11.6 Calculus of Vector-Valued Functions

We now turn to the topic of ultimate interest in this chapter: the calculus of vector-valued functions. Everything you learned about differentiating and integrating functions of the form y = f(x) carries over to vector-valued functions $\mathbf{r}(t)$; you simply apply the rules of differentiation and integration to the individual components of \mathbf{r} .

The Derivative and Tangent Vector

Orientation of Curves

Integrals of Vector-Valued Functions

Quick Quiz

SECTION 11.6 EXERCISES

Review Questions

- **1.** Explain how to compute the derivative of $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$.
- **2.** Explain the geometric meaning of $\mathbf{r}'(t)$.
- 3. Given a tangent vector on an oriented curve, how do you find the unit tangent vector?
- 4. Compute $\mathbf{r}''(t)$ when $\mathbf{r}(t) = \langle t^{10}, 8t, \cos t \rangle$.
- 5. How do you find the indefinite integral of $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$?
- 6. How do you evaluate $\int_{a}^{b} \mathbf{r}(t) dt$?

Basic Skills

- 7-12. Derivatives of vector-valued functions Differentiate the following functions.
- 7. $\mathbf{r}(t) = \langle 2 t^3, 6 \sqrt{t}, 3/t \rangle$
- 8. $\mathbf{r}(t) = \langle 4, 3 \cos 2t, 2 \sin 3t \rangle$
- **9.** $\mathbf{r}(t) = \langle e^t, 2 e^{-t}, -4 e^{2t} \rangle$
- **10.** $\mathbf{r}(t) = \langle \tan t, \sec t, \cos^2 t \rangle$
- **11.** $\mathbf{r}(t) = \langle t e^{-t}, t \ln t, t \cos t \rangle$
- **12.** $\mathbf{r}(t) = \langle (t+1)^{-1}, \tan^{-1} t, \ln(t+1) \rangle$

13-16. Tangent vectors For the following curves, find a tangent vector at the given value of t.

- **13.** $\mathbf{r}(t) = \langle t, \cos 2t, 2\sin t \rangle, \ t = \pi/2$
- **14.** $\mathbf{r}(t) = \langle 2 \sin t, 3 \cos t, \sin(t/2) \rangle, t = \pi$

Page 2

- **15.** $\mathbf{r}(t) = \langle 2 t^4, 6 t^{3/2}, 10/t \rangle, t = 1$
- **16.** $\mathbf{r}(t) = \langle 2 e^t, e^{-2t}, 4 e^{2t} \rangle, t = \ln 3$

17-20. Unit tangent vectors For the following parametrized curves, find the unit tangent vector.

17.
$$\mathbf{r}(t) = \langle 8, \cos 2t, 2\sin 2t \rangle$$
, for $0 \le t \le 2\pi$

- **18.** $\mathbf{r}(t) = \langle \sin t, \cos t, \cos t \rangle$, for $0 \le t \le 2\pi$
- **19.** $\mathbf{r}(t) = \langle t, 2, 2/t \rangle$, for $t \ge 1$
- **20.** $\mathbf{r}(t) = \langle e^{2t}, 2e^{2t}, 2e^{-3t} \rangle$, for $t \ge 0$

21-24. Unit tangent vectors at a point For the following parametrized curves, find the unit tangent vector at the given value of t.

- **21.** $\mathbf{r}(t) = \langle \cos 2t, 4, 3\sin 2t \rangle$, for $0 \le t \le \pi, t = \pi/2$
- **22.** $\mathbf{r}(t) = \langle \sin t, \cos t, e^{-t} \rangle$, for $0 \le t \le \pi, t = 0$
- **23.** $\mathbf{r}(t) = \langle 6t, 6, 3/t \rangle$, for 0 < t < 2, t = 1
- **24.** $\mathbf{r}(t) = \langle \sqrt{7} e^t, 3 e^t, 3 e^t \rangle$, for $0 \le t \le 1, t = \ln 2$

25-30. Derivative rules Let

$$\mathbf{u}(t) = 2t^3\mathbf{i} + (t^2 - 1)\mathbf{j} - 8\mathbf{k}$$
 and $\mathbf{v}(t) = e^t\mathbf{i} + 2e^{-t}\mathbf{j} - e^{2t}\mathbf{k}$.

