
Chapter Preview   This  culminating chapter  of  the  book provides a  beautiful,  unifying conclusion to our  study of

calculus. Many ideas and themes that have appeared throughout the book come together in these final pages. First,  we combine

vector-valued functions (Chapter 11) and functions of several variables (Chapter 12) to form vector fields. Once vector fields have

been introduced and illustrated through their many applications, we begin exploring the calculus of vector fields. Concepts such as

limits and continuity carry over directly. The extension of derivatives to vector fields leads to two new operations that underlie this

chapter; the curl and the divergence. When integration is extended to vector fields, we discover new versions of the Fundamental

Theorem of Calculus. The chapter ends with a final look at the Fundamental Theorem of Calculus and the several related forms in

which it has appeared throughout the book.

14.1 Vector Fields

It is not difficult to find everyday examples of vector fields. Imagine sitting on a beach in a breeze: focus on a point in space and

consider the motion of the air  at that  point at  a single instant of time. The motion is described by a velocity vector with three

components (east-west, north-south, up-down). At another point in space at the same time, the air is moving with a different direction

and speed, and a different velocity vector is associated with that point. In general, at one instant in time, every point in space has a

velocity vector associated with it (Figure 14.1). This collection of velocity vectors is a vector field.

show grids

FIGURE 14.1

Other examples of vector fields include the wind patterns in a hurricane (Figure 14.2a), the flow of air around an airplane wing,

and the circulation of water in a heat exchanger (Figure 14.2b). Gravitational, magnetic, and electric force fields are represented by

vector fields (Figure 14.2c), as are the stresses and strains in buildings and bridges. Beyond physics and engineering, the transport of

a chemical pollutant in a lake or human migration patterns can be modeled by vector fields.
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FIGURE 14.2

Vector Fields in Two Dimensions

Vector Fields in Three Dimensions

Quick Quiz

SECTION 14.1 EXERCISES

Review Questions

1. Explain how a vector field F = X f , g, h\ is used to describe the motion of the air in a room at one instant in time.

2. Sketch the vector field F = Xx, y\.

3. How do you graph the vector field F = X f Hx, yL, gHx, yL\?

4. Given a function f, how does the gradient of f produce a vector field?

5. Interpret the gradient field of the temperature function T = f Hx, yL.

Basic Skills

6-15. Two-dimensional vector fields  Make a sketch of the following vector fields.

6. F = X1, y\

7. F = Xx, 0\

8. F = X-x, -y\

9. F = Xx, -y\

10. F = X2 x, 3 y\

11. F = Xy, -x\

12. F = Xx + y, y\

13. F = Xx, y - x\
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14. F = Xsin x, sin y\

15. F = Xe-x, 0\

16. Matching vector fields with graphs  Match vector fields a-d with graphs A-D.

a. F = Y0, x2]

b. F = Xx - y, x\

c. F = X2 x, -y\

d. F = Xy, x\

17-20. Normal and tangential components  Determine whether the vector field F is tangent to or normal to the curve C at 

points on C. A vector n normal to C is also given. Sketch C and a few representative vectors of F.

17. F = Xx, y\, where C = 9Hx, yL : x2 + y2 = 4= and n = Xx, y\

18. F = Xy, -x\, where C = 9Hx, yL : x2 + y2 = 1= and n = Xx, y\

19. F = Xx, y\, where C = 8Hx, yL : x = 1< and n = X1, 0\

20. F = Xy, x\, where C = 9Hx, yL : x2 + y2 = 1= and n = Xx, y\

T 21-24. Three-dimensional vector fields  Sketch a few representative vectors of the following vector fields.

Chapter  14

Vector Calculus

Section 14.1 Vector Fields Page 3  

CALCULUS: EARLY TRANSCENDENTALS

Briggs, Cochran, Gillett, Schulz

Printed: 9/1/13 Copyright © 2011, Pearson Education, Inc.



21. F = X1, 0, z\

22. F = Xx, y, z\

23. F = Xy, -x, 0\

24. F =
Xx, y, z\

x2 + y2 + z2

T 25-28. Gradient fields  Find the gradient field F = “f for the potential function f. Sketch a few level curves of f and a few 

vectors of F.

25. fHx, yL = x2 + y2, for x2 + y2 § 16

26. fHx, yL = x2 + y2 , for x2 + y2 § 9, Hx, yL ∫ H0, 0L

27. fHx, yL = sin x sin y, for †x§ § p, †y§ § p

28. fHx, yL = 2 x y, for †x§ § 2, †y§ § 2

29-32. Gradient fields  Find the gradient field F = “f for the following potential functions f.

29. fHx, y, zL = Ix2 + y2 + z2Më2

30. fHx, y, zL = lnI1 + x2 + y2 + z2M

31. fHx, y, zL = Ix2 + y2 + z2M-1ê2

32. fHx, y, zL = e-z sinHx + yL

33-36. Equipotential curves  Consider the following potential functions and graphs of their equipotential curves.

a. Find the associated gradient field F = “f.

b. Show that the vector field is orthogonal to the equipotential curve at the point H1, 1L. Illustrate this result on the 

figure.

c. Show that the vector field is orthogonal to the equipotential curve at all points Hx, yL.

d. Sketch two flow curves representing F that are everywhere orthogonal to the equipotential curves.

