newton polytopes may be in general
position and no normals to at least one edge of every Newton polytope exists. In that case,
there does not exist a positive dimensional solution set either. We look for v so that inv(f)(x) =
0 has solutions in (C∗)n and therefore we look for pretropisms. In this section we describe
two approaches to compute pretropisms. The first approach applies cddlib [21] on the Cayley
embedding. Algorithms to compute tropical varieties are described in [11] and implemented in
Gfan [31]. The second approach is the application of tropical intersection of Gfan.

4.1 Using the Cayley Embedding

The Cayley trick formulates a resultant as a discriminant as in [24, Proposition 1.7, page 274].
We follow the geometric description of [52], see also [15, §9.2]. The Cayley embedding EA of
A = (A1, A2, . . . , AN ) is

EA = (A1 × {0}) ∪ (A2 × {e1}) ∪ · · · ∪ (AN × {eN−1}) (19)

where ek is the kth (N − 1)-dimensional unit vector. Consider the convex hull of the Cayley
embedding, the so-called Cayley polytope, denoted by conv(EA). If dim(EA) = k < 2n− 1, then
a facet of conv(EA) is a face of dimension k − 1.

Proposition 4.1. Let EA be the Cayley embedding of the supports A of the system f(x) = 0.
The normals of those facets of conv(EA) that are spanned by at least two points of each support
in A form the tropical prevariety of f .

Proof. Denote the Minkowski sum of the supports in A as ΣA = A1+A2+ · · ·+AN . Facets of ΣA

spanned by at least two points of each support define the generators of the cones of the tropical
prevariety. The relation between EA and ΣA is stated explicitly in [15, Observation 9.2.2]. In
particular, cells in a polyhedral subdivision of EA are in one-to-one correspondence with cells in a
polyhedral subdivision of the Minkowski sum ΣA. The correspondence with cells in a polyhedral
subdivision implies that facet normals of ΣA occur as facet normals of conv(EA). Thus the set
of all facets of conv(EA) gives the tropical prevariety of f .

Note that ΣA can be computed as the Newton polytope of the product of all polynomials
in f . As a practical matter, applying the Cayley embedding is better than just plainly computing
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the convex hull of the Minkowski sum because the Cayley embedding maintains the sparsity of
the input, at the expense of increasing the dimension. Running cddlib [21] to compute the H-
representation of the Cayley polytope of the cyclic 8-roots problem yields 94 pretropisms. With
symmetry we have 11 generators, displayed in Table 1.

generating pretropisms and initial forms
#solutions of higher dimensional cones of pretropisms

pretropism v inv(C8)(z) 1D 2D 3D 4D
1. (−3, 1, 1, 1,−3, 1, 1, 1) 94 {1} {1, 3} {1, 6, 11} {1, 2, 3, 11}
2. (−1,−1,−1, 3,−1,−1,−1, 3) 115 {2} {1, 6} {1, 10, 11}
3. (−1,−1, 1, 1,−1,−1, 1, 1) 112 {3} {1, 10} {2, 8, 11}
4. (−1, 0, 0, 0, 1,−1, 1, 0) 30 {4} {1, 11}
5. (−1, 0, 0, 0, 1, 0,−1, 1) 23 {5} {2, 3}
6. (−1, 0, 0, 1,−1, 1, 0, 0) 32 {6} {2, 8}
7. (−1, 0, 0, 1, 0,−1, 1, 0) 40 {7} {3, 7}
8. (−1, 0, 0, 1, 0, 0,−1, 1) 16 {8} {2, 11}
9. (−1, 0, 1,−1, 1,−1, 1, 0) 39 {9} {6, 11}

10. (−1, 0, 1, 0,−1, 1,−1, 1) 23 {10} {8, 11}
11. (−1, 1,−1, 1,−1, 1,−1, 1) 509 {11} {10, 11}

Table 1: Eleven pretropism generators of the cyclic 8-root problem, the number of solutions of the
corresponding initial form systems, and the multidimensional cones they generate, as computed
by Gfan.