Compute the derivative of the following functions.

- **25.** $(t^{12} + 3t)$ **u**(t)
- **26.** $(4t^8 6t^3)$ **v**(*t*)
- **27.** $\mathbf{u}(t^4 2t)$
- **28.** $v(\sqrt{t})$
- **29.** $u(t) \cdot v(t)$
- **30.** $u(t) \times v(t)$

31-34. Derivative rules Compute the following derivatives.

31.
$$\frac{d}{dt} \left[t^{2} (\mathbf{i} + 2 \mathbf{i} - 2 t \mathbf{k}) \cdot \left(e^{t} \mathbf{i} + 2 e^{t} \mathbf{j} - 3 e^{-t} \mathbf{k} \right) \right]$$
32.
$$\frac{d}{dt} \left[\left(t^{3} \mathbf{i} - 2 t \mathbf{j} - 2 \mathbf{k} \right) \times \left(t \mathbf{i} - t^{2} \mathbf{j} - t^{3} \mathbf{k} \right) \right]$$
33.
$$\frac{d}{dt} \left[\left(3 t^{2} \mathbf{i} + \sqrt{t} \mathbf{j} - 2 t^{-1} \mathbf{k} \right) \cdot \left(\cos t \mathbf{i} + \sin 2 t \mathbf{j} - 3 t \mathbf{k} \right) \right]$$

34.
$$\frac{d}{dt} \left[\left(t^3 \, \mathbf{i} + 6 \, \mathbf{j} - 2 \, \sqrt{t} \, \mathbf{k} \right) \times \left(3 \, t \, \mathbf{i} - 12 \, t^2 \, \mathbf{j} - 6 \, t^{-2} \, \mathbf{k} \right) \right]$$

35-40. Higher derivatives *Compute* $\mathbf{r}^{"}(t)$ *and* $\mathbf{r}^{""}(t)$ *for the following functions.*

35.
$$\mathbf{r}(t) = \langle t^2 + 1, t + 1, 1 \rangle$$

36. $\mathbf{r}(t) = \langle 3 t^{12} - t^2, t^8 + t^3, t^{-4} - 2 \rangle$
37. $\mathbf{r}(t) = \langle \cos 3 t, \sin 4 t, \cos 6 t \rangle$
38. $\mathbf{r}(t) = \langle e^{4t}, 2 e^{-4t} + 1, 2 e^{-t} \rangle$
39. $\mathbf{r}(t) = \sqrt{t+4} \mathbf{i} + \frac{t}{t+1} \mathbf{j} - e^{-t^2} \mathbf{k}$

40.
$$\mathbf{r}(t) = \tan t \, \mathbf{i} + \left(t + \frac{1}{t}\right) \mathbf{j} - \ln \left(t + 1\right) \mathbf{k}$$

41-44. Indefinite integrals Compute the indefinite integral of the following functions.

41.
$$\mathbf{r}(t) = \langle t^4 - 3t, 2t - 1, 10 \rangle$$

42. $\mathbf{r}(t) = \langle 5t^{-4} - t^2, t^6 - 4t^3, 2/t \rangle$
43. $\mathbf{r}(t) = \langle 2\cos t, 2\sin 3t, 4\cos 8t \rangle$

44.
$$\mathbf{r}(t) = t e^{t} \mathbf{i} + t \sin t^{2} \mathbf{j} - \frac{2 t}{\sqrt{t^{2} + 4}} \mathbf{k}$$

