
AN ALGORITHM FOR INTERSECTIONS IN P2[N ]
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Abstract. We provide an explicit algorithm for computing intersection numbers between basis elements of
complementary codimension in the Hilbert scheme of N points in the projective plane.

1. Introduction

The Hilbert scheme P2[N ] of N points in the projective plane is an irreducible, smooth, projective variety
of dimension 2N [7,8]. Intersection theory on P2[N ] encodes many interesting enumerative questions. In his
seminal work, Nakajima showed that for a projective surface X the direct sum of Chow rings ⊕NA(X [N ]) is
an irreducible representation of the Heisenberg algebra [13,14]. However, using this description to determine
the ring structure of P2[N ] is complicated even when N is small. Furthermore, computing explicit geometric
or enumerative values, such as the top intersection products of divisors spanning the Picard group, can be
difficult.

The first major progress towards computing the intersection products on P2[N ] was made by Ellingsrud
and Strømme: they showed that the groups Ad(P2[N ]) were free, established that rational, homological,
and numerical equivalence coincide, and computed the Betti numbers [5]. They subsequently provided
a cell decomposition whose closures form a basis for the groups Ad(P2[N ]) [6]. Elencwajg and LeBarz
completely computed the intersection product in A(P2[3]) using this basis [2–4]. For higher N , determining
the intersection product using the basis of Ellingsrud and Strømme involves computing excess intersections
and difficult multiplicity counting. Mallavibarrena and Sols provide a basis much more suited to such
computations [12]. We prove the following theorem.

Main Theorem. Let σ and τ be elements of complementary codimension in the basis of Mallavibarrena
and Sols. There is an explicit algorithm to compute the intersection number σ · τ .

Additionally, we show that the intersections between basis elements of complementary codimension can
be computed along loci such that the points of intersection are all reduced points corresponding to reduced
subschemes of points in the plane. This reduces the problem of computing each entry of the intersection
matrices on P2[N ] to counting the number of ways to choose intersection points from two orthogonal sets of
parallel lines in the plane such that they satisfy certain incidence conditions. In many cases, this is quick
and easy to compute.

One case in which the Chow ring of a projective variety is well understood is the Grassmannian G(k, n)
of k-planes in an n-dimensional vector space. A geometric basis for the Chow ring of G(k, n) is specified by
partitions whose Young diagram has no row longer than n − k and has at most k rows. The intersection
product between these basis elements can be completely described using only this combinatorial description.
For instance, if two basis elements have complementary codimension, then their intersection is one if and
only if the partitions describing them are dual; otherwise it is zero. There is also Pieri’s rule which gives a
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combinatorial description for the intersection of each Schubert class with special classes indexed by single
integers. [1, 9].

It would be useful to describe the intersection theory on P2[N ], or more generally any moduli space,
analogously to Schubert calculus. In particular, an identity akin to Pieri’s rule would provide an easy method
to compute the top intersection powers of divisors on P2[N ]. The top intersection products of divisors which
generatre the Picard group are exactly the coefficients of the polynomial function defining the volume of nef
divisors, a birational invariant which is not currently known. More generally, Gholampour and Sheshmani
were able to compute some top intersection numbers on the relative Hilbert schemes (S/C)[N ] for projective
surfaces S and divisors C on S in terms of intersection numbers on the Hilbert scheme of points S[N ]. The
intersection numbers that they compute on (S/C)[N ] are closely related to Donaldson-Thomas invariants of
two dimensional sheaves on threefolds. Their results link Donaldson-Thomas invariants of P3 to that of the
intersection theory on P2[N ] [10].

The paper is organized as follows. Section 2 describes the basis of Mallavibarrena and Sols for A∗(P2[N ])
that we work with throughout the remainder of the paper. Section 3 gives a brief description of the algorithm
through some examples. Section 4 proves the necessary results: intersections of complementary basis elements
are transverse along nonsingular loci and consist of points corresponding to reduced subschemes of P2.
Section 5 describes the algorithm to compute the intersections. Section 6 contains a link to the algorithm
implemented in Python3 and contains the complete list of intersection matrices for P2[5].

1.1. Acknowledgements. We would like to thank İzzet Coşkun, Tim Ryan, Eric Riedl, and Kevin Tucker
for many useful conversations during the writing of this note.

2. The Basis of Mallavibarrena and Sols

We start with some notation. A partition a = (a1,a2, . . . ,ar) of a nonnegative integer A is a nonincreasing
sequence of nonnegative integers such that their sum is A. The length `(a) of a is the number of nonzero
entries. A mixed partition (a,b, c) of N is a triple of partitions a,b, and c of nonnegative integers A,B,
and C such that A+B +C = N . The set IN of all mixed partitions of N has a decomposition into disjoint
subsets

IN,d = {(a,b, c) : N + `(a)− `(c) = d}
each of which indexes a basis element for the group of codimension d algebraic cycles Ad(P2[N ])1.

