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SUMMARY

Let σ be an arbitrary element of the Mallavibarrena and Sols (MS) basis for the Chow

ring of the Hilbert scheme of points in the projective plane. Let H be the divisor of schemes

whose support meets a fixed general line. Let τ be an element of the MS basis which has

complementary codimension with σ. We have two main results:

1. There is an explicit algorithm to compute the intersection number σ · τ .

2. There is an explicit algorithm to compute the class of the intersection H · σ in the MS

basis.

x



CHAPTER 1

INTRODUCTION

In this thesis, we will describe the intersection product on the Hilbert scheme of points in

the projective plane in a basis due to Mallavibarrena and Sols (MS). A description of this basis

can be found in Section 2.4.

The Hilbert schemeX [N ] ofN points on a projective varietyX was introduced by Grothendieck

as a natural compactification of the space of unordered N -tuples of distinct points on X (1).

When X is a curve, X [N ] is the N -th symmetric product of X and if dimX ≥ 3, then X [N ] can

have many irreducible components (2). However, when X is a smooth projective surface, Foga-

rty proved that the Hilbert scheme X [N ] is a smooth irreducible projective variety of dimension

2N , and considered the problem of studying the geometry of X [N ] (3; 4).

Many interesting invariants arise as intersection products in the cohomology ring H∗(X [N ])

for a smooth complex projective surface X. For instance, if D1, . . . , Dk are divisors on X [N ]

whose corresponding linear functionals generate the codimension one cohomology, and if one

can compute the degree of the intersection products Di1
1 D

i2
2 · · ·D

ik
k for

∑
ik = 2N , then one

can give explicitly the volume of nef divisors on X [N ], a birational invariant for which not

many examples are known (5). Additionally, through a method of Gholampour and Seshmani,

these top intersection products would allow one to compute Donaldson-Thomas invariants of

2-dimensional sheaves inside threefolds, a class of invariants motivated by mathematical physics

and string theory (6; 7). Another classical example of such invariants would be the following:

given a linear system |L| of dimension 3N − 2 on X inducing a map X → P3N−2, how many

1
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N -secants of dimension N − 2 are there to the image of X? This number can be computed as

the degree of the top Segre class s2N (L[N ]) of the tautological bundle L[N ] associated to L.

To that end, there have been many attempts to describe the ring structure of the cohomology

ring H∗(X [N ]) (8; 9; 10; 11; 12; 13). Most notably, after an observation of Vafa and Witten,

Nakajima and Gojnowski provided a geometric construction of the ring ⊕N∈NH∗(X [N ]) as

a representation of a Heisenberg algebra thus linking Hilbert schemes of points on surfaces

to representation theory and theoretical physics (14; 15; 16; 17). Lehn was able to use this

description to compute the top Segre classes for N ≤ 7 using Nakajima’s description and

algorithmically for N > 7, although he notes that it is computationally intense (18). More

recently, Marian, Oprea, and Pandharipande were able to provide an explicit formula for a

more general class of intersections using a novel technique in the case where X is a K3 surface

(19).

Our results aim to provide an intuitive and concrete description of the intersection product

by specifying to the projective plane. Our main theorem describes the action of a natural

divisor on any element of the MS basis. The divisor H is the class of the locus of schemes

whose support meets a fixed general line. Let σ be any element of the MS basis.

Main Theorem 1. There is an explicit algorithm to compute the class in the MS basis of the

intersection H · σ.

We compute the support of the special fiber of two degenerations of loci in the Hilbert scheme

along the way, and describe an explicit process by which we can determine the coefficients of

the classes of each irreducible component of the support of the special fiber.

We also show that the natural representative loci of any two elements of complementary

codimension in the Mallavibarrena and Sols basis intersect transversely, and provide an explicit
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algorithm to compute the class of these intersections. Let σ and τ be elements of the MS basis

such that they are of complementary codimension.

Main Theorem 2. There is an explicit algorithm to compute the intersection number σ · τ .



CHAPTER 2

PRELIMINARIES & BACKGROUND

Before we begin, we will fix some conventions and notation for the remainder of this docu-

ment. We will work over the field of complex numbers C. Unless otherwise indicated, N will

be a fixed positive integer. We will use (sub)variety to mean (sub)algebraic set, so that they

are not necessarily irreducible.

