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1 Introduction

Let A be an associative algebra over Q given by structure constants, which is
isomorphic to the full matrix algebra Mn(Q) for some positive integer n. A
recent paper of G. Ivanyos, L. Rónyai and J. Schicho [11] focuses on the problem
of finding an efficient algorithm which constructs explicitly an isomorphism
A →Mn(Q).

In order to construct such an isomorphism, we need to find a rank 1 matrix
with a small Frobenius norm in a maximal Z-order Λ inA, where the Frobenius
norm is inherited from an arbitrary embedding of A into Mn(R). A maximal
Z-order in A is essentially Mn(Z) transformed by an invertible rational matrix.
To establish a reasonable time bound for the algorithm, we need to find a tight
upper bound for the minimal norm of rank one matrices.

Rónyai et al. proved that there exists a rank one matrix in Λ whose Frobe-
nius norm is less than n. The upper bound for the norm we can obtain by
slightly modifying the proof is in fact better: it is the Hermite constant γn.
Thus a naturally arising question is whether this upper bound is optimal, i.e.
if there is an invertible real matrix P such that the minimal Frobenius norm
of PAP−1 for rank 1 matrices A ∈Mn(Z) is γn.

We use lattices in Euclidean spaces to examine this problem, thus estab-
lishing a firm link between the theory of lattices and the representation theory
of algebras. Furthermore, to point out the significance of this problem, let
us mention an article by Cremona et al. [7] in which the authors rely on an
algorithm to compute an isomorphism of the above mentioned kind explicitly
in order to study a group attached to elliptic curves over Q with the aim of
representing the group’s elements as genus one normal curves in Pn−1. This
representation in turn allows searching for rational points on these curves.
Thus the topic of our paper is in connection with difficult problems in arith-
metic geometry including the Birch and Swinnerton-Dyer conjecture. For the
exact nature of this connection we refer the reader to the series articles of
Cremona et al. [5] [6] [7]

The structure of the paper is the following:

1. This is the first section. We have already given a brief summary of the
problem investigated in this paper; more details are to be found below.

2. In the second section, we introduce the necessary definitions and theo-
rems that we will use throughout this paper.

3. The third section deals with the general case of rank one matrices. In this
section we prove that although Hermite’s constant is a good upper bound
for the norm of rank one matrices in maximal orders, the tight upper
bound is the so-called Bergé-Martinet constant. We will see that the
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two constants are equal in dimension n if there is an autopolar Hermite-
critical lattice of rank n.

4. These autopolar Hermite-critical lattices form the topic of the fourth sec-
tion. There are four of them known so far: in 2, 4, 8 and 24 dimensions.
We describe all of them.

5. In the fifth section we examine how fruit stands and checkerboards relate
to the Bergé-Martinet-constant in 3 and 5 dimensions, recall the recently
proved Kepler conjecture, and describe the 7-dimensional lattice attain-
ing the Bergé-Martinet constant.

6. In the sixth section we consider the case of general singular matrices.
We realize that we have been working with tensor products of lattices,
and use the results of Steinberg and Kitaoka to decide whether the ma-
trix with the smallest Frobenius norm in a maximal order always has
rank one. The answer will be negative in general, but affirmative in
small dimensions. We present a stronger version of Kitaoka’s theorem in
dimensions at most 8.

7. The seventh section presents the main application of the results obtained
in earlier sections: in small dimensions this presents a substantially im-
proved version of the first algorithm of IRS. Our variant surpasses the
original method in two ways: it has a simpler control structure as it no
longer involves jumps, moreover, a better bound is given for the size of
the region to be searched.

The main new results of this paper are Theorem 3.2 in Section 3 which
states the optimality of the Bergé-Martinet constant; Theorem 6.7 in Section
6 which improves Kitaoka’s result in small dimensions; and the improved al-
gorithm described in Section 7.
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2 Preliminaries

First let us explain the title of the paper.

Definition 2.1. A central simple algebra over A over a field K is a finite
dimensional associative algebra over K with center K and with no nontrivial
two-sided ideals.

Definition 2.2. A ring is called (left, resp. right) Artinian if it satisfies the
descending chain condition on (left, resp. right) ideals; i.e. if every descending
chain of (left, resp. right) ideals eventually stabilizes.

Theorem 2.3 (Artin and Wedderburn). Any Artinian semisimple ring R
is isomorphic to a direct sum of finitely many full matrix rings over division
rings (also called skew fields). In particular, any simple left or right Artinian
ring is isomorphic to a full matrix ring over a division ring.

It follows that every central simple algebra is isomorphic to a full matrix
algebra over a division ring D with center K.

Definition 2.4. An order in a central simple algebra A of dimension n2

over Q is a subring O ⊂ A whose additive group is a free abelian group of rank
n2. A maximal order O ⊂ A is an order that is not a proper subring of any
other order in A.

It can be shown that every maximal order in Mn(Q) is conjugate to Mn(Z).
Now we introduce lattices and recall some of their important properties.