Fix a mixed partition (a,b, c) ∈ IN,d. In P2, fix a set L of `(a) general lines Li, `(a) general points
pi ∈ Li, a set M of `(b) general lines Mj , and a general point q. Let U be the locally closed subset of all
subschemes Z which can be written as a union Za ∪ Zb ∪ Zc such that:

• Za is a set of A distinct points containing each of the points pi, and such that for each line Li, ai
many of the points of Za lie on Li with none of them the intersection point of any two lines from L
or M.

• Zb is a set of B distinct points such that bj of them lie on each Mj and such that none of them are
the intersection of any two lines from M or L.

• Zc is a set of C distinct points, not containing q, none of which reside on any line in L or M, and
such that there are `(c) distinct lines Nk through q with the property that for each k, ck many reside
on Nk.

Theorem 2.1 (Mallavibarrena, Sols [12]). The class σ(a,b,c) := [Ū ] is independent of the choice of lines and

points, and the set of σ(a,b,c) where (a,b, c) ranges over IN,d is a basis of Ad(P2[N ]).

1Our convention is different from that of [12]; our partitions are the conjugate partitions to theirs.
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Counting dimensions, Za, Zb, and Zc have A− `(a), B, and C + `(c) degrees of freedom, so that Z has

A− `(a) +B + C + `(c) = N − `(a) + `(c)

degrees of freedom. As such, the closure Ū is a subscheme of P2[N ] of codimension N + `(a)− `(c).
We suggest the following heuristic for thinking about the set U defining σ(a,b,c): each ai describes that

many points on each fixed line Li ∈ L with one fixed and the others varying; each bj describes that many
points freely varying on each fixed line Mj ∈M; and each ck describes that many points moving freely on a
moving line Nk through q. All of the points are distinct, none of the points is the intersection of any of the
lines from L or M with any other, and the moving points described by c do not coincide with q or lie on the
lines of L or M. Of course, in the closure Ū , these conditions can be violated.

As an example, consider the mixed partition (a,b, c) = ((2, 2, 1), (3, 2), (2, 1, 1)) of N = 14. We fix general
points and lines p1 ∈ L1, p2 ∈ L2, p3 ∈ L3, general lines M1,M2, and a general point q. We get the class
σ((2,2,1),(3,2),(2,1,1)) = [Ū ] ∈ A14(P2[14]) where U consists of all subschemes Z of P2 with Z = Za ∪ Zb ∪ Zc
such that:

• Za consists of five distinct points, three of which are p1, p2, and p3, and two varying points, one on
L1 and one on L2.

• Zb consists of five distinct points, three of which are varying on M1 and two of which are varying on
M2.

• Zc consists of four distinct points, two of which are collinear with q and two of which are freely
varying in the plane.

We may find it useful to draw schematic pictures for the classes. We will use solid lines and points to denote
ones which are fixed, dashed lines and hollow points for those which are moving, and in the cases where it
is necessary, a cross for the point q. To illustrate, Figure 1 is the schematic picture for the example class
above.

L1 L2 L3 M1M2 N1N2N3

Figure 1. Schematic for σ((2,2,1),(3,2),(2,1,1)).

3. Some Examples of the Algorithm

The simplest elements of the MS basis correspond to loci described by points varying on fixed lines. For
instance, in P2[3] the basis element indexed by the mixed partition (0, (2, 1), 0) has codimension three, and
is defined by two points varying on one fixed line and one point varying on another fixed line. Its self
intersection number is one, as can be seen in Figure 2. In the figure, the two lines with labels to the left
define one cycle, and the two lines with labels above define the other.

It is possible to compute the intersection in this situation directly. Computing more complicated inter-
sections, however, especially those involving moving lines, will require the following combinatorial objects
associated to an intersection.
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2

1

1 2

Figure 2. The intersection σ2
(0,(2,1),0) in P2[3].

Definition 3.1. Let α = (aα,bα, cα) and β = (aβ ,bβ , cβ) be mixed partitions of a positive integer N such
that the classes they define have complementary codimension. Additionally, assume that `(aα) = `(cβ) and
`(aβ) = `(cα).