Let A be a nonnegative integer. A partition a of A is a non-increasing sequence of integers

a = (a1,a2, . . .) such that their sum
∑

ai = A. The length `(a) of the partition a is the number

of nonzero entries1. It will often be useful to have an index i for a which we will take to be any

integer 1 ≤ i ≤ `(a). In this way, we can refer to any nonzero entry ai of the partition a.

2.1 A Little Bit About the Chow Ring

A more complete discussion of what follows in this section can be found in 3264 & All That

by Eisenbud and Harris or in Intersection Theory by Fulton (20; 21).

Let X be an arbitrary smooth irreducible projective variety of dimension n. The group of

cycles Z(X) is the free abelian group generated by its irreducible subvarieties. The group is

graded by both dimension, and since X is irreducible, codimension. That is,

Z(X) =
n⊕
k=0

Zk(X) =
n⊕
k=0

Zn−k(X)

1It will be necessary to alter this convention in Section 4.3.

4



5

where Zk(X) = Zn−k(X) is the subgroup generated by subvarieties of dimension k and is called

the group of k-cycles.

Two cycles α and β are rationally equivalent if there is an irreducible subvariety Ω of P1×X

such that the projection from Ω onto P1 is dominant and such that Ω ∩ ({0} × X) = α and

Ω∩ ({∞}×X) = β. We form the subgroup of rationally equivalent cycles R(X) ⊆ Z(X) as the

subgroup generated by differences of subvarieties

(Ω ∩ ({0} ×X))− (Ω ∩ ({∞} ×X)).

Definition 2.1.1. The Chow group of X is the quotient

A(X) = Z(X)/R(X).

If Y is a subvariety of X, we will refer to its rational equivalence class in A(X) as [Y ].

The subgroup R(X) respects the grading on the Chow group, so that A(X) is also graded

by dimension and codimension. Precisely,

A(X) =

n⊕
k=0

Ak(X) =

n⊕
k=0

An−k(X)

where Ak(X) = An−k(X) = Zk(X)/Rk(X) is the group of k-cycles modulo rational equivalence.

If W and Y are two subvarieties of X, then it is natural to try to define the product of their

classes as [W ] · [Y ] = [W ∩ Y ] in A(X). Unfortunately, things are not always so simple. For

instance, fix a smooth conic C in P2 and two lines L and M such that L is not tangent to C

and M is tangent to C. It is not hard to see that the two lines are rationally equivalent so that
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[L] = [M ] (one simply projects from L ∩M), but M ∩C and L ∩C are a single point and two

distinct points, respectively, and are hence not rationally equivalent in A(P2).

To fix this, let Wi be a finite collection of subvarieties of X. The intersection
⋂
Wi is

transverse at p if p is a smooth point of each Wi and if

codim
(⋂

TpWi

)
=
∑
i

codimTpWi.

It is generically transverse if it is transverse at a dense set of points in the intersection. Two

cycles
∑
Wi and

∑
Yj are generically transverse if each Wi is generically transverse to each Yj .

In our example above, the line L is transverse to C while the line M is not.

Lemma 2.1.2 (Moving Lemma). For every η, ν ∈ A(X) there are generically transverse cycles

W,Y ∈ Z(X) such that [W ] = η and [Y ] = ν. Furthermore, the class [W ∩ Y ] is independent

of the choice W and Y .

Theorem 2.1.3. There is a unique product structure on A(X) such that if W and Y are

generically transverse subvarieties of X, then [W ] · [Y ] = [W ∩ Y ]. This makes A(X) into a

commutative ring called the Chow ring1.

2.2 The Hilbert Scheme of Points on a Surface

The Hilbert scheme X [N ] of N points on a scheme X represents the functor of flat families

of zero dimensional subschemes of length N in X. Hilbert schemes were first constructed by

Grothendieck (22; 1). It is well known that when X is a smooth curve, the Hilbert scheme

1Historically, this theorem was proved as a consequence of the Moving Lemma. Logically, however, it
seems the reverse is true. See 3264 & All That for this discussion and Intersection Theory for the proof
(20; 21).
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X [N ] is identified with the symmetric product X(N) of the curve. When the dimension of X

is greater than two or when X is not smooth, the Hilbert scheme can be quite complicated: it

can be singular, reducible, have nonreduced components, etc (2; 23; 24; 25).

Now restrict to the case that X is a smooth irreducible projective surface.

Theorem 2.2.1 (Fogarty (3; 4)). The Hilbert scheme X [N ] of N points on X is a smooth

irreducible projective variety of dimension 2N .