For more details about lattices we refer the reader to [3], [15] and [17].

Definition 2.5. We call a set X ⊂ Rn discrete if for evey x ∈ X there
exists ε > 0 such that Bε(x) ∩X = {x} (i.e. X has no limit point).

Definition 2.6. A lattice is a discrete subgroup of the additive group (Rn; +).

The simplest example is the lattice of integers Zn in Rn.

Definition 2.7. The rank of a lattice L is the dimension of Span(L) as a
vector space.

For example, the rank of Zn is clearly n. Every lattice L ⊆ Rn is isomorphic
as a group to Zk for some k ≤ n. If k = n, then we speak about full lattices.

Definition 2.8. We call a subset B of a lattice L a basis if each lattice vector
can be written uniquely as an integral linear combination of the elements of B;
i.e. only linear combinations with integer coefficients are allowed.

It is easy to show that like vector spaces, every lattice has a basis.
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Definition 2.9. If (b1,b2, . . . ,bn) is a basis of a full lattice L, then we
use the notation L = L(b1,b2, . . . ,bn). Furthermore we call the matrix M =
(b1|b2| . . . |bn) the generator matrix for L; we shall say that | detM | is the
determinant of L which we will denote by detL.

The determinant is sometimes also called the volume of the lattice, since it
is the volume of the parallelepiped spanned by an arbitrary basis. Note that
there are many possible bases and generator matrices for the same lattice,
which leads to the following definition:

Definition 2.10. We say that two lattices are equivalent, if they can be
transformed into each other by rotation, reflection and/or change of scale.

We introduce another related matrix to lattices:

Definition 2.11. The matrix [〈bi,bj〉]ni,j=1 is the Gram matrix of L =
L(b1,b2, . . . ,bn), its determinant is the Gram determinant which is equal to
the square of the volume of the lattice.

We associate a so-called polar lattice to every lattice:

Definition 2.12. If L is a lattice, then L∗ := {y ∈ SpanR(L) : ∀x ∈ L :
〈x,y〉 ∈ Z} is the polar (or dual) lattice of L. If L = L∗, then we say that the
lattice L is autopolar.

Autopolar lattices will play a crucial role in our investigation in 8 and 24
dimensions.

Definition 2.13. The Euclidean norm of the shortest nonzero vector in a
lattice L is called the first minimum of L, and is denoted by λ1(L).

Now we are ready to define Hermite’s constant.

Definition 2.14. The nth Hermite’s constant is γn := supL

(
λ1(L)

(detL)1/n

)2

,

where L is any lattice of rank n. Furthermore, a lattice L is called Hermite

critical if
(

λ1(L)

(detL)1/n

)2

= γn.

Hermite proved that γn actually exists. The exact value of γn is only known
for n ∈ {1, 2, . . . , 8, 24}, see the table below.

n 1 2 3 4 5 6 7 8 24

γn 1 2√
3

3
√

2
√

2 5
√

8 6

√
64
3

7
√

64 2 4

Definition 2.15. For each positive integer n, let ωn = π
n
2 /Γ(1 + n

2
) denote

the volume of the unit ball in Rn, and let k(n) denote the closest integer to
5
3
(ω−1

n )
2
n .
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In order to avoid problems due to scaling, we introduce the following quan-
tity for lattices:

Definition 2.16. λ(L) := λ1(L)

(detL)1/n

Thus γn = supL(λ(L))2. As a lower bound of γn we have the following
theorem.

Theorem 2.17 (Conway and Thompson). For any dimension n there exists
a rank n autopolar lattice Ln such that λ(Ln)2 ≥ k(n).

Corollary 2.18. For each positive integer n, there exists a rank n autopolar
lattice Ln such that

λ(Ln)2 ≥ n

2πe
(1 + o(1)) as n→∞

This is also the best known asymptotic lower bound for γn; for the proof,
see [16], Theorem 9.5.

Now we introduce a quantity similar to Hermite’s constant:

Definition 2.19. We call the supremum of λ(L)λ(L∗) among rank n lattices
the nth Bergé-Martinet constant, which is denoted by γ′n.

It is probably not surprising that this constant was introduced by Bergé
and Martinet [1]. They calculated the exact value of γ′n for 1 ≤ n ≤ 4. For
5 ≤ n ≤ 7, the value of γ′n was determined by C. Poor and D. S. Yuen [19].

After these definitions the reader will understand the theorem from which
our question arises:

Theorem 2.20 (Rónyai et al.). Let Λ be a maximal Z-order in A = Mn(Q).
Then there exists an element C ∈ Λ which has rank 1 as a matrix, and whose
Frobenius norm ‖C‖ is less than n.

A maximal Z-order is essentially Mn(Z) transformed by an invertible ra-
tional matrix P ; i.e. Λ = PMn(Z)P−1. In the next section we shall see that in
fact the proof of this theorem shows that the theorem holds even if we choose
the Hermite constant γn instead of n as the upper bound.