(a) The diagram Dα,β associated to the intersection σα · σβ is a set of `(aα) + `(bα) + `(cα) vertical lines
and a set of `(aβ) + `(bβ) + `(cβ) horizontal lines along with marked points given as follows. Index the
horizontal lines from top to bottom and the vertical lines from left to right. The diagram also consists
of fixed marked points: add a fixed marked point at the intersection of the i-th horizontal line with the
(`(aα) + `(bα) + i)-th vertical line for 1 ≤ i ≤ `(cα) and a fixed marked point at the intersection of the
(`(aβ) + `(bβ) + j)-th line with the j-th line for 1 ≤ j ≤ `(cβ).

(b) An incidence labeling of Dα,β is given as follows. Label the first `(aα) vertical lines by the sequence aα,
the next `(bα) vertical lines by the sequence bα, and the last `(cα) vertical lines by any permutation
of the sequence cα. Label the horizontal lines similarly, except with the sequences aβ , bβ , and any
permutation of cβ .

1

1

2

2

3 2 1

Figure 3. The unique incidence labeling of the diagram for the intersection σ(0,(3,2,1),0) ·
σ(0,(2,2,1,1),0) in P2[6].

Notice that the intersection of classes corresponding to two mixed partitions α and β has exactly one
diagram Dα,β (up to translating the lines – a harmless manipulation) which may admit many incidence
labelings. We will often refer to a diagram as D when the context allows no confusion. When cα and cβ

are both constant sequences, there is a unique incidence labeling of D. Figure 3 shows the unique incidence
labeling of the diagram for the intersection σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6]. Notice that there are no fixed

marked points in this diagram because cα and cβ are both zero.
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Figure 4 is a more complicated example involving many incidence labelings. It is a list of all possible
incidence labelings of the diagram for the intersection σ((3,1),(1),(2,1,1)) · σ((2,2,1),(1),(2,1) in P2[9].

3 1 1

2

2

1

1

3 1 1

2

2

1

1
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1
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2 1 1 1 2 1 1 1 2

2 1 1 1 2 1 1 1 2

Figure 4. All possible incidence labelings of the diagram for the intersection
σ((3,1),(1),(2,1,1)) · σ((2,2,1),(1),(2,1) in P2[9].

Two remarks are in order. First, the incidence labelings are taken over all permutations of both sequences
cα and cβ . Second, the sequences cα and cβ may contain repeated integers, so that they may not exhibit
`(cα)! and `(cβ)! distinct permutations, respectively. Both of these are shown in Figure 4.

Definition 3.2. The intersection number of an incidence labeling of a diagram is the number of ways to
choose sets Z consisting of N distinct intersection points of the lines in the diagram satisfying the following
conditions:

(i) the number of points on each line is given by its label; and
(ii) Z contains all of the fixed marked points in the diagram.

It is easy to compute the intersection number of an incidence labeling: beginning with the first vertical
line, and for each vertical line in the diagram, choose horizontal lines and mark those points of intersection.
The label of the vertical line indicates how many horizontal lines to choose. We keep track of all such choices
in a tree whose nodes are the diagram with marked points and whose edges correspond to different choices
of points to mark. We will often conflate choices which occur with symmetry and indicate it by labeling the
corresponding edge with a multiplicity. It is useful to drop portions of the tree or to ignore choices which
obviously will not result in collections of points satisfying all the incidence labels of all the lines.

For instance, consider Figure 5, where we conduct the process for the unique incidence labeling of the
diagram for σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6]. The first vertical line has a label of three, there are four
possible ways to choose three lines from the four horizontal ones, but up to symmetry, only two choices need



6 ALEXANDER JON STATHIS

be expressed and we label the corresponding edges with ·2. In the second step, we must choose two lines
from the horizontal lines to pair with the second vertical line. We ignore choices which obviously violate
the incidence conditions, such as any choice containing either of the bottom two lines in the left node. This
leaves just one unique choice for the left node, and three unique choices,two of which are the same up to
symmetry, for the right node. Finally, in each of the cases on the third step there is a unique choice of lines
satisfying the incidence conditions. We conclude that the intersection number of the incidence labeling is
eight.

·2 ·2

3 2 1

3 2 1 3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

2
2
1
1

2
2
1
1

2
2
1
1

2
2
1
1

2
2
1
1

2
2
1
1

2
2
1
1

2
2
1
1

2
2
1
1

Step 1:

·2

Step 2:

Step 3:

Step 4:

Figure 5. The tree for the unique incidence labeling of the diagram for the product
σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6].

The intersection number σα · σβ is the sum of the intersection numbers of all incidence labelings of its
diagram. We will omit the details of the computation, but the intersection numbers for the incidence labelings
in Figure 4 are, from left to right and then top to bottom, 5,5,6,9,9, and 12, so that the intersection number
σ((3,1),(1),(2,1,1)) · σ((2,2,1),(1),(2,1) = 46.



