
Algorithms and Complexity Results for Learning
and Big Data

BY

Ádám D. Lelkes
B.Sc., Budapest University of Technology and Economics, 2012

M.S., University of Illinois at Chicago, 2014

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:

György Turán, Chair and Advisor
Lev Reyzin, Advisor
Shmuel Friedland
Lisa Hellerstein, NYU Tandon School of Engineering
Robert Sloan, Department of Computer Science

To my parents and my grandmother / Szüleimnek és nagymamámnak

ii

Acknowledgments

I had a very enjoyable and productive four years at UIC, which would not have

been possible without my two amazing advisors, Lev Reyzin and György Turán.

I would like to thank them for their guidance and support in every aspect of my

graduate studies and research and for always being available when I had questions.

Gyuri’s humility, infinite patience, and meticulous attention to detail, as well as

the breadth and depth of his knowledge, set an example for me to aspire to. Lev’s

energy and enthusiasm for research and his effectiveness at doing it always inspired

me; the hours I spent in Lev’s office were often the most productive hours of my

week. Both Gyuri and Lev served as role models for me both as researchers and

as people.

Also, I would like to thank Gyuri and his wife Rózsa for their hospitality. They

invited me to their home a countless number of times, which made time in Chicago

much more pleasant.

I would like to thank my defense committee: Shmuel Friedland, Lisa Hellerstein,

Lev Reyzin, Robert Sloan, and György Turán. Special thanks to Lisa for the many

helpful comments about my dissertation.

This dissertation also wouldn’t have been possible without two of my fellow

graduate students, Ben Fish and Jeremy Kun, with whom I worked together on

many research projects, and thanks to whom eating lunch was never boring.

I would also like to thank Mehryar Mohri for inviting me to NYU for my final

iii

year and Lisa Hellerstein for many research discussions.

In my final year of graduate studies I was supported by the Dean’s Scholar

Award of UIC’s Graduate College.

From my pre-UIC years, I would like to specifically thank my undergraduate

thesis advisor, Lajos Rónyai, who introduced me to the world of mathematical

research. His ability to choose a research problem which is suitable for an under-

graduate student, and his patience and skill for guiding him through the process

of research that led to publishable results in the course of a mere semester, still

amaze me every time I think about it.

From high school through graduate school, I had many teachers who inspired

me and helped me grow as a mathematician as a person. Instead of listing them

individually, thereby risking offending anyone omitted from the list, I would like

to thank them all in the hope that they know who they are and that I remember

them and their support.

Finally, I would like to thank my family for their continuous support and en-

couragement. Without them none of this would be possible.

iv

Contribution of Authors

Chapter 3 represents the published manuscript [37]: Benjamin Fish, Jeremy Kun,

Ádám D. Lelkes, Lev Reyzin, György Turán: On the Computational Complexity

of MapReduce. International Symposium on Distributed Computing (DISC) 2015:

1-15. This work was also published in Jeremy Kun’s thesis [67].

Chapter 4 represents the published manuscript [68]: Ádám D. Lelkes, Lev

Reyzin: Interactive Clustering of Linear Classes and Cryptographic Lower Bounds.

International Conference on Algorithmic Learning Theory (ALT) 2015: 165-176.

Chapter 5 represents the published manuscript [36]: Benjamin Fish, Jeremy

Kun, Ádám D. Lelkes: A Confidence-Based Approach for Balancing Fairness and

Accuracy. 2016 SIAM International Conference on Data Mining (SDM): 144-152.

Some parts of Chapter 2 also originate from the first two papers ([37, 68]); these

parts were moved to Chapter 2 in order to improve the organization of this thesis.

In all of these papers, all the work, including the literature review, the formu-

lation of the definitions and theorems, the design of the algorithms, proving the

theorems, writing the manuscript and, in the case of the last paper, the imple-

mentation of the algorithms and the design and execution of the experiments, was

done jointly with the other coauthors.

v

Table of Contents

1 Introduction 1

1.1 MapReduce . 3

1.2 Interactive Clustering . 4

1.3 Fairness in Machine Learning . 6

1.4 Organization of the Thesis . 7

2 Background 9

2.1 Computational Complexity Theory 10

2.1.1 Complexity Classes . 10

2.1.2 Hierarchy Theorems . 13

2.1.3 The Exponential Time Hypothesis 15

2.2 Cryptography . 16

2.2.1 Basic Cryptographic Primitives 16

2.3 Learning Theory . 18

2.3.1 PAC Learning . 18

2.3.2 Boosting . 21

2.3.3 Convex Surrogate Loss Functions 22

2.3.4 The Kernel Trick . 24

vi

3 The Computational Complexity of MapReduce 26

3.1 Introduction . 27

3.2 Background and Previous Work 29

3.2.1 MapReduce . 29

3.2.2 Complexity . 31

3.3 Models . 32

3.3.1 MapReduce and MRC . 32

3.3.2 Other Models of Parallel Computation 37

3.4 Space Complexity Classes in MRC0 39

3.5 Hierarchy Theorems . 43

3.6 Conclusion . 48

3.6.1 Subsequent Results . 49

4 Interactive Clustering 51

4.1 Introduction . 51

4.2 Background and Previous Work 53

4.2.1 The Model . 53

4.2.2 Previous Work . 54

4.3 Interactive Clustering Algorithms 56

4.3.1 Clustering Linear Functionals 56

4.3.2 Efficient Clustering of Hyperplanes 59

4.4 Cryptographic Lower Bounds for Interactive Clustering 62

4.5 Conclusion . 68

4.5.1 Subsequent Results . 69

vii

5 Balancing Fairness and Accuracy in Supervised Learning 71

5.1 Introduction . 71

5.2 Background and Previous Work 74

5.2.1 Existing Notions of Fairness 74

5.2.2 Previous Work on Fair Algorithms 76

5.2.3 Margins . 77

5.2.4 Interpretations of Signed Confidence 79

5.3 Fair Learning Algorithms . 82

5.3.1 Shifted Decision Boundary 82

5.3.2 Naive Baseline Algorithms 82

5.3.3 Fair Weak Learning . 84

5.3.4 Theoretical Properties of SDB 84

5.4 Resilience to Random Bias . 85

5.5 Empirical Evaluation . 88

5.5.1 Datasets . 88

5.5.2 Results and Analysis . 89

5.6 Conclusion . 94

5.6.1 Subsequent Results . 95

Cited Literature 108

Appendix 109

Vita 116

viii

List of Figures

5.1 Histogram of boosting confidences for the Census data 80

5.2 A summary of our experimental results for our three data sets . . 89

5.3 Example of trade-off between bias and error for SDB 91

5.4 Trade-off between bias and error for SDB on the Census data . . . 92

5.5 Trade-off between bias and error for SDB on the German data . . 93

5.6 Trade-off between (signed) bias and error for SDB on the Singles

data. The horizontal axis is the threshold used for SDB. 94

ix

List of Tables

5.1 RRB numbers for each of our methods and baselines 90

5.2 A summary of our experimental results for the Census data 96

5.3 A summary of our experimental results for the German data . . . 97

5.4 A summary of our experimental results for the Singles data 97

x

Summary

This thesis focuses on problems in the theory and practice of machine learning and

big data. We will explore the complexity-theoretic properties of MapReduce, one

of the most ubiquitous distributed computing frameworks for big data, give new

algorithms and prove computational hardness results for a model of clustering,

and study the issue of fairness in machine learning applications.

In our study of MapReduce, we address some of the central questions that com-

putational complexity theory asks about models of computation. After giving

a detailed and precise formalization of MapReduce as a model of computation,

based on the work of Karloff et al. [61], we compare it to classical Turing machines,

and show that languages which can be decided by a Turing machine using sublog-

arithmic space can also be decided by a constant-round MapReduce computation.

In the second half of the chapter, we turn our attention to the question of whether

an increased number of rounds or an increased amount of computation time per

processor leads to strictly more computational power. We answer this question

in the affirmative, proving a hierarchy theorem for MapReduce computations,

conditioned on the Exponential Time Hypothesis.

We will also study an interactive model of clustering introduced by Balcan and

Blum [11]. In this framework of clustering, we give algorithms for clustering linear

xi

functionals and hyperplanes, and give computational hardness results that show

that other concept classes, including deterministic finite automata, constant-depth

threshold circuits, and Boolean formulas, are not possible to efficiently cluster if

standard cryptographic assumptions hold.

Finally, we address the issue of fairness in machine learning. We propose a novel

approach for modifying three popular machine learning algorithms, AdaBoost,

logistic regression, and support vector machines, to eliminate bias against a pro-

tected group. We empirically compare our method to previous approaches in

the literature as well as various baseline algorithms by evaluating them on vari-

ous real-world datasets, and also give theoretical justification for its performance.

We also propose a new measure of fairness for machine learning classifiers, and

demonstrate that it can help distinguish between naive and more sophisticated

approaches even in the cases when measuring error and bias is not sufficient.

xii

1
Introduction

In the last few decades, the higher availability and decreasing cost of compu-

tational power and storage, along with significant innovations in methods for

processing large data sets, introduced the era of big data. According to some

estimates, the amount of data generated every day is in the exabytes (1018 bytes)

range.

Processing large amounts of data poses many challenges, to which both theorists

and practitioners are constantly trying to find solutions. Innovation has been

driven from both sides. Some of the biggest drivers of growth in the practice

of big data have been novel engineering solutions such as MapReduce (which we

1

will study in Chapter 3). Also, many of the most successful methods started as

ad hoc solutions which were based on some intuitive understanding of big data

phenomena, but lacked solid theoretical underpinnings. On the other hand, there

have also been examples of new areas of practice started by a theoretical insight.

A prominent such example is boosting. Boosting started out as a question to

a purely theoretical question about the nature of PAC learning, but through suc-

cessive stages of theoretical research, the solution evolved into a meta-algorithm

that not only solved the original theoretical question, but also proved immensely

useful for practical applications [81, 40]. Indeed, for a long time the state of the

art face detection algorithm was based on boosting [93]. (We will describe both

PAC learning and boosting in Chapter 2).

In many cases, there is even a back and forth between theory and practice:

theoretical insights lead to new algorithms which, when applied in practice, exhibit

behavior that is not fully explainable by the theory. This in turn drives more

theoretical research which can lead to yet better algorithms for practice, and so

on.

This interplay between theory and practice inspired most of the research pre-

sented in this thesis. In the cases of MapReduce and interactive clustering, we

will explore frameworks which are ubiquitous in practice but have lacked a sat-

isfactory theory. In the case of fairness in machine learning, we will address an

important social consideration that has long been overlooked by machine learn-

ing practitioners; our proposed methods, although of a practical nature, build on

results in learning theory.

2

1.1 MapReduce

MapReduce [31] is a framework of distributed computing which makes it easy

for software engineers to design systems that process large amounts of data by

abstracting away the low-level details of distributed computing and presenting a

clean logical view to the engineer.

Parallel and distributed computing, in particular in the case of MapReduce,

is an example of an area of computer science where theory has not been able

to keep up with practice. Models of parallel computing in complexity theory,

many of them formulated before large-scale distributed computing became practi-

cally feasible, often fail to describe real-world distributed computing systems. For

instance, the well-studied model of PRAM computations [39], in which a large

number of processors share the same memory, bears little resemblance to how

distributed computing is solved in practice. Conversely, MapReduce, perhaps the

currently most popular framework for large-scale distributed computing, has at-

tracted little attention from the complexity theory community. Most theoretical

work on MapReduce has focused on designing efficient algorithms; the high-level

complexity-theoretic properties of MapReduce have remained largely unexplored.

In Chapter 3, building upon the model and preliminary results of Karloff et

al. [61], we begin the complexity-theoretic study of MapReduce by asking some of

the most fundamental questions about MapReduce: how does its computational

power compare to other models? Does increasing the bounds on computational

resources in the model lets it solve a strictly larger set of problems? As for the

3

former question, we give a partial answer by comparing MapReduce to space-

bounded complexity classes, proving that MapReduce computations can simulate

Turing machines which only use a sublogarithmic amount of space. We will also

give evidence which suggests that proving stronger results than this might require

significant theoretical breakthroughs. The latter question will be answered in

the affirmative, assuming one believes the Existential Time Hypothesis (ETH) to

hold. Conditioned on the ETH, we prove a hierarchy theorem which, although less

sharp than the classical hierarchy theorems, demonstrates that either increasing

the number of rounds or the amount of computation time for each processor

strictly increases the set of problems that the MapReduce computation can solve.

1.2 Interactive Clustering

After MapReduce we will turn our attention to clustering. Clustering is one of

the most important paradigms in data analysis, but it famously lacks precise

theoretical foundations. This has led to such a diverse variety of approaches that

it is difficult to even define what the term “clustering” means, other than the vague

goal of somehow grouping data points into sets according to some not necessarily

well-defined objective.

Approaches to clustering which are based on a well-defined objective function,

but no strong assumptions on the data, usually run into computational barriers,

most typically by turning out to be NP-hard. In many cases, these problems

are not only NP-hard to solve optimally, but also hard to approximate. This

NP-hardness is in turn often circumvented by heuristics which try to optimize

4

the objective function but do not have any theoretical guarantees. Other meth-

ods make strong assumptions about the distribution generating the data, which

assumptions are unlikely to hold for real-world data sets.

Although there have been a variety of approaches to provide a theoretical foun-

dation for clustering, there is still no consensus in the community about the right

direction. In this thesis, we will focus on one specific approach, that of intro-

ducing limited supervision into clustering. Clustering is usually thought of as a

completely unsupervised form of learning, which is what makes it hard to for-

mulate an adequate theory for it. However, there are good reasons to depend on

some limited form of supervision in the task of clustering. How to introduce super-

vision is another question which has many possible answers, including PAC-like

frameworks [8] and query-based models [9, 11].

We will study the interactive clustering model of Balcan and Blum [11]. In

this model, which we will describe in detail in Chapter 4, the clustering algorithm

has access to a teacher that has a correct clustering in mind. The goal is to find

this clustering with a small number of queries of a specific limited form. The

model is defined in a way such that the teacher, even though she has to answer

these queries, has to do exponentially less communication than she would need

to if she were to communicate the assignment of each point to a cluster. In this

model, we give algorithms for two classes of clustering problems, one in which the

the clusters are given by a linear functional over a finite field (of which parity

functions are a special case), and one in which the points are in a Euclidean space

and the clusters are hyperplanes.

5

In addition to these positive results, we also prove computational lower bounds

for interactive clustering. These lower bounds, like most lower bounds for machine

learning problems, are based on cryptographic hardness assumptions. Also, the

reader who is familiar with hardness results for PAC learning will not be surprised

to see that the concept classes for which we prove our lower bounds include deter-

ministic finite automata, constant-depth threshold circuits, and Boolean formulas.

Although our lower bounds and the classical PAC lower bounds do share a similar

flavor, there is a fundamental conceptual difference which we will explain in detail

in Chapter 4.

1.3 Fairness in Machine Learning

Finally, in Chapter 5, we address a question which is not strictly theoretical in

its nature, but is also an example of the study of big data applications lagging

behind the practice. In this last chapter we will address the issue of fairness in

machine learning applications. As machine learning enters more and more areas

of our lives, from lending to education to policing, there is a growing concern that

outcomes of decisions made by machines can be discriminatory against protected

groups. This concern is well founded: one can find extensive documentation of

biases in machine learning systems in the literature, e.g. [4, 20, 88]. Nevertheless,

amid the rapid competition in machine learning, practitioners have been busy

working on getting better and better results, and spent less time on worrying about

unintended consequences. Only recently has the machine learning community

shown serious interest in making sure that methods work fairly for everyone.

6

Our contribution to this area is twofold: first, we introduce a new method for

eliminating bias from three of the most popular supervised learning algorithms,

namely AdaBoost, logistic regression, and support vector machines. Our method

has several advantages. Not only does it outperform most previous methods on

several data sets, but it also lets the user transparently and efficiently quantify

the trade-off between classification error (as measured on a biased data set) and

bias.

Also, we address another question: how can we measure the fairness of a ma-

chine learning algorithm? Discrimination occurs because our data has inherent

bias. Because of this, we do not have access to an unbiased ground truth that we

could use to measure the true bias of an algorithm. Indeed, if we had such unbi-

ased data, we would not be facing the issue of discrimination in machine learning

in the first place. Our proposed solution to this problem is to synthetically gen-

erate this unbiased ground truth by adding a new random binary attribute, and

then introducing bias against one half of the population defined by this attribute.

We demonstrate that the measure of bias that this method yields gives useful in-

formation about the fairness properties of machine learning algorithms that other,

simpler fairness measures do not.

1.4 Organization of the Thesis

Finally, before we begin with the definitions, let us briefly describe the organiza-

tion of this thesis.

7

• In Chapter 2, we review definitions and theorems from complexity theory,

cryptography, and learning theory that we will be using throughout the

thesis.

• In Chapter 3, we study the complexity-theoretic properties of MapReduce

computations.

• In Chapter 4, we give algorithms and computational hardness results for a

model of interactive clustering.

• In Chapter 5, we study the issue of fairness in machine learning.

Chapter 2 contains the basic definitions and theorems that can be found in stan-

dard graduate-level textbooks for complexity theory and learning theory. In each

of the subsequent chapters, we refer to these definitions and theorems, but review

the background and previous work related to the specific models and problems

we discuss in the given chapter. Also, during the time between the publication

of the papers on which these chapters are based and the writing of this thesis,

there have been new results on these topics, some of which build on our work. We

review these subsequent results at the end of each chapter.

8

2
Background

Parts of this chapter were published in the papers

• Benjamin Fish, Jeremy Kun, Ádám D. Lelkes, Lev Reyzin, György Turán:

On the Computational Complexity of MapReduce. International Sympo-

sium on Distributed Computing (DISC) 2015: 1-15; and

• Ádám D. Lelkes, Lev Reyzin: Interactive Clustering of Linear Classes and

Cryptographic Lower Bounds. International Conference on Algorithmic

Learning Theory (ALT) 2015: 165-176;

which are presented in Chapters 3 and 4, respectively.

9

2.1 Computational Complexity Theory

We will use notions from complexity theory throughout this thesis. In this section

we will give a short summary of the most important concepts and introduce the

notation we will use in the later chapters. For a more detailed introduction to

computational complexity theory, we refer the reader to [6].

2.1.1 Complexity Classes

The computational model we will use is the Turing machine and its variants, the

probabilistic and the nondeterministic Turing machines. We will not define the

Turing machine here; a precise definition and a detailed discussion of its most

important properties can be found in [6]. However, we will briefly discuss oracle

Turing machines. An oracle Turing machine is a Turing machine with a special

oracle tape on which it can write the input of a fixed oracle function and in one

step obtain the output. We will use T f to denote an oracle Turing machine T

with access to a function f as the oracle. For sets, we will use TL to denote an

oracle Turing machine T with oracle access to the indicator function of a set L.

Complexity classes are sets of decision problems that are solvable in a given

computational model under certain resource limitations. We will generally as-

sume that inputs to such decision problems are represented as binary strings; we

represent decision problems as subsets of the set {0, 1}∗ of all finite binary strings.

We will also refer to decision problems as languages. A language is decided by a

Turing machine if the machine accepts an input string if and only if it is a member

of the language.

10

Definition 1 (TIME and NTIME). A language L is in TIME(T (n)) for some

sequence T : N→ N if there is a Turing machine running in time O(T (n)) which

decides L. Similarly, L is in NTIME(T (n)) if there is a nondeterministic Turing

machine running in time O(T (n)) which decides L.

Now we can define the two most important complexity classes.

Definition 2 (P and NP). P =
∞⋃
c=1

TIME(nc). Similarly, NP =
∞⋃
c=1

NTIME(nc).

Definition 3 (NP-hardness). A language H is NP-hard if for every L ∈ NP,

there is an oracle Turing machine TH with oracle access to H which runs in

polynomial time and decides L. A language is NP-complete if it is in NP and it

is NP-hard.

After time, space is the second most important computational resource that we

will consider. The space analogues of the previous complexity classes follow.

Definition 4 (SPACE and PSPACE). A language L is in SPACE(S(n)) for some

sequence S if there is a Turing machine which decides L using O(S(n)) space.

PSPACE =
∞⋃
c=1

SPACE(nc).

We remark that although P = NP is central open problem of complexity the-

ory, the relationship between deterministic and nondeterministic space complexity

classes has been well understood since Walter Savitch’s 1970 paper [80].

We will also study classes of languages solvable under simultaneous time and

space restrictions.