Now there is only one step left before we can focus on our actual topic: as
the last theorem in this section, we recall Minkowski’s convex body theorem.

Theorem 2.21 (Minkowski). Let L be an n-rank lattice and K a convex
subset in Rn which is symmetric around 0. If the Lebesgue measure of K is at
least 2n times greater than detL, then K contains at least one nonzero lattice
point from L.

The proof can be found in [16], Chapter II, §1.
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3 The general case

Here we include the full proof of theorem 2.20.

Proof. Let Λ′ denote the standard maximal order Mn(Z) in A. The theory of
maximal orders in central simple algebras over Q implies that there exists an
invertible rational matrix P ∈Mn(Q) such that it gives us Λ from Λ′:

Λ = PΛ′P−1.

Set Q = P/(| detP |)1/n. Clearly Q ∈ Mn(R), detQ is ±1 and QXQ−1 =
PXP−1 holds for any X ∈Mn(Q). Let ρ denote the left ideal of Λ′ consisting
of all integer matrices which have 0 everywhere except in the first column.
Clearly ρ is a lattice of determinant 1 in the linear space S of all real matrices
having nonzeros only in the first column. Now the lattice L = Qρ will be a
sublattice of S, with determinant 1.

We can apply Minkowski’s theorem on lattice points in convex bodies to
L in S, and to the ball of radius

√
n in S centered at the zero matrix (we

refer here to the Euclidean distance, that is, the Frobenius norm on Mn(R)).
The volume (calculated in S) of the ball is more than 2n, as it contains 2n

internally disjoint copies of the n-dimensional unit cube, and more. We infer
that there exists an element B ∈ ρ such that QB is a nonzero matrix whose
length is less than

√
n. Clearly B and hence QB is a rank 1 matrix.

Next consider the ”transpose” of this argument with Q−1 in the place of Q:
there exists a nonzero integer matrix B′, which is zero everywhere except in
the first row, such that B′Q−1 is nonzero, and has Euclidean length less than√
n.

Now
C = PBB′P−1 = QBB′Q−1

meets the requirements of the statement. Indeed, it is in Λ because BB′ ∈
Mn(Z). It has length less than n because the Frobenius norm is submultiplica-
tive:

‖C‖ = ‖(QB)(B′Q−1)‖ ≤ ‖QB‖ · ‖B′Q−1‖ < (
√
n)2 = n.

Obviously, C has rank at most 1, as B and B′ are of rank 1. Finally, from the
shape of B and B′ we see, that BB′ 6= 0, hence rankBB′ = rankC = 1. This
finishes the proof.

First let us observe that we do not actually need Minkowski’s convex body
theorem for the proof, in fact we can prove a stricter upper bound with a
slightly different reasoning.

Theorem 3.1. Theorem 2.20 holds even with γn as an upper bound instead
of n.
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Proof. Our task is to find a rank one matrix C ∈ QMn(Z)Q−1 such that
‖C‖ ≤ γn. The lattice Qρ has rank n and determinant 1, therefore the shortest
nonzero vector must have length less than or equal to

√
γn. Let v1 be such

a vector. The same holds for (Q−1)T : let us denote a vector not longer than√
γn in (Q−1)Tρ by v2. It follows that the dyadic product of v1 and v2 is a

rank one matrix whose Frobenius norm is at most γn.

Here Q is to be seen as the generator matrix for the full rank lattice L in
Rn; clearly the upper bound can only be optimal if L is Hermite critical. Since
the generating matrix of L∗ is the transpose of Q−1, it follows that L∗ has to
be Hermite critical as well. Should there exist a rank n Hermite critical lattice
which is autopolar, it is clear that the upper bound is optimal in n dimensions.

We will see that such a matrix does not always exist. This implies that
Hermite’s constant is not always the optimal upper bound; we can formulate
an even stronger version of the above using the Bergé-Martinet constant:

Theorem 3.2. Let us assume that A = Mn(Q). Then for every maximal
Z-order Λ in A the minimal Frobenius norm of the rank 1 matrices in Λ is
less than or equal to γ′n. Furthermore, this is the optimal upper bound; i.e.

sup
Λ⊂A max. order

min
C∈Λ, rankC=1

‖C‖ = γ′n

and there is an invertible real matrix Q̂ ∈ GLn(R) such that

min
B∈Mn(Z), rankB=1

‖Q̂BQ̂−1‖ = γ′n

Proof. Λ = QMn(Z)Q−1 for some invertible rational matrix Q. After possibly
multiplying by a real constant we can assume that detQ = ±1, Q ∈ Mn(R).
Every rank one matrix in Mn(Z) is the dyadic product of two vectors w1 ∈ Zn
and wT2 ∈ (Zn)T . Thus every rank one C matrix in Λ can be written in the
form C = Qw1 · ((Q−1)Tw2)T . Obviously ‖C‖ = ‖Qw1‖ · ‖((Q−1)Tw2)T‖.