45-48. Finding r from r' *Find the function* **r** *that satisfies the following conditions.*

45.
$$\mathbf{r}'(t) = \langle 1, 2t, 3t^2 \rangle; \ \mathbf{r}(1) = \langle 4, 3, -5 \rangle$$

46. $\mathbf{r}'(t) = \langle \sqrt{t}, \cos \pi t, 4/t \rangle; \ \mathbf{r}(1) = \langle 2, 3, 4 \rangle$
47. $\mathbf{r}'(t) = \langle e^{2t}, 1 - 2e^{-t}, 1 - 2e^t \rangle; \ \mathbf{r}(0) = \langle 1, 1, 1 \rangle$

48.
$$\mathbf{r}'(t) = \frac{t}{t^2 + 1} \mathbf{i} + t e^{-t^2} \mathbf{j} - \frac{2t}{\sqrt{t^2 + 4}} \mathbf{k}; \ \mathbf{r}(0) = \mathbf{i} + \frac{3}{2} \mathbf{j} - 3 \mathbf{k}$$

49-54. Definite integrals *Evaluate the following definite integrals.*

49.
$$\int_{-1}^{1} (\mathbf{i} + t \, \mathbf{j} + 3 \, t^2 \, \mathbf{k}) \, dt$$

50.
$$\int_{0}^{4} (\sqrt{t} \, \mathbf{i} + t^{-3} \, \mathbf{j} - 2 \, t^2 \, \mathbf{k}) \, dt$$

51.
$$\int_{-\pi}^{\pi} (\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + 2 \, t \, \mathbf{k}) \, dt$$

52.
$$\int_{0}^{\ln 2} (e^{-t} \mathbf{i} + 2 e^{2t} \mathbf{j} - 4 e^{t} \mathbf{k}) dt$$

53.
$$\int_{0}^{2} t e^{t} (\mathbf{i} + 2 \mathbf{j} - \mathbf{k}) dt$$

54.
$$\int_{0}^{\pi/4} (\sec^{2} t \mathbf{i} - 2 \cos t \mathbf{j} - \mathbf{k}) dt$$

Further Explorations

- **55.** Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
 - **a.** The vectors $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are parallel for all values of t in the domain.
 - **b.** The curve described by the function $\mathbf{r}(t) = \langle 1, t^2 2t, \cos \pi t \rangle$ is smooth, for $-\infty < t < \infty$.
 - c. If f, g, and h are odd integrable functions and a is a real number, then

$$\int_{-a}^{a} (f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}) dt = \mathbf{0}.$$

56-61. Derivative rules Let $\mathbf{u}(t) = \langle 1, t, t^2 \rangle$, $\mathbf{v}(t) = \langle t^2, -2t, 1 \rangle$, and $g(t) = 2\sqrt{t}$. Compute the derivatives of the following functions.

- 56. $u(t^3)$
- **57.** $v(e^t)$
- **58.** $g(t) \mathbf{v}(t)$
- **59. v**(*g*(*t*))
- **60.** $u(t) \cdot v(t)$
- **61.** $u(t) \times v(t)$

62-67. Relationship between r and r'

