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The Model

Model introduced by Balcan and Blum (2008)

Learner proposes hypothesis clustering; adversarial teacher replies
with

accept: the proposed clustering is the target clustering,
split(c): c contains points from more than one target cluster (c is
“impure”), or
merge(c , d): c ∪ d is a subset of a target cluster.
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A Simple Example
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A Simple Example
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The Model

Number of points: m (finite)

The number of target clusters, k , is fixed and known to the clustering
algorithm.

Target clustering comes from a concept class C (known to the
clustering algorithm).
(Note: C is a subset of the set of partitions of m points, therefore
finite.)

Definition

An interactive clustering algorithm is called efficient if it runs in
O(poly(k ,m, log |C |)) time and makes O(poly(k , log m, log |C |)) queries.
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Previous Work

Efficient algorithms for intervals, disjunctions, conjunctions (for
constant k) (Balcan and Blum 2008)

General (but inefficient) version space algorithm (Balcan and Blum
2008)

Efficient algorithm for rectangles, noisy version of the model,
improved general version space algorithm with query complexity
O(k log |C |) (Awasthi and Zadeh 2010)

Adam D. Lelkes (UIC) Interactive Clustering 11 / 42



Our Contribution

Efficient algorithm for parity (and, more generally, for linear
functionals over finite fields)

Efficient algorithm for hyperplanes in Rd (for constant d)

Cryptographic lower bounds
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Parity

Points are from {0, 1}n

Concept class: parity functions, i.e. functions of the form v 7→ x · v
(over GF (2))

Number of target clusters: 2

Idea: starting from all singletons, every merge request gives us a linear
equation for x . In each round, we output the coarsest clustering we know
to be pure.
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Hyperplanes

Clusters are k hyperplanes in Rd

Observation: if there are k + 1 collinear points, they have to be in the
same target cluster by pigeonhole principle; we can merge them into
one line.

We can then use the pigeonhole principle iteratively to merge higher
dimensional subspaces.

After this, we only need to follow a few merge requests to get the
target clustering.
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Planes

k=2
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Planes
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Planes

accept
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Lower Bounds

How can we prove lower bounds?

Unlike in the PAC model, we don’t have to generalize to new data.

Information-theoretic lower bound:

Lemma

For k = 2, every clustering algorithm has to make at least Ω
(
log |C |
logm

)
queries to find the target clustering.
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Lower Bounds

Idea: let us have two concept classes.

1. Big class: lemma gives query lower bound.

2. Small one: the definition of efficient clustering requires a small number
of queries.

We put all function into the big class, a pseudorandom function family in
the small class. If we could cluster the small class, that would break the
pseudorandom function family.

Adam D. Lelkes (UIC) Interactive Clustering 35 / 42



Lower Bounds

Idea: let us have two concept classes.

1. Big class: lemma gives query lower bound.

2. Small one: the definition of efficient clustering requires a small number
of queries.

We put all function into the big class, a pseudorandom function family in
the small class. If we could cluster the small class, that would break the
pseudorandom function family.

Adam D. Lelkes (UIC) Interactive Clustering 35 / 42



Lower Bounds

Big class:

Instance space: {0, 1}n

Concept class: all functions {0, 1}n → {0, 1}

Size of concept class: 22
n

Number of points: m(n) = nω(1) chosen carefully

Query lower bound from lemma: superpolynomial

Adam D. Lelkes (UIC) Interactive Clustering 36 / 42



Lower Bounds

Small class:

Instance space: {0, 1}n

Concept class: an t(n) = nω(1)-hard keyed pseudorandom function family
with seed length n

Size of concept class: 2n

Number of points: m(n) = nω(1) chosen carefully

Query upper bound from definition: poly(n, log m(n)) = poly(n)
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Lower Bounds

If we could cluster the small class efficiently, we could distinguish the
pseudorandom function family from the uniform distribution on all
functions.
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Lower Bounds

Results:

1 If there exist strongly pseudorandom permutations that can fool
distinguishers which have nω(1) time, then there exists a concept class
C which is hard to cluster.

2 Corollary 1: if factoring is nω(1)-hard, then TC 0, polynomial-size
Boolean formulas are not clusterable.

3 Corollary 2: if there are nω(1)-hard pseudorandom functions in
logspace, polynomial-size DFAs are also not clusterable.
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Open Problems

1 Better algorithm for hyperplanes

2 Half-spaces
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Appendix: Cluster-Functional

Algorithm 1 Cluster-Functional

initialize G = (V , ∅), with |V | = m, each vertex corresponding an element
from the sample.
initialize Q = ∅.
repeat

find the connected components of G and output them as clusters.
on a merge request to two clusters:
for each pair a, b of points in the union do

if (a− b) · x = 0 is independent from all equations in Q then
add (a− b) · x = 0 to Q.

end if
end for
for each non-edge (a, b), add (a, b) to G if (a− b) · x = 0 follows from
the equations in Q.

until the target clustering is found
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Hyperplanes

Algorithm 2 Cluster-Hyperplanes

let H = S .
for i = 1 to d − 1 do

for each affine subspace F of dimension i do
if at least k i + 1 elements of H are subsets of F then

replace these elements in H by F .
end if

end for
end for
repeat

output elements of H as hypothesis clusters.
on a merge request, merge the two clusters in H.

until the target clustering is found
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