11

Definition 5 (TISP). A language L is in TISP(T (n), S(n)) or a pair of sequences

S, T : N → N if there is a Turing machine which decides L using O(T (n)) time

and O(S(n)) space.

Note that it is believed that generally TISP(T (n), S(n)) 6= TIME(T (n)) ∩

SPACE(S(n)). The complexity class TISP is studied in the context of time-space

trade-offs (see e.g. [38, 95]).

We will also refer to circuit classes which we will now define.

Definition 6 (Boolean circuit). A Boolean circuit is a directed acyclic graph in

which the vertices with no incoming edges represent input variables, and other

vertices are called gates and labeled with one of the logical operators AND, OR,

and NOT, and there is exactly one vertex with no outgoing edges. (Sometimes,

depending on the circuit class, other Boolean functions besides AND, OR, and

NOT are allowed as gate operators, too.)

The value of an input gate is defined to be equal to the value of the corresponding

input variable; the value of the other gates are defined recursively as the result of

the application of the logical operator labeling the gate to the values of the vertices

connected to the gate.

The value of the vertex with no outgoing edges is called the output of the circuit.

The number of incoming edges for a gate is called the fan-in of the gate. The

depth of a circuit is the length of the longest directed path in it.

We now proceed to define two circuit complexity classes.

Definition 7 (AC and TC). For every i ∈ N, the class ACi is the set of languages

L such that there is a sequence Cn of circuits with AND, OR, and NOT gates such

12

that for every x ∈ {0, 1}∗, the output of C|x| on input x is 1 if and only if x ∈ L

and the number of gates in Cn is O(nc) for some constant c and the depth of Cn

is O(logi n). The class AC is defined as AC =
∞⋃
i=1

ACi.

TCi and TC are defined analogously with the difference that there is an addi-

tional set of allowed gate types (Boolean functions computed by gates) which is

called threshold gates. A threshold gate with threshold t has value 1 if and only if

the sum of its inputs is at least t.

2.1.2 Hierarchy Theorems

One of the central goals of complexity theory is the separation of complexity

classes; i.e., proving that two complexity classes are not equal. The most basic

separation results are the hierarchy theorems which show that allowing a Turing

machine to use more of a computational resource lets it solve problems that are

unsolvable with less of the same resource. Resources for which hierarchy theorems

have been proven include time, space, and nondeterministic time. There are other

resources, such as probabilistic time, for which the existence of a hierarchy is still

an open problem. To illustrate the idea of a hierarchy theorem, we now state the

earliest hierarchy theorem and sketch its proof.

Definition 8 (Time-constructibility). We call a sequence T time-constructible if

for all n, T (n) can be computed in time O(T (n)).

Theorem 1 (Time hierarchy theorem [46]). For any pair of time-constructible se-

quences T and T ′ such that T (n) log T (n) = o(T ′(n)) it is the case that TIME(T (n)) (

TIME(T ′(n)).

13

Proof. We only gave the basic idea of the proof. The proof is based on diagonal-

ization, essentially the same technique as used by Cantor in his proof that the set

of all infinite sequences of bits is uncountable, or the argument used to prove the

undecidability of the halting problem.

Let us fix a binary representation of Turing machines. (It is assumed that

every binary string describes a Turing machine, and every Turing machine has

infinitely many such encodings.) Consider the Turing machine M which on input

x simulates the execution of the Turing machine represented by x for T (n) steps

and, if the simulated machine outputs an answer in this time, outputs the opposite

answer.

The language L decided by this machine is then by construction in TIME(T ′(n)).

On the other hand, no Turing machine running in O(T (n)) time can decide L: to

see that, assume for contradiction there is such a machine M ′ which runs in cT (n)

time for some constant c. Then, there exists a long enough string x representing

M ′ such that M(x) = 1−M ′(x), a contradiction.

We omitted several details of the proof, including the observation that the

overhead introduced by the simulation is at most logarithmic in the input size;

hence the logarithmic gap required by the theorem.

An essentially identical argument can be used to prove the analogous hierarchy

theorem for space. A similar, albeit somewhat more complex, argument works for

proving a hierarchy theorem for nondeterministic time [26].

However, much less is known about simultaneous time and space complexity

bounds. In particular, there is no time hierarchy theorem for fixed space; i.e., it

14

is not known that TISP(T (n), S(n)) (TISP(T ′(n), S(n)) for an appropriate gap

between T (n) and T ′(n). The existence of such a hierarchy is mentioned as an

open problem in the monograph of Wagner and Wechsung [94]. In Chapter 3 we

will prove a conditional hierarchy theorem for TISP, assuming that a conjecture

called the Exponential Time Hypothesis is true.

2.1.3 The Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) states that 3-SAT, the canonical NP-

complete problem, is not only not decidable in polynomial time, but it actually

requires exponential time. 3-SAT is the problem of deciding whether a Boolean

formula in 3-conjunctive normal form (i.e., a conjunction of clauses such that each

clause contains at most three variables or their negations) is satisfiable. A formula

is satisfiable if there is an assignment of true or false values to the variables such

that the value of the formula becomes true.

Conjecture 1 (Exponential Time Hypothesis [49, 50]). There exists a constant

c > 0 such that 3-SAT 6∈ TIME(2cn).

This hypothesis and its strong version have been used to prove conditional

lower bounds for specific hard problems like vertex cover, and for algorithms in

the context of fixed parameter tractability (see, e.g., the survey of Lokshtanov,

Marx and Saurabh [71]). The first open problem mentioned in [71] is to relate

ETH to some other known complexity theoretic hypotheses.

15

2.2 Cryptography

In Chapter 4, we will use tools from the theory of cryptography to provide compu-

tational hardness results. In this section, we will review the necessary definitions

and theorems from cryptography.

2.2.1 Basic Cryptographic Primitives

We start with the most important cryptographic primitive, the one-way function.

Definition 9 (One-way function [96]). A polynomial-time computable function f :

{0, 1}∗ → {0, 1}∗ is one-way if for every probabilistic polynomial-time algorithm

A, every positive integer α, and every sufficiently large integer n it holds that

Pr(f(A(f(x))) = f(x)) < n−α

where x is chosen uniformly at random from {0, 1}n.

It is conjectured that one-way functions exist. There are one-way function

candidates (i.e., functions believed to be one-way) based on several problems that

are believed to be computationally hard, such as factoring or the subset sum

problem. The existence of one-way functions is a stronger conjecture than P 6= NP,

but it is necessary and sufficient for many other cryptographic primitives.

Definition 10 (Pseudorandom generator [96]). A polynomial-time computable

function G : {0, 1}∗ → {0, 1}∗ is a pseudorandom generator of stretch S(n) if

for all x ∈ {0, 1}∗, |G(x)| = S(|x|) and for every probabilistic polynomial-time

16

algorithm D, every positive integer α, and every sufficiently large integer n it

holds that

|Pr(D(G(x)) = 1)− Pr(D(y) = 1)| < n−α

where x is chosen uniformly at random from {0, 1}n and y is chosen uniformly at

random from {0, 1}S(n).

The existence of one-way functions implies that pseudorandom generators of

polynomial stretch exist, too [47]. We will also use a related pseudorandom ob-

ject, a pseudorandom function family. Also, in Chapter 4, we will need these

cryptographic constructions to be resilient against attackers with superpolyno-

mial power; therefore we also add a hardness parameter to the definition which

provides a specific time bound for the attacker.

In the following definition we use superscript notation to denote oracle Turing

machines (see discussion at the beginning of the chapter.)

Definition 11 (Pseudorandom function family [42]). A pseudorandom function

family of hardness h(n) is a sequence Fn of sets of efficiently computable functions

An → Bn such that

• there is a probabilistic poly(n)-time algorithm that on input 1n returns a

uniformly randomly chosen element of Fn, and

• for every h(n) time-bounded probabilistic algorithm D with oracle access to

a function An → Bn and every α > 0 it holds that

|Pr(Dfn(1n) = 1)− Pr(Drn(1n) = 1)| < n−α

17

where fn is chosen uniformly randomly from Fn, rn is chosen uniformly at

random from the set of all functions An → Bn.

It often makes it easier to think about a pseudorandom function family by rep-

resenting it as a sequence of keyed pseudorandom functions, where the elements

of Fn correspond to different keys; i.e., Fn = {fK : K ∈ {0, 1}n}. In this rep-

resentation, the sampling algorithm can simply sample a key from the uniform

distribution on {0, 1}n and return the corresponding function.

The existence of one-way functions implies the existence of pseudorandom func-

tion families of polynomial hardness.

2.3 Learning Theory

In this section we give a brief introduction to the concepts from learning theory

that we will use in the later chapters. For more background on learning theory,

we refer the reader to [72] and [85].

2.3.1 PAC Learning

We begin with a description of the Probably Approximately Correct (PAC) learn-

ing framework. A learning task is given by an instance space X of all possible

examples and a concept class C of functions X → {−1, 1}. The learner is given

an i.i.d. random sample from an arbitrary unknown distribution D on X, along

with the labels assigned to the points in the sample by an unknown concept c ∈ C.

The goal of the learner is to output a hypothesis that with high probability will

be close to the correct target concept under the unknown domain distribution. In

18

the so-called proper model of learning, this hypothesis is required to be a member

of C; the learner is called improper if the output hypothesis is not in C.

We assume that X comes with a fixed representation; we will use n to denote

the maximum length of a representation of an element in X. We similarly assume

that a representation of C is fixed as well; size(c) will denote the length of the

representation of a concept c ∈ C.

Definition 12 (PAC learning [90]). An algorithm A PAC learns a concept class C

if for all ε, δ > 0, for all distributions D on X, and for all possible target concepts

c ∈ C, if given an i.i.d labeled sample of size m > poly(1/ε, 1/δ, n, size(c)), A

outputs a hypothesis function h : X → {−1, 1} such that

Pr
(

Pr
x∼D

(h(x) 6= c(x)) ≤ ε
)
≥ 1− δ

where the outer probability is taken over the random sample and the internal ran-

domness of A.

The following combinatorial dimension of concept classes characterizes learn-

ability:

Definition 13 (VC-dimension [92]). A set S ⊆ X is shattered by a concept class

C on X if different concepts in C can produce all 2|S| possible labelings of S.

The VC-dimension of C is the maximum cardinality of shattered sets (and ∞ if

arbitrarily large sets can be shattered).

A concept class is PAC learnable if and only if its VC-dimension is finite [19],

and the sample complexity of PAC learning, i.e., the minimum sample size m

19

such there there is an algorithm which PAC learns C using a sample of size m, is

Θ
(

1
ε

(
d+ log

(
1
δ

)))
where d denotes the VC-dimension of C [19, 45].

Also, for such concept classes there is a learning algorithm which is guaranteed

to PAC learn the class: output a concept in the class which has minimal error on

the sample. This algorithm is called Empirical Risk Minimization (ERM).

In the above definition of PAC learning we assumed that the points are labeled

by a function that belongs to the concept class to be learned or, in other words,

that the concept class C contains a function which has perfect accuracy on the

data. This (so-called realizability) assumption is arguably unrealistic for many

real-world learning problems. We therefore introduce a slightly different model

of learning, in which there is no assumption made about the distribution on the

labeled sample. In this setting we clearly cannot hope to achieve arbitrarily low

error in the worst case, therefore the learning goal is relaxed: our new goal is to

achieve an accuracy which is arbitrarily close to the best classifier in the concept

class.

Definition 14 (Agnostic PAC learning [63]). An algorithm A is an agnostic PAC

learning algorithm for a concept class C if for all ε, δ > 0, for all distributions D

on X ×{−1, 1}, and for all concepts c ∈ C, if given an i.i.d labeled sample of size

m > poly(1/ε, 1/δ, n, size(c)), A outputs a hypothesis function h : X → {−1, 1}

such that

Pr

(
Pr

(x,y)∼D
(h(x) 6= y) ≤ Pr

(x,y)∼D
(c(x) 6= y) + ε

)
≥ 1− δ

20

where the outer probability is taken over the random sample and the internal ran-

domness of A.

It turns out that VC-dimension characterizes learnability in this more difficult

setting as well; in particular, a concept class is agnostic PAC learnable if and only

if it is PAC learnable (i.e., if it has finite VC-dimension). Moreover, ERM is an

agnostic PAC learning algorithm for any such class.

2.3.2 Boosting

One might ask if more concept classes become learnable if, instead of requiring

the learning algorithm to achieve an arbitrarily low error (ε for any ε > 0), we

only require it to perform slightly better than random guessing. This seemingly

weaker model of learning is called weak learning.

Definition 15 (Weak learning [62]). An algorithm A is a weak learner for a

concept class C if there exists a γ > 0 such that for all δ > 0, for all distributions

D on X, and for all possible target concepts c ∈ C, if given an i.i.d labeled

sample of size m > poly(1/ε, 1/δ, n, size(c)), A outputs a hypothesis function

h : X → {−1, 1} such that

Pr

(
Pr
x∼D

(h(x) 6= c(x)) ≤ 1

2
− γ
)
≥ 1− δ

where the outer probability is taken over the random sample and the internal ran-

domness of A.

Although this definition might seem strictly weaker than (strong) PAC learning

21

but, as first proved by Schapire [81], it is equivalent to it: a concept class is PAC

learnable if and only if it is weakly learnable.

Moreover, we will now present a meta-algorithm called AdaBoost which, given

black-box access to any weak learning algorithm for a concept class C will PAC

learn C.

Algorithm 1 AdaBoost [40]

for i = 1 to m do
D1(i) = 1

m

end for
for t = 1 to T do
ht = hypothesis output by weak learner given distribution Dt on the sample
εt =

∑m
i=1Dt(i)(1− δht(xi),yi)

αt = 1
2

log 1−εt
εt

Zt = 2
√
εt(1− εt)

for i = 1 to m do
Dt+1(i) = Dt(i)e−ht(xi)yi

Zt
end for

end for
g =

∑T
t=1 αtht

h = sgn ◦ g
return h

For more background on AdaBoost and the theory of boosting in general, we

refer the reader to [82].

2.3.3 Convex Surrogate Loss Functions

Even though ERM is a good PAC learning algorithm for any class with finite

VC-dimension even in the agnostic case, unfortunately for many important con-

cept classes, including those of hyperplanes and closed balls, ERM cannot be

22

implemented efficiently in the agnostic setting [18].

In this section we will be concerned with the problem of learning hyperplanes.

In this setting, the instance space is a real Euclidean space and the concepts are

hyperplanes: points on one side of the hyperplane are labeled 1 and points on

the other side are labeled 0. For notational convenience, we will identify these

concepts with the normal vectors of the hyperplanes, which we will denote as w.

To circumvent the above-mentioned computational hardness results, one can

relax the learning goal by changing the loss function. In the definition of (agnostic)

PAC learning, the goal was to minimize the expectation of `0−1(h, (x, y)) = 1 −

δy,h(x) where the expectation is taken over the unknown data distribution and δ

denotes the Kronecker delta. This function is called the 0-1 loss function. For the

task of learning hyperplanes, we can replace this function by different functions

which upper bound it and are easier two optimize. We will introduce two such

surrogate loss functions here.

Definition 16 (Hinge loss and logistic loss).

The hinge loss is `hinge(w, (x, y)) = max{1− y · 〈w, x〉, 0}.

The logistic loss is `logistic(w, (x, y)) = ln(1 + e−y〈w,x〉).

The expectation of the loss function over the data distribution is called risk.

Note that since both of these functions are greater than or equal to the 0-1 loss,

the risk of a hypothesis under any of these loss functions is an upper bound for

the misclassification error.

For reasons which we will not discuss here, it is usually not the risk function

which is minimized, but a linear combination of the risk function and the L2

23

norm of the vector w. (Adding this term in the optimization problem is called

regularization. The optimization problem is called Regularized Risk Minimiza-

tion.) For the loss functions introduced above, this is a computationally tractable

optimization problem.

The method of optimizing regularized hinge loss is called Support Vector Ma-

chine (SVM); learning algorithms based on optimizing the logistic loss are called

logistic regression.

2.3.4 The Kernel Trick

Both SVM and logistic regression can be reformulated into equivalent optimization

problems in which the objective function can be expressed as a function of the

pairwise inner products of data points and it does not directly depend on the

points themselves.

The advantage of this formulation (which we will not present here) is that the

standard Euclidean inner product can be replaced in it by an inner product of an

implicit transformation of the points. More precisely, for a mapping ψ that maps

the instance space Rd to a different inner product space, the inner product 〈x, y〉

in the optimization problem can be replaced by K(x, y) = 〈ψ(x), ψ(y)〉. This

so-called kernel function can be expressed as a function of x and y without a need

to explicitly compute the map ψ, making the optimization task more efficient.

Also, by the so-called representer theorem [64, 84], the hyperplane w minimizing

the empirical (regularized) risk under either of the above-mentioned loss functions

is a linear combination of the data points in the sample. Thus w too can often be

24

concisely represented even if the implicit mapping ψ maps Rd to a space of much

higher dimensionality. This technique is called the kernel trick.

We will use the following kernels:

Definition 17 (Kernels).

Linear kernel: K(x, y) = 〈x, y〉.

Polynomial kernel: K(x, y) = (1 + 〈x, y〉)d (for some integer parameter d).

Gaussian kernel: K(x, y) = e
−‖x−y‖2

2 .

For more on convex learning problems and kernel methods, we again refer the

reader to [72] and [85].

25

3
The Computational Complexity of

MapReduce

This chapter was previously published as Benjamin Fish, Jeremy Kun, Ádám

D. Lelkes, Lev Reyzin, György Turán: On the Computational Complexity of

MapReduce. International Symposium on Distributed Computing (DISC) 2015:

1-15.

26

3.1 Introduction

MapReduce is a programming model originally developed to separate algorithm

design from the engineering challenges of massively distributed computing. A

programmer can separately implement a “map” function and a “reduce” function

that satisfy certain constraints, and the underlying MapReduce technology han-

dles all the communication, load balancing, fault tolerance, and scaling. MapRe-

duce frameworks and their variants have been successfully deployed in industry

by Google [31], Yahoo! [87], and many others.

MapReduce offers a unique and novel model of parallel computation because it

alternates parallel and sequential steps, and imposes sharp constraints on commu-

nication and random access to the data. This distinguishes MapReduce from clas-

sical theoretical models of parallel computation and this, along with its popoular-

ity in industry, is a strong motivation to study the theoretical power of MapRe-

duce. From a theoretical standpoint we ask how MapReduce relates to established

complexity classes. From a practical standpoint we ask which problems can be

efficiently modeled using MapReduce and which cannot.

In 2010 Karloff et al. [61] initiated a principled theoretical study of MapReduce,

providing the definition of the complexity class MRC and comparing it with the

classical PRAM models of parallel computing. But to our knowledge, since this

initial paper, almost all of the work on MapReduce has focused on algorithmic

issues.

In this chapter we prove a result that establishes a connection between MapRe-

27

duce and space-bounded computation on classical Turing machines. Another tra-

ditional question asked by complexity theory is whether increasing the resource

bound on a certain computational resource strictly increases the set of solvable

problems. Such so-called hierarchy theorems exist for time and space on determin-

istic and non-deterministic Turing machines, among other settings. In this chapter

we prove conditional hierarchy theorems for MapReduce rounds and time.

First we lay a more precise theoretical foundation for studying MapReduce

computations (Section 3.3). In particular, we observe that Karloff et al.’s def-

initions are non-uniform, allowing the complexity class to contain undecidable

languages. We reformulate the definition of [61] to make a uniform model and to

more finely track the parameters involved. In addition, we point out that our re-

sults hold for other important models of parallel computations, including Valiant’s

Bulk-Synchronous Processing (BSP) model [91] and the Massively Parallel Com-

munication (MPC) model of Beame et al [16]. (Section 3.3.2). We then prove two

main theorems: SPACE(o(log n)) has constant-round MapReduce computations

(Section 3.4) and, conditioned on a version of the Exponential Time Hypothesis,

there are strict hierarchies within MRC. In particular, sufficiently increasing time

or number of rounds increases the power of MRC (Section 3.5).

Our sub-logarithmic space result is achieved by a direct simulation, using a

two-round protocol that localizes state-to-state transitions to the section of the

input being simulated, combining the sections in the second round. It is a major

open problem whether undirected graph connectivity (a canonical logarithmic-

space problem) has a constant-round MapReduce algorithm, and our result is the

28

most general that can be proven without a breakthrough on graph connectivity.

Our hierarchy theorem involves proving a conditional time hierarchy within linear

space achieved by a padding argument, along with proving a time-and-space upper

and lower bounds on simulating MRC machines within P. To the best of our

knowledge our hierarchy theorem is the first of its kind. We conclude with a

discussion and open questions raised by our work (Section 3.6).