It follows from Fogarty’s theorem that there is a natural birational morphism h : X [N ] →

X(N) from the Hilbert scheme to the symmetric product X(n) which is a resolution of singu-

larities and sends a subscheme Z to its Chow cycle
∑

p∈X `(OZ(p)) p. Consequently, a general

point of X [N ] corresponds to a subscheme of X consisting of N distinct points in X.

2.2.1 Chow Rings and Hilbert Schemes of Points

Ellingsrud and Strømme computed the Betti numbers for P2[N ], showed that the Chow

groups Ak(P2[N ]) are free, and provided a basis for these groups (26; 12). See Theorem 2.2.2

and Table I. More generally, Göttsche computed the Betti numbers for the Hilbert scheme X [N ]

of an arbitrary smooth irreducible projective surface X (27).

Theorem 2.2.2 (Ellingsrud and Strømme (26)). The dimension of Ak(P2[N ]) is

∑
d0+d1+d2=N

∑
p+r=k−d1

P (p, d0 − p)P (d1)P (2d2 − r, r − d2)

where P (m,n) is the number of partitions of m with entries bounded above by n, and zero when

n or m is negative.
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k

d

0 1 2 3 4 5 6 7 8 9 10

1 1 1

2 1 2 3

3 1 2 5 6

4 1 2 6 10 13

5 1 2 6 12 21 24

6 1 2 6 13 26 39 47

7 1 2 6 13 28 49 74 83

8 1 2 6 13 29 54 94 131 150

9 1 2 6 13 29 56 105 167 232 257

10 1 2 6 13 29 57 110 198 298 395 440

TABLE I: The first several Betti numbers of P2[N ].

Computing the intersection product on A(X [N ]) is more difficult. Elencwajg and LeBarz

completely computed the intersection product in A(P2[3]) using the basis of Ellingsrud and

Strømme, but noted that there were often delicate computations due to nonreduced and excess

intersections (9; 11; 10). More generally, Fantechi and Göttsche computed the intersection

product for the Chow ring of three points on a general smooth irreducible surface (13).

Nakajima and Grojnowski finally succeeded in providing a description of the Chow ring of

the Hilbert scheme for arbitrary N (14; 15; 17). Specifically, they provide an explicit geometric
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construction of H =
⊕

N H(X [N ]) as an irreducible representation of a Heisenberg algebra.

Lehn was able to give explicit series to calculate the action of certain Chern classes on H and

used this to describe some intersection products in H(X [N ]) (18).

2.3 Nakajima’s Description – Briefly

We take a moment to provide a basic introduction to the ideas of Nakajima and Grojnowski,

as no discussion of the Hilbert scheme of points on a surface would be complete without a proper

section on this work. Of course, one should refer to Lectures on Hilbert Schemes of Points on

Surfaces by Nakajima for a more complete discussion (15). We will follow the approach of

Ellingsurd and Göttsche in their notes Hilbert Schemes of Points and Heisenberg Algebras (28).

The idea comes from an observation of Vafa and Witten that Göttsche’s formula for the

Betti numbers of the Hilbert scheme of points on X agrees with the character formula for the

representation of the product of a Heisenberg algebra and Clifford algebra (16). The idea then

is to consider the direct sum H =
⊕

N≥0H(X [N ]) and define natural geometric operators on H

which give it this structure.

To do that, let i be a positive integer, and consider the incidence subscheme

{
(W,W ′) : W ⊆W ′

}
:= X [N,N+i] ⊆ X [N ] ×X [N+i].

Let p and q be the restricted projections to the first and second factor. There is a difference-

cycle map ρ : X [N,N+i] → X(i) from this incidence scheme to the symmetric i-th power of X

which sends a pair (W,W ′) to its difference W ′ −W with multiplicities. Here, W ′ −W is the

scheme corresponding to the finite length OX -module IW /IW ′ . The smallest diagonal ∆ ⊆ X(i)
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is the collection of points i ·P for P ∈ X and is isomorphic to X via the map that sends a cycle

to its support.

The pullback ρ∗∆ is not necessarily reduced or irreducible, so let ZN,i be the underlying

variety of the component of this pullback which consists of pairs (W,W ′) such that W ′ −W

is supported at a single point P ∈ X. Let µ be the restriction of ρ to ZN,i. We get the

commutative diagram in Figure 1.

