
12.8 Maximum/Minimum Problems

In Chapter 4 we showed how to use derivatives to find maximum and minimum values of functions of a single variable. When those

techniques are extended to functions of two variables, we discover both similarities and differences. The landscape of a surface is far

more complicated than the profile of a curve in the plane, so we see more interesting features when working with several variables.

In addition to peaks (maximum values) and hollows (minimum values), we encounter winding ridges, long valleys, and mountain

passes. Yet despite these complications, many of the ideas used for single-variable functions reappear in higher dimensions. For

example, the Second Derivative Test, suitably adapted for two variables, plays a central role. As with single-variable functions, the

techniques developed here are useful for solving practical optimization problems.

Local Maximum/Minimum Values

Second Derivative Test

Absolute Maximum and Minimum Values

Quick Quiz

SECTION 12.8 EXERCISES

Review Questions

1. Describe the appearance of a smooth surface with a local maximum at a point.

2. Describe the usual appearance of a smooth surface at a saddle point.

3. What are the conditions for a critical point of a function f ?

4. If fxHa, bL = fyHa, bL = 0, does it follow that f  has a local maximum or local minimum at Ha, bL? Explain.

5. What is the discriminant and how do you compute it?

6. Explain how the Second Derivative Test is used.

7. What is an absolute minimum value of a function f  on a set R in �2?

8. What is the procedure for locating absolute maximum and minimum values on a closed bounded domain?

Basic Skills

9-14. Critical points  Find all critical points of the following functions.

9. f Hx, yL = 1 + x2 + y2

10. f Hx, yL = x2 - 6 x + y2 + 8 y

11. f Hx, yL = H3 x - 2L2 + Hy - 4L2

12. f Hx, yL = 3 x2 - 4 y2

13. f Hx, yL = x4 + y4 - 16 x y
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14. f Hx, yL = x3 ë3 - y3 ë3 + 3 x y

15-28. Analyzing critical points  Find the critical points of the following functions. Use the Second Derivative Test to 

determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or saddle point. Confirm 

your results using a graphing utility.

15. f Hx, yL = 4 + 2 x2 + 3 y2

16. f Hx, yL = H4 x - 1L2 + H2 y + 4L2 + 1

17. f Hx, yL = -4 x2 + 8 y2 - 3

18. f Hx, yL = x4 + y4 - 4 x - 32 y + 10

19. f Hx, yL = x4 + 2 y2 - 4 x y

20. f Hx, yL = x y e-x-y

21. f Hx, yL = x2 + y2 - 4 x + 5

22. f Hx, yL = tan-1Hx yL

23. f Hx, yL = 2 x y e-x2-y2

24. f Hx, yL = x2 - x4 ë2 - y2 - x y

25. f Hx, yL =
x - y

1 + x2 + y2

26. f Hx, yL =
x y Hx - yL

x2 + y2

27. f Hx, yL = y ex - ey

28. f Hx, yL = sin H2 p xL cos Hp yL, for †x§ §
1

2
 and †y§ §

1

2
.

29. Shipping regulations  A shipping company handles rectangular boxes provided the sum of the height and the girth of 

the box does not exceed 96 in. (The girth is the perimeter of the smallest base of the box.) Find the dimensions of the 

box that meets this condition and has the largest volume.

30. Cardboard boxes A lidless box is to be made using 2 m2 of cardboard. Find the dimensions of the box with the largest 

possible volume.

31. Cardboard boxes  A lidless cardboard box is to be made with a volume of 4 m3. Find the dimensions of the box that 

requires the least amount of cardboard.

32. Optimal box  Find the dimensions of the largest rectangular box in the first octant of the xyz-coordinate system that has 

one vertex at the origin and the opposite vertex on the plane x + 2 y + 3 z = 6.

33-36. Inconclusive tests  Show that the Second Derivative test is inconclusive when applied to the following functions at 

H0, 0L. Describe the behavior of the function at the critical point.