AN ALGORITHM FOR INTERSECTIONS IN P2[N] 7

4. Transversality of Cycles

Fix a positive integer N , a nonnegative integer d ≤ N , let α = (aα,bα, cα) ∈ IN,d, and let β =
(aβ ,bβ , cβ) ∈ IN,N−d be two mixed partitions. Let e, f , and g be indices for aα, bα, and cα, respec-
tively, beginning at one and ending at the length of the partition. Similarly, let i, j, and k be indices for aβ ,
bβ , and cβ . As was described in Section 2, let pαe ∈ Lαe ,Mα

f , and qα be the general fixed points and lines

defining Uα, and let pβi ∈ L
β
i ,M

β
j , and qβ be the general fixed points and lines defining Uβ . Let σα = [Ūα]

and σβ = [Ūβ ]. When necessary, we will refer to the lines defined by a subscheme Zc ⊂ Z in Uα or Uβ
with the appropriate superscript Nα

g or Nβ
k as well. The lines Nα

g or Nβ
k depend on the scheme Z in the

intersection, but we hope any confusion induced by this is worth the reduction in notation. The goal of this
section is to prove the following proposition.

Proposition 4.1. The intersection number σα ·σβ is equal to the number of points in the intersection Uα∩Uβ
counted with multiplicity one.

It is clear that the intersection number σα ·σβ can be computed as the number of points in the intersection
Ūα ∩ Ūβ with the proper multiplicities, assuming there is no excess intersection.

The idea is as follows. We will first eliminate schemes Z from the intersection which correspond to the
support of Z satisfying any of several “support boundary conditions” (Corollary 4.3). This will allow us
to then do away with schemes Z which contain nonreduced subschemes (Corollary 4.5). Since we can then
conclude any such scheme Z will consist of distinct points, we will be able to give a useful description of
the tangent spaces to Uα and Uβ at such a scheme Z. We will then show that the intersection is transverse
(Lemma 4.7).

4.1. Support Boundary Conditions. For the moment, let (a,b, c) be a mixed partition of N , and pi, Li,
and Mj points and lines defining U , the corresponding locally closed subscheme.

Let Z ∈ Ū \ U be a length N zero dimensional subscheme of P2, and let Nk be the lines defined by the
subscheme Zc ⊆ Z. We wish to first eliminate the possibility of such a scheme Z satisfying a small number
of boundary conditions. These are the 5 possible cases we wish to consider:

(1) The support of Z can contain an intersection point of two lines Li, Mj or an intersection point of
some Li with some Mj ;

(2) The support of Z can contain q;
(3) A line Nk can contain some point pi;
(4) Points of Zc can lie on some line Li or Mj ;
(5) Lines Nk can collide, so that there are `(c)− 1 distinct lines Nk with ck1 + ck2 many points residing

on a single line.

LiMj Nk Nk Nk

Mj

Nk1 = Nk2

Figure 6. From left to right: the schematic diagrams for the boundary conditions 1-5.
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Figure 6 shows the schematic diagrams for each case.

4.2. Points of the Intersection. With notation as in the beginning of the section, we prove the following
lemma and corollaries.

Lemma 4.2. Let Z be a scheme in the intersection Ūα∩Ūβ. The number of moving points `(cα) defining Uα

must equal the number of fixed points `(aβ) defining the other cell Uβ. Furthermore, the lines Nα
g spanned

by the points of Zc ⊂ Z must be the spans 〈qαpβi 〉.

Proof. The proof begins with the observation that the fixed points and lines used to define Uβ can be chosen

generally with respect to the fixed lines and points defining Uα, so it follows that the fixed points pβi will

not lie on any of the fixed lines Lαe or Mα
f . Furthermore, the lines 〈pβi p

β
j 〉 for any suitable i, j do not contain

the fixed point qα. Therefore, each pβi must be contained in a unique moving line Nα
g .

We can also observe that the number `(aβ) of fixed points defining Uβ must equal the number `(cα)
of moving lines defining Uα: by the previous paragraph, we know that `(aβ) ≤ `(cα), and `(aα) ≤ `(cβ)
by the same reasoning. The dimension of Ūβ is d = N − `(aβ) + `(cβ) while the codimension of Ūα is
d = N + `(aα)− `(cα), so that `(aα)− `(cα) = −`(aβ) + `(cβ). Combining this with the inequalities gives
that `(aβ) = `(cα). �

Corollary 4.3. Let Z be a scheme in the intersection Ūα ∩ Ūβ. Z cannot satisfy any of the five boundary
conditions shown above.