- 62. Consider the circle $\mathbf{r}(t) = \langle a \cos t, a \sin t \rangle$, for $0 \le t \le 2\pi$, where *a* is a positive real number. Compute \mathbf{r}' and show that it is orthogonal to \mathbf{r} for all *t*.
- 63. Consider the parabola $\mathbf{r}(t) = \langle a t^2 + 1, t \rangle$, for $-\infty < t < \infty$, where *a* is a positive real number. Find all points on the parabola at which **r** and **r**' are orthogonal.
- 64. Consider the curve $\mathbf{r}(t) = \langle \sqrt{t}, 1, t \rangle$, for t > 0. Find all points on the curve at which \mathbf{r} and \mathbf{r}' are orthogonal.
- **65.** Consider the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$, for $-\infty < t < \infty$. Find all points on the helix at which **r** and **r**' are orthogonal.
- 66. Consider the ellipse $\mathbf{r}(t) = \langle 2 \cos t, 8 \sin t, 0 \rangle$, for $0 \le t \le 2\pi$. Find all points on the ellipse at which \mathbf{r} and \mathbf{r}' are orthogonal.
- **67.** For what curves in \mathbb{R}^3 is it true that **r** and **r**' are parallel for all *t* in the domain?
- **68.** Derivative rules Suppose **u** and **v** are differentiable functions at t = 0 with $\mathbf{u}(0) = \langle 0, 1, 1 \rangle$, $\mathbf{u}'(0) = \langle 0, 7, 1 \rangle$, $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$, and $\mathbf{v}'(0) = \langle 1, 1, 2 \rangle$. Evaluate the following expressions.

a.
$$\frac{d}{dt} (\mathbf{u} \cdot \mathbf{v}) \Big|_{t=0}$$

b.
$$\frac{d}{dt} (\mathbf{u} \times \mathbf{v}) \Big|_{t=0}$$

c.
$$\frac{d}{dt} (\mathbf{u}(t) \cos t) \Big|_{t=0}$$

Additional Exercises

69. Vectors r and r' for lines

- **a.** If $\mathbf{r}(t) = \langle a t, b t, c t \rangle$ with $\langle a, b, c \rangle \neq \langle 0, 0, 0 \rangle$, show that the angle between \mathbf{r} and \mathbf{r}' is constant for all t.
- **b.** If $\mathbf{r}(t) = \langle x_0 + a t, y_0 + b t, z_0 + c t \rangle$, where x_0, y_0 , and z_0 are not all zero, show that the angle between \mathbf{r} and \mathbf{r}' varies with *t*.
- c. Explain the results of parts (a) and (b) geometrically.
- 70. Proof of Sum Rule By expressing u and v in terms of their components, prove that

$$\frac{d}{dt} \left(\mathbf{u}(t) + \mathbf{v}(t) \right) = \mathbf{u}'(t) + \mathbf{v}'(t).$$

71. Proof of Product Rule By expressing u in terms of its components, prove that

$$\frac{d}{dt} \left(f(t) \mathbf{u}(t) \right) = f'(t) \mathbf{u}(t) + f(t) \mathbf{u}'(t).$$

72. Proof of Cross Product Rule Prove that

$$\frac{d}{dt} (\mathbf{u}(t) \times \mathbf{v}(t)) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t).$$

There are two ways to proceed: Either express \mathbf{u} and \mathbf{v} in terms of their three components or use the definition of the derivative.

73. Cusps and noncusps

- **a.** Graph the curve $\mathbf{r}(t) = \langle t^3, t^3 \rangle$. Show that $\mathbf{r}'(0) = \mathbf{0}$ and the curve does not have a cusp at t = 0. Explain.
- **b.** Graph the curve $\mathbf{r}(t) = \langle t^3, t^2 \rangle$. Show that $\mathbf{r}'(0) = \mathbf{0}$ and the curve has a cusp at t = 0. Explain.
- **c.** The functions $\mathbf{r}(t) = \langle t, t^2 \rangle$ and $\mathbf{p}(t) = \langle t^2, t^4 \rangle$ both satisfy $y = x^2$. Explain how the curves they parametrize are different.
- **d.** Consider the curve $\mathbf{r}(t) = \langle t^m, t^n, t^p \rangle$, where *m*, *n*, and *p* are positive integers, not all equal. Is it true that the curve has a cusp at t = 0 if one or more of *m*, *n*, or *p* is even? Explain.
- 74. Motion on a sphere Prove that **r** describes a curve that lies on the surface of a sphere centered at the origin $(x^2 + y^2 + z^2 = a^2 \text{ with } a \ge 0)$ if and only if **r** and **r**' are orthogonal at all points of the curve.