33. f Hx, yL = 4 + x4 + 3 y4
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34. f Hx, yL = x2 y - 3

35. f Hx, yL = x4 y2

36. f Hx, yL = sin Ix2 y2M

37-44. Absolute maxima and minima  Find the absolute maximum and minimum values of the following functions on the 

given set R.

37. f Hx, yL = x2 + y2 - 2 y + 1;  R = 9Hx, yL : x2 + y2 § 4=

38. f Hx, yL = -x2 - y2 + 3 x - y - 1;  R = 9Hx, yL : x2 + y2 § 6=

39. f Hx, yL = 4 + 2 x2 + y2;  R = 8Hx, yL : -1 § x § 1, -1 § y § 1<

40. f Hx, yL = 6 - x2 - 4 y2;  R = 8Hx, yL : -2 § x § 2, -1 § y § 1<

41. f Hx, yL = x2 + y2 + 4 x - 2 y;  R = 9Hx, yL : x2 + y2 § 16=

42. f Hx, yL = x2 + y2 - 2 x - 2 y;  R is the closed set bounded by the triangle with vertices H0, 0L, H2, 0L, and H0, 2L.

43. f Hx, yL = x2 + 4 y2 + 2 x + 4 y;  R is the closed set bounded by the ellipse 8Hx, yL : x = 4 cos q, y = sin q, for 0 § q § 2 p<.

44. f Hx, yL = x2 + y2 - 2 x + 2 ;  R is the closed half disk 9Hx, yL : x2 + y2 § 4 with y ¥ 0=.

45-48. Absolute extrema on open and/or unbounded sets  If possible, find the absolute maximum and minimum values of 

the following functions on the set R.

45. f Hx, yL = x2 + y2 - 4;  R = 9Hx, yL : x2 + y2 < 4=

46. f Hx, yL = x + 3 y;  R + 8Hx, yL : †x§ < 1, †y§ < 2<

47. f Hx, yL = 2 e-x-y;  R = 8Hx, yL : x ¥ 0, y ¥ 0<

48. f Hx, yL = x2 - y2;  R = 8Hx, yL; †x§ < 1, †y§ < 1<

49-52. Absolute extrema on open and/or unbounded sets

49. Find the point on the plane x + y + z = 4 nearest the point PH0, 3, 6L.

50. Find the point(s) on the cone z2 = x2 + y2 nearest the point PH1, 4, 0L.

51. Find the point on the surface f Hx, yL = x2 + y2 + 10 nearest the plane x + 2 y - z = 0. Identify the point on the plane.

52. Rectangular boxes with a volume of 10 m3 are to be made of two materials. The material for the top and bottom of the 

box costs $8ëm2 and the material for the sides of the box costs $1ëm2. What are the dimensions of the box that 

minimizes the cost of the box?

Further Explorations

53. Explain why or why not  Determine whether the following statements are true and give an explanation or 

counterexample. Assume that f  is differentiable at the points in question.

a. The fact that fxH2, 2L = fyH2, 2L = 0 implies that f  has a local maximum, local minimum, or saddle point at H2, 2L.
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b. The function f  could have a local maximum at Ha, bL where fyHa, bL ∫ 0.

c. The function f  could have both an absolute maximum and an absolute minimum at two different points that are not 

critical points.

d. The tangent plane is horizontal at a point on a surface corresponding to a critical point.

54-55. Extreme points from contour plots  Based on the level curves that are visible in the following graphs, identify the 

approximate locations of the local maxima, local minima, and saddle points.

54.

55.
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56. Optimal box  Find the dimensions of the rectangular box with maximum volume in the first octant with one vertex at 

the origin and the opposite vertex on the ellipsoid 36 x2 + 4 y2 + 9 z2 = 36.

