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@ Model introduced by Balcan and Blum (2008)

@ Learner proposes hypothesis clustering; adversarial teacher replies
with
e accept: the proposed clustering is the target clustering,
e split(c): ¢ contains points from more than one target cluster (c is
“impure"), or
e merge(c,d): cUd is a subset of a target cluster.
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A Simple Example

Adam D. Lelkes (UIC) Interactive Clustering 3 /42



A Simple Example

O,
©

Adam D. Lelkes (UIC) Interactive Clustering 4 /42



A Simple Example

split

©

Adam D. Lelkes (UIC) Interactive Clustering 5 /42



A Simple Example

Adam D. Lelkes (UIC) Interactive Clustering 6 /42



A Simple Example

O,

erge

Adam D. Lelkes (UIC) Interactive Clustering 7/ 42



A Simple Example

Adam D. Lelkes (UIC) Interactive Clustering 8 /42



A Simple Example
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The Model

@ Number of points: m (finite)

@ The number of target clusters, k, is fixed and known to the clustering
algorithm.

@ Target clustering comes from a concept class C (known to the

clustering algorithm).
(Note: C is a subset of the set of partitions of m points, therefore

finite.)
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The Model

@ Number of points: m (finite)

@ The number of target clusters, k, is fixed and known to the clustering
algorithm.

@ Target clustering comes from a concept class C (known to the

clustering algorithm).
(Note: C is a subset of the set of partitions of m points, therefore

finite.)

Definition

An interactive clustering algorithm is called efficient if it runs in
O(poly(k, m,log|C|)) time and makes O(poly(k,log m,log|C|)) queries.
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e Efficient algorithms for intervals, disjunctions, conjunctions (for
constant k) (Balcan and Blum 2008)

@ General (but inefficient) version space algorithm (Balcan and Blum
2008)

o Efficient algorithm for rectangles, noisy version of the model,
improved general version space algorithm with query complexity
O(klog|C|) (Awasthi and Zadeh 2010)
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Our Contribution

e Efficient algorithm for parity (and, more generally, for linear
functionals over finite fields)

o Efficient algorithm for hyperplanes in R? (for constant d)

o Cryptographic lower bounds
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e Points are from {0,1}"

@ Concept class: parity functions, i.e. functions of the form v +— x - v
(over GF(2))

@ Number of target clusters: 2
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e Points are from {0,1}"

@ Concept class: parity functions, i.e. functions of the form v +— x - v
(over GF(2))

@ Number of target clusters: 2

Idea: starting from all singletons, every merge request gives us a linear
equation for x. In each round, we output the coarsest clustering we know
to be pure.
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Hyperplanes

o Clusters are k hyperplanes in RY
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Hyperplanes

o Clusters are k hyperplanes in RY
@ Observation: if there are k + 1 collinear points, they have to be in the
same target cluster by pigeonhole principle; we can merge them into

one line.

@ We can then use the pigeonhole principle iteratively to merge higher
dimensional subspaces.

@ After this, we only need to follow a few merge requests to get the
target clustering.
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accept
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How can we prove lower bounds?

Unlike in the PAC model, we don’t have to generalize to new data.
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How can we prove lower bounds?
Unlike in the PAC model, we don’t have to generalize to new data.

Information-theoretic lower bound:

log |C|

For k = 2, every clustering algorithm has to make at least Q2 ( og m )

queries to find the target clustering.

Adam D. Lelkes (UIC) Interactive Clustering 34 /42



Idea: let us have two concept classes.
1. Big class: lemma gives query lower bound.

2. Small one: the definition of efficient clustering requires a small number
of queries.
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Idea: let us have two concept classes.
1. Big class: lemma gives query lower bound.

2. Small one: the definition of efficient clustering requires a small number
of queries.

We put all function into the big class, a pseudorandom function family in
the small class. If we could cluster the small class, that would break the

pseudorandom function family.
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Big class:
Instance space: {0,1}"

Concept class: all functions {0,1}" — {0,1}

Size of concept class: 22"
Number of points: m(n) = n“() chosen carefully

Query lower bound from lemma: superpolynomial
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Small class:
Instance space: {0,1}"

Concept class: an t(n) = n“()-hard keyed pseudorandom function family
with seed length n

Size of concept class: 2"
Number of points: m(n) = n“(!) chosen carefully

Query upper bound from definition: poly(n,log m(n)) = poly(n)
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If we could cluster the small class efficiently, we could distinguish the

pseudorandom function family from the uniform distribution on all
functions.
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Results:

@ If there exist strongly pseudorandom permutations that can fool
distinguishers which have n“(!) time, then there exists a concept class
C which is hard to cluster.

@ Corollary 1: if factoring is n“(1)-hard, then TCO, polynomial-size
Boolean formulas are not clusterable.

© Corollary 2: if there are n*(V)-hard pseudorandom functions in
logspace, polynomial-size DFAs are also not clusterable.
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Open Problems

© Better algorithm for hyperplanes

© Half-spaces
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Appendix: Cluster-Functional

Algorithm 1 Cluster-Functional

initialize G = (V,0), with | V| = m, each vertex corresponding an element
from the sample.
initialize Q = 0.
repeat
find the connected components of G and output them as clusters.
on a merge request to two clusters:
for each pair a, b of points in the union do
if (a — b) - x = 0 is independent from all equations in Q then
add (a—b)-x=0to Q.
end if
end for
for each non-edge (a, b), add (a, b) to G if (a— b)-x = 0 follows from
the equations in Q.
until the target clustering is found

Adam D. Lelkes (UIC) Interactive Clustering 41 / 42



Hyperplanes

Algorithm 2 Cluster-Hyperplanes

let H=S.
fori=1tod—1do
for each affine subspace F of dimension / do
if at least k' 4+ 1 elements of H are subsets of F then
replace these elements in H by F.
end if
end for
end for
repeat
output elements of H as hypothesis clusters.
on a merge request, merge the two clusters in H.
until the target clustering is found
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