3.2 Background and Previous Work

3.2.1 MapReduce

The MapReduce protocol can be roughly described as follows. The input data is

given as a list of key-value pairs, and over a series of rounds two things happen per

round: a “mapper” is applied to each key-value pair independently (in parallel),

and then for each distinct key a “reducer” is applied to all corresponding values

for a group of keys. The canonical example is counting word frequencies with

a two-round MapReduce protocol. The inputs are (index, word) pairs, the first

mapper maps (k, v) 7→ (v, k), and the first reducer computes the sum of the word

frequencies for the given key. In the second round the mapper sends all data to

a single processor via (k, nk) 7→ (1, (k, nk)), and the second processor formats the

output appropriately.

One of the primary challenges in MapReduce is data locality. MapReduce was

designed for processing massive data sets, so MapReduce programs require that

every reducer only has access to a substantially sublinear portion of the input, and

the strict modularization prohibits reducers from communicating within a round.

29

All communication happens indirectly through mappers, which are limited in

power by the independence requirement. Finally, it’s understood in practice that

a critical quantity to optimize for is the number of rounds [61], so algorithms which

cannot avoid a large number of rounds are considered inefficient and unsuitable

for MapReduce.

There are a number of MapReduce-like models in the literature, including the

MRC model of Karloff et al. [61], the “mud” algorithms of Feldman et al. [34],

Valiant’s BSP model [91], the MPC model of Beame et al. [16], and extensions or

generalizations of these, e.g. [43]. The MRC class of Karloff et al. is the closest

to existing MapReduce computations, and is also among the most restrictive in

terms of how it handles communication and tracks the computational power of

individual processors. In their influential paper [61], Karloff et al. display the

algorithmic power of MRC, and prove that MapReduce algorithms can simulate

CREW PRAMs which use subquadratic total memory and processors. It is worth

noting that the work of Karloff et al. did not include comparisons to the standard

(non-parallel) complexity classes, which is the aim of the present work.

Since [61], there has been extensive work in developing efficient algorithms in

MapReduce-like frameworks. For example, Kumar et al. [66] analyze a sampling

technique allowing them to translate sequential greedy algorithms into log-round

MapReduce algorithms with a small loss of quality. Farahat et al. [33] investigate

the potential for sparsifying distributed data using random projections. Kamara

and Raykova [55] develop a homomorphic encryption scheme for MapReduce. And

much work has been done on graph problems such as connectivity, matchings,

30

sorting, and searching [43]. Chu et al. [25] demonstrate the potential to express

any statistical-query learning algorithm in MapReduce. Finally, Sarma et al. [79]

explore the relationship between communication costs and the degree to which a

computation is parallel in one-round MapReduce problems. Many of these papers

pose general upper and lower bounds on MapReduce computations as an open

problem, and to the best of our knowledge our results are the first to do so with

classical complexity classes.

The study of MapReduce has resulted in a wealth of new and novel algorithms,

many of which run faster than their counterparts in classical PRAM models. As

such, a more detailed study of the theoretical power of MapReduce is warranted.

This chapter contributes to this by establishing a more precise definition of the

MapReduce complexity class, proving that it contains sublogarithmic determinis-

tic space, and showing the existence of certain kinds of hierarchies.

3.2.2 Complexity

From a complexity-theory viewpoint, MapReduce is unique in that it combines

bounds on time, space and communication. Each of these bounds would be very

weak on its own: the total time available to processors is polynomial; the total

space and communication are slightly less than quadratic. In particular, even

though arranging the communication between processors is one of the most dif-

ficult parts of designing MapReduce algorithms, classical results from communi-

cation complexity do not apply since the total communication available is more

than linear. These innocent-looking bounds lead to serious restrictions when com-

31

bined, as demonstrated by the fact that it is unknown whether constant-round

MRC machines can decide graph connectivity (the best known result achieves a

logarithmic number of rounds with high probability [61]), although it is solvable

using only logarithmic space on a deterministic Turing machine.

We relate the MRC model to more classical complexity classes by studying

simultaneous time-space bounds. We show in Lemma 2 that ETH implies directly

a time-space trade-off statement involving time-space complexity classes. This

statement is not a well-known complexity theoretic hypothesis, although it is

related to the existence of a time hierarchy with a fixed space bound. In fact, as

detailed in Section 3.5, a hypothesis weaker than ETH is sufficient for the lemma.

The relative strengths of ETH, the weaker hypothesis, and the statement of the

lemma seem to be unknown.

3.3 Models

In this section we introduce the model we will use in this chapter, a uniform

version of Karloff’s MapReduce Class (MRC), and contrast MRC to other models

of parallel computation, such as Valiant’s Bulk-Synchronous Parallel (BSP) model,

for which our results also hold.

3.3.1 MapReduce and MRC

The central piece of data in MRC is the key-value pair, which we denote by a

pair of strings 〈k, v〉, where k is the key and v is the value. An input to an MRC

machine is a set of key-value pairs 〈ki, vi〉Ni=1 with a total size of n =
∑N

i=1 |ki|+|vi|.

32

The definitions in this subsection are adapted from [61].

Definition 18. A mapper µ is a Turing machine∗ which accepts as input a single

key-value pair 〈k, v〉 and produces a multiset of key-value pairs 〈k′1, v′1〉, . . . , 〈k′s, v′s〉.

Definition 19. A reducer ρ is a Turing machine which accepts as input a key k

and a list of values 〈v1, . . . , vm〉, and produces as output a multiset of key-value

pairs 〈k, v′1〉, . . . , 〈k, v′M〉, with all of the keys equal to the input key k.

Definition 20. For a decision problem, an input string x ∈ {0, 1}∗ to an MRC

machine is the set of pairs 〈i, xi〉ni=1 describing the index and value of each bit.

We will denote by 〈x〉 the set 〈i, xi〉.

An MRC machine operates in rounds. In each round, a set of mappers running

in parallel first process all the key-value pairs. Then the pairs are partitioned (by

a mechanism called “shuffle and sort” that is not considered part of the runtime

of an MRC machine) so that each reducer only receives key-value pairs for a single

key. Then the reducers process their data in parallel, and the results are merged

to form the multiset of key-value pairs for the next round. More formally:

Definition 21. An R-round MRC machine is an alternating sequence of mappers

and reducers M = (µ1, ρ1, . . . , µR, ρR). The execution of the machine is as follows.

For each r = 1, . . . , R:

1. Let Ur−1 be the multiset of key-value pairs generated by round r − 1 (or the

input pairs when r = 1). Apply µr to each key-value pair of Ur−1 to get the

multiset Vr =
⋃
〈k,v〉∈Ur−1

µr(k, v).

∗The definitions of [61] were for RAMs. However, because we wish to relate MapReduce to
classical complexity classes, we reformulate the definitions here in terms of Turing machines.

33

2. Shuffle-and-sort groups the values by key. Call each of the pieces Vk,r =

(k, (vk,1, . . . , vk,sk)).

3. Assign a different copy of reducer ρr to each Vk,r (run in parallel) and set

Ur =
⋃
k ρr(Vk,r).

The output is the final set of key-value pairs. For decision problems, we define

M to accept 〈x〉 if in the final round UR = ∅. Equivalently we may give each

reducer a special accept state and say the machine accepts if at any time any

reducer enters the accept state. We say M decides a language L if it accepts 〈x〉

if and only if x ∈ L.

The central caveat that makes MRC an interesting class is that the reducers

have space constraints that are sublinear in the size of the input string. In other

words, no sequential computation may happen that has random access to the

entire input. Thinking of the reducers as processors, cooperation between reducers

is obtained not by message passing or shared memory, but rather across rounds

in which there is a global communication step.

In the MRC model we use in this chapter, we require that every mapper and

reducer arise as separate runs of the same Turing machine M . Our Turing machine

M(m, r,R, y) will accept as input the current round number r, a bit m denoting

whether to run the r-th map or reduce function, the total number of rounds R, and

the corresponding input y. Equivalently, we can imagine a sequence of mappers

and reducers in each round µ1, ρ1, µ2, ρ2, . . . , where the descriptions of the µi, ρi

are computable in polynomial time in log i.

Definition 22 (Uniform Deterministic MRC). A language L is said to be in

34

MRC[f(n), g(n)] if there is a constant 0 < c < 1, an O(nc)-space and O(g(n))-time

Turing machine M(m, r, n, y), and an R = O(f(n)), such that for all x ∈ {0, 1}n,

the following holds.

1. Letting µr = M(1, r, n,−), ρr = M(0, r, n,−), the MRC machine MR =

(µ1, ρ1, . . . , µR, ρR) accepts x if and only if x ∈ L.

2. Each µr outputs O(nc) distinct keys.

This definition closely hews to practical MapReduce computations: f(n) rep-

resents the number of times global communication has to be performed, g(n)

represents the time each processor gets, and sublinear space bounds in terms of

n = |x| ensure that the size of the data on each processor is smaller than the full

input.

Remark 1. By M(1, r, n,−), we mean that the tape of M is initialized by the

string 〈1, r, n〉. In particular, this prohibits an MRC algorithm from having 2Ω(n)

rounds; the space constraints would prohibit it from storing the round number.

Remark 2. Note that a polynomial time Turing machine with sufficient time can

trivially simulate a uniform MRC machine. All that is required is for the machine

to perform the key grouping manually, and run the MRC machine as a subroutine.

As such, MRC[poly(n), poly(n)] ⊆ P . We give a more precise computation of the

amount of overhead required in the proof of Lemma 3.

Definition 23. Define by MRCi the union of uniform MRC classes

MRCi =
⋃
k∈N

MRC[logi(n), nk].

35

So in particular MRC0 =
⋃
k∈N MRC[1, nk].

A complexity class is generally called uniform if the descriptions of the machines

solving problems in it do not depend on the input length. Classical complexity

classes defined by Turing machines with resource bounds, such as P, NP, and L,

are uniform. On the other hand, circuit complexity classes are naturally nonuni-

form since a fixed Boolean circuit can only accept inputs of a single length. There

is ambiguity about the uniformity of MRC as defined in [61]. Since we wish to

relate the MRC model to classical complexity classes such as P and L, making

sure that the model is uniform is crucial. Indeed, innocuous-seeming changes to

the definitions above introduce nonuniformity.

We will now show that the original MRC definition of [61] allows MRC machines

to decide undecidable languages. This definition required a polylogarithmic num-

ber of rounds, and also allowed completely different MapReduce machines for

different rounds. For simplicity’s sake, we will allow a linear number of rounds,

and use our notation MRC[f(n), g(n)] to denote an MRC machine that operates

in O(f(n)) rounds and each processor gets O(g(n)) time per round. In particular,

we show that nonuniform MRC[n,
√
n] accepts all unary languages, i.e. languages

of the form L ⊆ {1n | n ∈ N}.

Lemma 1. Let L be a unary language. Then L is in nonuniform MRC[n,
√
n].

Proof. We define the mappers and reducers as follows. Let µ1 distribute the input

as contiguous blocks of
√
n bits, ρ1 compute the length of its input, µ2 send the

counts to a single processor, and ρ2 add up the counts, i.e. find n = |x| where x is

the input. Now the input data is reduced to one key-value pair 〈?, n〉. Then let ρi

36

for i ≥ 3 be the reducer that on input 〈?, i−3〉 accepts if and only if 1i−3 ∈ L and

otherwise outputs the input. Let µi for i ≥ 3 send the input to a single processor.

Then ρn+3 will accept iff x is in L. Note that ρ1, ρ2 take O(
√
n) time, and all

other mappers and reducers take O(1) time. All mappers and reducers are also

in SPACE(
√
n).

In particular, Lemma 1 implies that nonuniform MRC[n,
√
n] contains the unary

version of the halting problem. A more careful analysis shows all unary languages

are even in MRC[log n,
√
n], by having ρi+3 check 2i strings for membership in L.

3.3.2 Other Models of Parallel Computation

Several other models of parallel computation have been introduced, including the

BSP model of Valiant [91] and the MPC model of Beame et al. [16]. The main

difference between BSP and MapReduce is that in the BSP model the key-value

pairs and the shuffling steps needed to redistribute them are replaced with point-

to-point messages. Similarly to [61], in Valiant’s paper [91] there is also ambiguity

about the uniformity of the model. In this chapter, when we refer to BSP we mean

a uniform deterministic version of the model. For completeness, we include the

exact definition here.

A BSP machine with p processors is a sequence (M1, . . . ,Mp) of p Turing ma-

chines which on any input, output a list ((j1, y1), (j2, y2), . . . , (jm, ym)) of messages

to be sent to other processors in the next round. Specifically, message yk is sent to

prcessor jk. A BSP machine operates in rounds as follows. In the first round the

input is partitioned into equal-sized pieces x1,0, . . . , xp,0 and distributed arbitrarily

37

to the processors. Then for rounds r = 1, . . . , R,

1. Each processor i takes xi,r as input and computes some number si of mes-

sages Mi(xi,r) = {(ji,k, yi,k) : k = 1, . . . , si}.

2. Set xi,r+1 to be the set of all messages sent to i (as with MRC’s shuffle-and-

sort, this is not considered part of processor i’s runtime).

We say the machine accepts a string x if any machine accepts at any point

before round R finishes. We now define uniform deterministic BSP analogously

to MRC.

Definition 24 (Uniform Deterministic BSP). A language L is said to be in

BSP[f(n), g(n)] if there is a constant 0 < c < 1, an O(nc)-space and O(g(n))-time

Turing machine M(p, y), and an R = O(f(n)), such that for all x ∈ {0, 1}n, the

following holds: letting Mi = M(i,−), the BSP machine M = (M1,M2, . . . ,Mnc)

accepts x in R rounds if and only if x ∈ L.

Remark 3. As with MRC, we count the size and number of each message as part

of the space bound of the machine generating/receiving the messages. Differing

slightly from Valiant, we do not provide persistent memory for each processor.

Instead, persistent memory can be simulated by processors sending messages to

themselves. This is without loss of generality since we are not concerned with the

cost of sending individual messages.

Goodrich et al. [43] and Pace [74] showed that MapReduce computations can

be simulated in the BSP model and vice versa, with only a constant blow-up

38

in the computational resources needed. This implies that our theorems about

MapReduce automatically apply to BSP.

Similarly, the MPC model uses point-to-point messages and Beame et al.’s

paper [16] does not discuss the uniformity of the model. The main distinguishing

characteristic of the MPC model is that it introduces the number of processors

p as an explicit parameter. Setting p = O(nc), our results will also hold in this

model.

There are other variants of these models, including the model that Andoni et. al. [2]

uses, which follows the MPC model but also introduces the additional constraint

that total space used across each round must be no more than O(n). It is straight-

forward to check that the proofs of our results never use more than O(n) space,

implying that our results hold even under this more restrictive model.

3.4 Space Complexity Classes in MRC0

In this section we prove that small space classes are contained in constant-round

MRC. Again, the results in this section also hold for other similar models of

parallel computation, including the BSP model and the MPC model. First, we

prove that the class REGULAR of regular languages is in MRC0. It is well known

that SPACE(O(1)) = REGULAR [86], and so this result can be viewed as a warm-

up to the theorem that SPACE(o(log n)) ⊆ MRC0. Indeed, both proofs share the

same flavor, which we sketch before proceeding to the details.

We wish to show that any given DFA can be simulated by an MRC0 machine.

The simulation works as follows: in the first round each parallel processor receives

39

a contiguous portion of the input string and constructs a state transition function

using the data of the globally known DFA. Though only the processor with the

beginning of the string knows the true state of the machine during its portion

of the input, all processors can still compute the entire table of state-to-state

transitions for the given portion of input. In the second round, one processor

collects the transition tables and chains together the computations, and this step

requires only the first bit of input and the list of tables.

We can count up the space and time requirements to prove the following theo-

rem.

Theorem 2. REGULAR (MRC0

Proof. Let L be a regular language and D a deterministic finite automaton rec-

ognizing L. Define the first mapper so that the jth processor has the bits from

bj
√
nc to b(j + 1)

√
nc − 1. This means we have K = O(

√
n) processors in the

first round. Because the description of D is independent of the size of the input

string, we also assume each processor has access to the relevant set of states S

and the transition function t : S × {0, 1} → S.

We now define ρ1. Fix a processor j and call its portion of the input y. The

processor constructs a table Tj of size at most |S|2 = O(1) by simulating D

on y starting from all possible states and recording the state at the end of the

simulation. It then passes Tj to the single processor in the second round.

In the second round the sole processor has K tables Tj. Treating Tj as a function

mapping states to states, this processor computes q = TK(. . . T2(T1(initial)))

where initial denotes the initial state of D, and accepts if and only if q is an

40

accepting state. This requires O(
√
n) space and time and proves containment.

To show this is strict, inspect the prototypical problem of deciding whether the

majority of bits in the input are 1’s.

Remark 4. While the definition of MRC0 includes languages with time complexity

O(nk) for all k ≥ 0, our Theorem 2 is more efficient than the definition implies: we

show that regular languages can be computed in MRC0 in time and space O(
√
n),

with the option of a trade-off between time nε and space n1−ε.

One specific application of this result is that for any given regular expression,

a two-round MapReduce computation can decide if a string matches that regular

expression, even if the string is so long that any one machine can only store nε

bits of it.

We now move on to prove SPACE(o(log n)) ⊆ MRC0. It is worth noting that

this is a strictly stronger statement than Theorem 2. That is, REGULAR =

SPACE(O(1)) (SPACE(o(log n)). Several non-trivial examples of languages that

witness the strictness of this containment are given in [89].

The proof is very similar to the proof of Theorem 2: Instead of the processors

computing the entire table of state-to-state transitions of a DFA, the processors

now compute the entire table of all transitions possible among the configurations

of the work tape of a Turing machine that uses o(log n) space.

Theorem 3. SPACE(o(log n)) ⊆ MRC0.

Proof. Let L be a language in SPACE(o(log n)) and T a Turing machine recog-

nizing L in polynomial time and o(log(n)) space, with a read/write work tape

41

W . Define the first mapper so that the jth processor has the bits from bj
√
nc to

b(j + 1)
√
nc − 1. Let C be the set of all possible configurations of W and let S

be the states of T . Since the size of S is independent of the input, we can assume

that each processor has the transition function of T stored on it.

Now we define ρ1 as follows: Each processor j constructs the graph of a function

Tj : C × {L,R} × S → C × {L,R} × S, which simulates T when the read head

starts on either the left or right side of the jth
√
n bits of the input and W is in

some configuration from C. It outputs whether the read head leaves the y portion

of the read tape on the left side, the right side, or else accepts or rejects. To

compute the graph of Tj, processor j simulates T using its transition function,

which takes polynomial time.

Next we show that the graph of Tj can be stored on processor j by showing it

can be stored in O(
√
n) space. Since W is by assumption size o(log n), each entry

of the table is o(log n), so there are 2o(logn) possible configurations for the tape

symbols. There are also o(log n) possible positions for the read/write head, and

a constant number of states T could be in. Hence |C| = 2o(logn)o(log n) = o(n1/3).

Then processor j can store the graph of Tj as a table of size O(n1/3).

The second map function µ2 sends each Tj (there are
√
n of them) to a single

processor. Each is size O(n1/3), and there are
√
n of them, so a single processor

can store all the tables. Using these tables, the final reduce function can now

simulate T from starting state to either the accept or reject state by computing q =

T ∗k (. . . T ∗2 (T ∗1 (∅, L, initial))) for some k, where ∅ denotes the initial configuration

of T , initial is the initial state of T , and q is either in the accept or reject state.

42

Note T ∗j is the modification of Tj such that if Tj(x) outputs L, then T ∗j (x) outputs

R and vice versa. This is necessary because if the read head leaves the jth
√
n bits

to the right, it enters the j + 1th √n bits from the left, and vice versa. Finally,

the reducer accepts if and only if q is in an accept state.

This algorithm successfully simulates T , which decides L, and only takes a

constant number of rounds, proving containment.

3.5 Hierarchy Theorems

In this section we prove two main results (Theorems 4 and 5) about hierarchies

within MRC relating to increases in time and rounds. They imply that allowing

MRC machines sufficiently more time or rounds strictly increases the computing

power of the machines. The first theorem states that for all α, β there are problems

L 6∈ MRC[nα, nβ] which can be decided by constant time MRC machines when

given enough extra rounds.

Theorem 4. Suppose the ETH holds with constant c. Then for every α, β ∈ N

there exists a γ = O(α + β) such that

MRC[nγ, 1] 6⊆ MRC[nα, nβ].