Proof. Lemma 4.2 immediately eliminates such schemes from the intersection:

(1) The intersection of two fixed lines Lβi or Mβ
j will not be contained in any of the possible lines 〈qαpβi 〉,

nor will they be contained in the lines Lαe or Mα
f .

(2) qβ will not be contained in any of the lines 〈qαpβi 〉, nor will it be contained in the Lαe or Mα
f .

(3) The lines Nα
g must contain qα and some pβi and will therefore not contain any pαe .

(4) Fix some Nα
g as the span 〈qαpβi 〉; the intersection of this line with any of the Lαe ’s or Mα

g ’s will not

occur on the lines Lβi , Mβ
j , or Nβ

k (each of which must be the span 〈qβpαe 〉 for some pαe ).

(5) The lines Nα
g must each be the span 〈qαpβi 〉 for a unique pβi , so they cannot coincide.

�

Corollary 4.4. Let Z be a scheme in the intersection Ūα ∩ Ūβ. Assume that Z contains a nonreduced
subscheme W whose support is a single point. W is contained in the some fixed line Lαe or Mα

f , or it is
collinear with qα.

Proof. Let {Zt} be a family of schemes in Uα whose limit is Z. There is a subfamily {Wt} whose limit is W .

The support p of W is contained in some fixed line Lαe , Mα
f , or 〈qαpβi 〉. Let W be the fiber over t = t0. By

Corollary 4.3, p is not the intersection of any two of the lines Lαe , Mα
f , or 〈qαpβi 〉. As a consequence, after

possibly shrinking to a small neighborhood of t0, the support of the schemes Wt must satisfy exactly one of
the following:

(i) be contained in Lαe ;
(ii) be contained in Mα

f ; or

(iii) be collinear with qα.

Hence, W must satisfy exactly one of i), ii), and iii) as well. �
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Of course, there is nothing special about the choice of α here, and the lemma can be applied to β. We
obtain the following corollary.

Corollary 4.5. Let Z be a scheme in the intersection Ūα ∩ Ūβ. Z cannot contain a nonreduced subscheme.
Furthermore, Z is contained in Uα ∩ Uβ.

Proof. Assume that Z contains a nonreduced subscheme W supported at a point p. By Corollary 4.4, W
is contained in and determines some Lαe or Mα

f , or is collinear with qα. Similarly, W is contained in some

Lβi or Mβ
j , or is collinear with qβ . In any case, these lines are distinct and W cannot be contained in both,

unless it is reduced. �

By Corollary 4.5, it remains only to show that Uα and Uβ are transverse at each point of their intersection.
To that end, we show that the tangent spaces of the locally closed subsets Uα and Uβ are in fact closely
related to the tangent spaces of their defining lines and points in the plane. This relationship allows us to
observe that the subsets Uα and Uβ are in fact smooth at any point of their intersection, as well as to observe
transversality.

4.3. Description of the Tangent Spaces of the Locally Closed Subsets U at a General Point.
Let Z be a general point of a locally closed subset U defining the class σ(a,b,c) corresponding to a reduced

subscheme of P2. Since Z consists of N distinct points, there is a chart on P2[N ] centered at Z and isomorphic
to an open set of (A2)N . We write the product (A2)N as the product (A2)`(a)×(A2)`(b)×(A2)`(c) and describe
the tangent space to U as a product of subspaces of each piece, respectively.

For each fixed point described by a, the tangent space in the corresponding copy of A2 is isomorphic to
A0. For each moving point described by a or b, the tangent space is the fixed line on which it lies.

We can further decompose the product (A2)`(c) into (A2)c0 × · · · × (A2)c`(c)−1 corresponding to each line
Nk. Working in just one such piece (A2)ck , let (xr, yr) be points of Z, (ur, vr) coordinates around each point,
and (qx, qy) the coordinates of q. The condition that three distinct points (qx, qy), (ur, vr), and (us, vs) in
the plane are collinear is given locally by

det

 1 1 1
qy vr vs
qx ur us

 = 0,

so that the equations for U in (A2)ck are precisely these determinants for all 1 ≤ r < s ≤ ck. Notice that
we can view these equations from the perspective of allowing one point p1 = (x1, y1) to vary freely, and the
rest in the line defined by q and p1. In this way, it becomes clear that there are ck − 1 independent linear
relations defining the tangent space at Z to U in (A2)ck .

Lemma 4.6. U is smooth at Z.