Again, let ρ denote the left ideal of Mn(Z) consisting of all integer matrices
which have 0 everywhere except in the first column. Consider the lattice
L ∼= Qρ. Then (Q−1)T is the generator matrix for L∗ ∼= (Q−1)Tρ. min

C∈Λ
‖C‖ =

min
w1∈Zn

‖Qw1‖ · min
w2∈Zn

‖((Q−1)Tw2)T‖ is attained by the shortest nonzero vectors

in L and L∗, so min
C∈Λ
‖C‖ = λ(Qρ) · λ((Qρ)∗). Therefore

sup
Λ⊂A max. order

min
C∈Λ, rankC=1

‖C‖ ≤ sup
Q∈Mn(R)

λ(Qρ) · λ((Qρ)∗) = γ′n.

Moreover, there is a sequence Qm of invertible rational matrices such that

lim
m→∞

min
B∈Mn(Z), rankB=1

‖QmBQ
−1
m ‖ = γ′n.
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This shows that in general there is no better bound than γ′n. Also, by mul-
tiplying each Qm by an appropriate real constant, we can assume that ∀m ∈
N : ‖Qm‖ = 1; thus according to the Bolzano-Weierstrass theorem there is a
subsequence Qmk

such that lim
k→∞

Qmk
= Q̂ exists. Since matrix multiplication

and inverse are continuous as well as the Frobenius norm, it is clear that Q̂ is
an invertible real matrix and min

B∈Mn(Z), rankB=1
‖Q̂BQ̂−1‖ = γ′n.

We remark that this bound remains valid if Q is a real (and not necessarily
rational) matrix.

See the table below for the exact value of γ′n in 1, 2, 3, 4, 5, 6, 7, 8 and 24
dimensions.

n 1 2 3 4 5 6 7 8 24

γ′n 1 2√
3

√
3
2

√
2
√

2
√

8
3

√
3 2 4

The following table contains the differences γn − γ′n rounded to four deci-
mals:

n 1 2 3 4 5 6 7 8 24
γn − γ′n 0 0 0.0352 0 0.1015 0.0324 0.0794 0 0

In general we have γ′n ≤ γn. The Conway-Thompson theorem gives the
asymptotic lower bound

n

2πe
(1 + o(1)) ≤ γ′n, as n→∞

This appears to be the best lower bound to date on γn as well. It is also known
that

γn ≤
1.744n

2πe
(1 + o(1)), as n→∞

For the proof, see [3], Chapter 9.
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4 Autopolar Hermite critical lattices

In this section we deal with the simplest cases, when there is an autopolar
Hermite critical lattice. This is the case in 2, 4, 8 and 24 dimensions. For
detailed descriptions of the lattices mentioned in this section and the following
sections, see the book of Conway and Sloane [3]; the definitions used for most
of the lattices mentioned in this paper are from this excellent book.

In 2 dimension our lattice is the hexagonal lattice A2 in which three nearby
points form an equilateral triangle. It has generator matrix

M =

(
1
2

1
√

3
2

0

)

Obviously λ(A2)2 = 2√
3
, and it is easy to see that every two dimensional

Hermite critical lattice is equivalent to A2. Fortunately A2 is autopolar as
well. Furthermore,

M−1 =

(
0 2√

3

1 − 1√
3

)

Thus we obtain that

M

(
a b
c d

)
M−1 =

( b
2

+ d 1√
3

(
a− b

2
+ 2c− d

)
√

3
2
b a− b

2

)

This matrix has Frobenius norm

∥∥∥∥M (
a b
c d

)
M−1

∥∥∥∥ =

√(
a− b

2

)2

+
3

4
b2 +

(
b

2
+ d

)2

+
1

3

(
a− b

2
+ 2c− d

)2

Obviously this expression is minimal among (a, b, c, d) ∈ Z2 \ {(0, 0, 0, 0)}
when one element is 1, and the others are 0. So it is easy to see using elemen-
tary techniques that γ2 is an optimal upper bound for the Frobenius norm of
MCM−1 for arbitrary (not only rank one) 0 6= C ∈ M2(Z). Now let us move
on to eight dimensions; we will deal with the four dimensional case in the next
section.

The 8 dimensional lattice E8 consists of the points which have the following
two properties: (1) every coordinate is in 1

2
Z and (2) the sum of the coordinates

is an even integer. A generator matrix for E8 is
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M =



2 −1 0 0 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 0 0 1 −1 0 0 1/2
0 0 0 0 1 −1 0 1/2
0 0 0 0 0 1 −1 1/2
0 0 0 0 0 0 1 1/2
0 0 0 0 0 0 0 1/2


,

detE8 = 1 and λ(E8)2 = 2 which is exactly the Hermite constant γ8.
Furthermore it is not difficult to see that E8 is autopolar, thus it follows that
the upper bound is optimal in 8 dimensions.