For the cyclic 9-roots problem, the computation of the facets of the Cayley polytope yield 276
pretropisms, with 17 generators: (−2, 1, 1, −2, 1, 1, −2, 1, 1), (−1, −1, 2, −1, −1, 2, −1, −1,
2), (−1, 0, 0, 0, 0, 1, −1, 1, 0), (−1, 0, 0, 0, 0, 1, 0, −1, 1), (−1, 0, 0, 0, 1, −1, 0, 1, 0), (−1, 0,
0, 0, 1, −1, 1, 0, 0), (−1, 0, 0, 0, 1, 0, −1, 0, 1), (−1, 0, 0, 0, 1, 0, −1, 1, 0), (−1, 0, 0, 0, 1, 0,
0, −1, 1), (−1, 0, 0, 1, −1, 0, 1, −1, 1), (−1, 0, 0, 1, −1, 0, 1, 0, 0), (−1, 0, 0, 1, −1, 1, −1, 0,
1), (−1, 0, 0, 1, −1, 1, −1, 1, 0), (−1, 0, 0, 1, −1, 1, 0, −1, 1), (−1, 0, 0, 1, 0, −1, 1, −1, 1),
(−1, 0, 0, 1, 0, 0, −1, 0, 1), and (−1, 0, 1, −1, 1, −1, 0, 1, 0). To get the structure of the two
dimensional cones, a second run of the Cayley embedding is needed on the smaller initial form
systems defined by the pretropisms.

The computations for n = 8 and n = 9 finished in less than a second on one core of a 3.07Ghz
Linux computer with 4Gb RAM. For the cyclic 12-roots problem, cddlib needed about a week
to compute the 907,923 facets normals of the Cayley polytope. Although effective, the Cayley
embedding becomes too inefficient for larger problems.

4.2 Using tropical intersection of Gfan

The solution set of the cyclic 8-roots polynomial system consists of space curves. Therefore, all
tropisms cones were generated by a single tropism. The computation of the tropical prevariety
however, did not lead only to single pretropisms but also to cones of pretropisms. The cyclic
8-roots cones of pretropisms and their dimension are listed in Table 1. Since the one dimensional
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rays of pretropisms yielded initial form systems with isolated solutions and since all higher di-
mensional cones are spanned by those one dimensional rays, we can conclude that there are no
higher dimensional algebraic sets, as any two dimensional surface degenerates to a curve if we
consider only one tropism.

For the computation of the tropical prevariety, the Sage 5.7/Gfan function tropical intersection()
ran (with default settings without exploitation of symmetry) on an AMD Phenom II X4 820 pro-
cessor with 6 GB of RAM, running GNU/Linux, see Table 2. As the dimension n increases so
does the running time, but the relative cost factors are bounded by n.

n seconds hms format factor
8 16.37 16 s 1.0
9 79.36 1 m 19 s 4.8

10 503.53 8 m 23 s 6.3
11 3898.49 1 h 4 m 58 s 7.7
12 37490.93 10 h 24 m 50 s 9.6

Table 2: Time to compute the tropical prevarieties for cyclic n-roots with Sage 5.7/Gfan and the
relative cost factors: for n = 12, it takes 9.6 times longer than for n = 11.

5 The Second Term of a Puiseux Series

In exceptional cases like the cyclic 4-roots problem where the first term of the series gives an exact
solution or when we encounter solution lines like with the first four equations of cyclic 5-roots, we
do not have to look for a second term of a series. In general, a pretropism v becomes a tropism
if there is a Puiseux series with leading powers equal to v. The leading coefficients of the series
is a solution in C∗ of the initial form system inv(f)(x) = 0. We solve the initial form systems
with PHCpack [55] (its blackbox solver incorporates MixedVol [22]). For the computations of the
series we use Sage [51].

5.1 Computing the Second Term

In our approach, the calculation of the second term in the Puiseux series is critical to decide
whether a solution of an initial form system corresponds to an isolated solution at infinity of the
original system, or whether it constitutes the beginning of a space curve. For sparse systems, we
may not assume that the second term of the series is linear in t. Trying consecutive powers of t
will be wasteful for high degree second terms of particular systems. In this section we explain
our algorithm to compute the second term in the Puiseux series.

A unimodular coordinate transformation x = zM with M having as first row the vector v
turns the initial form system inv(f)(x) = 0 into ine1(f)(z) = 0 where e1 = (1, 0, . . . , 0) equals
the first standard basis vector. When v has negative components, solutions of inv(f)(x) = 0 that
are at infinity (in the ordinary sense of having components equal to ∞) are turned into solutions
in (C∗)n of ine1(f)(z) = 0.
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The following proposition states the existence of the exponent of the second term in the series.
After the proof of the proposition we describe how to compute this second term.

Proposition 5.1. Let v denote the pretropism and x = zM denote the unimodular coordinate
transformation, generated by v. Let inv(f)(x = zM ) denote the transformed initial form system
with regular isolated solutions, forming the isolated solutions at infinity of the transformed poly-
nomial system f(x = zM ). If the substitution of the regular isolated solutions at infinity into
the transformed polynomial system f(x = zM ) does not satisfy the system entirely, then the con-
stant terms of f(x = zM ) have disappeared, leaving at least one monomial c`tw` for some f` in
f(x = zM ) with minimal value w`. The minimal exponent w` is the candidate for the exponent of
the second term in the Puiseux series.

