12.3 Limits and Continuity

You have now seen examples of functions of several variables, but calculus has not yet entered the picture. In this section we revisit topics encountered in single-variable calculus and see how they apply to functions of several variables. We begin with the fundamental concepts of limits and continuity.

Limit of a Function of Two Variables

Limits at Boundary Points

Continuity of Functions of Two Variables

Functions of Three Variables

Quick Quiz

SECTION 12.3 EXERCISES

Review Questions

- 1. Describe in words what $\lim_{(x,y)\to(a,b)} f(x, y) = L$ means.
- Explain why f(x, y) must approach L as (x, y) approaches (a, b) along all paths in the domain in order for lim (x,y)→(a,b) f(x, y) to exist.
- 3. Explain what it means to say that limits of polynomials may be evaluated by direct substitution.
- **4.** Suppose (a, b) is on the boundary of the domain of f. Explain how you would determine whether $\lim_{(x,y)\to(a,b)} f(x,y)$ exists.
- 5. Explain how examining limits along multiple paths may prove the nonexistence of a limit.
- **6.** Explain why evaluating a limit along a finite number of paths does not prove the existence of a limit of a function of several variables.
- 7. What three conditions must be met for a function f to be continuous at the point (a, b)?
- **8.** Let R be the unit disk $\{(x, y): x^2 + y^2 \le 1\}$ with (0, 0) removed. Is (0, 0) a boundary point of R? Is R open or closed?

Printed: 9/1/13

- **9.** At what points of \mathbb{R}^2 is a rational function of two variables continuous?
- **10.** Evaluate $\lim_{(x,y,z)\to(1,1,-1)} x y^2 z^3$.

Basic Skills

11-18. Limits of functions Evaluate the following limits.

11.
$$\lim_{(x,y)\to(2,9)} 10^x$$

12.
$$\lim_{(x,y)\to(1,-3)} (3 x + 4 y - 2)$$

13.
$$\lim_{(x,y)\to(-3,3)} (4 x^2 - y^2)$$

14.
$$\lim_{(x,y)\to(2,-1)} (x y^8 - 3 x^2 y^3)$$

15.
$$\lim_{(x,y)\to(0,\pi)} \frac{\cos xy + \sin xy}{2 y}$$

$$16. \quad \lim_{(x,y)\to \left(e^2,4\right)} \ln \sqrt{x \, y}$$

17.
$$\lim_{(x,y)\to(2,0)} \frac{x^2 - 3xy^2}{x + y}$$

18.
$$\lim_{(x,y)\to(1,-1)} \frac{10 \, x \, y - 2 \, y^2}{x^2 + y^2}$$

19-24. Limits at boundary points Evaluate the following limits.

19.
$$\lim_{(x,y)\to(6,2)} \frac{x^2 - 3xy}{x - 3y}$$

20.
$$\lim_{(x,y)\to(1,-2)} \frac{y^2 + 2xy}{y + 2x}$$

21.
$$\lim_{(x,y)\to(2,2)} \frac{y^2-4}{x \ y-2 \ x}$$

22.
$$\lim_{(x,y)\to(4,5)} \frac{\sqrt{x+y} - 3}{x+y-9}$$

23.
$$\lim_{(x,y)\to(1,2)} \frac{\sqrt{y} - \sqrt{x+1}}{y-x-1}$$

24.
$$\lim_{(x,y)\to(8,8)} \frac{x^{1/3} - y^{1/3}}{x^{2/3} - y^{2/3}}$$

25-30. Nonexistence of limits Use the Two-Path Test to prove that the following limits do not exist.

25.
$$\lim_{(x,y)\to(0,0)} \frac{x+2y}{x-2y}$$

26.
$$\lim_{(x,y)\to(0,0)} \frac{4 x y}{3 x^2 + y^2}$$

27.
$$\lim_{(x,y)\to(0,0)} \frac{y^4 - 2x^2}{y^4 + x^2}$$

28.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^2}{x^3 + y^2}$$

29.
$$\lim_{(x,y)\to(0,0)} \frac{y^3 + x^3}{x \ y^2}$$

30.
$$\lim_{(x,y)\to(0,0)} \frac{y}{\sqrt{x^2 - y^2}}$$

31-34. Continuity At what points of \mathbb{R}^2 are the following functions continuous?

31.
$$f(x, y) = x^2 + 2xy - y^3$$

32.
$$f(x, y) = \frac{xy}{x^2y^2 + 1}$$

33.
$$p(x, y) = \frac{4 x^2 y^2}{x^4 + y^2}$$

34.
$$S(x, y) = \frac{4 x^2 y^2}{x^2 + y^2}$$

35-42. Continuity of composite functions At what points of \mathbb{R}^2 are the following functions continuous?

35.
$$f(x, y) = \sin xy$$

36.
$$g(x, y) = \ln(x - y)$$

37.
$$h(x, y) = \cos(x + y)$$

38.
$$p(x, y) = e^{x-y}$$

39.
$$f(x, y) = \ln(x^2 + y^2)$$

40.
$$f(x, y) = \sqrt{4 - x^2 - y^2}$$

41.
$$g(x, y) = \sqrt[3]{x^2 + y^2 - 9}$$

42.
$$h(x, y) = \frac{\sqrt{x - y}}{4}$$

43-46. Limits of functions of three variables Evaluate the following limits.