The 24 dimensional autopolar Hermite critical lattice was discovered by
John Leech in 1965, thus it is called the Leech lattice, and is denoted by Λ24.
Its construction is somewhat more complicated than that of E8; Conway and
Sloane describe more than 30 different constructions in [3].

Here we briefly describe one of these constructions which is based on an
intuitive idea about lattice packings of spheres. Sphere packings are arrange-
ments of non-overlapping identical spheres; the goal is to find the densest such
packing. A natural way to arrange the spheres is to choose lattice points as
centers of the spheres; these packings are called lattice packings. The problem
of densest sphere packings is still unsolved even in 4 dimensions. In 2 dimen-
sions the hexagonal lattice packing is known to be the densest. In 3 dimensions
the problem has recently been solved by Thomas Hales, whose proof involved
checking a tremendous amount of individual cases using a computer: the proof
is more than a hundred pages long with additional gigabytes of data [10].

An intuitive way to construct lattice packings is to build up the packings
in layers (much like stacking oranges) starting from the one-point lattice Λ0.
Then for all n ≥ 1 let us take all n dimensional lattices with λ1 = 2 that have
at least one sublattice Λn−1, and select those of minimal determinant. Any
such lattice is denoted by Λn. In some higher dimensional spaces there are
several such lattices; in lower dimensions that we are interested in, they are
unique.

These lattices are the so-called laminated lattices. Λ1 is the integer lattice
Z, Λ2

∼= A2 is the hexagonal lattice which we already know, and Λ24 is the
Leech lattice.

It can be shown that the Leech lattice is autopolar, det Λ24 = 1 and
λ1(Λ24)2 = 4 = γ24.
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5 Pyramids of oranges and checkerboards

We have already seen the generalization of the way greengrocers stack oranges
to arbitrary dimensions. As mentioned without proof in the last section, it
happens that the lattice 24 dimensional greengrocers would use is Hermite
critical and autopolar at the same time. In this section we will stick to lower
dimensions.

The laminated lattice Λ3 is called the face-centered cubic lattice. Hales
proved that this sphere packing found in the pyramids of oranges on every
fruit stand has the greatest density that can be attained. Notwithstanding
Hales’ proof, this fact is still known as the Kepler conjecture, named after the
German astronomer and mathematician who first stated it in 1611 [13].

Here we will use another definition of this lattice that is simpler than the
construction of laminated lattices. The checkerboard lattice Dn (n ≥ 3) is a
sublattice of Zn consisting of the points for which the sum of the coordinates
is even; that is, the lattice we obtain by coloring the points of Zn alternately
red and blue, and taking the red points. A generator matrix for Dn is

M =



−1 1 0 · · · 0
−1 −1 1 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · −1


For n ∈ {3, 4, 5} the checkerboard lattices are equivalent to the laminated

lattices Λ3, Λ4 and Λ5, respectively, and they are Hermite critical. A generator
matrix for D∗n is

M =


1 0 · · · 0 1/2
0 1 · · · 0 1/2
...

...
. . .

...
...

0 0 · · · 1 1/2
0 0 · · · 0 1/2


It happens that D4

∼= D∗4, so the upper bound γ4 is optimal in four dimen-
sions. In general detDn = 4, λ1(Dn) =

√
2, detD∗n = 1

4
, and λ1(D∗n) = 1 for

n ≥ 4.

Now let us consider the case of our three dimensional world. Here the polar
lattice D∗3 is the body-centered cubic lattice. A simple definition of this lattice
is that it consists of the points with all even or all odd coordinates, yielding
the generator matrix
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M =

2 0 1
0 2 1
0 0 1


The body-centered cubic lattice is the solution for the covering problem in 3

dimensions. The covering problem asks for the most economical way to cover
Rn with identical overlapping spheres. We do not need the exact definition
here, we refer again the curious reader to [3]. In addition, body-centered
cubic lattices are very common in the crystal structure of metals such as iron,
chromium or sodium.

The problem is that although D3 is Hermite critical, D∗3 is not: λ(D3∗) =
√

3, so the smallest norm we obtain for a rank one matrix using D3 is
√

3
2
.√

3
2
≈ 1.22474, γ3 = 3

√
2 ≈ 1.25992.

One intuitive idea that comes to mind is that we should try to move D3

closer to its dual by constructing a lattice that is “between” D3 and D∗3. In
fact, Conway and Sloane managed to construct such a lattice [4]. This lattice
is called the central centered-cuboidal lattice, and it is the autopolar lattice
in 3 dimensions for which λ(L)2 is maximal. Unfortunately this maximum is
1
2

+
√

1
2
≈ 1.20711, so from our viewpoint this lattice is weaker than D3.