Proof. Recall that a is taken to be a partition of A, b a partition of B, and c a partition of C for nonegative
integers A,B, and C such that A+B+C = N . The culmination of these observations is that the dimension
of the tangent space to U at Z is

A− `(a) +B +

`(c)∑
1

2ck − ck + 1 = A+B + C − `(a) + `(c) = dimU

and that U is smooth at Z. �
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4.4. Tangent Spaces at Points of the Intersection.

Lemma 4.7. Let Z be a point of the intersection Uα∩Uβ. The tangent spaces TZUα and TZUβ are transverse.

Proof. Corollaries 4.3 and 4.5 allow us to work in a local chart of P2[n] around Z isomorphic to (A2)n. As
such, we can check transversality in each factor individually, or as will be more natural for us, on subproducts.

In these charts, and by our description above, it is clear that the tangent space in any factor corresponding
to a point z ∈ Z which is the intersection of a fixed line defining Uα with a fixed line defining Uβ is
transverse. It suffices then to check that the intersection of Uα and Uβ is transverse in any subproduct

(A2)ck corresponding to some moving line Nα
g or Nβ

k . For the sake of the argument, we will assume that
the moving is in Uβ , and it follows from Lemma 4.2 that one of the relevant points z1 in Z is fixed in the
description of Uα.

In fact, let z1 = (x1, y1) be the point whose chart is contained in first factor of A2. The equations defining
Uβ in (A2)ck can be taken such that they are the determinants

det

 1 1 1
qy v1 vs
qx u1 us

 = 0

for 2 ≤ s ≤ ck. As such, it suffices to check the tangent spaces to Uα and Uβ are transverse at any pair of
points z1 and (xi, yi) in Z for 2 ≤ i ≤ ck.

Let qβ = (qx, qy) be the fixed point describing Uβ , z1 = (x1, y1), z2 = (x2, y2) ∈ Z be the points we will
be considering, and (u1, v1), (u2, v2) charts of A2 × A2 around z1 and z2, respectively. Assume that z1 is
a fixed point of Uα, meaning that every scheme in Uα contains z1, so that the tangent space to Uα in the
corresponding copy of A2 is given by u1 = v1 = 0. From our analysis above, the tangent space to Uβ around
z1 and z2 is given by

qyu1 − qxv1 = qyu2 − qxv2
which, after substituting u1 = v1 = 0 reduces to the linear space defined by the right hand side. It follows
that the tangent space to Uβ in the second copy of A2 is the line through the origin defined by the slope of
the line through qβ . In any case, this intersects the tangent space to Uα at z1 in just a point, assuming the
fixed lines defining Uα and the moving lines Nα

g defined by Z are distinct from the line through qβ and z0.
This is true by Lemma 4.2, and since the tangent spaces intersect in just the origin, they are transverse. �

This establishes Proposition 4.1.

5. The Algorithm

Fix an N and two mixed partitions α = (aα,bα, cα) and β = (aβ ,bβ , cβ) of complementary codimension.
We may assume that `(aα) = `(cβ) and `(aβ) = `(cα) otherwise the intersection is zero. Let `α = `(aα) +
`(bα) + `(cα) and `β = `(aβ) + `(bβ) + `(cβ). Refer to Section 3 for examples.

5.1. Step 1 – Diagrams. Fix a set of `α vertical lines indexed from top to bottom and a set of `β horizontal
lines indexed from left to right in the plane. Mark the fixed intersection points of the i-th horizontal line
with the (`(aβ)+`(bβ)+i)-th vertical line and the (`(aα)+`(bα)+j)-th horizontal line with the j-th vertical
line for 1 ≤ i ≤ cβ and 1 ≤ j ≤ cα. This establishes the diagram D as in Definition 3.1. See Figure 7.

5.2. Step 2 – Labels. Produce all incidence labelings of D (as in Definition 3.1): label the first `(aα)
vertical lines with the sequence aα, the next `(bα) vertical lines with bα, the first `(aβ) horizontal lines
with aβ , and the next `(bβ) horizontal lines with bβ . For any pair (dα,dβ) of permutations of cα and cβ ,
respectively, obtain an incidence labeling by labeling the last `(cα) vertical lines by dα and the last `(cβ)
horizontal lines by dβ . Let Ad be the set of all admissibly labeled diagrams. See Figure 8.
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1

`(aβ)− 1

`(aβ)

`(aβ) + 1

`(aβ) + `(bβ)

`β − `(cβ) + 1

`β − 1

`β

`α`(aα) + `(bα)`(aα)1

Figure 7. The diagram for an arbitrary α and β. Lines are labeled by their indices. Indices
are omitted on some of the vertical lines for readability.

aβ1

aβ
`(aβ)

bβ1

bβ
`(bβ)

dβ1

dβ
`(cβ)

dα`(cα)dα1bα`(bα)bα1aα`(aα)aα1

Figure 8. An arbitrary incidence labeling of D. The sequences dα and dβ are any permu-
tations of cα and cβ , respectively.