The second theorem is analogous for time, and says that there are problems

L 6∈ MRC[nα, nβ] that can be decided by a one round MRC machine given enough

extra time.

43

Theorem 5. Suppose the ETH holds with constant c. Then for every α, β ∈ N

there exists a γ = O(α + β) such that

MRC[1, nγ] 6⊆ MRC[nα, nβ].

As both of these theorems depend on the ETH, we first prove a complexity-

theoretic lemma that uses the ETH to give a time-hierarchy within linear space

TISP. Recall that TISP is the complexity class defined by simultaneous time

and space bounds. The lemma can also be described as a time-space trade-off.

For some b > a we prove the existence of a language that can be decided by a

Turing machine with simultaneous O(nb) time and linear space, but cannot be

decided by a Turing machine in time O(na) even without any space restrictions.

It is widely believed such languages exist for exponential time classes (for example,

TQBF, the language of true quantified Boolean formulas, is a linear space language

which is PSPACE-complete). We ask whether such trade-offs can be extended to

polynomial time classes, and this lemma shows that indeed this is the case.

Lemma 2. Suppose that the ETH holds with constant c. Then for any positive

integer a there exists a positive integer b > a such that

TIME(na) * TISP(nb, n).

Proof. By the ETH, 3-SAT ∈ TISP(2n, n) \ TIME(2cn). Let b := da
c
e + 2, δ :=

1
2
(1
b
+ c

a
). Pad 3-SAT with 2δn zeros and call this language L, i.e. let L := {x02δ|x| |

x ∈ 3-SAT}. Let N := n + 2δn. Then L ∈ TISP(N b, N) since N b > 2n. On the

44

other hand, assume for contradiction that L ∈ TIME(Na). Then, since Na < 2cn,

it follows that 3-SAT ∈ TIME(2cn), contradicting the ETH.

There are a few interesting complexity-theoretic remarks about the above proof.

First, the starting language does not need to be 3-SAT, as the only assumption we

needed was its hypothesized time lower bound. We could relax the assumption to

the hypothesis that there exists a c > 0 such that TQBF, the PSPACE-complete

language of true quantified Boolean formulas, requires 2cn time, or further still to

the following complexity hypothesis.

Conjecture 2. There exist c′, c satisfying 0 < c′ < c < 1 such that TISP(2n, 2c
′n)\

TIME(2cn) 6= ∅.

Second, since TISP(na, n) ⊆ TIME(na), this conditionally proves the existence

of a hierarchy within TISP(poly(n), n). We note that finding time hierarchies

in fixed-space complexity classes was posed as an open question by [94], and so

removing the hypothesis or replacing it with a weaker one is an interesting open

problem.

Using this lemma we can prove Theorems 4 and 5. The proof of Theorem 4

depends on the following lemma.

Lemma 3. For every α, β ∈ N the following holds:

TISP(nα, n) ⊆ MRC[nα, 1] ⊆ MRC[nα, nβ] ⊆ TISP(nα+β+2, n2).

Proof. The first inequality follows from a simulation argument similar to the proof

of Theorem 3. The MRC machine will simulate the TISP(nα, n) machine by

45

making one step per round, with the tape (including the possible extra space

needed on the work tape) distributed among the processors. The position of the

tape is passed between the processors from round to round. It takes constant time

to simulate one step of the TISP(nα, n) machine, thus in nα rounds we can simulate

all steps. Also, since the machine uses only linear space, the simulation can be

done with O(
√
n) processors using O(

√
n) space each. The second inequality is

trivial.

The third inequality is proven as follows. Let T (n) = nα+β+2. We first

show that any language in MRC[nα, nβ] can be simulated in time O(T (n)), i.e.

MRC[nα, nβ] ⊆ TIME(T (n)). The r-th round is simulated by applying µr to each

key-value pair in sequence, shuffle-and-sorting the new key-value pairs, and then

applying ρr to each appropriate group of key-value pairs sequentially. Indeed,

M(m, r, n,−) can be simulated naturally by keeping track of m and r, and adding

n to the tape at the beginning of the simulation. Each application of µr takes

O(nβ) time, for a total of O(nβ+1) time. Since each mapper outputs no more than

O(nc) keys, and each mapper and reducer is in SPACE(O(nc)), there are no more

than O(n2) keys to sort. Then shuffle-and-sorting takes O(n2 log n) time, and the

applications of ρr also take O(nβ+1) time. So a round takes O(nβ+1 + n2 log n)

time. Note that keeping track of m,r, and n takes no more than the above time.

So over O(nα) rounds, the simulation takes O(nα+β+1 + nα+2 log(n)) = O(T (n))

time.

Now we prove Theorem 4.

Proof. By Lemma 2, there is a language L in TISP(nγ, n)\TIME(nα+β+2) for some

46

γ. By Lemma 3, L ∈ MRC[nγ, 1]. On the other hand, because L 6∈ TIME(nα+β+2)

and MRC[nα, nβ] ⊆ TIME(nα+β+2), we can conclude that L 6∈ MRC[nα, nβ].

Next, we prove Theorem 5 using a padding argument.

Proof. Let T (n) = nα+β+2 as in Lemma 3. By Lemma 2, there is a γ such that

TISP(nγ, n) \TIME(T (n2)) is nonempty. Let L be a language from this set. Pad

L with n2 zeros, and call this new language L′, i.e. let L′ = {x0|x|
2 | x ∈ L}. Let

N = n + n2. There is an MRC[1, Nγ] algorithm to decide L′: the first mapper

discards all the key-value pairs except those in the first n, and sends all remaining

pairs to a single reducer. The space consumed by all pairs is O(n) = O(
√
N).

This reducer decides L, which is possible since L ∈ TISP(nγ, n). We now claim L′

is not in MRC[Nα, Nβ]. If it were, then L′ would be in TIME(T (N)). A Turing

machine that decides L′ in T (N) time can be modified to decide L in T (N) time:

pad the input string with n2 ones and use the decider for L′. This shows L is in

TIME(T (n2)), a contradiction.

We conclude by noting explicitly that Theorems 4, 5 give proper hierarchies

within MRC, and that proving certain stronger hierarchies imply the separation

of L and P.

Corollary 1. Suppose the ETH. For every α, β there exist µ > α and ν > β such

that

MRC[nα, nβ] (MRC[nµ, nβ]

and

MRC[nα, nβ] (MRC[nα, nν].

47

Proof. By Theorem 5, there is some µ > α such that MRC[nµ, 1] 6⊆ MRC[nα, nβ].

It is immediate that MRC[nα, nβ] ⊆ MRC[nµ, nβ] and also that MRC[nµ, 1] ⊆

MRC[nµ, nβ]. So MRC[nα, nβ] 6= MRC[nµ, nβ]. The proof of the second claim is

similar.

Corollary 2. If MRC[poly(n), 1] (MRC[poly(n), poly(n)], then it follows that

L 6= P.

Proof.

L ⊆ TISP(poly(n), log n) ⊆ TISP(poly(n), n) ⊆ MRC[poly(n), 1]

⊆ MRC[poly(n), poly(n)] ⊆ P.

The first containment is well known, the third follows from Lemma 3, and the

rest are trivial.

Corollary 2 is interesting because if any of the containments in the proof are

shown to be proper, then L 6= P. Moreover, if we provide MRC with a polyno-

mial number of rounds, Corollary 2 says that determining whether time provides

substantially more power is at least as hard as separating L from P. On the other

hand, it does not rule out the possibility that MRC[poly(n), poly(n)] = P, or even

that MRC[poly(n), 1] = P.

3.6 Conclusion

In this chapter we established the first general connections between MapReduce

and classical complexity classes, and showed the conditional existence of a hier-

48

archy within MapReduce. Our results also apply to variants of MapReduce, most

notably Valiant’s BSP model.

Our work suggests some natural open problems. How does MapReduce relate to

other complexity classes, such as the circuit class uniform AC0? Can one improve

the bounds from Corollary 1 or remove the dependence on Hypothesis 2? Does

Lemma 2 imply Hypothesis 2? Can one give explicit hierarchies for space or time

alone, e.g. MRC[nα, poly(n)] (MRC[nµ, poly(n)]?

We also ask whether MRC[poly(n), poly(n)] = P. In other words, if a problem

has an efficient solution, does it have one with using data locality? A negative

answer implies L 6= P which is a major open problem in complexity theory, and

a positive answer would likely provide new and valuable algorithmic insights.

Finally, while we have focused on the relationship between rounds and time, there

are also implicit parameters for the amount of (sublinear) space per processor, and

the (sublinear) number of processors per round. A natural complexity question is

to ask what the relationship between all four parameters are.

3.6.1 Subsequent Results

In a paper by Roughgarden et al. [78], published after our paper [37], lower bounds

are proved for a different but related model of MapReduce. In this model, which

the authors named s-Shuffle, the computational limits of the MapReduce pro-

cessors are abstracted away and the focus is on the communication patterns and

the amount of bits received by each machine. In particular, the machines are

arranged in a layered circuit-like structure where the “fan-in” of each machine is

49

limited to at most s bits. Our setting would correspond to s = O(nc) for c < 1.

Since the computational power of each node is unrestricted in the s-Shuffle

model, it is strictly more powerful than our MRC model; in particular, it is proved

in the paper that any function on n-bit inputs can be computed in dlogs ne rounds.

Nevertheless, the authors can prove a lower bound against this model by show-

ing that r-round s-Shuffle computations can be represented by polynomials of

degree at most sr. Equivalently, if some output bit of a function cannot be rep-

resented by a polynomial of degree at most d, that yields a round lower bound of

dlogs de.

To use this theorem to prove lower bounds for specific problems, the authors

prove asymptotic polynomial degree lower bounds for monotone graph properties

in general, and exact bounds for several versions of the connectivity problem.

Since these bounds are polynomial in n, for s = nΩ(1) the resulting round lower

bounds are at most constant; thus these results do not resolve the open problem

about the round complexity of connectivity in the MRC model. However, if the

fan-in is restricted to s = no(1), these theorems yield superconstant round lower

bounds.

Perhaps even more interestingly, Roughgarden et al. [78] prove a barrier for

stronger round lower bounds. In particular, they show that a superconstant round

lower bounds for connectivity for a reasonable model of MapReduce computations

in which the fan-in restriction is only nΩ(1) and there is a polynomial number of

machines, would imply a separation between NC1 and P, a longstanding open

problem in complexity theory. For more details, we refer the reader to [78].

50

4
Interactive Clustering

This chapter was previously published as Ádám D. Lelkes, Lev Reyzin: Interactive

Clustering of Linear Classes and Cryptographic Lower Bounds. International

Conference on Algorithmic Learning Theory (ALT) 2015: 165-176.

4.1 Introduction

In this chapter we consider the interactive clustering model proposed by Balcan

and Blum [11]. This clustering (and learning) model allows the algorithm to

issue proposed explicit clusterings to an oracle, which replies by requesting two of

the proposed clusters “merge” or that an impure cluster be “split.” This model

51

captures an interactive learning scenario, where one party has a target clustering

in mind and communicates this information via these simple requests.

Balcan and Blum [11] give the example of a human helping a computer cluster

news articles by topic by indicating to the computer which proposed different

clusters are really about the same topic and which need to be split. Another

motivating example is computer-aided image segmentation, where an algorithm

can propose image segmentations to a human, who can show the computer which

clusters need to be “fixed up” – this is likely to be much simpler than having the

human segment the image manually.

Many interesting results are already known for this model [10, 11], including

the learnability of various concept classes and some generic, though inefficient,

algorithms (for an overview, see Sect. 4.2.2).

In this chapter we extend the theory of interactive clustering. Among our main

results:

• We show efficient algorithms for clustering parities and, more generally,

linear functionals over finite fields – parities are a concept class of central

importance in most models of learning. (Section 4.3.1)

• We also give an efficient algorithm for clustering hyperplanes, a generaliza-

tion of linear functionals over Rd. These capture a large and important set

of concept classes whose efficient clusterability was not known in this model.

(Section 4.3.2)

• We prove lower bounds for the interactive clustering model under plausible

52

cryptographic assumptions, further illustrating the richness of this model.

(Section 4.4)

4.2 Background and Previous Work

4.2.1 The Model

In this section we describe the interactive clustering model of Balcan and Blum [11].

In this model of clustering, no distributional assumptions are made about the data;

instead, it is assumed that the teacher knows the target clustering, but it is in-

feasible for him to label each data point by hand. Thus the goal of the learner is

to learn the target clustering by making a small number of queries to the teacher.

In this respect, the model is similar to the foundational query learning models

introduced by Angluin [3]. (As a consequence, the classes we consider in this

chapter might be more familiar from the theory of query learning than from the

usual models of clustering.)

More specifically, the learner is given a sample S of m points, and knows the

number of target clusters which is denoted as k. The target clustering is an element

of a concept class C. In each round, the learner presents a hypothesis clustering

to the teacher. The answer of the teacher to this query is one of the following:

either that the hypothesis clustering is correct, or a split or merge request. If

this hypothesis is incorrect, that means that at least one of the following two cases

has to hold: either there are impure hypothesis clusters, i.e. hypothesis clusters

which contain points from more than one target cluster, or there are more than

one distinct hypothesis clusters that are subsets of the same cluster. In the first

53

case, the teacher can issue a split request to an impure cluster, in the second

case the teacher can issue a merge request to two clusters that are both subsets of

the same target cluster. A split request only communicates the information that

the the given hypothesis cluster is not pure. It does not provide any additional

information. If there are several valid possibilities for split or merge requests,

the teacher can arbitrarily choose one of them.

Definition 25. An interactive clustering algorithm is called efficient if it runs

in O(poly(k,m, log |C|)) time and makes O(poly(k, logm, log |C|)) queries.

Observe that allowing the learner to make m queries would make the clustering

task trivial: by starting from the all singleton hypothesis clustering and merging

clusters according to the teacher’s requests, the target clustering can be found in

at most m rounds.

4.2.2 Previous Work

Extensive research on clustering has yielded a plethora of important theoreti-

cal results, including traditional hardness results [44, 52], approximation algo-

rithms [5, 7, 14, 24, 65, 30], and generative models [21, 28]. More recently re-

searchers have examined properties of data that imply various notions of “cluster-

ability” [1]. An ongoing research direction has been to find models that capture

real-world behavior and success of clustering algorithms, in which many founda-

tional open problems remain [17].

Inspired by models where clusterings satisfy certain natural relations with the

data, e.g. [12], Balcan and Blum [11] introduced the notion of interactive cluster-

54

ing we consider in this chapter – the data assumption here, of course, is that a

“teacher” has a clustering in mind that the data satisfies, while the algorithm is

aware of the space of possible clusterings.

In addition to defining the interactive clustering model, Balcan and Blum [11]

gave some of the first results for it. In particular, they showed how to efficiently

cluster intervals, disjunctions, and conjunctions (the latter only for constant k).

Moreover, they gave a general, but inefficient, version space algorithm for clus-

tering any finite concept class using O(k3 log |C|) queries. They also gave a lower

bound that showed efficient clustering was not possible if if the algorithm is re-

quired to be proper, i.e. produce k-clusterings to the teacher. These results con-

trast with our cryptographic lower bounds, which hold for arbitrary hypothesis

clusterings.

Awasthi and Zadeh [10] later improved the generic bound of O(k3 log |C|) to

O(k log |C|) queries using a simpler version space algorithm. They presented an

algorithm for clustering axis-aligned rectangles.

Awasthi and Zadeh [10] also introduced a noisy variant of this model. In the

noisy version, split requests are still only issued for impure clusters, but merge

requests might have “noise”: a merge request might be issued if at least an η

fraction of the points from both hypothesis clusters belong to the same target

cluster. Alternatively, a stricter version of the noisy model allows arbitrary noise:

the teacher might issue a merge request for two clusters even if they both have

only one point from some target cluster. Awasthi and Zadeh [10] gave an example

of a concept class that cannot be learned with arbitrary noise, and presented an

55

algorithm for clustering intervals in the η noise model. To the best of our knowl-

edge, our algorithm for clustering linear functionals over finite fields, presented in

Sect. 4.3.1, is the first algorithm for clustering a nontrivial concept class under

arbitrary noise.

Other interactive models of clustering have, of course, also been considered

[15, 29]. In this chapter, however, we keep our analysis to the Balcan and Blum [11]

interactive model.

4.3 Interactive Clustering Algorithms

4.3.1 Clustering Linear Functionals

In this section we present an algorithm for clustering linear functionals over finite

fields. That is, the instance space is X = GF (q)n for some prime power q and

positive integer n, where GF (q) denotes the finite field of order q. The concept

class is the dual space (GF (q)n)∗ of linear operations mapping from GF (q)n to

GF (q). Thus the number of clusters is k = q. Recall that every linear functional in

(GF (q)n)∗ is of the form v 7→ x · v, thus clustering linear functionals is equivalent

to learning this unknown vector x. For the special case of q = 2, we get the

concept class of parity functions over {0, 1}n, where there are two classes/clusters

(for the positively and negatively labeled points).

The idea of the algorithm is the following: in each round we output the largest

sets of elements that are already known to be pure, thus forcing the teacher to

make a merge request. A merge request for two clusters will yield a linear equation

for the target vector which is independent from all previously learned equations.

56

We use a graph on the data points to keep track of the learned linear equations.

Since the algorithm learns an independent equation in each round, it finds the

target vector in at most n rounds. The description of the algorithm follows.

Algorithm 2 Cluster-Functional

initialize G = (V, ∅), with |V | = m, each vertex corresponding an element from
the sample.
initialize Q = ∅.
repeat

find the connected components of G and output them as clusters.
on a merge request to two clusters:
for each pair a, b of points in the union do

if (a− b) · x = 0 is independent from all equations in Q then
add (a− b) · x = 0 to Q.

end if
end for
for each non-edge (a, b), add (a, b) to G if (a − b) · x = 0 follows from the
equations in Q.

until the target clustering is found

Theorem 6. Algorithm 2 finds the target clustering using at most n queries and

O(m2n4) time. Moreover, the query complexity of the algorithm is optimal: every

clustering algorithm needs to make at least n queries to find the target clustering.

Proof. We claim that in each round we learn a linear equation that is indepen-

dent from all previously learned equations, thus in n rounds we learn the target

functional.

Assume for contradiction that there is a round where no independent equations

are added. All hypothesis clusters are pure by construction so they can never be

split. If two clusters are merged, then let us pick an element a from one of them

57

and b from the other. Then (a − b) · x = 0 has to be independent from Q since

otherwise the edge (a, b) would have been added in a previous round and the two

elements would thus belong to the same cluster.

Thus after at most n rounds G will consist of k marked cliques which will

give the correct clustering. Finding the connected components and outputting

the hypothesis clusters takes linear time. To update the graph, O(m2) Gaussian

elimination steps are needed. Hence the total running time is O(m2n4).

To show that at least n queries are necessary, notice that merge and split

requests are equivalent to linear equations and inequalities, respectively. Since

the dimension of the dual space is n, after less than n queries there are at least

two linearly independent linear functionals, and therefore at least two different

clusterings, that are consistent with all the queries.

Observe that for q > 2 this is in fact an efficient implementation of the generic

halving algorithm of Awasthi and Zadeh [10]. Every subset of elements is either

known to be pure, in which case it is consistent with the entire version space, or

is possibly impure, in which case a split request would imply that the target

vector satisfies a disjunction of linear equations. Thus in the latter case the set

is consistent with at most a 1
q
< 1

2
fraction of the version space. (We call a set of

point consistent with a clustering, if under that clustering, this set is pure or, in

other words, a subset of a cluster in the given clustering.)

There are two other notable properties of the algorithm. One is that it works

without modification in the noisy setting of Awasthi and Zadeh [10]: if any pair

of elements from two pure sets belong to the same target cluster, then it follows

58

immediately by linearity that both sets are subsets of this target cluster.

The other notable property is that the algorithm never outputs impure hypoth-

esis clusters. This is because it is always the case that every subset of the sample

is either known to be pure, or otherwise it is consistent with at most half of the

version space. Any concept class that has a similar gap property can be clustered

using only pure clusters in the hypotheses. The following remark formalizes this

idea.

Remark 5. Consider the following generic algorithm: in each round, output the

maximal subsets of S that are known to be pure, i.e. are consistent with the entire

version space. The teacher cannot issue a split request since every hypothesis

cluster is pure. If there is an ε > 0 such that in each round every subset h ⊆ S of

the sample is consistent with either the entire version space or at most a (1 − ε)

fraction of the version space, then on a merge request, by the maximality of the

hypothesis clusters, we can eliminate an ε fraction of the version space. Therefore

this algorithm finds the target clustering after k log 1
1−ε
|C| queries using only pure

clusters in the hypotheses.