57. Least distance  What point on the plane x - y + z = 2 is closest to the point H1, 1, 1L?

58. Maximum/Minimum of linear functions  Let R be a closed bounded set in �2 and let f Hx, yL = a x + b y + c, where a, 

b, and c are real numbers, with a and b not both zero. Give a geometrical argument explaining why the absolute 

maximum and minimum values of f  over R occur on the boundaries of R.

59. Magic triples  Let x, y, and z be nonnegative numbers with x + y + z = 200.

a. Find the values of x, y, and z that minimize x2 + y2 + z2.

b. Find the values of x, y, and z that minimize x2 + y2 + z2 .

c. Find the values of x, y, and z that maximize x yz.

d. Find the values of x, y, and z that maximize x2 y2 z2.

60. Powers and roots  Assume that x + y + z = 1 with x ¥ 0, y ¥ 0, and z ¥ 0.

a. Find the maximum and minimum values of I1 + x2M I1 + y2M I1 + z2M.

b. Find the maximum and minimum values of I1 + x M I1 + y M I1 + z M.
[Source: Math Horizons (April 2004).]

Applications

T 61. Optimal locations  Suppose n houses are located at the distinct points Hx1, y1L, Hx2, y2L, …, Hxn, ynL. A power substation 

must be located at a point such that the sum of the squares of the distances between the houses and the substation is 

minimized.

a. Find the optimal location of the substation in the case that n = 3 and the houses are located at H0, 0L, H2, 0L, and 

H1, 1L.
b. Find the optimal location of the substation in the case that n = 3 and the houses are located at distinct points 

Hx1, y1L, Hx2, y2L, and Hx3, y3L.
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c. Find the optimal location of the substation in the general case of n houses located at distinct points Hx1, y1L, Hx2, y2L, 
…, Hxn, ynL.

d. You might argue that the locations found in parts (a), (b) and (c) are not optimal because they result from 

minimizing the sum of the squares of the distances, not the sum of the distances themselves. Use the locations in 

part (a) and write the function that gives the sum of the distances. Note that minimizing this function is much more 

difficult than in part (a). Then use a graphing utility to determine whether the optimal location is the same in the 

two cases. (Also see Exercise 69 about Steiner's problem.)

62-65. Least squares approximation  In its many guises, least squares approximation arises in numerous areas of 

mathematics and statistics. Suppose you collect data for two variables (for example, height and shoe size) in the form of 

pairs Hx1, y1L, Hx2, y2L, …, Hxn, ynL. The data may be plotted as a scatterplot in the xy-plane, as shown in the figure. The 

technique known as linear regression asks the question: What is the equation of the line that "best fits" the data? The least 

squares criterion for best fit requires that the sum of the squares of the vertical distances between the line and the data 

points is a minimum.

62. Let the equation of the best-fit line be y = m x + b, where the slope m and the y-intercept b must be determined using the 

least squares condition. First assume that there are three data points H1, 2L, H3, 5L, and H4, 6L. Show that the function of m 

and b that gives the sum of the squares of the vertical distances between the line and the three data points is 

EHm, bL = @Hm + bL - 2D2 + @H3 m + bL - 5D2 + @H4 m + bL - 6D2.

Find the critical points of E and find the values of m and b that minimize E. Graph the three data points and the best-fit 

line.

T 63. Generalize the procedure in Exercise 62 by assuming that n data points Hx1, y1L, Hx2, y2L, …, Hxn, ynL are given. Write 

the function EHm, bL (summation notation allows for a more compact calculation). Show that the coefficients of the best-

fit line are 

m =
H⁄xkL H⁄ykL - n ⁄xk yk

H⁄xkL2 - n ⁄xk
2

,

b =
1

n
I‚yk - m ‚xkM,

where all sums run from k = 1 to k = n.

T 64-65. Least squares practice  Use the results of Exercise 63 to find the best-fit line for the following data sets. Plot the 

points and the best-fit line.