We have seen that the optimal upper bound is the Bergé-Martinet constant,
which is equal to Hermite’s constant if there is an autopolar Hermite critcal
lattice. It turns out that in three dimensions D3 attains the Bergé-Martinet
constant, as does D5 in five dimensions. The value of the constant for 3

and 5 dimensions is
√

3
2

and
√

2, respectively. More generally, ∀n > 3 :

λ(Dn)λ(D∗n) =
√

2.
In six and seven dimensions, the optimal lattices are E6 and E7. These are

both sublattices of the already familiar E8: E7 consists of the vectors in E8

that are perpendicular to any minimal vector v ∈ E8, whereas the vectors in

E6 are those that are perpendicular to any A2-sublattice V in E8. γ′6 =
√

8
3

and γ′7 =
√

3.
After enumerating all these cases, we can summarize the results as follows.

Theorem 5.1. The lowest upper bound for the minimal norm of rank one
matrices in maximal orders of Mn(Q) for n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 24} and the
corresponding lattices attaining the bound are the following:

n 1 2 3 4 5 6 7 8 24

bound 1 2√
3

√
3
2

√
2
√

2
√

8
3

√
3 2 4

lattice Z A2 D3 D4 D5 E6 E7 E8 Λ24
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6 General singular matrices

So far we have only treated rank one matrices. However, it is natural to
ask whether a singular matrix with minimal norm in Λ has always rank one.
Furthermore, if we consider all the singular matrices, will the lattices attaining
the maximum of minimal norms remain the same? In the simple case of two
dimensions, we have already seen that the hexagonal lattice is optimal not
only for rank one matrices.

In order to answer this question, we have to understand the structure of
the lattice QAQ−1, where Q is a nonsigular rational (or more generally real)
matrix, and A runs over the elements of Mn(Z). The key observation is that
this lattice is in fact the tensor product of the lattice generated by Q and its
polar lattice.

Let L and M be two lattices in Rm and Rn, respectively. Then L ⊗Z M
embeds naturally in Rm ⊗R Rn. This allows us to define L ⊗M as the set of
integral linear combinations of the tensors x⊗ y from Rm ⊗R Rn where x ∈ L
and y ∈M .

Note that, in terms of coordinates, L⊗M can be viewed as the set (actually
lattice) of m by n matrices over R which are integral linear combinations of
dyads of the form xyT , where x ∈ L and y ∈ M . Note also that Rm ⊗ Rn is
an Euclidean space with the law 〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1,x2〉〈y1,y2〉. In this
setting the norm on the tensor product is the same as the Frobenius norm on
Mm,n(R).

Thus our question is whether λ(L ⊗ L∗) = λ(L)λ(L∗) holds. (Obviously
λ(L⊗ L∗) ≤ λ(L)λ(L∗).) The following theorem is a direct application of the
Conway-Thompson theorem, which answers our question in general.

Theorem 6.1 (Steinberg). For any dimension n ≥ 292 there exists a lattice
L so that λ(L⊗ L∗) < λ(L)λ(L∗).

A proof for this theorem can be found in [16], Chapter II, §9; here we
include a slightly modified version of this proof which is more in accordance
with our terminology.

Proof. L ⊗ L∗ ∼= Hom(L,L) ∼= {QAQ−1 : A ∈ Mn(Z)}, where Q is the gen-
erator matrix for L. Let us choose A = I (I denotes the identity matrix).
‖QIQ−1‖ =

√
n, hence λ1(L⊗ L∗) ≤

√
n.

Now let us apply the theorem of Conway and Thompson. For each positive
integer n, there is a rank n autopolar lattice Ln such that λ(Ln)2 ≥ n

2πe
(1+o(1))

as n→∞, which is greater than
√
n for sufficiently large n.

More precisely, for n ≥ d(2πe)2e = 292, computation shows that k(n) >√
n. In this case λ(L⊗ L∗) ≤

√
n < k(n) ≤ λ(L)λ(L∗).
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We have obtained that in general rank one matrices are not optimal. How-
ever, in small dimensions, the smallest zero divisors have rank one. The fol-
lowing definitions were introduced by Y. Kitaoka [14].

Definition 6.2. We say that a lattice L is of E-type if every minimal
vector of L⊗M is of the form x⊗ y (x ∈ L, y ∈M) for any lattice M .

Definition 6.3. κ := max{k ∈ N : ((γr ≥
√
r) ∧ (r ≤ k)) =⇒ r = 1}.

Kitaoka proved that κ ≥ 42 ([14], §1, Lemma 2). Theorem 1 of the same
section has interesting consequences.

Theorem 6.4 (Kitaoka). If L is a lattice of rank at most κ, then L is of
E-type.

Corollary 6.5. In any dimension n ≤ 42 and any maximal order Λ ⊂
Mn(Q) the matrices with the smallest Frobenius norm in Λ are of rank one.

Proof. Let Λ be given by the transformation matrix Q. Qρ is a rank n lattice (ρ
as in the proof of Theorem 2.20), hence it is of E-type. Since Λ ∼= Qρ⊗ (Qρ)∗,
the matrices of minimal norm in Λ are dyadic products of vectors in Qρ and
(Qρ)∗.