4.3.2 Efficient Clustering of Hyperplanes

Now we turn to a natural generalization of linear functions over Rd, k hyperplanes.

Clustering geometric concept classes was one of the proposed open problems by

Awasthi and Zadeh [10]; hyperplanes are an example of a very natural geometric

concept class. The data are points in Rd and they are clustered (d−1)-dimensional

affine subspaces. Every point is assumed to lie on exactly one of k hyperplanes.

59

First, observe that this is a nontrivial interactive clustering problem: even for

d = 2 the cardinality of the concept class can be exponentially large as a function

of k. For example, let k be an odd integer, and consider m− 2(k− 1) points on a

line and 2(k − 1) points arranged as vertices of n squares such that no two edges

are on the same line. Then it is easy to see that the number of different possible

clusterings is at least 3k. Hence, if k = ω(polylog(m)), the target clustering cannot

be efficiently found by the halving algorithm of Awasthi and Zadeh [10]: since the

cardinality of the initial version space is superpolynomial in m, the algorithm

cannot keep track of the version space in polynomial time.

Nevertheless, the case of d = 2 can be solved by the following trivial algorithm:

start with the all-singleton hypothesis, and on a merge request, merge all the

points that are on the line going through the two points. This algorithm will find

the target clustering after k queries. However, this idea does not even generalize

to d = 3: the teacher might repeatedly tell the learner to merge pairs of points

that define parallel lines. In this case, it is not immediately clear which pairs of

lines span the planes of the target clustering, and there can be a linear number of

such parallel lines.

On the other hand, in the case of d = 3, coplanar lines either have to be in

the same target cluster, or they all have to be in different clusters. Therefore if

we have k + 1 coplanar lines, by the pigeonhole principle we know that the plane

containing them has to be one of the target planes. Moreover, since all points are

clustered by the k planes, it follows by the pigeonhole principle that after k2 + 1

merge requests for singleton pairs we will get k+1 coplanar lines. This observation

60

gives an algorithm of query complexity O(k3), although it is not immediately clear

how the coplanar lines can be found efficiently.

Algorithm 3, described below, is an efficient clustering algorithm based on a

similar idea which works for arbitrary dimension.

Algorithm 3 Cluster-Hyperplanes

let H = S.
for i = 1 to d− 1 do

for each affine subspace F of dimension i do
if at least ki + 1 elements of H are subsets of F then

replace these elements in H by F .
end if

end for
end for
repeat

output elements of H as hypothesis clusters.
on a merge request, merge the two clusters in H.

until the target clustering is found

Theorem 7. Algorithm 3 finds the target clustering using at most O(kd+1) queries

and O(d ·md+1) time.

Proof. We claim that in each iteration of the for loop, it holds for every F that

every subset of ki−1 + 1 elements of H that lie on F spans F . The proof is by

induction. For i = 1 this is clear: all pairs of points on a line span the line.

Assume that the claim holds for i − 1. Consider ki−1 + 1 elements of H on an

affine subspace F of dimension i. If they spanned an affine subspace of dimension

less than i, then they would have been merged in a previous iteration. Hence they

have to span F .

61

Now if ki + 1 elements of H lie on an i-dimensional affine subspace F for i < d,

then they have to be in the same target cluster. If they were not, no hyperplane

could contain more than ki−1 of the elements, and therefore the k target hyper-

planes could cover at most ki elements contained by F , which contradicts the

assumption that all points belong to a target cluster.

Hence, at the start of the repeat loop there can be at most kd+1 elements in H:

if there were more than kd+1 + 1 elements in H, by the pigeonhole principle there

would be a target cluster containing kd + 1 of them. However, this is not possible

since those kd + 1 elements would have been merged previously.

Therefore in the repeat loop we only need kd+1 queries to find the target clus-

tering. In each iteration of the outer for loop, we have to consider every affine

subspace of a certain dimension. Since every at most (d−1)-dimensional subspace

is defined by d points, there are at most
(
m
d

)
subspaces. For each of them, we have

to count the elements that are contained by them, this takes m time. Thus the

total running time is O
(
d ·
(
m
d

)
·m
)

= O(d ·md+1).

Hence, for constant d, this is an efficient clustering algorithm.

4.4 Cryptographic Lower Bounds for Interactive Clustering

In this section, we show cryptographic lower bounds for interactive clustering. In

particular, we prove that, under plausible cryptographic assumptions, the class

of constant-depth polynomial-size threshold circuits and polynomial-size Boolean

formulas are not learnable in the interactive clustering model. These lower bounds

62

further go to show the richness of this model, which allows for both positive and

negative clusterability results.

It was first observed by Valiant [90] that the existence of certain cryptographic

primitives implies unlearnability results. Later, Kearns and Valiant [62] showed

that, assuming the intractability of specific problems such as inverting the RSA

function, some natural concept classes, for example the class of constant-depth

threshold circuits, are not efficiently PAC learnable.

The hardness results for PAC learning are based on the following observation:

if f is a trapdoor one-way function, and there is an efficient learning algorithm

which, after seeing polynomially many labeled examples of the form (f(x), x),

can predict the correct label f−1(y) of a new unlabeled data point y, then that

learning algorithm by definition breaks the one-way function f .

This observation doesn’t apply to interactive clustering since here the learner

doesn’t have to make predictions about new examples and the teacher can give

information about any of the elements in the sample. Indeed, if the learner were

allowed to make a linear number of queries to the teacher, the clustering task

would be computationally trivial. Instead, our proofs are based on the following

counting argument: if the concept class is exponentially large in the size of the

sample, then there is an immediate information-theoretic exponential lower bound

on the required number of queries; therefore on average a learner would have to

make an exponential number of queries to learn a randomly chosen clustering. If

there exist certain pseudorandom objects, then one can construct concept classes

of subexponential size such that a randomly chosen concept from the smaller class

63

is computationally indistinguishable from a randomly chosen concept from the

exponential-size class. However, on the smaller concept class the learner is only

allowed to make a subexponential number of queries; consequently, this smaller

class is not efficiently learnable.

We will use the following information-theoretic lower bound to prove our hard-

ness result.

Lemma 4. For k = 2, every clustering algorithm has to make at least Ω
(

log |C|
logm

)
queries to find the target clustering.

Proof. There are log |C| bits are needed to describe the clustering. To each query,

the answer is split or merge and the identifier of at most two clusters. Since

there are at most m clusters in any hypothesis, this means that the teacher gives

at most 2 logm + 1 bits of information per query. Thus the required number of

queries is Ω
(

log |C|
logm

)
.

We remark that Theorem 9 of Balcan and Blum [11] implies a worst-case lower

bound of Ω(log |C|). However, this weaker bound of Ω
(

log |C|
logm

)
holds for teachers

that are not necessarily adversarial.

To prove our lower bounds, we will use cryptographic primitives that we intro-

duced in Chapter 2. Recall that the existence of pseudorandom function families

that can fool any polynomial time-bounded distinguishers is implied by the exis-

tence of one-way functions. Unfortunately, this hardness does not seem enough

to imply a lower bound for interactive clustering for the following reason. If we

take a sample of size m from {0, 1}n, then if m = O(poly(n)), the learner is

64

allowed to make m queries which makes the clustering problem trivial. On the

other hand, if m is superpolynomial in n, the learner is allowed to take superpoly-

nomial time, therefore it might break pseudorandom functions that can only fool

polynomial-time adversaries.

However, if there exist pseudorandom functions that can fool distinguishers

that have slightly superpolynomial time, a hardness result for interactive clus-

tering follows. Candidates for pseudorandom functions or permutations used in

cryptographic practice are usually conjectured to have this property.

Theorem 8. If there exist strongly pseudorandom functions that can fool distin-

guishers which have nω(1) time, then there exists a concept class C which is not

learnable in the interactive clustering model with poly(logm, log |C|) queries and

poly(m, logC) time.

Proof. Let fK : {0, 1}n → {0, 1} be a keyed pseudorandom function that can

fool distinguishers which have t(n) time for some time-constructible t(n) = nω(1).

Without loss of generality, assume that t(n) = o(2n). Let us fix a time-constructible

function m(n) such that m(n) = nω(1) and poly(m(n)) = o(t(n)). Let S be a sub-

set of {0, 1}n of cardinality m = m(n) and let k = 2. Let Un be the set of all

functions {0, 1}n → {0, 1}, Fn = {fK : K ∈ {0, 1}n}.

Let us assume for contradiction that there is an efficient interactive clustering

algorithm A for the concept class C = Fn. Since |C| = 2n, this learner has to make

at most poly(n, logm(n)) = poly(n) queries and has poly(n,m(n)) = poly(m(n))

time. Let us assume that the learner finds the target clustering after O(nα)

queries.

65

Let B be the following algorithm: given oracle access to a function f : {0, 1}n →

{0, 1}, pick a sample S of size m = m(n) from {0, 1}n, label the sample vectors

according to the value of f , and simulate the learner A for at most nα+1 queries.

Accept if the learner finds the target clustering and reject otherwise.

Since poly(m(n)) = o(t(n)), B runs in time t(n). If f is chosen from Fn, B

will accept with probability 1. On the other hand, if f is chosen from Un, then

since |Un| = 22n , by Lemma 4, we have a query lower bound of log |Un|
logm

= 2n

logm(n)
=

ω(nα+1). Therefore after nα+1 queries there are at least two different clusterings

in the version space, therefore B will reject with probability at least 1
2
. This

contradicts the t(n)-hardness of fK .

Naor and Reingold [73] constructed pseudorandom functions with one-bit out-

put that are not only as secure as factoring Blum integers, but also computable by

TC0 circuits. Since log |TC0| = poly(n), this, together with Theorem 8, implies

the following corollary:

Corollary 3. If factoring Blum integers is hard for h(n)-time bounded algorithms

for some h(n) = nω(1) then the class TC0 of constant-depth polynomial-size thresh-

old circuits and the class of polynomial-size Boolean formulas are not learnable in

the interactive clustering model.

Proof. By Theorem 8, learning a pseudorandom function family of superpoly-

nomial hardness is hard in the interactive clustering model. If factoring Blum

integers is superpolynomially hard, then by the construction of Naor and Rein-

gold [73], TC0 contains such a pseudorandom function family. Furthermore,

66

log |TC0| = poly(n), the learner is still only allowed to have poly(n, logm) queries

and poly(n,m) time, therefore the Theorem 8 also applies to TC0. In fact, this

holds for TC0 circuits of size at most nα for some constant α (determined by

the size of the circuits implementing the pseudorandom function). The set of

languages computable by TC0 circuits of size nα is in turn a subset of the lan-

guages computable by Boolean formulas of size at most nβ for some other constant

β. Thus our cryptographic lower bound also holds for polynomial-sized Boolean

formulas.

Remark 6. After Naor and Reingold’s first construction of pseudorandom func-

tions in TC0, several others showed that it is possible to construct even more

efficient PRFs, or PRFs based on different, possibly weaker cryptographic assump-

tions. For example, we refer the reader to the work of Lewko and Waters [69] for a

construction under the so-called “decisional k-linear assumption” which is weaker

than the assumption of Naor and Reingold [73], or to Banerjee et al. [13] for a

construction based on the “learning with errors” problem, against which there is

no known attack by efficient quantum algorithms.

Kearns and Valiant [62] used the results of Pitt and Warmuth [75] about

prediction-preserving reductions to show that in the PAC model, their crypto-

graphic hardness result for NC1 circuits also implies the intractability of learning

DFAs. Despite the fact that the problem of interactive clustering is fundamen-

tally different from prediction problems, we show that the ideas of Pitt and War-

muth [75] can be applied to show that DFAs are hard to learn in this model as

well. We use the following theorem:

67

Theorem 9 (Pitt and Warmuth [75]). Let k be a fixed positive constant. If

T is a single-tape Turing machine of size at most s that runs in space at most

k log n on inputs of length n, then there exist polynomials p and q such that for

all positive integers n there exists a DFA M of size q(s, n) such that M accepts

g(w) = 1|w|0wp(|w|,s,n) if and only if T accepts w.

This theorem implies a hardness result for interactive clustering.

Corollary 4. If there are nω(1)-hard pseudorandom function families computable

in logarithmic space, then polynomial-size DFAs are not efficiently learnable in

the interactive clustering model.

Proof. Let fK : {0, 1}n → {0, 1} be an nω(1)-hard keyed pseudorandom function.

If S ⊂ {0, 1}n has cardinality m(n) as defined in Theorem 8 and the concept class

is {fK : K ∈ {0, 1}n}, the interactive clustering task is hard.

For all K ∈ {0, 1}n, let TK be a Turing machine of size at most s that runs in

space k log n and, given w as an input, computes fK(w). It is easy to see that

there exist functions g, p and q defined as in Theorem 9 that work for TK for all

K. Consider the sample S ′ = g(S) and the concept class C of DFAs of size q(s, n).

Since |S ′| = m(n) and log |C| = poly(n), the hardness result of Theorem 8 holds

here as well.

4.5 Conclusion

In this chapter we studied a model of clustering with interactive feedback. We

presented efficient clustering algorithms for linear functionals over finite fields, of

68

which parity functions are a special case, and hyperplanes in Rd, thereby showing

that these two natural problems are learnable in the model. On the other hand,

we also demonstrated that under standard cryptographic assumptions, constant-

depth polynomial-size threshold circuits, polynomial-size Boolean formulas, and

polynomial-size deterministic finite automata are not learnable.

We propose the following open problems.

1. It would be interesting to see if the exponential dependence on d in the

complexity of Algorithm 3 for clustering hyperplanes can be reduced.

2. Although for half-spaces in fixed dimension, the general version space algo-

rithm of [10] is efficient because of the polynomial size of the version space,

designing more efficient interactive clustering algorithms for half-spaces and

Voronoi partitions remains a natural and important open problem.

4.5.1 Subsequent Results

Models of clustering aided by user interaction continues to be of interest to the

clustering research community, mainly as one of the several approaches towards

giving provable guarantees for clustering algorithms, classifying clustering prob-

lems by their complexity, and bypassing worst-case hardness results.

Let us mention one example of a paper on this broader topic which was pub-

lished after our paper [68]. Ashtiani et al. [9] introduced a related query-aided

clustering model, in which the clustering algorithm can make queries to an oracle.

In these queries, the algorithm can ask whether two points belong to the same

69

cluster or not. These queries are then used to efficiently solve k-means problems

satisfying certain margin conditions which otherwise would be NP-hard.

More generally, the question of how interaction or other forms of weak super-

vision can help build a more adequate theory of clustering remains an exciting

direction for future research.

70

5
Balancing Fairness and Accuracy in

Supervised Learning

This chapter was previously published as Benjamin Fish, Jeremy Kun, Ádám D.

Lelkes: A Confidence-Based Approach for Balancing Fairness and Accuracy. 2016

SIAM International Conference on Data Mining (SDM): 144-152.

5.1 Introduction

Machine learning algorithms assume an increasingly large role in making decisions

across many different areas of industry, finance, and government, from facial recog-

71

nition and social network analysis to self-driving cars to data-based approaches

in commerce, education, and policing. The decisions made by algorithms in these

domains directly affect individual people, and not always for the better. Con-

sequently, there has been a growing concern that machine learning algorithms,

which are often poorly understood by those that use them, make discriminatory

decisions.

If the data used for training the algorithm is biased, a machine learning algo-

rithm will learn the bias and perpetuate discriminatory decisions against groups

that are protected by law, even in the absence of “discriminatory intent” by the

designers. A typical example is an algorithm serving predatory ads to protected

groups. Such issues resulted in a 2014 report from the US Executive Office [76]

which voiced concerns about discrimination in machine learning. The primary

question we study in this chapter is

How can we maintain high accuracy of a learning algorithm while reducing

discriminatory biases?

In this chapter we will focus on the issue of biased training data, which is one

of the several possible causes of discriminatory outcomes in machine learning.

In this setting, we have a protected attribute (e.g. race or gender) which we

assert should be independent from the target attribute. For example, if the goal

is to decide creditworthiness for loans and the protected attribute is gender, a

classifier’s prediction should not correlate with an applicant’s gender. We say

that the classifier achieves statistical parity if the protected subgroup is as likely

as the broader population to have a given label.

72

Of course, there might be situations where the target label depends on legit-

imate factors that correlate with the protected attribute. For example, if the

protected attribute is gender and the target label is income, some argue that

lower salaries for women can be partly explained by the fact that on average, men

work longer hours than women. In this chapter we assume that this is not the

case. The issue of “explainable discrimination” in machine learning was studied

in [58].

In our setting, since we only have biased data, we cannot evaluate our classifiers

against an unbiased ground truth. In particular only a biased classifier could

achieve perfect accuracy; to achieve statistical parity in general one must be willing

to reduce accuracy. Hence the natural goal is to find a classifier that achieves

statistical parity while minimizing error, or more generally to study the trade-off

between bias and accuracy so as to make favorable trade-offs.

Our first contribution in this chapter is a method for optimizing this trade-

off which we call the shifted decision boundary (SDB). SDB is a generic method

based on the theory of margins [27, 83], and it can be combined with any learning

algorithm that produces a measure of confidence in its prediction (Section 5.3.1).

In particular we combine SDB with boosting, support vector machines, and logistic

regression, and it performs comparably to or outperforms previous algorithms in

the fair learning literature. See Section 5.5 for its empirical evaluation. We also

give a theorem based on the analysis in [83] bounding the loss of accuracy for SDB

under weighted majority schemes (Section 5.3.4). SDB makes the assumptions on

the bias explicit and transparent, so that the trade-off can be understood without

73

a detailed understanding of the algorithm.

Unfortunately, studying the bias-error trade-off is an incomplete picture of the

fairness of an algorithm. The shortcomings were discussed in [32], e.g., in terms of

how an adversary could achieve statistical parity while still targeting the protected

group unfairly. We demonstrate these shortcomings in action even in the absence

of adversarial manipulation. Among other methods, we show that modifying a

classifier by randomly flipping certain output labels with a certain probability al-

ready outperforms much of the prior fairness literature in both accuracy and bias.

Such a naive algorithm is obviously unfair because the relabeling is independent

of the classification task. Our second contribution is a measure of fairness that

addresses this shortcoming, which we call resilience to random bias. We define

it in Section 5.4 and demonstrate that it distinguishes well between our naive

baseline algorithms and SDB.

5.2 Background and Previous Work

5.2.1 Existing Notions of Fairness

The study of fairness in machine learning is young, but there has been a lot of

disparate work studying notions of what it means for data to be fair. Finding the

“right” definition of fairness is a major challenge; see the extensive survey of [77]

for a detailed discussion. Two prominent definitions of fairness that have emerged

are statistical parity and k-nearest-neighbor consistency.

Statistical parity: Let D be a distribution over a set of labeled examples X with

labels l : X → {−1, 1} and a protected subset S ⊂ X. The bias of l with respect

74

to D is defined as the difference in probability of an example in S having label 1

and the probability of an example in SC having label 1, i.e.

B(D,S) = Pr
x∼D|

SC

[l(x) = 1]− Pr
x∼D|S

[l(x) = 1].

The bias of a hypothesis h is the same quantity with h(x) replacing l(x). If

a hypothesis has low bias in absolute value we say it achieves statistical parity.

Note that S represents the group we wish to protect from discrimination, and

the bias represents the degree to which they have been discriminated against.

The sign of bias indicates whether S or SC is discriminated against. A similar

statistical measure called disparate impact was introduced and studied by Friedler

et al. [35] based on the “80% rule” used in United States hiring law.

Dwork et al. [32] point out that statistical parity is only a measure of population-

wide fairness. They provide a laundry list of ways one could achieve statistical

parity while still exhibiting serious and unlawful discrimination. In particular,

one can achieve statistical parity by flipping the labels of a certain number of

arbitrarily chosen members of the disadvantaged group, regardless of the relation

between the individuals and the classification task. In our experiments we show

this already outperforms some of the leading algorithms in the fairness literature.

Despite this, it is important to study the ability for learning algorithms to

achieve statistical parity. For example, it might be reasonable to flip the labels

of the “most qualified” individuals of the disadvantaged group who are classified

negatively. Some previous approaches assume the existence of a ranking or metric

on individuals, or try to learn this ranking from data [56, 32]. By contrast, our

75

SDB achieves statistical parity without the need for such a ranking.

kNN-consistency: The second notion, due to [32], calls a classifier “individually

fair” if it classifies similar individuals similarly. They use k-nearest-neighbor to

measure the consistency of labels of similar individuals. Note that “closeness” is

defined with respect to a metric chosen as part of the data cleaning and feature

selection process. By contrast SDB does not require a metric on individuals.