Proof. Let z = (z0, z1, . . . , zn−1) and z̄ = (z1, z2, . . . , zn−1) denote variables after the unimodular
transformation. Let (z0 = t, z1 = r1, . . . , zn−1 = rn−1) be a regular solution at infinity and t the
free variable.

The ith equation of the original system after the unimodular coordinate transformation has
the form

fi = zmi0 (Pi(z̄) +O(z0)Qi(z)), i = 1, 2, . . . , N, (20)

where the polynomial Pi(z̄) consists of all monomials which form the initial form component of
fi and Qi(z) is a polynomial consisting of all remaining monomials of fi. After the coordinate
transformation, we denote the series expansion as{

z0 = t
zj = rj + kjt

w`(1 +O(t)), j = 1, 2, . . . , n− 1.
(21)

for some ` and where at least one kj is nonzero.
We first show that, for all i, the polynomial zmi0 Pi(z̄) cannot contain a monomial of the form

c`t
w` on substitution of (21). The polynomial zmi0 Pi(z̄) is the initial form of fi, hence solution at

infinity (z0 = t, z1 = r1, z2 = r2, . . . , zn−1 = rn−1) satisfies zmi0 Pi(z̄) entirely. Substituting (21)
into zmi0 Pi(z̄) eliminates all constants in tmiPi(z̄). Hence, the polynomial Pi(t) = Ri(tw) and,
therefore, tmiPi(t) = Ri(tw+mi).

We next show that for some i = `, the polynomial Qi(z) contains a monomial c`tw` . The
polynomial Qi(z) is rewritten:

zw`0 Qi(z̄) = zw`0 Ti0(z̄) + zw`+1
0 Ti1(z̄) + · · · . (22)

The polynomial Qi(z) = zw`0 Qi(z̄) consists of monomials which are not part of the initial form
of fi. Hence, on substitution of solution at infinity (21), zw`0 Qi(z̄) = tw`Qi(t) does not vanish
entirely and there must be at least one i = ` for which constants remain after substitution. Since
Q`(t) contains monomials which are constants, tw`Q`(t) must contain a monomial of the form
c`t

w` .

Now we describe the computation of the second term, in case the initial root does not satisfy
the entire original system. Assume the following general form of the series:{

z0 = t

zi = c
(0)
i + kit

w`(1 +O(t)), i = 1, 2, . . . , n− 1,
(23)
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for some ` and where c(0)
i ∈ C∗ are the coordinates of the initial root, ki is the unknown coefficient

of the second term tw` , w` > 0. Note that only for some ki nonzero values may exist, but not all
ki may be zero. We are looking for the smallest w` for which the linear system in the ki’s admits
a solution with at least one nonzero coordinate. Substituting (23) gives equations of the form

ĉ
(0)
i tw`(1 +O(t)) + tw`+bi

n∑
j=1

γijkj(1 +O(t)) = 0, i = 1, 2, . . . , n, (24)

for constant exponents w`, bi and constant coefficients ĉ(0)
i and γij .

In the equations of (24) we truncate the O(t) terms and retain those equations with the
smallest value of the exponents w`, because with the second term of the series solution we want
to eliminate the lowest powers of t when we plug in the first two terms of the series into the
system. This gives a condition on the value w` of the unknown exponent of t in the second term.
If there is no value for w` so that we can match with w` + bi the minimal value of w` for all
equations where the same minimal value of w` occurs, then there does not exist a second term
and hence no space curve. Otherwise, with the matching value for w` we obtain a linear system
in the unknown k variables. If a solution to this linear system exists with at least one nonzero
coordinate, then we have found a second term, otherwise, there is no space curve.

For an algebraic set of dimension d, we have a polyhedral cone of d tropisms and we take any
general vector v in this cone. Then we apply the method outlined above to compute the second
term in the series in one parameter, in the direction of v.

5.2 Series Developments for Cyclic 8-roots

We illustrate our approach on the cyclic 8-roots problem, denoted by C8(x) = 0 and take as
pretropism v = (1,−1, 0, 1, 0, 0,−1, 0). Replacing the first row of the 8-dimensional identity
matrix by v yields a unimodular coordinate transformation, denoted as x = zM , explicitly defined
as

x0 = z0, x1 = z1/z0, x2 = z2, x3 = z0z3, x4 = z4, x5 = z5, x6 = z6/z0, x7 = z7. (25)

Applying x = zM to the initial form system inv(C8)(x) = 0 gives

inv(C8)(x = zM ) =



z1 + z6 = 0
z1z2 + z5z6 + z6z7 = 0
z4z5z6 + z5z6z7 = 0
z4z5z6z7 + z1z6z7 = 0
z1z2z6z7 + z1z5z6z7 = 0
z1z2z3z4z5z6 + z1z2z5z6z7 + z1z4z5z6z7 = 0
z1z2z3z4z5z6z7 + z1z2z4z5z6z7 = 0
z1z2z3z4z5z6z7 − 1 = 0.