43.
$$\lim_{(x,y,z)\to(1,\ln 2,3)} z e^{x y}$$

44.
$$\lim_{(x,y,z)\to(0,1,0)} \ln e^{xz} (1+y)$$

45.
$$\lim_{(x,y,z)\to(1,1,1)} \frac{yz-xy-xz-x^2}{yz+xy+xz-y^2}$$

46.
$$\lim_{(x,y,z)\to(1,1,1)} \frac{x - \sqrt{xz} - \sqrt{xy} + \sqrt{yz}}{x - \sqrt{xz} + \sqrt{xy} - \sqrt{yz}}$$

Further Explorations

- **47. Explain why or why not** Determine whether the following statements are true and give an explanation or counterexample.
 - **a.** If the limits $\lim_{(x,0)\to(0,0)} f(x, 0)$ and $\lim_{(0,y)\to(0,0)} f(0, y)$ exist and equal L, then $\lim_{(x,y)\to(0,0)} f(x, y) = L$.

- **b.** If $\lim_{(x,y)\to(a,b)} f(x, y) = L$, then f is continuous at (a, b).
- **c.** If f is continuous at (a, b), then $\lim_{(x,y)\to(a,b)} f(x, y)$ exists.
- **d.** If P is a boundary point of the domain of f, then P is in the domain of f.
- **48-55. Miscellaneous limits** Use the method of your choice to evaluate the following limits.

48.
$$\lim_{(x,y)\to(0,0)} \frac{y^2}{x^8 + y^2}$$

49.
$$\lim_{(x,y)\to(0,1)} \frac{y\sin x}{x(y+1)}$$

50.
$$\lim_{(x,y)\to(1,1)} \frac{x^2 + x \ y - 2 \ y^2}{2 \ x^2 - x \ y - y^2}$$

51.
$$\lim_{(x,y)\to(1,0)} \frac{y \ln y}{x}$$

52.
$$\lim_{(x,y)\to(0,0)} \frac{|x\ y|}{x\ y}$$

53.
$$\lim_{(x,y)\to(0,0)} \frac{|x-y|}{|x+y|}$$

54.
$$\lim_{(x,y)\to(-1,0)} \frac{x \ y \ e^{-y}}{x^2 + y^2}$$

55.
$$\lim_{(x,y)\to(2,0)} \frac{1-\cos y}{x \, y^2}$$

56-59. Limits using polar coordinates Limits at (0, 0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as $r \to 0$ along all paths to (0, 0). Evaluate the following limits or state that they do not exist.

56.
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{\sqrt{x^2+y^2}}$$

57.
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2}$$

58.
$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2 + xy + y^2}$$

59.
$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{(x^2+y^2)^{3/2}}$$

Additional Exercises

60. Sine limits Evaluate the following limits.

a.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x+y)}{x+y}$$

b.
$$\lim_{(x,y)\to(0,0)} \frac{\sin x + \sin y}{x + y}$$

61. Nonexistence of limits Show that $\lim_{(x,y)\to(0,0)} \frac{a \, x^m \, y^n}{b \, x^{m+n} + c \, y^{m+n}}$ does not exist when a,b, and c are real numbers and m and n are positive integers.

- **62. Nonexistence of limits** Show that $\lim_{(x,y)\to(0,0)} \frac{a \, x^{2(p-n)} \, y^n}{b \, x^{2p} + c \, y^p}$ does not exist when a,b, and c are real numbers and n and p are positive integers with $p \ge n$.
- **63-66.** Limits of composite functions Evaluate the following limits.

63.
$$\lim_{(x,y)\to(1,0)} \frac{\sin xy}{xy}$$

64.
$$\lim_{(x,y)\to(4,0)} x^2 y \ln xy$$

65.
$$\lim_{(x,y)\to(0,2)} (2 x y)^{x y}$$

66.
$$\lim_{(x,y)\to(0,\pi/2)} \frac{1-\cos xy}{4 x^2 y^3}$$

- **67. Filling in a function value** The domain of $f(x, y) = e^{-1/(x^2 + y^2)}$ excludes (0, 0). How should f be defined at (0, 0) to make it continuous there?
- **68.** Limit proof Use the formal definition of a limit to prove that $\lim_{(x,y)\to(a,b)} y = b$ (*Hint:* Take $\delta = \epsilon$.)
- **69.** Limit proof Use the formal definition a limit to prove that $\lim_{(x,y)\to(a,b)} (x+y) = a+b$ (*Hint:* Take $\delta = \epsilon/2$.)
- **70. Proof of Limit Law 1** Use the formal definition of a limit to prove that $\lim_{(x,y)\to(a,b)} [f(x,y)+g(x,y)] = \lim_{(x,y)\to(a,b)} f(x,y) + \lim_{(x,y)\to(a,b)} g(x,y).$
- **71.** Proof of Limit Law 3 Use the formal definition of a limit to prove that $\lim_{(x,y)\to(a,b)} [c\ f(x,y)] = c \lim_{(x,y)\to(a,b)} f(x,y)$.