5.2.2 Previous Work on Fair Algorithms

Learning algorithms studied previously in the context of fairness include naive

Bayes [22], decision trees [57], and logistic regression [59]. To the best of our

knowledge we are the first to study boosting and SVM in this context, and our

confidence-based analysis is new for both these and logistic regression.

The two main approaches in the literature are massaging and regularization.

Massaging means changing the biased data set before training to remove the bias

in the hope that the learning algorithm trained on the now unbiased data will be

fair. Massaging is done in the previous literature based on a ranking learned from

the biased data [56]. The regularization approach consists of adding a regularizer

to an optimization objective which penalizes the classifier for discrimination [60].

While SDB can be thought of as a post-processing regularization, it does so in a

way that makes the trade-off between bias and accuracy transparent and easily

controlled.

There are two other notable approaches in the fairness literature. The first,

introduced in [32], is a framework for maximizing the utility of a classification

76

with the constraint that similar people be treated similarly. One shortcoming of

this approach is that it relies on a metric on the data that tells us the similarity

of individuals with respect to the classification task. Moreover, the work in [32]

suggests that learning a suitably fair similarity metric from the data is as hard as

the original problem of finding a fair classifier. Our SDB method does not require

such a metric.

The “Learning Fair Representations” method of Zemel et al. [97] formulates the

problem of fairness in terms of intermediate representations: the goal is to find a

representation of the data which preserves as much information as possible from

the original data while simultaneously obfuscating membership in the protected

class. Given that in this chapter we seek to make explicit the trade-off between

bias and accuracy, we will not be able to hide membership in the protected class

as Zemel et al. seeks to do. Rather, we align with the central thesis of [32], that

knowing the protected feature is useful to promote fairness.

5.2.3 Margins

The theory of margins has provided a deep, foundational explanation for the gen-

eralization properties of algorithms such as AdaBoost and soft-margin SVMs [27,

83]. A hypothesis f : X → [−1, 1] induces a margin for a labeled example

marginf (x, y) = y · f(x), where x ∈ X is a data point and y ∈ {−1, 1} is the

correct label for x. The sign of the margin is positive if and only if f correctly

labels x, and the magnitude indicates how confident f is in its prediction.

As an example of the power of margins, we quote a celebrated theorem on

77

the generalization accuracy of weighted majority voting schemes in PAC-learning.

Here a weighted majority vote is a function f(x) =
∑N

i=1 αihi(x) for some hy-

potheses hi ∈ H and αi ≥ 0,
∑

i αi = 1.

Theorem 10 (Schapire et al. [83]). Let D be a distribution over X×{−1, 1} and

S be a sample of m examples chosen i.i.d. at random according to D. Let H be

a set of hypotheses of VC-dimension d. Then for any δ > 0, with probability at

least 1− δ every weighted majority voting scheme satisfies the following for every

θ > 0:

Pr
D

[yf(x) ≤ 0] ≤ Pr
S

[yf(x) ≤ θ]+

O

(
1√
m

(
d log2(m/d)

θ2
+ log(1/δ)

)1/2
)

In other words, the generalization error is bounded by the probability of a

small margin on the sample. One can go on to show AdaBoost [82], a popular

algorithm that produces a weighted voting scheme, performs well in this respect.

Recall that the output of AdaBoost is a hypothesis which outputs the sign of a

weighted majority vote
∑

i αi, hi(x). Rather than measure the margin we measure

the signed confidence of the boosting hypothesis on an unlabeled example x as

conf(x) =

∑T
i=1 αihi(x)∑T

i=1 αi
.

The magnitude of the confidence measures the agreement of the voters in their

classification of an example.

The theoretical work on margins for boosting suggests that examples with small

confidence are more likely to have incorrect labels than examples with large con-

78

fidence. For example, we display in Figure 5.1 the signed confidence values for all

examples and incorrectly predicted examples respectively. The incorrect exam-

ples have confidence centered around zero. One can leverage this for fairness by

flipping negative labels of members of the protected class with a small confidence

value. This is a rough sketch of the SDB method. The empirical results of SDB

suggest that SDB achieves statistical parity with relatively little loss in accuracy.

Indeed, we state a similar guarantee to Theorem 10 in Section 5.3.4 that solidifies

this intuition.

The idea of a signed confidence generalizes nicely to other machine learning

algorithms. We study support vector machines (SVM) which have a natural geo-

metric notion of margin, and logistic regression which outputs a confidence in its

prediction. For background on SVM, logistic regression, and AdaBoost, see [85].

5.2.4 Interpretations of Signed Confidence

Here we state how signed confidence is defined for each of the learning methods.

AdaBoost

Boosting algorithms work by combining base hypotheses, “rules of thumb” that

have a fixed edge over random guessing, into highly accurate predictors. In each

round, a boosting algorithm finds the base hypothesis that achieves the smallest

weighted error on the sample. It then increases the weights of the incorrectly

classified examples, thus forcing the base learner to improve the classification of

difficult examples. In this chapter we study AdaBoost, a ubiquitous boosting

79

1.0 0.5 0.0 0.5 1.0
0

200

400

600

800

1000

1200
Confidence Values of All Examples

1.0 0.5 0.0 0.5 1.0
0

50

100

150

200

250
Confidence Values of Mislabeled Training Examples

population

protected

Figure 5.1: Histogram of boosting confidences for the Census data set. The top histogram
shows the distribution of confidence values for the entire data set, and the bottom shows the
confidence for only mislabeled examples. The vast majority of women are classified as −1.
Comparing incorrectly classified women to correctly classified women, a larger proportion of
the examples corresponding to incorrectly classified women are close to the decison boundary.

algorithm. For more on boosting, we refer the reader to [82].

Let H be a set of base classifiers, and let (αt, ht)
T
t=1 be the weights and hypothe-

ses output by AdaBoost after T rounds. The signed confidence of the hypothesis

is conf(x) =
∑T
i=1 αihi(x)∑T

i=1 αi
. In all of our experiments we boost decision stumps for

T = 20 rounds.

80

SVM

The soft-margin SVM of Cortes and Vapnik [27] outputs a maximum margin

hyperplane w in a high-dimensional space implicitly defined by a kernel K, and

w can be expressed implicitly as a linear combination of the input vectors, say w′.

We define the confidence as the distance of a point from the separating hyperplane,

i.e. conf(x) = K(w′,x). For the Census Income and Singles data sets we use the

standard Gaussian kernel, and for the German data set we use a linear kernel (the

data sets are described in Section 5.5).

Logistic Regression

Logistic regression is often used to assign probabilities to class labels; in this

chapter we will use it as a binary classifier and disregard the probabilities. (In

other words, we pick the label with the higher probability.) In this setting, the

classifier output by logistic regression has the form h(x) = sign(〈w,x〉) and the

vector w is found by empirical risk minimization (ERM) with the standard logistic

loss `(w, (x, y)) = log(1 + e−y〈w,x〉) and L2 regularization. Here we define the

confidence of logistic regression simply as the value that the classifier takes before

rounding: conf(x) = φ(〈w,x〉), where φ(z) = 1
1+e−z

is the logistic function.

81

5.3 Fair Learning Algorithms

5.3.1 Shifted Decision Boundary

In this section we define our methods. In what follows X is a labeled data set,

l(x) are the given labels, and S ⊂ X is the protected group. We further assume

that members of S are less likely than SC to have label 1. First we describe our

proposed method, called shifted decision boundary (SDB), and then we describe

three techniques we use for baseline comparisons (in addition to comparing to

previous literature).

Let conf : X → [−1, 1] be a function corresponding to a classifier h(x) =

sign(conf(x)), and define the decision boundary shift of λ for S as the classifier

hλ : X → {−1, 1}, defined as

hλ(x) =


1 if x ∈ S, conf(x) ≥ −λ

sign(conf(x)) otherwise.

The SDB algorithm accepts as input confidences conf and finds the minimal error

decision boundary shift for S that achieves statistical parity. That is, given conf

and ε > 0, it produces a value λ such that hλ has minimal error subject to

achieving statistical parity up to bias ε.

5.3.2 Naive Baseline Algorithms

We define two naive baseline methods which are intended to be both baseline

comparisons for our SDB algorithm and illustrations of the shortcomings of the

82

bias-error trade-off.

Similarly to SDB, the random relabeling (RR) algorithm modifies a given hy-

pothesis h by flipping labels. In particular, RR computes the probability p for

which, if members of S with label −1 under h are flipped by h′ to +1 randomly

and independently with probability p, the bias of h′ is zero in expectation. The

classifier h′ is then defined as the randomized classifier that flips members of S

with label −1 with probability p and otherwise is the same as h.

Next, we define random massaging (RM). Massaging strategies, introduced

by [56], involve eliminating the bias of the training data by modifying the la-

bels of data points, and then training a classifier on this data in the hope that the

statistical parity of the training data will generalize to the test set as well. In our

experiment, we massage the data randomly; i.e. we flip the labels of S from −1

to +1 independently at random with the probability needed to achieve statistical

parity in expectation, as in RR.

As we have already noted, these two baseline methods perform comparably to

much of the previous literature in both bias and error. This illustrates that the

semantics of why an algorithm achieves statistical parity is crucial part of its eval-

uation. As such, these two baselines can be useful for any analysis that measures

bias and accuracy. Moreover, they can be used to determine the suitability of a

new proposed measure of fairness.

83

5.3.3 Fair Weak Learning

Finally, we include a method which is based on a natural idea but is empirically

suboptimal to SDB. Recall that boosting works by combining weak learners into a

“strong” classifier. It is natural to ask whether boosting keeps the fairness proper-

ties of the weak learners. Weak learners used in practice, such as decision stumps,

have very low complexity, therefore it is easy to impose fairness constraints on

them. In our fair weak learning (FWL) baseline we replace a standard boosting

weak learner with one which tries to minimize a linear combination of error and

bias and run the resulting boosting algorithm unchanged. The weak learner we

use computes the decision stump which minimizes the sum of label error and bias

of its induced hypothesis.

5.3.4 Theoretical Properties of SDB

Because the SDB method only flips the labels of examples with small signed

confidence, margin theory implies that it will not increase the error too much. We

formalize this precisely below. This theorem, a direct corollary of Theorem 10,

provides strong theoretical justification for our SDB method. To the best of our

knowledge, SDB is the first empirically tested method for fair learning that has

any specific guarantees for its accuracy.

Informally, the theorem says that when a majority voting scheme is post-

processed by the SDB technique, the resulting hypothesis maintains the gener-

alization accuracy bounds in terms of the margin on the sample when the shift is

small (λ ≤ θ). But as the shift grows, the error bound increases proportionally to

84

the fraction of the protected population that has large enough negative margins

(i.e., in [−λ,−θ]).

Theorem 11. Let X be finite and D,S,m,H, and d be as in Theorem 10. Let

T ⊂ S be the subset of the sample in the protected class. Let δ > 0. Let err(m)

be the tail error function from Theorem 10. For any A ⊂ X let Aλ,θ = {a ∈ A :

−λ ≤ conf(a) ≤ −θ}.

Then with probability at least 1 − δ, every function hλ post-processed by SDB

with weighted majority vote conf(x) and shift λ > 0 satisfies the following for

every θ > 0:

Pr
D

[yhλ(x) ≤ 0] ≤ Pr
Tλ,θ

[y · conf(x) ≥ −θ] Pr
S

[x ∈ Tλ,θ]

+ Pr
S−Tλ,θ

[y · conf(x) ≤ θ] Pr
S

[x 6∈ Tλ,θ]

+ max(err(|Tλ,θ|), err(|TCλ,θ|))

Proof. The bound follows by conditioning on the event that hλ flips the label,

noticing − conf(x) is also a majority function, and applying Theorem 10 twice.

5.4 Resilience to Random Bias

One of the biggest challenges for designers of fair learning algorithms is the lack

of good measures of fairness. The most popular measures are statistical measures

of bias such as statistical parity. As Dwork et al. [32] have pointed out, statistical

parity fails to capture all important aspects of fairness. In particular, it is easy

to achieve statistical parity simply by flipping the labels of an arbitrary set of

85

individuals in the protected class. A real-world example would be giving a raise

to a random group of women to eliminate the gender disparity in wages. The

root cause of this problem is that one does not have access to reliable (unbiased)

ground truth labels. We propose to compensate for this by evaluating algorithms

on synthetic bias. In doing this we make transparent the kind of bias a claimed

“fair” algorithm protects against, and we can accurately measure its resilience to

said bias.

We introduce a new notion of fairness called resilience to random bias (RRB).

Informally we introduce a new, random feature which has no correlation with the

target attribute, and then we introduce bias against individuals who have a certain

value for this new feature. We call an algorithm fair if it can recover the original,

unbiased labels. For RRB in particular, the synthetic bias is i.i.d. random against

the protected group.

Certainly, in practice, bias may not be of this form and we do not pretend

that this notion captures all forms of bias. Rather, this notion seeks to model a

comparatively mild form of bias – if an algorithm cannot recover from this type

of random bias against a protected class then there is little reason to think it can

handle other types of bias. In other words, we propose this as a minimally nec-

essary condition but not necessarily a sufficient condition for individual fairness.

Relating our RRB measure more formally to other notions of individual fairness

is left for future work.

We formally define RRB as follows. Let X be a set of examples and D be

a distribution over examples, with l : X → {−1, 1} a target labeling function.

86

We first define a randomized process mapping (X,D, l) → (X̃, D̃, l̃). Let X̃ =

X × {−1, 1} and D̃ be the distribution on X̃ which is independently D on the

X coordinate and uniform on the {−1, 1} coordinate. Denote by X̃0 = {(x, b) ∈

X̃ | b = 0} and call this the protected set. Finally, l̃(x, b) is fixed to either l(x) or

−l(x) independently at random for each (x, b) ∈ X̃ according to the following:

Pr[l̃(x, b) = l(x)] =


1 if b = 1 or l(x) = −1

1− η if b = 0 and l(x) = 1

.

In other words, the positive labels of a randomly chosen protected subgroup are

flipped to negative independently at random with probability η. We emphasize

that the process mapping l 7→ l̃ is randomized, but the map l̃(x, b) itself is fixed

and deterministic. So an algorithm which queries labels from l̃ is given consistent

answers. Now we define the resilience to random bias as follows:

Definition 26. Let (X,D, l), (X̃, D̃, l̃) be as above. Let h = A(D̃, l̃) be the output

classifier of a learning algorithm A when given biased data as input. The resilience

to random bias (RRB) of A with respect to (X,D, l) and discrimination rate

0 ≤ η < 1/2, denoted RRBη(A), is

RRBη(A) = Pr
D̃

[h(x, b) = l(x) | b = 0, l(x) = 1]

Similarly to calculating statistical parity, RRB is estimated on a fixed data set

by simulating the process described above and outputing an empirical average.

87

5.5 Empirical Evaluation

We measure our methods on label error, statistical parity, and RRB with η = 0.2.

In all of our experiments we split the data sets randomly into training, test, and

model-selection subsets, and we output the average of 10 experiments.

5.5.1 Datasets

The Census Income data set [70], extracted from the 1994 Census database, con-

tains demographic information about 48842 American adults. The prediction task

is to determine whether a person earns over $50K a year. The data set contains

16, 192 females (33%) and 32, 650 males. Note 30.38% of men and 10.93% of

women reported earnings of more than $50K, therefore the bias of the data set is

19.45%.

The German credit data set [70] contains financial information about 1000 in-

dividuals who are classified into groups of good and bad credit risk. The “good”

credit group contains 699 individuals. Following the work of [56], we consider

age as the protected attribute with a cut-off at 25. Only 59% of the younger

people are considered good credit risk, whereas of the 25 or older group, 72% are

creditworthy, making the bias 13%.

In the Singles data set, extracted from the marketing data set of [48] by taking

all respondents who identified as “single,” the goal is to predict if annual income is

greater than $25K from 13 other demographic attributes. The protected attribute

is gender. The data set contains 3, 653 data points, 1, 756 (48%) of which belong

to the protected group. 34% of the data set has a positive label. The bias is 9.8%.

88

5.5.2 Results and Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Average unsigned bias

0.14

0.16

0.18

0.20

0.22

0.24

A
v
e
ra

g
e
 e

rr
o
r

ra
te

SVM

SVM

SVM

SVM

LFR

LR

LR

LR
LR

DADT

AB

AB

AB
AB FWL

Vanilla

Other

RM

RR

SDB

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Average unsigned bias

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

A
v
e
ra

g
e
 e

rr
o
r

ra
te SVM

SVM

SVM

SVM

CND

LR

LR

LR

LR
AB

AB

AB

AB

FWL

RM

Vanilla

Other

SDB

RR

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Average unsigned bias

0.26

0.27

0.28

0.29

0.30

0.31

0.32

A
v
e
ra

g
e
 e

rr
o
r

ra
te

SVM

SVM

SVM

SVM

LR

LR

LR

LR

AB

AB

AB

AB

FWL

RM

Vanilla

Other

SDB

RR

Figure 5.2: A summary of our experimental results for our three data sets, from left to right:
Census Income, German, Singles. Labels show which learning algorithm is used and the colors
give which method for achieving fairness was used. The parameters of each algorithm were
chosen to minimize bias. The size of a point is proportional to the RRB of the learner (only
for those algorithms for which we have the RRB numbers), where larger dots mean there is a
larger probability of correcting a label.

In this section we state our experimental results. They are summarized in

Figure 5.2 for the Census Income, German, and Singles data sets, and the full set

of numbers are in Tables 5.2, 5.3, and 5.4 respectively. For comparison, we also

included the numbers for the Learning Fair Representations (LFR) method of [97]

89

Method Census German Singles
SVM 0.2702 0.6756 0.2424

SVM (RR) 0.2821 0.7827 0.2588
SVM (RM) 0.2545 0.6232 0.2552
SVM (SDB) 0.3172 0.8619 0.3064

LR 0.4647 0.3070 0.1971
LR (RR) 0.4696 0.8564 0.3213
LR (RM) 0.4282 0.6741 0.2117
LR (SDB) 0.5402 0.8687 0.8596

AB 0.4372 0.6774 0.2864
AB (RR) 0.4661 0.8629 0.3996
AB (RM) 0.4410 0.6965 0.3325
AB (SDB) 0.5461 0.8596 0.4027
AB (FWL) 0.5174 0.6879 0.2971

Table 5.1: The RRB numbers for each of our methods and baselines. In each column and
section the largest values are shown in bold, and they are almost always SDB.

for the Census Income data set, for Classification with No Discrimination (CND)

method of [56], and for the Discrimination Aware Decision Tree (DADT) technique

of [57] (specifically we use the numbers for the “IGC+IGS Relab” method). In [97]

the authors implemented three other learning algorithms, these are unregularized

logistic regression, Fair Naive-Bayes [56], and Regularized Logistic Regression [60].

These methods all had errors above 20% on the Census data set and so we omit

them for brevity. In [57] the authors implemented variations on the decision tree

learning scheme, and the one we include has the highest accuracy, though they

are all closely comparable. We reported all biases as unsigned. We were unable

to access implementations of the prior authors’ algorithms, so we were not able

to reproduce their results or measure their algorithms with respect to RRB.

First, we display the trade-offs made explicit by our SDB method in Figure 5.3,

90

1.00.80.60.40.20.00.20.40.60.8
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

Figure 5.3: Trade-off between (signed) bias and error for SDB with AdaBoost on the Census
Income data. The horizontal axis is the threshold used for SDB.

which shows an example of the rate at which error increases as bias goes to zero.

For the Census Income data set, the three SDB techniques outperform the

baselines and outperform all the prior literature except for DADT. Both SDB

algorithms achieve statistical parity with about 18% error. Moreover, these two

SDB algorithms have the highest RRB, while SVM appears to overfit the random

bias introduced by RRB more than the other algorithms. While DADT appears to

achieve lower label error and comparable bias, we note that the standard deviation

of the bias reported in [57] is 0.015 while for SDB (on the Census Income data

set) the standard deviations are at least one order of magnitude smaller.

91

1.00.80.60.40.20.00.20.40.60.8
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

(a) Boosting

0.60.40.20.00.20.40.6
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

(b) Logistic Regression

2.01.51.00.50.00.51.01.52.0
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

(c) SVM

Figure 5.4: Trade-off between (signed) bias and error for SDB on the Census Income data.
The horizontal axis is the threshold used for SDB.