X ∆ X(i)

ZN,i X [N,N+i] X [N ] ×X [N+i]

X [N ] X [N+i]

'

µ

j

ρ

p

q

Figure 1: The commutative diagram used to define the Nakajima operators.

Now let α be a cohomology class on X, let Φ be a cohomology class on X [N ], and let Ψ be

a cohomology class on X [N+i]. Define the following Nakajima operators:

Pα[i](Φ) := q∗(j∗(µ
∗α ∩ ZN,i) ∩ p∗Φ), and (2.1)

Pα[−i](Ψ) := p∗(j∗(µ
∗α ∩ ZN,i) ∩ q∗Ψ). (2.2)

To understand this, we envision α, Φ, and Ψ as subvarieties representing each (dual) homology

class. The pull back µ∗α ∩ZN,i is all pairs (W,W ′) such that the difference scheme W ′ −W is



11

supported at a point of α. The pullbacks p∗Φ and q∗Ψ are all pairs (W,W ′) such that W ∈ Φ

and W ′ ∈ Ψ, respectively. So Pα[i](Φ) takes a class on X [N ] and forms a class on X [N+i]

by adjoining to each scheme in Φ a subscheme of length i supported at a single point of α.

Conversely, Pα[−i](Ψ) takes a class on X [N+i] and forms a class on X [N ] by deleting from each

scheme in Ψ any subscheme of length i supported at a point of α.

Theorem 2.3.1 (Nakajima (14), Grojnowski (17)). There are relations

Pα[i]Pβ[j]− Pβ[j]Pα[i] = i · di+j,0 ·
∫
X
αβ · 1

where 1 is the identity operator on H,
∫
X αβ is the intersection product on X, and di+j,0 is the

delta function1.

Corollary 2.3.2. The space H with operators Pα[i], Pα[−i] as α ranges over all cohomology

classes on X and for all integers i > 0 is an irreducible representation of the product of a

Heisenberg algebra and a Clifford algebra.

2.4 Mallavibarrena and Sols’ basis for P2[N ]

The purpose of this section is to define the basis of Mallavibarrena and Sols (30). This basis

forms the foundation for the novel results contained within this thesis.

Fix a triple of partitions α = (a,b, c) of nonnegative integers A,B,C such that A + B +

C = N , respectively. Let r, s, t be the lengths of a,b, c and let e, f, g be indices for a,b, c,

respectively. We will associate to this data a locally closed subset Uα of the open set in P2[N ]

1The coefficient i in the relations was originally computed by Ellingsrud and Strømme (29).
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of reduced subschemes. The class σα =
[
Uα
]

of its closure in P2[N ] will be an element of the

MS basis.

Fix r general lines Le with r general points Pe ∈ Le, s general lines Mf , and a general point

Q. The locus Uα is the locus of reduced schemes Z in P2[N ] which can be written as the disjoint

union of three subschemes Z = Z1 ∪ Z2 ∪ Z3 such that:

1. Z does not contain Q or any point of intersection of any pair of fixed lines.

2. Z1 contains each point Pe, and meets each line Le in ae points.

3. Z2 meets each line Mf in bf points.

4. Z3 contains t disjoint subschemes Z3,g consisting of cg points collinear with Q.

The codimension of Uα in P2[N ] isN+r−t so that the class σα is an element of AN+r−t(P2[N ]).

Theorem 2.4.1 (Mallavibarrena and Sols (30)). The collection of classes {σα} is a basis for

the Chow ring A
(
P2[N ]

)
as α ranges over all triples of partitions of all triples of nonnegative

integers whose sum is N .

We will often refer to the lines spanned by the subschemes Z3,g as moving lines and think

of them as lines through the point Q which vary.

2.4.1 Some Examples of the Basis

Consider the triple of partitions α = (0, (1), (1, . . . , 1)). We fix a general line M1 and a point

Q, and consider the subset of schemes Z such that Z can be written as the disjoint union of

two subschemes Z2 and Z3 where:

1. Z2 meets the line M1, and

2. Z3 contains N − 1 distinct subschemes each of which is collinear with Q.
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The codimension of the associated class σα is N + 0 − (N − 1) = 1. It follows that σα is the

locus of schemes which meet a fixed general line in the plane and is the divisor associated to

the pullback h∗OP2(N)(1). We will refer to this divisor by H from here on out.