33. fHx, yL = 2 x + 3 y
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34. fHx, yL = x + y2

35. fHx, yL = ex-y

36. fHx, yL = x2 + 2 y2

Further Explorations

37. Explain why or why not  Determine whether the following statements are true and give an explanation or 

counterexample.

a. The vector field F = Y3 x2, 1] is a gradient field for both f1Hx, yL = x3 + y and f2Hx, yL = y + x3 + 100.
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b. The vector field F =
Xy, x\

x2 + y2

 is constant in direction and magnitude on the unit circle.

c. The vector field F =
Xy, x\

x2 + y2

 is neither a radial field nor a rotation field.

38-39. Vector fields on regions  Let S = 8Hx, yL : †x§ § 1 and †y § 1< (a square centered at the origin), 

D = 8Hx, yL : †x§ + †y§ § 1< (a diamond centered at the origin), and C = 9Hx, yL : x2 + y2 § 1= (a disk centered at the origin). 

For each vector field F, draw pictures and analyze the vector field to answer the following questions.

a. At what points of S, D, and C does the vector field have its maximum magnitude?

b. At what points on the boundary of each region is the vector field directed out of the region?

38. F = Xx, y\

39. F = X-y, x\

40-43. Design your own vector field  Specify the component functions of a vector field F in �2 with the following 

properties. Solutions are not unique.

40. F is everywhere normal to the line x = 2.

41. F is everywhere normal to the line x = y.

42. The flow of F is counterclockwise around the origin, increasing in magnitude with distance from the origin.

43. At all points except H0, 0L, F has unit magnitude and points away from the origin along radial lines.

Applications

44. Electric field due to a point charge  The electric field in the x y-plane due to a point charge at H0, 0L is a gradient field 

with a potential function V Hx, yL =
k

x2 + y2

, where k > 0 is a physical constant.

a. Find the components of the electric field in the x- and y-directions, where EHx, yL = -“V Hx, yL.

b. Show that the vectors of the electric field point in the radial direction (outward from the origin) and the radial 

component of E can be expressed as Er = k ër2, where r = x2 + y2 .

c. Show that the vector field is orthogonal to the equipotential curves at all points in the domain of V .

45. Electric field due to a line of charge  The electric field in the xy-plane due to an infinite line of charge along the z-axis 

is a gradient field with a potential function V Hx, yL = c ln
r0

x2 + y2

, where c > 0 is a constant and r0 is a reference 

distance at which the potential is assumed to be 0 (see figure).

a. Find the components of the electric field in the x- and y-directions, where EHx, yL = -“V Hx, yL.

b. Show that the electric field at a point in the xy-plane is directed outward from the origin and has magnitude 

†E§ = c ê r, where r = x2 + y2 .

c. Show that the vector field is orthogonal to the equipotential curves at all points in the domain of V .
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46. Gravitational force due to a mass  The gravitational force on a point mass m due to a point mass M  is a gradient field 

with potential U HrL =
G M m

r
, where G is the gravitational constant and r = x2 + y2 + z2  is the distance between the 

masses.

a. Find the components of the gravitational force in the x-, y-, and z-directions, where FHx, y, zL = -“U Hx, y, zL.

b. Show that the gravitational force points in the radial direction (outward from point mass M ) and the radial 

component is FHrL =
G M m

r2
.

c. Show that the vector field is orthogonal to the equipotential surfaces at all points in the domain of U .

Additional Exercises

47-51. Streamlines in the plane  Let FHx, yL = X f Hx, yL, gHx, yL\ be defined on �2.

47. Explain why the flow curves or streamlines of F satisfy y ' = gHx, yL ê f Hx, yL and are everywhere tangent to the vector 

field.

T 48. Find and graph the streamlines for the vector field F = X1, x\.

T 49. Find and graph the streamlines for the vector field F = Xx, x\.

T 50. Find and graph the streamlines for the vector field F = Xy, x\. Note that d êd x Iy2M = 2 y y ' HxL.

T 51. Find and graph the streamlines for the vector field F = X-y, x\.

52-53. Unit vectors in polar coordinates

52. Vectors in �2 may also be expressed in terms of polar coordinates. The standard coordinate unit vectors in polar 

coordinates are denoted ur and uq (see figure). Unlike the coordinate unit vectors in Cartesian coordinates, ur and uq 

change their direction depending on the point Hr, qL. Use the figure to show that for r > 0, the following relationships 

between the unit vectors in Cartesian and polar coordinates hold:

ur = cos q i + sin q j i = ur cos q - uq sin q

uq = -sin q i + cos q j j = ur sin q + uq cos q
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53. Verify that the relationships in Exercise 52 are consistent when q = 0, p ê2, p, 3 p ê2.

54-56. Vector fields in polar coordinates  A vector field in polar coordinates has the form F Hr, qL = f Hr, qL ur +g Hr, qL uq, 

where the unit vectors are defined in Exercise 52. Sketch the following vector fields and express them in Cartesian 

coordinates.

54. F = ur

55. F = uq

56. F = ruq

57. Write the vector field F = X-y, x\ in polar coordinates and sketch the field.
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