11.6 Calculus of Vector-Valued Functions

We now turn to the topic of ultimate interest in this chapter: the calculus of vector-valued functions. Everything you learned about differentiating and integrating functions of the form $y=f(x)$ carries over to vector-valued functions $\mathbf{r}(t)$; you simply apply the rules of differentiation and integration to the individual components of \mathbf{r}.

The Derivative and Tangent Vector

Orientation of Curves

Integrals of Vector-Valued Functions

Quick Quiz

SECTION 11.6 EXERCISES

Review Questions

1. Explain how to compute the derivative of $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$.
2. Explain the geometric meaning of $\mathbf{r}^{\prime}(t)$.
3. Given a tangent vector on an oriented curve, how do you find the unit tangent vector?
4. Compute $\mathbf{r}^{\prime \prime}(t)$ when $\mathbf{r}(t)=\left\langle t^{10}, 8 t, \cos t\right\rangle$.
5. How do you find the indefinite integral of $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$?
6. How do you evaluate $\int_{a}^{b} \mathbf{r}(t) d t$?

Basic Skills

7-12. Derivatives of vector-valued functions Differentiate the following functions.
7. $\mathbf{r}(t)=\left\langle 2 t^{3}, 6 \sqrt{t}, 3 / t\right\rangle$
8. $\mathbf{r}(t)=\langle 4,3 \cos 2 t, 2 \sin 3 t\rangle$
9. $\mathbf{r}(t)=\left\langle e^{t}, 2 e^{-t},-4 e^{2 t}\right\rangle$
10. $\mathbf{r}(t)=\left\langle\tan t, \sec t, \cos ^{2} t\right\rangle$
11. $\mathbf{r}(t)=\left\langle t e^{-t}, t \ln t, t \cos t\right\rangle$
12. $\mathbf{r}(t)=\left\langle(t+1)^{-1}, \tan ^{-1} t, \ln (t+1)\right\rangle$

13-16. Tangent vectors For the following curves, find a tangent vector at the given value of t.
13. $\mathbf{r}(t)=\langle t, \cos 2 t, 2 \sin t\rangle, t=\pi / 2$
14. $\mathbf{r}(t)=\langle 2 \sin t, 3 \cos t, \sin (t / 2)\rangle, \quad t=\pi$
15. $\mathbf{r}(t)=\left\langle 2 t^{4}, 6 t^{3 / 2}, 10 / t\right\rangle, \quad t=1$
16. $\mathbf{r}(t)=\left\langle 2 e^{t}, e^{-2 t}, 4 e^{2 t}\right\rangle, t=\ln 3$

17-20. Unit tangent vectors For the following parametrized curves, find the unit tangent vector.
17. $\mathbf{r}(t)=\langle 8, \cos 2 t, 2 \sin 2 t\rangle$, for $0 \leq t \leq 2 \pi$
18. $\mathbf{r}(t)=\langle\sin t, \cos t, \cos t\rangle$, for $0 \leq t \leq 2 \pi$
19. $\mathbf{r}(t)=\langle t, 2,2 / t\rangle$, for $t \geq 1$
20. $\mathbf{r}(t)=\left\langle e^{2 t}, 2 e^{2 t}, 2 e^{-3 t}\right\rangle$, for $t \geq 0$

21-24. Unit tangent vectors at a point For the following parametrized curves, find the unit tangent vector at the given value of t.
21. $\mathbf{r}(t)=\langle\cos 2 t, 4,3 \sin 2 t\rangle$, for $0 \leq t \leq \pi, t=\pi / 2$
22. $\mathbf{r}(t)=\left\langle\sin t, \cos t, e^{-t}\right\rangle$, for $0 \leq t \leq \pi, t=0$
23. $\mathbf{r}(t)=\langle 6 t, 6,3 / t\rangle$, for $0<t<2, t=1$
24. $\mathbf{r}(t)=\left\langle\sqrt{7} e^{t}, 3 e^{t}, 3 e^{t}\right\rangle$, for $0 \leq t \leq 1, t=\ln 2$

25-30. Derivative rules Let

$$
\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \boldsymbol{k}
$$

Compute the derivative of the following functions.
25. $\left(t^{12}+3 t\right) \mathbf{u}(t)$
26. $\left(4 t^{8}-6 t^{3}\right) \mathbf{v}(t)$
27. $\mathbf{u}\left(t^{4}-2 t\right)$
28. $\mathbf{v}(\sqrt{t})$
29. $\mathbf{u}(t) \cdot \mathbf{v}(t)$
30. $\mathbf{u}(t) \times \mathbf{v}(t)$