Consider now the triple of partitions β = (0, 0, (2, 1, . . . , 1)). In this case, we fix only a

general point Q. The locally open set Uβ is the collection of schemes Z such that it contains a

subscheme of length two collinear with Q. As with α, the codimension of the associated class

σβ has codimension N + 0 − (N − 1) = 1 in the Hilbert scheme. This class, along with H,

generates the Picard group of P2[N ].

It is often useful to draw schematic pictures for these classes. Fixed lines and points will be

solid, points which are allowed to vary will be hollow, and lines which are moving will be dashed.

Points through which the moving lines vary will be marked as a thick “X”. We conclude this

section with Figure 2 which contains heuristic pictures for each element of the MS basis for the

Chow ring of the Hilbert scheme of 3 points.
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(a) (0,0,(1,1,1))

(b) (0,(1),(1,1)) (c) (0,0,(2,1))

(d) ((1),0,(1,1)) (e) (0,(2),(1)) (f) (0,(1,1),(1)) (g) (0,(1),(2)) (h) (0,0,(3))

(i) (0,(1,1,1),0) (j) (0,(2,1),0) (k) (0,(3),0) (l) ((1),(1),(1)) (m) ((1),0,(2)) (n) ((2),0,(1))

(o) ((1),(2),0) (p) ((1,1),0,(1)) (q) ((2),(1),0) (r) ((1),(1,1),0) (s) ((3),0,0)

(t) ((2,1),0,0) (u) ((1,1),(1),0)

(v) ((1,1,1),0,0)

Figure 2: The full set of basis elements for the Chow ring of P2[3].



CHAPTER 3

COMPLEMENTARY CODIMENSION INTERSECTIONS

We set out here to prove Main Theorem 2:

Main Theorem 2. Let σ and τ be two elements of the MS basis of complementary codimension.

There is an explicit algorithm to compute the intersection number σ · τ .

3.1 Some Initial Computations

We will consider some illuminating examples before proving the result. The simplest in-

tersections within the MS basis occur when the classes are defined by loci of schemes whose

points vary on fixed lines. For instance, in P2[3] the basis element σ(0,(2,1),0) (Figure 2j) has

codimension three, and is defined by two points varying on one fixed line and one point varying

on another fixed line. Its self intersection number is one, as can be seen in Figure 3.

2

1

1 2

Figure 3: The intersection σ2
(0,(2,1),0) in P2[3].

15
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It is possible to compute this number directly in this case: simply observe that for generally

chosen lines in the plane, the unique scheme in the intersection must consist of three distinct

points, none of which is the intersection of the pair of lines defining either class, so that locally

around this point the two classes are products of lines. It follows that the intersection is

transverse.

As another example, we can compute the self intersection of the class σ((1),0,(2)) (Figure 2m)

in P2[3]. The self intersection is again one, as can be seen in Figure 4. In the figure, one class

is defined as the class of the locus U of schemes containing A and a subscheme of length two

collinear with QA, and the other is the class of the locus V of schemes containing B and a

subscheme of length two collinear with QB.

QA

QB

A

B

Figure 4: The intersection σ2
((1),0,(2)) in P2[3].

In this case, the fixed point A defining one class must be contained in the subscheme of

length two collinear with the point QB (and similarly the fixed point B defining the other class

must be contained in the subscheme of length two collinear with QA). This determines the two

moving lines as the spans AQB and BQA, respectively, and consequently the unique point Z in
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P2[3] of the intersection. Without loss of generality we may as well set A = (1, 0), QA = (0, 1),

B = (0,−1), and QB = (−1, 0). The scheme Z is then the set {(0,−1), (0, 0), (1, 0)}, so that

locally around this scheme there are charts isomorphic to A2 × A2 × A2. If the coordinates

on each chart are (xi, yi) for 1 ≤ i ≤ 3, then the locus U is locally defined by the equations

x3 = 1, y3 = 0 and

det


1 1 1

0 x1 x2

1 y1 y2

 = (x2 − x1) + x1y2 − x2y1 = 0,

and the locus V is similarly described by the equations x1 = 0, y1 = −1 and

det


1 1 1

−1 x2 x3

0 y2 y3

 = (y3 − y2) + x2y3 − x3y2 = 0.