The singles data set shows a similar pattern, with SDB combined with logistic

regression outperforming all other baselines. Note that in the instances where the

baselines perform comparably to SDB, SDB tends to have a much larger resilience

to random bias.

The German data set is more puzzling. While two of the SDB techniques out-

perform the prior literature by a moderate margin, they do not outperform ran-

dom relabeling or random massaging by a significant margin (and these baselines

already outperform CND). Another curious observation is, as Figure 5.5 shows,

label error stays constant as the decision boundary is shifted. In addition, we

used a linear kernel for SVM on the German data set because we observed clear

overfitting with a Gaussian kernel.

Note again the difference in SVM kernels between the data sets. The Gaussian

kernel performs well for the Census Income and Singles data set. However, in

the case of the German data set, which is the smallest of the three, with the

Gaussian kernel every point becomes a support vector. This is not only a clear

sign of overfitting but it also makes SDB useless since the model gives the same

92

0.60.40.20.00.20.40.60.81.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0
Shifted Decision Boundary Bias vs Error

Label error

Bias

(a) Boosting

0.60.40.20.00.20.40.6
0.2

0.0

0.2

0.4

0.6

0.8

1.0
Shifted Decision Boundary Bias vs Error

Label error

Bias

(b) Logistic Regression

10505101520
0.2

0.0

0.2

0.4

0.6

0.8

1.0
Shifted Decision Boundary Bias vs Error

Label error

Bias

(c) SVM

Figure 5.5: Trade-off between (signed) bias and error for SDB on the German data. The
horizontal axis is the threshold used for SDB.

confidence for almost every data point.

These facts seem to be evidence that the German data set (which has only

about a thousand records) is too small to draw a significant conclusion. We

nevertheless include it here for completeness and to show comparison with the

previous literature.

Fair weak learning (FWL) does empirically reduce bias but does not achieve

statistical parity in two of the three data sets. FWL performs worse on either

label error or bias on each of the data sets and the trade-off between label error

and bias cannot easily be controlled. It also does not seem easy to control this

trade-off using either random massaging and random relabeling.

One notable advantage of SDB is that the trade-off between label error and bias

can be controlled after training. To decide how much bias and error we want to

allow, we do not have to pick a hyper-parameter before training the algorithm,

unlike for most other fair learning methods. This means that the computational

cost of choosing the best point on the trade-off curve is very low, and the trade-off

is transparent.

93

1.00.80.60.40.20.00.20.40.60.8
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

(a) Boosting

0.60.40.20.00.20.40.6
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

(b) Logistic Regression

2.01.51.00.50.00.51.01.52.0
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Shifted Decision Boundary Bias vs Error

Label error

Bias

(c) SVM

Figure 5.6: Trade-off between (signed) bias and error for SDB on the Singles data. The hori-
zontal axis is the threshold used for SDB.

The results also highlight the usefulness of RRB as a measure of fairness. The

RRB values across all data sets and algorithms we studied are in Table 5.1. In

cases where random relabeling or random massaging performs comparably to SDB,

the RRB measure is able to distinguish them, giving a lower score to the less rea-

sonable baselines and a higher score to SDB. This suggests that the performance

of fair learning algorithms should not be evaluated solely by their accuracy and

bias.

5.6 Conclusion

In this chapter, we introduced a general method for balancing discrimination and

label error. This method, which we call shifted decision boundary (SDB), is ap-

plicable to any learning algorithm which has an efficiently computable measure

of confidence. We studied three such algorithms – AdaBoost, support vector

machines, and linear regression – compared our methods to other methods pro-

posed in the earlier literature and our own baselines, and empirically evaluated

94

our methods’ performances in terms of their resilience to random bias.

Our method, in addition to outperforming much of the previous literature, has

several other desirable properties. Unlike most other fair learning algorithms,

SDB applied to AdaBoost has theoretical bounds on generalization error. Also,

since the margin shift can be specified after the original learner has been trained

on the data, a practitioner can easily evaluate the trade-off between error and bias

and choose the most desirable point on the trade-off curve. This makes SDB a

fast and transparent way to study the fairness properties of an algorithm.

Our resilience to random bias (RRB) measure is a novel approach to evaluate the

fairness of a learning algorithm. Although i.i.d. random bias is a simplified model

of real-world discrimination, we posit that any algorithm which can be considered

fair must be fair with respect to RRB. Moreover, RRB generalizes to an arbitrary

distribution over the input data, and one could adapt it to well-studied models of

bias in social science.

5.6.1 Subsequent Results

The topic of fairness of machine learning has been receiving rapidly increasing

interest from the machine learning community. There have been so many impor-

tant papers published on this topic after our paper [36] that it would be nearly

impossible to list, let alone discuss, them all.

The study of fair algorithms has been extended from the setting of classical su-

pervised learning to other learning paradigms, such as online decision making [53],

bandit learning [54], Markovian settings [51], and word embeddings [23, 20].

95

SVM SVM (RR) SVM (SDB) SVM (RM) LFR [97]
label error 0.1471 (5.7e-17) 0.2007 (0.002) 0.1869 (0.004) 0.1740 (0.003) 0.2299

bias 0.1689 (5.7e-17) 0.0050 (0.003) 0.0036 (0.009) 0.0795 (0.010) 0.0020
RRB 0.2702 (0.014) 0.2926 (0.004) 0.3172 (0.025) 0.2545 (0.007) n/a

LR LR (RR) LR (SDB) LR (RM) DADT [57]
label error 0.1478 (4.8e-04) 0.2077 (0.004) 0.1802 (0.002) 0.1810 (0.003) 0.1600

bias 0.1968 (0.003) 0.0044 (0.006) 0.0060 (0.011) 0.0262 (0.008) 0.0090 (0.015)
RRB 0.4647 (0.013) 0.4696 (0.009) 0.5402 (0.011) 0.4282 (0.019) n/a

AdaBoost AB (RR) AB (SDB) AB (RM) AB (FWL)
label error 0.1529 (0.002) 0.2078 (0.004) 0.1822 (0.005) 0.1864 (0.004) 0.1860 (0.004)

bias 0.1856 (0.012) 0.0091 (0.006) 0.0013 (0.007) 0.0381 (0.013) 0.0682 (0.004)
RRB 0.4372 (0.032) 0.4661 (0.019) 0.5461 (0.015) 0.4410 (0.013) 0.4321 (0.016)

Table 5.2: A summary of our experimental results for the Census Income data for relabeling,
massaging, and the fair weak learner. The threshold for SDB was chosen to achieve perfect
statistical parity on the training data. Standard deviations are reported in parentheses when
known.

Also, the question of what it means for a supervised learning algorithm to be

fair and how to quantify discrimination continues to be studied. A notable pa-

per on this question is Friedler et al. [41]. This paper approaches the problem

by separating different spaces in which the data about individuals is explicitly

or implicitly represented, and making the often unstated assumptions about the

interactions between these spaces explicit. By this they create a common vo-

cabulary in which to discuss and compare different notions of fairness; our RRB

measure is mentioned as a particular example of one of the paradigms listed in

the paper.

With all these results, the study of fairness in machine learning remains in an

early stage, and one can expect this topic to provide machine learning researchers,

data scientists, and social scientists with many exciting and difficult questions for

a long time.

96

SVM SVM (RR) SVM (SDB) SVM (RM) CND [56]
label error 0.2823 (0) 0.2778 (0.025) 0.2979 (0.022) 0.3000 (0.017) 0.2757

bias 0.0886 (4.2e-17) 0.0732 (0.066) 0.0266 (0.085) 0.0445 (0.028) 0.0327
RRB 0.6756 (0.081) 0.7827 (0.054) 0.8619 (0.041) 0.6232 (0.070) n/a

LR LR (RR) LR (SDB) LR (RM)
label error 0.2541 (0.005) 0.2656 (0.020) 0.2685 (0.021) 0.2625 (0.011)

bias 0.1383 (0.014) 0.0095 (0.064) 0.0142 (0.219) 0.0202 (0.566)
RRB 0.3070 (0.067) 0.8564 (0.045) 0.8687 (0.042) 0.6741 (0.045)

AdaBoost AB (RR) AB (SDB) AB (RM) AB (FWL)
label error 0.2602 (0.009) 0.2429 (0.010) 0.2745 (0.010) 0.2637 (0.019) 0.2859 (0.016)

bias 0.2617 (0.272) 0.0376 (0.044) 0.0034 (0.064) 0.0391 (0.023) 0.0093 (0.035)
RRB 0.6774 (0.219) 0.8629 (0.051) 0.8596 (0.067) 0.6965 (0.037) 0.6879 (0.042)

Table 5.3: A summary of our experimental results for the German data for relabeling, mas-
saging, and the fair weak learner. The threshold for SDB was chosen to achieve perfect sta-
tistical parity on the training data. On this data set SVM was run with a linear kernel. Stan-
dard deviations are reported in parentheses when known.

SVM SVM (RR) SVM (SDB) SVM (RM)
label error 0.2718 (5.7e-17) 0.2793 (0.009) 0.2716 (0.013) 0.2876 (0.015)

bias 0.0550 (1.4e-17) 0.1460 (0.017) 0.0106 (0.035) 0.0260 (0.047)
RRB 0.2424 (0.045) 0.2588 (0.009) 0.3064 (0.042) 0.2552 (0.032)

LR LR (RR) LR (SDB) LR (RM)
label error 0.2742 (1.14e-16) 0.3130 (0.011) 0.2745 (0.010) 0.2966 (0.008)

bias 0.1468 (9.99e-18) 0.3025 (0.040) 0.0034 (0.640) 0.0732 (0.024)
RRB 0.1971 (0.036) 0.3213 (0.035) 0.8596 (0.067) 0.2117 (0.036)

AdaBoost AB (RR) AB (SDB) AB (RM) AB (FWL)
label error 0.2690 (0.004) 0.3088 (0.009) 0.2990 (0.008) 0.2860 (0.019) 0.2687 (0.008)

bias 0.0966 (0.020) 0.2123 (0.013) 0.0140 (0.017) 0.0180 (0.037) 0.0463 (0.016)
RRB 0.2864 (0.057) 0.3996 (0.105) 0.4027 (0.061) 0.3325 (0.060) 0.2971 (0.028)

Table 5.4: A summary of our experimental results for the Singles data for relabeling, mas-
saging, and the fair weak learner. The threshold for SDB was chosen to achieve perfect sta-
tistical parity on the training data. Standard deviations are reported in parentheses when
known.

97

Cited Literature

[1] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical

study. In Proceedings of the Twelfth International Conference on Artifi-

cial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida,

USA, April 16-18, 2009, pages 1–8, 2009.

[2] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory

Yaroslavtsev. Parallel algorithms for geometric graph problems. In STOC,

pages 574–583, 2014.

[3] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–

342, 1988.

[4] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine

bias: There’s software used across the country to predict future criminals.

and it’s biased against blacks. ProPublica, May, 23, 2016.

[5] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for euclidean

k-medians and related problems. In STOC, pages 106–113, 1998.

[6] Sanjeev Arora and Boaz Barak. Computational complexity: a modern ap-

proach. Cambridge University Press, 2009.

[7] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit.

Local search heuristics for k-median and facility location problems. SIAM

J. Comput., 33(3):544–562, 2004.

[8] Hassan Ashtiani and Shai Ben-David. Representation learning for clustering:

a statistical framework. In Proceedings of the Thirty-First Conference on

Uncertainty in Artificial Intelligence, pages 82–91. AUAI Press, 2015.

98

[9] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with

same-cluster queries. arXiv preprint arXiv:1606.02404, 2016.

[10] Pranjal Awasthi and Reza B. Zadeh. Supervised clustering. In Advances in

Neural Information Processing Systems, pages 91–99, 2010.

[11] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feed-

back. In Algorithmic Learning Theory, pages 316–328. Springer, 2008.

[12] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discrimina-

tive framework for clustering via similarity functions. In Proceedings of the

40th Annual ACM Symposium on Theory of Computing, Victoria, British

Columbia, Canada, May 17-20, 2008, pages 671–680, 2008.

[13] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions

and lattices. In Advances in Cryptology–EUROCRYPT 2012, pages 719–737.

Springer, 2012.

[14] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering

in metric spaces. In STOC, pages 11–20, 2001.

[15] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-

supervision for pairwise constrained clustering. In Proceedings of the

Fourth SIAM International Conference on Data Mining, Lake Buena Vista,

Florida, USA, April 22-24, 2004, pages 333–344, 2004.

[16] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for

parallel query processing. In PODS, pages 273–284, 2013.

[17] Shai Ben-David. Computational feasibility of clustering under clusterability

assumptions. CoRR, abs/1501.00437, 2015.

[18] Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of

approximately maximizing agreements. Journal of Computer and System

Sciences, 66(3):496–514, 2003.

99

[19] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal

of the ACM (JACM), 36(4):929–965, 1989.

[20] Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and

Adam T. Kalai. Man is to computer programmer as woman is to home-

maker? debiasing word embeddings. In Advances in Neural Information

Processing Systems, pages 4349–4357, 2016.

[21] S. Charles Brubaker and Santosh Vempala. Isotropic PCA and affine-

invariant clustering. In 49th Annual IEEE Symposium on Foundations of

Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA,

USA, pages 551–560, 2008.

[22] Toon Calders and Sicco Verwer. Three naive Bayes approaches for

discrimination-free classification. Data Mining and Knowledge Discovery,

21(2):277–292, 2010.

[23] Aylin Caliskan-Islam, Joanna J Bryson, and Arvind Narayanan. Semantics

derived automatically from language corpora necessarily contain human bi-

ases. arXiv preprint arXiv:1608.07187, 2016.

[24] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor

approximation algorithm for the k-median problem. J. Comput. Syst. Sci.,

65(1):129–149, 2002.

[25] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Brad-

ski, Andrew Y. Ng, and Kunle Olukotun. Map-Reduce for machine learning

on multicore. In NIPS, pages 281–288, 2006.

[26] Stephen A. Cook. A hierarchy for nondeterministic time complexity. Journal

of Computer and System Sciences, 7(4):343–353, 1973.

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

learning, 20(3):273–297, 1995.

100

[28] Anirban Dasgupta, John E. Hopcroft, Ravi Kannan, and

Pradipta Prometheus Mitra. Spectral clustering by recursive parti-

tioning. In Algorithms - ESA 2006, 14th Annual European Symposium,

Zurich, Switzerland, September 11-13, 2006, Proceedings, pages 256–267,

2006.

[29] Sajib Dasgupta and Vincent Ng. Which clustering do you want? Inducing

your ideal clustering with minimal feedback. J. Artif. Intell. Res. (JAIR),

39:581–632, 2010.

[30] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation

schemes for clustering problems. In STOC, pages 50–58, 2003.

[31] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing

on large clusters. Commun. ACM, 51(1):107–113, 2008.

[32] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and

Richard Zemel. Fairness through awareness. In Proceedings of the 3rd Inno-

vations in Theoretical Computer Science Conference, pages 214–226. ACM,

2012.

[33] Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S. Kamel.

Distributed column subset selection on MapReduce. In ICDM, pages 171–

180, 2013.

[34] Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein,

and Zoya Svitkina. On distributing symmetric streaming computations.

ACM Transactions on Algorithms, 6(4), 2010.

[35] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and

Suresh Venkatasubramanian. Certifying and removing disparate impact.

Proceedings of the 21th ACM SIGKDD Intl. Conference on Knowledge Dis-

covery and Data Mining, pages 259–268, 2015.

101

[36] Benjamin Fish, Jeremy Kun, and Ádám D. Lelkes. A confidence-based ap-

proach for balancing fairness and accuracy. In Proceedings of the 2016 SIAM

International Conference on Data Mining, pages 144–152. SIAM, 2016.

[37] Benjamin Fish, Jeremy Kun, Ádám D. Lelkes, Lev Reyzin, and György

Turán. On the computational complexity of MapReduce. In International

Symposium on Distributed Computing, pages 1–15. Springer, 2015.

[38] Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst.

Sci., 60(2):337–353, 2000.

[39] Steven Fortune and James Wyllie. Parallelism in random access machines.

In Proceedings of the tenth annual ACM symposium on Theory of computing,

pages 114–118. ACM, 1978.

[40] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. J. Comput. Syst. Sci.,

55(1):119–139, 1997.

[41] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.

On the (im)possibility of fairness. arXiv preprint arXiv:1609.07236, 2016.

[42] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct

random functions. J. ACM, 33(4):792–807, August 1986.

[43] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching,

and simulation in the MapReduce framework. In ISAAC, pages 374–383,

2011.

[44] S. Guha and S. Khuller. Greedy strikes back: Improved facility location

algorithms. J. Algorithms, 31(1):228–248, 1999.

[45] Steve Hanneke. The optimal sample complexity of PAC learning. Journal

of Machine Learning Research, 17(38):1–15, 2016.

102

[46] Juris Hartmanis and Richard E. Stearns. On the computational complexity

of algorithms. Transactions of the American Mathematical Society, 117:285–

306, 1965.

[47] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.

A pseudorandom generator from any one-way function. SIAM Journal on

Computing, 28(4):1364–1396, 1999.

[48] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning, volume 2. Springer, 2009.

[49] Russell Impagliazzo and Ramamohan Paturi. The complexity of k-SAT.

2012 IEEE 27th Conference on Computational Complexity, 0:237, 1999.

[50] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which prob-

lems have strongly exponential complexity? J. Comput. Syst. Sci.,

63(4):512–530, 2001.

[51] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and

Aaron Roth. Fair learning in Markovian environments. arXiv preprint

arXiv:1611.03071, 2016.

[52] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility

location problems. In STOC, pages 731–740. ACM, 2002.

[53] Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and

Aaron Roth. Rawlsian fairness for machine learning. arXiv preprint

arXiv:1610.09559, 2016.

[54] Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth.

Fairness in learning: Classic and contextual bandits. arXiv preprint

arXiv:1605.07139, 2016.

[55] Seny Kamara and Mariana Raykova. Parallel homomorphic encryption. In

Financial Cryptography Workshops, pages 213–225, 2013.

103

[56] Faisal Kamiran and Toon Calders. Classifying without discriminating. In

2nd Intl. Conference on Computer, Control and Communication, 2009.,

pages 1–6. IEEE, 2009.

[57] Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination

aware decision tree learning. In 2010 IEEE 10th Intl. Conference on Data

Mining (ICDM), pages 869–874. IEEE, 2010.

[58] Faisal Kamiran, Indrė Žliobaitė, and Toon Calders. Quantifying explainable

discrimination and removing illegal discrimination in automated decision

making. Knowledge and Information Systems, 35(3):613–644, 2013.

[59] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma.

Fairness-aware classifier with prejudice remover regularizer. In Machine

Learning and Knowledge Discovery in Databases, pages 35–50. Springer,

2012.

[60] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware

learning through regularization approach. In Data Mining Workshops

(ICDMW), 2011 IEEE 11th Intl. Conference on, pages 643–650. IEEE, 2011.

[61] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of com-

putation for MapReduce. In SODA ’10, pages 938–948, Philadelphia, PA,

USA, 2010. Society for Industrial and Applied Mathematics.

[62] Michael Kearns and Leslie Valiant. Cryptographic limitations on learn-

ing Boolean formulae and finite automata. Journal of the ACM (JACM),

41(1):67–95, 1994.

[63] Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient

agnostic learning. Machine Learning, 17(2-3):115–141, 1994.

[64] George S. Kimeldorf and Grace Wahba. A correspondence between Bayesian

estimation on stochastic processes and smoothing by splines. The Annals of

Mathematical Statistics, 41(2):495–502, 1970.

104

[65] A. Kumar, Y. Sabharwal, and S. Sen. Linear-time approximation schemes

for clustering problems in any dimensions. J. ACM, 57(2), 2010.

[66] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani.

Fast greedy algorithms in MapReduce and streaming. In SPAA ’13, pages

1–10, New York, NY, USA, 2013. ACM.

[67] Jeremy Kun. Graphs, New Models, and Complexity. PhD thesis, University

of Illinois at Chicago, 2016.

[68] Ádám D. Lelkes and Lev Reyzin. Interactive clustering of linear classes and

cryptographic lower bounds. In Proceedings of the 2016 SIAM International

Conference on Data Mining, pages 165–176. SIAM, 2016.

[69] Allison B. Lewko and Brent Waters. Efficient pseudorandom functions from

the decisional linear assumption and weaker variants. In Proceedings of

the 16th ACM conference on Computer and communications security, pages

112–120. ACM, 2009.

[70] M. Lichman. UCI machine learning repository, 2013.