31-34. Derivative rules Compute the following derivatives.
31. $\frac{d}{d t}\left[t^{2}(\mathbf{i}+2 \mathbf{i}-2 t \mathbf{k}) \cdot\left(e^{t} \mathbf{i}+2 e^{t} \mathbf{j}-3 e^{-t} \mathbf{k}\right)\right]$
32. $\frac{d}{d t}\left[\left(t^{3} \mathbf{i}-2 t \mathbf{j}-2 \mathbf{k}\right) \times\left(t \mathbf{i}-t^{2} \mathbf{j}-t^{3} \mathbf{k}\right)\right]$
33. $\frac{d}{d t}\left[\left(3 t^{2} \mathbf{i}+\sqrt{t} \mathbf{j}-2 t^{-1} \mathbf{k}\right) \cdot(\cos t \mathbf{i}+\sin 2 t \mathbf{j}-3 t \mathbf{k})\right]$
34. $\frac{d}{d t}\left[\left(t^{3} \mathbf{i}+6 \mathbf{j}-2 \sqrt{t} \mathbf{k}\right) \times\left(3 t \mathbf{i}-12 t^{2} \mathbf{j}-6 t^{-2} \mathbf{k}\right)\right]$

35-40. Higher derivatives Compute $\mathbf{r} "(t)$ and \mathbf{r} "' (t) for the following functions.
35. $\mathbf{r}(t)=\left\langle t^{2}+1, t+1,1\right\rangle$
36. $\mathbf{r}(t)=\left\langle 3 t^{12}-t^{2}, t^{8}+t^{3}, t^{-4}-2\right\rangle$
37. $\mathbf{r}(t)=\langle\cos 3 t, \sin 4 t, \cos 6 t\rangle$
38. $\mathbf{r}(t)=\left\langle e^{4 t}, 2 e^{-4 t}+1,2 e^{-t}\right\rangle$
39. $\mathbf{r}(t)=\sqrt{t+4} \mathbf{i}+\frac{t}{t+1} \mathbf{j}-e^{-t^{2}} \mathbf{k}$
40. $\mathbf{r}(t)=\tan t \mathbf{i}+\left(t+\frac{1}{t}\right) \mathbf{j}-\ln (t+1) \mathbf{k}$

41-44. Indefinite integrals Compute the indefinite integral of the following functions.
41. $\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$
42. $\mathbf{r}(t)=\left\langle 5 t^{-4}-t^{2}, t^{6}-4 t^{3}, 2 / t\right\rangle$
43. $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin 3 t, 4 \cos 8 t\rangle$
44. $\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$

45-48. Finding \mathbf{r} from \mathbf{r} ' Find the function \mathbf{r} that satisfies the following conditions.
45. $\mathbf{r}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle ; \mathbf{r}(1)=\langle 4,3,-5\rangle$
46. $\quad \mathbf{r}^{\prime}(t)=\langle\sqrt{t}, \cos \pi t, 4 / t\rangle ; \mathbf{r}(1)=\langle 2,3,4\rangle$
47. $\mathbf{r}^{\prime}(t)=\left\langle e^{2 t}, 1-2 e^{-t}, 1-2 e^{t}\right\rangle ; \mathbf{r}(0)=\langle 1,1,1\rangle$
48. $\mathbf{r}^{\prime}(t)=\frac{t}{t^{2}+1} \mathbf{i}+t e^{-t^{2}} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k} ; \mathbf{r}(0)=\mathbf{i}+\frac{3}{2} \mathbf{j}-3 \mathbf{k}$

49-54. Definite integrals Evaluate the following definite integrals.
49. $\int_{-1}^{1}\left(\mathbf{i}+t \mathbf{j}+3 t^{2} \mathbf{k}\right) d t$
50. $\int_{0}^{4}\left(\sqrt{t} \mathbf{i}+t^{-3} \mathbf{j}-2 t^{2} \mathbf{k}\right) d t$
51. $\int_{-\pi}^{\pi}(\sin t \mathbf{i}+\cos t \mathbf{j}+2 t \mathbf{k}) d t$
52. $\int_{0}^{\ln 2}\left(e^{-t} \mathbf{i}+2 e^{2 t} \mathbf{j}-4 e^{t} \mathbf{k}\right) d t$
53. $\int_{0}^{2} t e^{t}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) d t$
54. $\int_{0}^{\pi / 4}\left(\sec ^{2} t \mathbf{i}-2 \cos t \mathbf{j}-\mathbf{k}\right) d t$

Further Explorations

55. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. The vectors $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are parallel for all values of t in the domain.
b. The curve described by the function $\mathbf{r}(t)=\left\langle 1, t^{2}-2 t, \cos \pi t\right\rangle$ is smooth, for $-\infty<t<\infty$.
c. If f, g, and h are odd integrable functions and a is a real number, then

$$
\int_{-a}^{a}(f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}) d t=\mathbf{0}
$$