(26)

By construction of M , observe that all polynomials have the same power of z0, so z0 can be
factored out. Removing z0 from the initial form system, we find a solution

z0 = t, z1 = −I, z2 =
−1
2
− I

2
, z3 = −1, z4 = 1 + I, z5 =

1
2

+
I

2
, z6 = I, z7 = −1− I (27)
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where I =
√
−1. This solution is a regular solution. We set z0 = t, where t is the variable for the

Puiseux series. In the computation of the second term, we assume the Puiseux series of the form
at the left of (28). We first transform the cyclic 8-roots system C8(x) = 0 using the coordinate
transformation given by (25) and then substitute the assumed series form into this new system.
Since the next term in the series is of the form kjt

1, we collect all the coefficients of t1 and solve
the linear system of equations. The second term in the Puiseux series expansion for the cyclic
8-root system, has the form as at the right of (28).

z0 = t

z1 = −I + c1t

z2 = −1
2 −

I
2 + c2t

z3 = −1 + c3t

z4 = 1 + I + c4t

z5 = 1
2 + I

2 + c5t

z6 = I + c6t

z7 = (−1− I) + c7t



z0 = t

z1 = −I + (−1− I)t
z2 = −1

2 −
I
2 + 1

2 t

z3 = −1
z4 = 1 + I − t
z5 = 1

2 + I
2 −

1
2 t

z6 = I + (1 + I)t
z7 = (−1− I) + t

(28)

Because of the regularity of the solution of the initial form system and the second term of the
Puiseux series, we have a symbolic-numeric representation of a quadratic solution curve.

If we place the same pretropism in another row in the unimodular matrix, then we can develop
the same curve starting at a different coordinate plane. This move is useful if the solution curve
would not be in general position with respect to the first coordinate plane. For symmetric
polynomial systems, we apply the permutations to the pretropism, the initial form systems,
and its solutions to find Puiseux series for different solution curves, related to the generating
pretropism by symmetry.

Also for the pretropism v = (1,−1, 1,−1, 1,−1, 1,−1), the coordinate transformation is given
by the unimodular matrix M equal to the identity matrix, except for its first row v. The
coordinate transformation x = zM yields x0 = z0, x1 = z1/z0, x2 = z0z2, x3 = z3/z0, x4 = z0z4,
x5 = z5/z0, x6 = z0z6, x7 = z7/z0. Applying the coordinate transformation to inv(C8)(x) gives

inv(C8)(x = zM ) =



z1 + z3 + z5 + z7 = 0
z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z7 + z1 + z7 = 0
z1z2z3 + z3z4z5 + z5z6z7 + z1z7 = 0
z1z2z3z4 + z2z3z4z5 + z3z4z5z6 + z4z5z6z7 + z1z2z3
+ z1z2z7 + z1z6z7 + z5z6z7 = 0
z1z2z3z4z5 + z3z4z5z6z7 + z1z2z3z7 + z1z5z6z7 = 0
z1z2z3z4z5z6 + z2z3z4z5z6z7 + z1z2z3z4z5 + z1z2z3z4z7
+ z1z2z3z6z7 + z1z2z5z6z7 + z1z4z5z6z7 + z3z4z5z6z7 = 0
z1z2z3z4z5z6z7 + z1z2z3z4z5z7 + z1z2z3z5z6z7 + z1z3z4z5z6z7 = 0
z1z2z3z4z5z6z7 − 1 = 0

(29)

The initial form system (29) has 72 solutions. Among the 72 solutions, a solution of the form

z0 = t, z1 = −1, z2 = I, z3 = −I, z4 = −1, z5 = 1, z6 = −I, z7 = I, (30)
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here expressed in the original coordinates,

x0 = t, x1 = −1/t, x2 = It, x3 = −I/t, x4 = −t, x5 = 1/t, x6 = −It, x7 = I/t (31)

satisfies the cyclic 8-roots entirely. Applying the cyclic permutation of this solution set we can
obtain the remaining 7 solution sets, which also satisfy the cyclic 8-roots system.

In [56], a formula for the degree of the curve was derived, based on the coordinates of the
tropism and the number of initial roots for the same tropism. We apply this formula and obtain
144 as the known degree of the space curve of the one dimensional solution set, see Table 3.