[71] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based

on the exponential time hypothesis. Bulletin of the EATCS, 105:41–72,

2011.

[72] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations

of machine learning. MIT press, 2012.

[73] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient

pseudo-random functions. Journal of the ACM (JACM), 51(2):231–262,

2004.

[74] Matthew Felice Pace. BSP vs MapReduce. In Proceedings of the Interna-

tional Conference on Computational Science, ICCS 2012, Omaha, Nebraska,

USA, 4-6 June, 2012, pages 246–255, 2012.

105

[75] Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility.

Journal of Computer and System Sciences, 41(3):430–467, 1990.

[76] John Podesta, Penny Pritzker, Ernest J. Moniz, John Holdren, and Jeffrey

Zients. Big data: Seizing opportunities, preserving values, 2014.

[77] Andrea Romei and Salvatore Ruggieri. A multidisciplinary survey on dis-

crimination analysis. The Knowledge Engineering Review, 29:582–638, 11

2014.

[78] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and

circuits (on lower bounds for modern parallel computation). In Proceedings

of the 28th ACM Symposium on Parallelism in Algorithms and Architec-

tures, pages 1–12. ACM, 2016.

[79] Anish Das Sarma, Foto N. Afrati, Semih Salihoglu, and Jeffrey D. Ullman.

Upper and lower bounds on the cost of a Map-Reduce computation. In

PVLDB’13, pages 277–288. VLDB Endowment, 2013.

[80] Walter J. Savitch. Relationships between nondeterministic and deterministic

tape complexities. Journal of computer and system sciences, 4(2):177–192,

1970.

[81] Robert E. Schapire. The strength of weak learnability. Machine learning,

5(2):197–227, 1990.

[82] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algo-

rithms. MIT Press, 2012.

[83] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boost-

ing the margin: A new explanation for the effectiveness of voting methods.

Annals of Statistics, pages 1651–1686, 1998.

[84] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized rep-

resenter theorem. In International Conference on Computational Learning

Theory, pages 416–426. Springer, 2001.

106

[85] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge University Press, 2014.

[86] J. C. Shepherdson. The reduction of two-way automata to one-way au-

tomata. IBM J. Res. Dev., 3(2):198–200, April 1959.

[87] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The Hadoop distributed file system. In Mohammed G. Khatib, Xubin He,

and Michael Factor, editors, MSST, pages 1–10. IEEE Computer Society,

2010.

[88] Latanya Sweeney. Discrimination in online ad delivery. Queue, 11(3):10,

2013.

[89] A. Szepietowski. Turing Machines with Sublogarithmic Space. Ernst Scher-

ing Research Foundation Workshops. Springer, 1994.

[90] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984.

[91] Leslie G. Valiant. A bridging model for parallel computation. Commun.

ACM, 33(8):103–111, 1990.

[92] Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability &

Its Applications, 16(2):264–280, 1971.

[93] Paul Viola and Michael Jones. Rapid object detection using a boosted cas-

cade of simple features. In Computer Vision and Pattern Recognition, 2001.

CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference

on, volume 1, pages I–I. IEEE, 2001.

[94] K. Wagner and G. Wechsung. Computational Complexity. Mathematics and

its Applications. Springer, 1986.

[95] Ryan Williams. Time-space tradeoffs for counting NP solutions modulo

integers. Computational Complexity, 17(2):179–219, 2008.

107

[96] Andrew C. Yao. Theory and application of trapdoor functions. In Foun-

dations of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on,

pages 80–91. IEEE, 1982.

[97] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork.

Learning fair representations. In Proceedings of the 30th International Con-

ference on Machine Learning (ICML-13), pages 325–333, 2013.

108

Appendix

This appendix contains copies of the copyright agreements signed with the pub-

lishers of the papers reproduced in this thesis. The agreement with SIAM was

filled out and signed electronically; the blank form is reproduced here.

109

1

15.03.2013
11:29

Consent to Publish
Lecture Notes in Computer Science 123

Title of the Book or Conference Name: .

Volume Editor(s): .

Title of the Contribution: .

Author(s) Name(s): .

Corresponding Author’s Name, Address, Affiliation and Email: .

. .

. .

When Author is more than one person the expression “Author” as used in this agreement will apply collectively unless
otherwise indicated.

§ 1 Rights Granted

Author hereby grants and assigns to Springer International Publishing AG, Cham (hereinafter called Springer) the exclusive,
sole, permanent, world-wide, transferable, sub-licensable and unlimited right to reproduce, publish, distribute, transmit,
make available or otherwise communicate to the public, translate, publicly perform, archive, store, lease or lend and sell
the Contribution or parts thereof individually or together with other works in any language, in all revisions and versions
(including soft cover, book club and collected editions, anthologies, advance printing, reprints or print to order, microfilm
editions, audiograms and videograms), in all forms and media of expression including in electronic form (including offline
and online use, push or pull technologies, use in databases and networks for display, print and storing on any and all
stationary or portable end-user devices, e.g. text readers, audio, video or interactive devices, and for use in multimedia
or interactive versions as well as for the display or transmission of the Contribution or parts thereof in data networks or
seach engines), in whole, in part or in abridged form, in each case as now known or developed in the future, including the
right to grant further time-limited or permanent rights. For the purposes of use in electronic forms, Springer may adjust the
Contribution to the respective form of use and include links or otherwise combine it with other works. For the avoidance
of doubt, Springer has the right to permit others to use individual illustrations and may use the Contribution for advertising
purposes.
The copyright of the Contribution will be held in the name of Springer. Springer may take, either in its own name or
in that of copyright holder, any necessary steps to protect these rights against infringement by third parties. It will have
the copyright notice inserted into all editions of the Contribution according to the provisions of the Universal Copyright
Convention (UCC) and dutifully take care of all formalities in this connection in the name of the copyright holder.

§ 2 Regulations for Authors under Special Copyright Law

The parties acknowledge that there may be no basis for claim of copyright in the United States to a Contribution prepared
by an officer or employee of the United States government as part of that person’s official duties. If the Contribution was
performed under a United States government contract, but Author is not a United States government employee, Springer
grants the United States government royalty-free permission to reproduce all or part of the Contribution and to authorize
others to do so for United States government purposes.
If the Contribution was prepared or published by or under the direction or control of Her Majesty (i.e., the constitutional
monarch of the Commonwealth realm) or any Crown government department, the copyright in the Contribution shall,
subject to any agreement with Author, belong to Her Majesty.
If the Contribution was created by an employee of the European Union or the European Atomic Energy Community
(EU/Euratom) in the performance of their duties, the regulation 31/EEC, 11/EAEC (Staff Regulations) applies, and copy-
right in the Contribution shall, subject to the Publication Framework Agreement (EC Plug), belong to the European Union
or the European Atomic Energy Community.
If Author is an officer or employee of the United States government, of the Crown, or of EU/Euratom, reference will be
made to this status on the signature page.

§ 3 Rights Retained by Author

Author retains, in addition to uses permitted by law, the right to communicate the content of the Contribution to other
scientists, to share the Contribution with them in manuscript form, to perform or present the Contribution or to use the
content for non-commercial internal and educational purposes, provided the Springer publication is mentioned as the

2015 International Symposium on Distributed Computing

Yoram Moses
On the Computational Complexity of MapReduce

Benjamin Fish, Jeremy Kun, Adam Lelkes, Lev Reyzin, Gyorgy Turan

Jeremy Kun
851 S. Morgan St. Chicago, IL 60607.
University of Illinois at Chicago, jkun2@uic.edu

110

1

15.03.2013
11:29

2

original source of publication in any printed or electronic materials. Author retains the right to republish the Contribution
in any collection consisting solely of Author’s own works without charge subject to ensuring that the publication by
Springer is properly credited and that the relevant copyright notice is repeated verbatim.
Author may self-archive an author-created version of his/her Contribution on his/her own website and/or the repository of
Author’s department or faculty. Author may also deposit this version on his/her funder’s or funder’s designated repository
at the funder’s request or as a result of a legal obligation. He/she may not use the publisher’s PDF version, which is posted
on SpringerLink and other Springer websites, for the purpose of self-archiving or deposit. Furthermore, Author may only
post his/her own version, provided acknowledgment is given to the original source of publication and a link is inserted to
the published article on Springer’s website. The link must be accompanied by the following text: “The final publication is
available at link.springer.com”.
Prior versions of the Contribution published on non-commercial pre-print servers like ArXiv/CoRR and HAL can remain
on these servers and/or can be updated with Author’s accepted version. The final published version (in pdf or html/xml
format) cannot be used for this purpose. Acknowledgment needs to be given to the final publication and a link must be
inserted to the published Contribution on Springer’s website, accompanied by the text “The final publication is available
at link.springer.com”.
Author retains the right to use his/her Contribution for his/her further scientific career by including the final published
paper in his/her dissertation or doctoral thesis provided acknowledgment is given to the original source of publication.
Author also retains the right to use, without having to pay a fee and without having to inform the publisher, parts of the
Contribution (e.g. illustrations) for inclusion in future work, and to publish a substantially revised version (at least 30%
new content) elsewhere, provided that the original Springer Contribution is properly cited.

§ 4 Warranties
Author warrants that the Contribution is original except for such excerpts from copyrighted works (including illustrations,
tables, animations and text quotations) as may be included with the permission of the copyright holder thereof, in which
case(s) Author is required to obtain written permission to the extent necessary and to indicate the precise sources of the
excerpts in the manuscript. Author is also requested to store the signed permission forms and to make them available to
Springer if required.
Author warrants that he/she is entitled to grant the rights in accordance with Clause 1 “Rights Granted”, that he/she has
not assigned such rights to third parties, that the Contribution has not heretofore been published in whole or in part, that
the Contribution contains no libelous statements and does not infringe on any copyright, trademark, patent, statutory right
or proprietary right of others, including rights obtained through licenses; and that Author will indemnify Springer against
any costs, expenses or damages for which Springer may become liable as a result of any breach of this warranty.

§ 5 Delivery of the Work and Publication
Author agrees to deliver to the responsible Volume Editor (for conferences, usually one of the Program Chairs), on a date
to be agreed upon, the manuscript created according to the Springer Instructions for Authors. Springer will undertake the
reproduction and distribution of the Contribution at its own expense and risk. After submission of the Consent to Publish
form Signed by the Corresponding Author, changes of authorship, or in the order of the authors listed, will not be accepted
by Springer.

§ 6 Author’s Discount
Author is entitled to purchase for his/her personal use (directly from Springer) the Work or other books published by
Springer at a discount of 33 1/3% off the list price as long as there is a contractual arrangement between Author and
Springer and subject to applicable book price regulation. Resale of such copies or of free copies is not permitted.

§ 7 Governing Law and Jurisdiction
This agreement shall be governed by, and shall be construed in accordance with, the laws of Switzerland. The courts of
Zug, Switzerland shall have the exclusive jurisdiction.

Corresponding Author signs for and accepts responsibility for releasing this material on behalf of any and all Co-authors.

Signature of Corresponding Author: Date:

. .

I’m an employee of the US Government and transfer the rights to the extent transferable
(Title 17 §105 U.S.C. applies)

I’m an employee of the Crown and copyright on the Contribution belongs to Her Majesty

I’m an employee of the EU or Euratom and copyright on the Contribution belongs to EU or Euratom

2015-08-15

111

112

113

In	order	for	SIAM	to	include	your	paper	in	the	2016	SIAM	International	Conference	on	Data	
Mining		proceedings,	the	following	Copyright	Transfer	Agreement	must	be	agreed	to	during	

the	paper	upload	process.	

COPYRIGHT TRANSFER AGREEMENT

	

Title	of	Paper:	
	
Author(s):	
	
Copyright	to	this	paper	is	hereby	irrevocably	assigned	to	SIAM	for	publication	in	the	2016	SIAM	
International	Conference	on	Data	Mining	(SDM16),	May	5	‐7,	2016	at	the	Hilton	Miami	
Downtown,	Miami,	Florida,	USA.	SIAM	has	sole	use	for	distribution	in	all	forms	and	media,	such	as	
microfilm	and	anthologies,	except	that	the	author(s)	or,	in	the	case	of	a	"work	made	for	hire,"	the	
employer	will	retain:	

	
The	right	to	use	all	or	part	of	the	content	of	the	paper	in	future	works	of	the	author(s),	
including	author’s	teaching,	technical	collaborations,	conference	presentations,	lectures,	or	
other	scholarly	works	and	professional	activities	as	well	as	to	the	extent	the	fair	use	
provisions	of	the	U.S.	Copyright	Act	permit.	If	the	copyright	is	granted	to	SIAM,	then	the	
proper	notice	of	the	SIAM's	copyright	should	be	provided.	
	
The	right	to	post	the	final	draft	of	the	paper	on	noncommercial	pre‐print	serves	like	
arXiv.org.	
	
The	right	to	post	the	final	version	of	the	paper	on	the	author’s	personal	web	site	and	on	the	
web	server	of	the	author’s	institution,	provided	the	proper	notice	of	the	SIAM’s	copyright	is	
included	and	that	no	separate	or	additional	fees	are	collected	for	access	to	or	distribution	of	
the	paper.	
	
The	right	to	refuse	permission	to	third	parties	to	republish	all	or	part	of	the	paper	or	
translation	thereof.	
	

	
It	is	affirmed	that	neither	this	paper	nor	portions	of	it	have	been	published	elsewhere	and	that	a	
copyright	transfer	agreement	has	not	been	signed	permitting	the	publication	of	a	similar	paper	in	a	
journal	or	elsewhere.	For	multi‐author	works,	the	signing	author	agrees	to	notify	all	co‐authors	of	
his/her	action.		
	
Transfer	of	Copyright	to	the	Publisher	
	
SIAM	strongly	recommends	this	option.	This	transfer	of	copyright	provides	SIAM	the	legal	basis	
not	only	to	publish	and	to	distribute	the	work,	but	also	to	pursue	infringements	of	copyright	
(such	as	plagiarism	and	other	forms	of	unauthorized	use)	and	to	grant	permissions	for	the	
legitimate	uses	of	the	work	by	third	parties.	This	option	should	not	be	selected	if	the	work	was	
prepared	by	a	government	office	or	employee	as	part	of	his	or	her	official	duties.	
	
[__]			By	selecting	the	box	at	left,	the	Author	hereby	irrevocably	assigns,	conveys	and	transfers	
the	copyright	to	the	Work	to	SIAM.	SIAM	shall	have	sole	rights	of	
distribution	and/or	publication	of	the	work	in	all	forms	and	media,	throughout	the	world,	
except	for	those	rights	given	to	the	Author	above.	
	
[__]		By	selecting	the	box	at	left,	the	Author	DOES	NOT	assign,	convey	and	transfer	the	

114

copyright	to	the	Work	to	SIAM.	Please	list	in	whose	name	copyright	should	
appear	here:	___	
	
Work	Made	for	Hire	
[__]			Check	here	if	signature	is	on	behalf	of	employer	in	the	event	article	is	“work	made	for	hire.”	
	
Previously	Published		
Check	here	if	portions	have	been	published	elsewhere	and	enclose	appropriate	credits	and	
permissions	to	republish.	
[__]		Yes	(if	yes,	expand	site	so	authors	can	enclose	credits	and	permissions)	
[__]		No	
	
Alternate	Copyright	
[__]		Check	here	to	submit	an	alternative	copyright.	Send	copyright	to	[meeting	manager	e‐
mail]using	subject	line	“SIAM	–	[proceedings	acronym]	–	Alternate	Copyright	–	LAST	NAME.”

115

Vita

Education

B.Sc., Budapest University of Technology and Economics, Budapest,

Hungary, 2012

M.S., University of Illinois at Chicago, Chicago, Illinois, 2014

Ph.D., University of Illinois at Chicago, Chicago, Illinois, 2017

Honors and Awards

Dean’s Scholar Fellowship, 2016–2017

Chicago Consular Corps Scholarship, 2015

BUTE Faculty of Sciences, Scientific Student Conference, Discrete Mathe-

matics Section, 1st Prize and Special Presidential Award, 2011

BUTE Mathematics Competition, 3rd Prize, 2011

Employment

Software Engineering Intern, Google Inc., Pittsburgh, Pennsylvania,

Summer 2016

Software Engineering Intern, Google Inc., Pittsburgh, Pennsylvania,

Summer 2015

Research Scientist Intern, Amazon.com, Inc., Seattle, Washington,

Summer 2014

116

Teaching Assistant, University of Illinois at Chicago, Chicago, Illinois,

Fall 2013–Spring 2016

Teaching Assistant, The University of Iowa, Iowa City, Iowa,

Fall 2012–Spring 2013

Papers

A Confidence-Based Approach for Balancing Fairness and Accuracy. With

Benjamin Fish and Jeremy Kun. In Proceedings of the 2016 SIAM Interna-

tional Conference on Data Mining (SDM 2016).

On the Computational Complexity of MapReduce. With Benjamin Fish,

Jeremy Kun, Lev Reyzin and György Turán. In Proceedings of the 29th

International Symposium on Distributed Computing (DISC 2015).

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds.

With Lev Reyzin. In Proceedings of the 26th International Conference on

Algorithmic Learning Theory (ALT 2015).

Fair boosting: A case study. With Benjamin Fish and Jeremy Kun. ICML

2015 Workshop on Fairness, Accountability, and Transparency in Machine

Learning (FAT ML 2015).

Network installation under convex costs. With Alexander Gutfraind, Jeremy

Kun and Lev Reyzin. Journal of Complex Networks 4.2 (2016): 177–186.

Biclique coverings, rectifier networks and the cost of ε-removal. With Sz-

abolcs Iván, Judit Nagy-György, Balázs Szörényi and György Turán. In

Proceedings of the 16th International Workshop on Descriptional Complex-

ity of Formal Systems (DFCS 2014).

Improved algorithms for splitting full matrix algebras. With Gábor Ivanyos

and Lajos Rónyai. JP Journal of Algebra, Number Theory and Applications

28 (2013), 141–156.

117

Patents

Control method for a cooling system with variable cooling power and cooling

system. European Patent Office, EP17155305.0 (patent pending)

Control method for an electrically excited motor and inverter. United States

Patent and Trademark Office, US 15/413,433 (patent pending)

Control method for a converter and converter. German Patent and Trade-

mark Office, DE 10 2016 004 282.6 (patent pending)

Control method for a cooling system with variable cooling power and cool-

ing system. German Patent and Trademark Office, DE 10 2016 001 824.0

(patent pending)

Control method for an electromagnetic motor and inverter. German Patent

and Trademark Office, DE 10 2016 000 743.5 (patent pending)

Professional Activities

Program committee member for the 24th International Conference on Ma-

chine Learning (ICML 2017)

Conference reviewer for the 30th Annual Conference on Neural Information

Processing Systems (NIPS 2016), the 25th International Joint Conference on

Artificial Intelligence (IJCAI 2016), and the 26th International Conference

on Algorithmic Learning Theory (ALT 2015)

Reviewer for Mathematical Reviews

118

	Introduction
	MapReduce
	Interactive Clustering
	Fairness in Machine Learning
	Organization of the Thesis

	Background
	Computational Complexity Theory
	Complexity Classes
	Hierarchy Theorems
	The Exponential Time Hypothesis

	Cryptography
	Basic Cryptographic Primitives

	Learning Theory
	PAC Learning
	Boosting
	Convex Surrogate Loss Functions
	The Kernel Trick

	The Computational Complexity of MapReduce
	Introduction
	Background and Previous Work
	MapReduce
	Complexity

	Models
	MapReduce and MRC
	Other Models of Parallel Computation

	Space Complexity Classes in MRC0
	Hierarchy Theorems
	Conclusion
	Subsequent Results

	Interactive Clustering
	Introduction
	Background and Previous Work
	The Model
	Previous Work

	Interactive Clustering Algorithms
	Clustering Linear Functionals
	Efficient Clustering of Hyperplanes

	Cryptographic Lower Bounds for Interactive Clustering
	Conclusion
	Subsequent Results

	Balancing Fairness and Accuracy in Supervised Learning
	Introduction
	Background and Previous Work
	Existing Notions of Fairness
	Previous Work on Fair Algorithms
	Margins
	Interpretations of Signed Confidence

	Fair Learning Algorithms
	Shifted Decision Boundary
	Naive Baseline Algorithms
	Fair Weak Learning
	Theoretical Properties of SDB

	Resilience to Random Bias
	Empirical Evaluation
	Datasets
	Results and Analysis

	Conclusion
	Subsequent Results

	Cited Literature
	Appendix
	Vita