64. H0, 0L, H2, 3L, H4, 5L

65. H-1, 0L, H0, 6L, H3, 8L
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Additional Exercises

66. Second Derivative Test  Prove that if Ha, bL is a critical point of f  at which fxHa, bL = fyHa, bL = 0 and 

fxxHa, bL < 0 < fy yHa, bL or fy yHa, bL < 0 < fxxHa, bL, then f  has a saddle point at Ha, bL.

67. Maximum area triangle  Among all triangles with a perimeter of 9 units, find the dimensions of the triangle with the 

maximum area. It may be easiest to use Heron's formula, which states that the area of a triangle with side length a, b, 

and c is A = s Hs - aL Hs - bL Hs - cL , where 2 s is the perimeter of the triangle.

68. Ellipsoid inside a tetrahedron  (1946 Putnam Exam) Let P be a plane tangent to the ellipsoid 

x2 ëa2 + y2 ëb2 + z2 ëc2 = 1 at a point in the first octant. Let T  be the tetrahedron in the first octant bounded by P and 

the coordinate planes x = 0, y = 0, and z = 0. Find the minimum volume of T . (The volume of a tetrahedron is one-third 

the area of the base times the height.)

T 69. Steiner's problem for three points  Given three distinct noncollinear points A, B, and C in the plane, find the point P in 

the plane such that the sum of the distances †AP§ + †BP§ + †CP§ is a minimum. Here is how to proceed with three points, 

assuming that the triangle formed by the three points has no angle greater than 2 p ê3 (120 °).

a. Assume the coordinates of the three given points are AHx1, y1L, BHx2, y2L, and CHx3, y3L. Let d1Hx, yL be the distance 

between AHx1, y1L and a variable point PHx, yL. Compute the gradient of d1 and show that it is a unit vector pointing 

along the line between the two points.

b. Define d2 and d3 in a similar way and show that “d2 and “d3 are also unit vectors in the direction of the line 

between the two points.

c. The goal is to minimize f Hx, yL = d1 + d2 + d3. Show that the condition fx = fy = 0 implies that 

“d1 + “d2 + “d3 = 0.

d. Explain why part (c) implies that the optimal point P has the property that the three line segments AP, BP, and CP 

all intersect symmetrically in angles of 2 p ê3.

e. What is the optimal solution if one of the angles in the triangle is greater than 2 p ê3 (just draw a picture)?

f. Estimate the Steiner point for the three points H0, 0L, H0, 1L, H2, 0L.

70. Slicing plane  Find an equation of the plane passing through the point H3, 2, 1L that slices off the region in the first 

octant with the least volume.

T 71. Two mountains without a saddle  Show that the following two functions have two local maxima but no other extreme 

points (thus no saddle or basin between the mountains).

a. f Hx, yL = -Ix2 - 1M2 - Ix2 - eyM2

b. f Hx, yL = 4 x2 ey - 2 x4 - e4 y

Source: Proposed by Ira Rosenholtz, Mathematics Magazine (February, 1987).

T 72. Solitary critical points  A function of one variable has the property that a local maximum (or minimum) occurring at the 

only critical point is also the absolute maximum (or minimum) (for example, f HxL = x2). Does the same result hold for a 

function of two variables? Show that the following functions have the property that they have a single local maximum 

(or minimum), occurring at the only critical point, but that the local maximum (or minimum) is not an absolute 

maximum (or minimum) on �2.

a. f Hx, yL = 3 x ey - x3 - e3 y

b. f Hx, yL = I2 y2 - y4M ex +
1

1 + x2
-

1

1 + x2
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This property has the following interpretation. Suppose that a surface has a single local minimum that is not the absolute 

minimum. Then water can be pourerd into the basin around the local minimum and the surface never overflows, even 

though there are points on the surface below the local minimum.

Source:  See three articles in Mathematics Magazine (May 1985) and Calculus and Analytical Geometry, 2nd ed., Philip 

Gillett.
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