5.3. Step 3 – Trees. For each incidence labeling a of D in Ad, generate a tree Ta as follows. The root of
the tree consists of a.

Each node consists of a with extra marked points. The number of marked points on each line must not
exceed its label. Let N be a node of depth d. Let z be the integer label of the (d+ 1)st vertical line. Each
child of N consists of a with the extra marked points from N and an additional z marked points on the



12 ALEXANDER JON STATHIS

(d + 1)st vertical line. The extra points are the intersection of the (d + 1)st vertical line with z horizontal
lines such that the resulting number of points on each horizontal line does not exceed its label. There is one
child for each such choice. If there are no such choices, then N has no children.

5.4. Step 4 – Removing Erroneous Leaves. Beginning with a tree Ta, repeatedly remove any leaves
which do not contain the correct number of marked points, given by the label, on each line.

The intersection number ia of the incidence labeling a (See Definition 3.2) is the number of remaining
leaves.

Theorem 5.1. The intersection number σα · σβ is equal to the sum∑
a∈Ad

ia.

Proof. We will use the notation of Section 4 to refer to the lines, points, and partitions defining Uα and Uβ .
We define a correspondence between the lines in the diagram D = Dα,β underlying any a ∈ Ad and the lines

Lαe , Lβi , Mα
f , Mβ

j , as well as the lines 〈qαpβi 〉 and 〈qβpαe 〉 as follows.

The first `(aα) vertical lines correspond, in order, to the lines Lαe , the next `(bα) vertical lines correspond,

in order, to the lines Mα
f , and the last `(cα) vertical lines correspond to the spans 〈qαpβi 〉, also in order.

Similarly, the horizontal lines correspond to the lines defining Uβ .
Define a map of sets

ϕ : {leaves of the trees Ta} → Uα ∩ Uβ
as follows. Let λ be any leaf of any tree Ta. Each marked point in λ is the intersection of two lines in D and
defines a point in P2 given as the intersection of the corresponding lines defining Uα and Uβ . The image ϕ(λ)
is the subscheme of N distinct points given as the union over all the marked points in λ of the corresponding
points in P2. This map is well defined since in each λ there are exactly N marked points, and the N points
satisfy the incidence conditions on the lines defining Uα and Uβ .

The intersection of Ūα ∩ Ūβ occurs only along Uα ∩ Uβ by Corollary 4.5, and the intersection Uα ∩ Uβ is
zero dimensional and consists of reduced points by Lemma 4.7. Therefore, the intersection number σα · σβ
can be computed as the number of points in Uα ∩ Uβ , and it suffices to show that ϕ is a bijection.

Two leaves of different trees Ta and Tb corresponding to different incidence labelings a and b cannot map
to the same point in Uα ∩ Uβ since some line must be labeled differently in a than it is in b and therefore
contains a different number of marked points. Two leaves from the same tree result from different choices of
intersection points of some line in the diagram D. Hence ϕ is injective.

Let Z be a scheme in the intersection Uα∩Uβ . We must show that there is some incidence labeling a ∈ Ad
whose corresponding tree Ta contains a leaf mapping to Z. By Proposition 4.1, Z is reduced and consists
of N distinct points, and by Lemma 4.2 and its Corollary 4.3, each of these points resides on a single line

Lαe , Mα
f , or 〈qαpβi 〉. Similarly, each of these points resides on a single line Lβi , Mβ

j , or 〈qβpαe 〉. Furthermore,

aαe of them must reside on Lαe , bαf on Mα
f , and the remaining points must reside on the lines 〈qαpβi 〉 with

a unique nonzero entry of cα describing the number of points on each. Completely analogously, aβi points

lie on the lines Lβi , bβj on the lines Mβ
j , and the remaining points residing on the lines 〈qβpαe 〉 with unique

nonzero entries of cβ describing the number on each line.
Define an incidence labeling of D by labeling each line in D by the number of points in Z lying on its

corresponding line describing Uα or Uβ . For each point z ∈ Z, mark the intersection of the lines in D
corresponding to the unique line containing z describing Uα and the unique line containing z describing Uβ .
Marking the points on each vertical line in order from left to right allows us to follow the tree to the leaf



AN ALGORITHM FOR INTERSECTIONS IN P2[N] 13

λ, which is not removed in Step 4 since it consists of exactly N points with the correct number residing on
each line. �

One can ask if it possible to develop a theory of Schubert calculus for moduli spaces such as P2[N ]. Our
results suggest that it would necessarily be more complex than for the Grassmannians since intersections of
complementary codimension Schubert classes in the Grassmannian are always zero or one, while ours can
be much larger and are seemingly more difficult to compute. We’ll conclude this section with the following
question.