(1,−1, 1,−1, 1,−1, 1,−1) 8× 2 = 16
(1,−1, 0, 1, 0, 0,−1, 0)→ (1, 0, 0,−1, 0, 1,−1, 0) 8× 2 + 8× 2 = 32
(1, 0,−1, 0, 0, 1, 0,−1)→ (1, 0,−1, 1, 0,−1, 0, 0) 8× 2 + 8× 2 = 32
(1, 0,−1, 1, 0,−1, 0, 0)→ (1, 0,−1, 0, 0, 1, 0,−1) 8× 2 + 8× 2 = 32
(1, 0, 0,−1, 0, 1,−1, 0)→ (1,−1, 0, 1, 0, 0,−1, 0) 8× 2 + 8× 2 = 32

TOTAL = 144

Table 3: Tropisms, cyclic permutations, and degrees for the cyclic 8 solution curve.

Using the same polyhedral method we can find all the isolated solutions of the cyclic 8-roots
system. We conclude this subsection with some empirical observations on the time complex-
ity. In the direction (1,−1, 0, 1, 0, 0,−1, 0), there is a second term in the Puiseux series as for
the 40 solutions of the initial form system, there is no first term that satisfies the entire cyclic
8-roots system. Continuing to construct the second term, the total time required is 35.5 sec-
onds, which includes 28 milliseconds that PHCpack needed to solve the initial form system. For
(1,−1, 1,−1, 1,−1, 1,−1) there is no second term in the Puiseux series as the first term satisfies
the entire system. Hence, the procedure for construction and computation of the second term
does not run. It takes PHCpack 12 seconds to solve the initial form system, whose solution set
consists of 509 solutions. Determining that there is no second term for the 509 solutions, takes 199
seconds. Given their numbers of solutions, the ratio for time comparison is given by 509

40 = 12.725.
However, given that for tropisms (1,−1, 0, 1, 0, 0,−1, 0) the procedure for construction and com-
putation of the second term does run, unlike for tropism (1,−1, 1,−1, 1,−1, 1,−1), the ratio for
time comparison is not precise enough. A more accurate ratio for comparison is 199

35 ≈ 5.686.

5.3 Cyclic 12-roots

The generating solutions to the quadratic space curve solutions of the cyclic 12-roots problem are
in Table 4. As the result in the Table 4 is given in the transformed coordinates, we return the
solutions to the original coordinates. For any solution generator (r1, r2, . . . , r11) in Table 4:

z0 = t, z1 = r1, z2 = r2, z3 = r3, z4 = r4, z5 = r5,

z6 = r6, z7 = r7, z8 = r8, z9 = r9, z10 = r10, z11 = r11
(32)

and turning to the original coordinates we obtain

x0 = t, x1 = r1/t, x2 = r2t, x3 = r3/t, x4 = r4t, x5 = r5/t

x6 = r6t, x7 = r7/t, x8 = r8t, x9 = r9/t, x10 = r10t, x11 = r11/t
(33)
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Application of the degree formula of [56] shows that all space curves are quadrics. Compared
to [46], we arrive at this result without the application of any factorization methods.

6 Concluding Remarks

Inspired by an effective proof of the fundamental theorem of tropical algebraic geometry, we out-
lined in this paper a polyhedral method to compute Puiseux series expansions for solution curves
of polynomial systems. The main advantage of the new approach is the capability to exploit per-
mutation symmetry. For our experiments, we relied on cddlib and Gfan for the pretropisms, the
blackbox solver of PHCpack for solving the initial form systems, and Sage for the manipulations
of the Puiseux series.
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Computer Mathematics - Proceedings of the Fifth Asian Symposium (ASCM 2001), volume 9
of Lecture Notes Series on Computing, pages 1–12. World Scientific, 2001.

[20] J.C. Faugère and S. Rahmany. Solving systems of polynomial equations with symmetries
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monodromie d’une courbe algébrique plane. PhD thesis, University of Limoges, Limoges,
2008.

[41] A. Poteaux and M. Rybowicz. Good reduction of Puiseux series and complexity of the
Newton-Puiseux algorithm over finite fields. In D. Jeffrey, editor, Proceedings of the 2008
International Symposium on Symbolic and Algebraic Computation (ISSAC 2008), pages 239–
246. ACM, 2008.

[42] A. Poteaux and M. Rybowicz. Good reduction of Puiseux series and applications. Journal
of Symbolic Computation, 47(1):32–63, 2012.

[43] V. Puiseux. Recherches sur les fonctions algébriques. J. de Math. Pures et Appl., 15:365–380,
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