56-61. Derivative rules Let $\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle$, and $g(t)=2 \sqrt{t}$. Compute the derivatives of the following functions.
56. $\mathbf{u}\left(t^{3}\right)$
57. $\mathbf{v}\left(e^{t}\right)$
58. $g(t) \mathbf{v}(t)$
59. $\mathbf{v}(g(t))$
60. $\mathbf{u}(t) \cdot \mathbf{v}(t)$
61. $\mathbf{u}(t) \times \mathbf{v}(t)$

62-67. Relationship between r and r '

62. Consider the circle $\mathbf{r}(t)=\langle a \cos t, a \sin t\rangle$, for $0 \leq t \leq 2 \pi$, where a is a positive real number. Compute \mathbf{r}^{\prime} and show that it is orthogonal to \mathbf{r} for all t.
63. Consider the parabola $\mathbf{r}(t)=\left\langle a t^{2}+1, t\right\rangle$, for $-\infty<t<\infty$, where a is a positive real number. Find all points on the parabola at which \mathbf{r} and \mathbf{r}^{\prime} are orthogonal.
64. Consider the curve $\mathbf{r}(t)=\langle\sqrt{t}, 1, t\rangle$, for $t>0$. Find all points on the curve at which \mathbf{r} and \mathbf{r}^{\prime} are orthogonal.
65. Consider the helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$, for $-\infty<t<\infty$. Find all points on the helix at which \mathbf{r} and \mathbf{r}^{\prime} are orthogonal.
66. Consider the ellipse $\mathbf{r}(t)=\langle 2 \cos t, 8 \sin t, 0\rangle$, for $0 \leq t \leq 2 \pi$. Find all points on the ellipse at which \mathbf{r} and \mathbf{r}^{\prime} are orthogonal.
67. For what curves in \mathbb{R}^{3} is it true that \mathbf{r} and \mathbf{r}^{\prime} are parallel for all t in the domain?
68. Derivative rules Suppose \mathbf{u} and \mathbf{v} are differentiable functions at $t=0$ with $\mathbf{u}(0)=\langle 0,1,1\rangle, \mathbf{u}(0)=\langle 0,7,1\rangle$, $\mathbf{v}(0)=\langle 0,1,1\rangle$, and $\mathbf{v}^{\prime}(0)=\langle 1,1,2\rangle$. Evaluate the following expressions.
a. $\left.\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v})\right|_{t=0}$
b. $\left.\frac{d}{d t}(\mathbf{u} \times \mathbf{v})\right|_{t=0}$
c. $\left.\frac{d}{d t}(\mathbf{u}(t) \cos t)\right|_{t=0}$

Additional Exercises

69. Vectors r and r^{\prime} for lines
a. If $\mathbf{r}(t)=\langle a t, b t, c t\rangle$ with $\langle a, b, c\rangle \neq\langle 0,0,0\rangle$, show that the angle between \mathbf{r} and \mathbf{r}^{\prime} is constant for all t.
b. If $\mathbf{r}(t)=\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle$, where x_{0}, y_{0}, and z_{0} are not all zero, show that the angle between \mathbf{r} and \mathbf{r}^{\prime} varies with t.
c. Explain the results of parts (a) and (b) geometrically.
70. Proof of Sum Rule By expressing \mathbf{u} and \mathbf{v} in terms of their components, prove that

$$
\frac{d}{d t}(\mathbf{u}(t)+\mathbf{v}(t))=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t) .
$$

71. Proof of Product Rule By expressing \mathbf{u} in terms of its components, prove that

$$
\frac{d}{d t}(f(t) \mathbf{u}(t))=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t) .
$$

72. Proof of Cross Product Rule Prove that

$$
\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
$$

There are two ways to proceed: Either express \mathbf{u} and \mathbf{v} in terms of their three components or use the definition of the derivative.

73. Cusps and noncusps

a. Graph the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{3}\right\rangle$. Show that $\mathbf{r}^{\prime}(0)=\mathbf{0}$ and the curve does not have a cusp at $t=0$. Explain.
b. Graph the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle$. Show that $\mathbf{r}^{\prime}(0)=\mathbf{0}$ and the curve has a cusp at $t=0$. Explain.
c. The functions $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle$ and $\mathbf{p}(t)=\left\langle t^{2}, t^{4}\right\rangle$ both satisfy $y=x^{2}$. Explain how the curves they parametrize are different.
d. Consider the curve $\mathbf{r}(t)=\left\langle t^{m}, t^{n}, t^{p}\right\rangle$, where m, n, and p are positive integers, not all equal. Is it true that the curve has a cusp at $t=0$ if one or more of m, n, or p is even? Explain.
74. Motion on a sphere Prove that \mathbf{r} describes a curve that lies on the surface of a sphere centered at the origin $\left(x^{2}+y^{2}+z^{2}=a^{2}\right.$ with $\left.a \geq 0\right)$ if and only if \mathbf{r} and \mathbf{r}^{\prime} are orthogonal at all points of the curve.