Question 5.2. Can one describe the Chow ring of P2[N ] similarly to Schubert calculus for the Grassmanni-
ans? In particular, is there a simple to compute Pieri’s rule and/or Giambelli’s rule for P2[N ] in any suitable
basis?

6. Computations and Implementation

An implementation of the algorithm in Python3 can be found at http://homepages.math.uic.edu/

~astathis/research/IntAlg/count.py.
To demonstrate the ease at which the algorithm performs computations which would otherwise be labori-

ous, we list below the intersection matrices for P2[5]. We order the basis elements in ascending lexicographic
order given as follows:

If ϕ = (ϕ1, . . . , ϕr) and ψ = (ψ1, . . . , ψs) are partitions of integers R1 and R2, respectively, then ϕ < ψ if
R1 < R2, or if R1 = R2, then ϕ < ψ if for some i ≤ r we have ϕj = ψj for j < i and ϕi < ψi.

If α = (α1, α2, α3) and β = (β1, β2, β3) are mixed partitions of an integer N , then α < β if for some i ≤ 3
we have αj = βj and αi < βi.

In each matrix, the dimension d basis elements index the columns, while the codimension d elements index
the rows.

[
4 3
1 1

]
Figure 9. The pairing matrix for A1(P2[5])×A1(P2[5]).


6 3 0 4 3 1
3 0 0 2 1 0
6 3 0 5 4 2
2 1 0 2 2 1
1 0 0 1 1 0
0 0 1 0 0 0


Figure 10. The pairing matrix for A2(P2[5])×A2(P2[5]).

http://homepages.math.uic.edu/~astathis/research/IntAlg/count.py
http://homepages.math.uic.edu/~astathis/research/IntAlg/count.py
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6 2 0 0 0 3 1 0 2 0 0 0
2 0 0 0 0 1 0 0 0 0 0 0
6 3 1 0 0 4 2 0 3 1 1 0
6 2 0 0 0 4 1 0 2 1 0 0
12 6 2 0 0 10 5 0 8 4 3 1
6 2 0 0 0 5 2 0 4 1 1 0
6 3 1 0 0 6 3 0 6 3 3 1
3 1 0 0 0 3 1 0 3 1 1 0
1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 3 3 0 0 2 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0


Figure 11. The pairing matrix for A3(P2[5])×A3(P2[5]).



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
12 5 2 1 0 0 0 0 0 6 2 0 0 0 0 1 0 0 0 0 0
6 2 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0
24 12 6 4 1 0 0 0 0 18 9 3 0 0 0 6 3 0 0 1 0
12 5 2 1 0 0 0 0 0 9 4 1 0 0 0 2 1 0 0 0 0
4 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0
24 12 6 4 1 0 0 0 0 24 12 4 0 0 0 12 6 0 0 4 1
12 5 2 1 0 0 0 0 0 12 5 1 0 0 0 5 2 0 0 1 0
6 2 1 0 0 0 0 0 0 6 2 0 0 0 0 2 1 0 0 0 0
4 1 0 0 0 0 0 0 0 4 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 2 1 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 2 4 4 2 0 0 0 0 3 3 0 0 2 1 0 0
0 0 0 0 0 1 2 2 1 0 0 0 0 2 2 0 0 2 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 4 2 0 0 0 0 2 3 0 0 2 1 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 1 2 0 0 2 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0


Figure 12. The pairing matrix for A4(P2[5])×A4(P2[5]).
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120 60 30 20 10 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 27 12 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 12 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 3 1 3 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 3 6 3 6 3 1 0 0 2 4 4 2 0 1 1 0
0 0 0 0 0 0 0 0 1 3 1 3 1 0 0 0 1 2 2 1 0 0 0 0
0 0 0 0 0 0 0 1 3 6 3 6 3 1 0 0 3 6 6 3 0 3 3 1
0 0 0 0 0 0 0 0 1 3 1 3 1 0 0 0 1 3 3 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 2 1 3 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 4 2 6 3 1 0 0 1 3 4 2 0 1 1 0
0 0 0 0 0 0 0 0 1 4 2 6 3 1 0 0 1 4 6 3 0 2 3 1
0 0 0 0 0 0 0 0 0 2 1 3 1 0 0 0 0 2 3 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 1 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 1 3 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0


Figure 13. The pairing matrix for A5(P2[5])×A5(P2[5]).
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