After obtaining that in at most 42 dimensions the smallest zero divisors in
any maximal order Λ have rank one, we might wonder if there is a positive
constant C such that every singular matrix of rank at least two has Frobenius
norm at least C times the minimal norm in Λ. In order to obtain such a
constant C, we use a modified version of Kitaoka’s proof for Theorem 6.4.

Lemma 6.6 (Kitaoka). Let A, B be positive definite real symmetric matri-
ces of degree n; then we have Tr(AB) ≥ n n

√
detA n

√
detB.

Proof. Put B = P TDP , where D is diagonal and P is orthogonal. Let
a1, . . . , an and d1, . . . , dn be diagonals of PAP T and D, respectively. Then

Tr(AB) = Tr(AP TDP ) = Tr(PAP TD) =
n∑
i=1

aidi

The arithmetic-geometric mean inequality implies that

n∑
i=1

aidi ≥ n n

√√√√ n∏
i=1

(aidi) = n
n
√

detB n

√√√√ n∏
i=1

ai

By using Hadamard’s inequality for positive definite matrices we obtain that

n
n
√

detB n

√√√√ n∏
i=1

ai ≥ n
n
√

detB n
√

det(PAP T ) = n
n
√

detA
n
√

detB.
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Theorem 6.7. Let L be a lattice of rank at most 8. Then for any lattice M ,

every tensor of rank at least two in L⊗M has norm at least
√

3
2
λ1(L⊗M).

Proof. Let v be a tensor in L⊗M . Then v =
∑r

i=1 xi ⊗ yi, where 2 ≤ r ≤ 8,
and xi ∈ L, yi ∈ L∗ for every i ∈ {1, 2, . . . , r}. In these representations of v
we take one with minimal r. Then {x1, . . . ,xr} and {y1, . . . ,yr} are linearly
independent sets in L and M , respectively. Noting

‖v‖2 =

∥∥∥∥∥
r∑
i=1

xi ⊗ yi

∥∥∥∥∥ =
r∑

i,j=1

〈xi,xj〉〈yi,yj〉 = Tr([〈xi,xj〉]ri,j=1 · [〈yi,yj〉]ri,j=1),

and using Lemma 6.6 we get ‖v‖2 ≥ r (det[〈xi,xj〉] · det[〈yi,yj〉])1/r.
Now let us assume that ‖v‖2 < 3

2
λ1(L ⊗ M)2. It follows that ‖v‖2 <

3
2
(λ1(L)λ1(M))2 ≤ 3

2
(λ1(L(x1, . . . ,xr))λ1(L(y1, . . . ,yr)))

2. Therefore

r <
3

2
· (λ1(L(x1, . . . ,xr)))

2

(det[〈xi,xj〉])1/r
· (λ1(L(y1, . . . ,yr)))

2

(det[〈yi,yj〉])1/r
≤ 3

2
γ2
r ,

since [〈xi,xj〉]ri,j=1 and [〈yi,yj〉]ri,j=1 are the Gram matrices for L(x1, . . . ,xr)
and L(y1, . . . ,yr), respectively. On the other hand, min2≤r≤8 r/γ

2
r = 3

2
, hence

we have r = 1.

By choosing M = L∗ we obtain that the constant C we were looking for

is at least
√

3
2
. In fact, even though we did not assume in the proof that

M = L∗, C =
√

3
2

is tight in the following sense: there exists a lattice L with

rankL ≤ 8 such that the minimal norm among tensors of rank at least two
in L ⊗ L∗ is exactly Cλ1(L ⊗ L∗). This lattice is the hexagonal lattice which
attains the Hermite constant γ2 = 2√

3
. Computation shows that the minimal

norm among rank two tensors in A2 ⊗ A∗2 is
√

2 =
√

3
2
· 2√

3
.

We remark that a little bit better C value is possible in the practically
interesting range 3 ≤ r ≤ 8.
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7 The IRS algorithm in small dimensions

In this section we describe the improved Ivanyos-Rónyai-Schicho algorithm in
small dimensions. For the original algorithm and the proofs of the preceding
lemmas we refer the reader to [11].

Lemma 7.1. Let X ∈ Mn(C) be a matrix such that detX is an integer,
and ‖X‖ <

√
n. Then X is a singular matrix.

Lemma 7.2. Let Γ be a full lattice in Rm. Suppose that we have a basis
b1, . . . ,bm of Γ over Z such that

‖b1‖ · ‖b2‖ · · · ‖bm‖ ≤ cm · det(Γ)

holds for a real number cm > 0. Suppose that

v =
m∑
i=1

αibi ∈ Γ, αi ∈ Z.

Then we have |αi| ≤ cm
‖v‖
‖bi‖ for i = 1, . . . ,m.

The input of the algorithm is an associative algebra A given by structure
constants, which is isomorphic toMn(Q). We intend to find a rank one element.

The improved IRS algorithm consists of the following steps:

1. Use the Ivanyos-Rónyai algorithm [12] to construct a maximal order Λ
in A. This is a polynomial time ff-algorithm. 1

2. Compute an embedding of A into Mn(R). One uses here the deter-
ministic polynomial time algorithm obtained via the derandomization
by de Graaf and Ivanyos [9] of the Las Vegas algorithm of Eberly [8].
This way we have a Frobenius norm on A. For X ∈ A we can set
‖X‖ =

√
Tr(XTX). Also, via this embedding Λ can be viewed as a full

lattice in Rm, where m = n2. The length ‖v‖ of a lattice vector v is just
the Frobenius norm of v as a matrix.

3. Compute a rational approximation A of our basis B of Λ with precision
q0(B, 1

2
, 2

m−1
2 ) (see Section 2 in [2] for the definition of the precision

parameter q0). One can use here the algorithm of Schönhage [20].

4. Compute a reduced basis b1, . . . ,bm of the lattice Λ ⊂ Rm by applying

the LLL algorithm to A. The value of cm is (γm)
m
2
(

3
2

)m
2

m(m−1)
2 from the

approximate version of the LLL algorithm developed by Buchmann, see
Corollary 4 of [2].

1For the definiton of ff-algorithms we refer the reader to [11].
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5. Let us assume that ‖b1‖ ≤ ‖b2‖ . . . ‖bn‖. Generate all integral linear

combinations C ′ =
∑m

i=1 αibi, where αi are integers, |αi| ≤ cm
min{γ′n,‖b1‖}

‖bi‖
until a C is found with rankC = 1. Output this C.

Theorem 7.3. This algorithm is correct in dimensions n ≤ 42. Moreover,
the algorithm runs in ff-polynomial time.

Proof. The proof of the original IRS algorithm is to be found in [11]. That
algorithm includes an extra step between Steps 4 and 5: if there is a zero
divisor bi among the basis elements, and rank bi > 1, then we compute the
right identity element e of the left ideal Abi by solving the straightforward
system of linear equations, set A := eAe and go back to Step 1.

The reason we have to jump back possibly several times in Step 5 is that
we need to have a lower bound for the norm of the vectors bi in order to obtain
a good upper bound for the coefficients αi. (We obtain that ‖bi‖ ≥

√
n holds

for every i in Step 5 according to Lemma 7.1.)
However, according to the results of Kitaoka we know that in at most 42

dimensions if there is a matrix bi of rank at least two in the maximal order
Λ, then there must be a rank one matrix with norm less than ‖bi‖. Thus for
the vector v in Lemma 7.2 we have the bound ‖v‖ < ‖bi‖; hence by using

Theorem 3.2 as well we have |αi| ≤ cm
min{γ′n,‖b1‖}

‖bi‖ ≤ cm.
This means that using the results of the previous sections, we obtain that

for n ≤ 42 there is no need for this extra step, and the upper bound for |αi| is
cm

min{γ′n,‖b1‖}
‖bi‖ .

Furthermore, Theorem 6.7 implies that whenever we have a matrix bi of
rank r where 2 ≤ r ≤ 8 it follows that there exists a rank one matrix with

Frobenius norm at most
√

γ2r
r
‖bi‖. For small ‖bi‖ this further reduces the size

of the region to be searched.
For n > 42, we know that |αi| ≤ cm

γ′n
‖bi‖ ≤ cm

γ′n√
n
. It follows that as n→∞,

|αi| ≤ cm

n
πe

(1 + o(1))
√
n

= cm

√
n

πe
(1 + o(1))
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8 Concluding remarks

This research was motivated by an algorithmic problem: the task of finding
rank one elements in full matrix algebras over Q which are given by structure
constants. We started out with a theorem from the paper of Ivanyos, Rónyai
and Schicho [11] which led to questions related to lattices and their invariants
such as the Hermite and the much more recent Bergé-Martinet constant. We
have shown that the latter gives the best possible bound in Theorem 3.2. Also
we collected information on small dimensional extremal lattices relevant to
our problem. By using a surprising result of Kitaoka on tensor products of
lattices, we improved and simplified the IRS algorithm in small dimensions.
Also, via extending Kitaoka’s approach we obtained a tool for possible further
improvement.

There are several relevant open questions and possible ways for generaliza-
tion. We propose the following problems for further research:

1. A natural generalization would be to study similar problems for M2(D)
instead of Mn(Q), where D is a finite dimensional skew field over Q, such
as the rational quaternions.

2. One could try to establish Kitaoka-type bounds for the special case
M = L∗ with the Bergé-Martinet constant in the place of the Hermite-
constant.

3. Although not in direct connection with our goals, it is nevertheless an
interesting question whether Theorem 6.1 implies that there are singular
matrices with a norm smaller than the norm of the smallest rank one
matrix in sufficiently large dimensions.
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Siegel cusp forms”, Bull. London Math. Soc. 38 (2006), 913-924.

[20] A. Schönhage, “The fundamental theorem of algebra in terms of compu-
tational complexity”, Preliminary report, Universität Tübingen (1982).