Taking derivatives and considering the kernel of the resulting Jacobian matrix gives that the

tangent space to U at Z is defined by the equations

x3 = 1, y3 = 0, and

[
−1 0 2 0 0 0

]
·



x1

y1

x2

y2

x3

y3



= −x1 + 2x2 = 0.
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As similar analysis reveals the equations

x1 = 0, y1 = −1, and

[
0 0 0 −2 0 1

]
·



x1

y1

x2

y2

x3

y3



= −2y2 + y3 = 0

for the tangent space TZV , and it follows that the intersection U ∩V is transverse at its unique

point Z.

We will generalize this argument to show that general representatives of two classes σ and

τ of complementary codimension in the MS basis intersect transversally at any point of their

intersection.

It is possible to compute these intersection numbers when N is small. We have included the

intersection pairing matrices in the MS basis for the Chow ring of P2[3] and the Chow ring of

P2[5] in Appendix A. These matrices were computed first by hand and later verified by a Python

implementation of the algorithm. The Python code can be found in Appendix A Section A.3. It

is, however, unreasonable to compute intersections when N is large or when the classes become

sufficiently complicated.

3.2 Examples of the Algorithm

We associate to each intersection a diagram consisting of perpendicular lines which we

then label. The collections of intersection points which satisfy the different labelings naturally

correspond to points in the intersection of general loci representing the classes. To that end,
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let us first fix some notation. Let σα be an element of the MS basis associated to the triple

of partitions α = (aα,bα, cα) and σβ be an element of the MS basis associated to the triple

of partitions β = (aβ,bβ, cβ) such that σα and σβ have complementary codimension; that is if

σα ∈ Ad(P2[N ]) then σβ ∈ Ad(P2[N ]) = A2N−d(P2[N ]). Let (r, s, t) and (u, v, w) be the lengths of

the partitions in α and β, respectively, and let (e, f, g) and (i, j, k) be indices for the partitions

in α and β. We will assume that r = w and t = u since otherwise the intersection is necessarily

zero and there is nothing to compute.

Definition 3.2.1. (a) The diagram Dα,β associated to the intersection σα ·σβ is a set of r+s+t

vertical lines and a set of u+ v+w horizontal lines along with fixed marked points given as

follows. Index the horizontal lines from top to bottom by m and the vertical lines from left

to right by n. Add a fixed marked point at the intersection of the m-th horizontal line with

the (r + s+m)-th vertical line for 1 ≤ m ≤ t and a fixed marked point at the intersection

of the (u+ v + n)-th line with the n-th line for 1 ≤ n ≤ w.

(b) An incidence labeling of Dα,β is given as follows. Label the first r vertical lines by the

sequence aα, the next s vertical lines by the sequence bα, and the last t vertical lines

by any permutation of the sequence cα. Label the horizontal lines similarly: the first u

horizontal lines with the sequence aβ, the next v horizontal lines with bβ, and the last w

horizontal lines with any permutation of cβ.

Notice that the intersection of classes corresponding to two mixed partitions α and β has

exactly one diagram Dα,β (up to translating the lines – a harmless manipulation) which may

admit many incidence labelings. We will often refer to a diagram as D when the context

allows no confusion. When cα and cβ are both constant sequences, there is a unique incidence

labeling of D. Figure 5 shows the unique incidence labeling of the diagram for the intersection
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σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6]. Notice that there are no fixed marked points in this diagram

because cα and cβ are both zero.

1

1

2

2

3 2 1

Figure 5: The unique incidence labeling of the diagram for the intersection

σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6].

Figure 6 is a more complicated example involving many incidence labelings. It is a list of all

possible incidence labelings of the diagram for the intersection σ((3,1),(1),(2,1,1)) · σ((2,2,1),(1),(2,1)

in P2[9].

Two remarks are in order. First, the incidence labelings are taken over all permutations of

both sequences cα and cβ. Second, the sequences cα and cβ may contain repeated integers,

so that they may not exhibit t! and w! distinct permutations, respectively. For instance, in

Figure 6, there are three distinct permutations of cα = (2, 1, 1) (as opposed to six), and we get

a diagram for each distinct choice of permutations of cα and cβ for a total of six labelings.
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3 1 1

2

2

1

1

3 1 1

2

2

1

1

3 1 1

2

2

1

1

3 1 1

2

2

1

1

3 1 1

2

2

1

1

3 1 1

2

2

1

1

2

1

1

2

2

1

1

2

2

1

1

2

2 1 1 1 2 1 1 1 2

2 1 1 1 2 1 1 1 2

Figure 6: All possible incidence labelings of the diagram for the intersection

σ((3,1),(1),(2,1,1)) · σ((2,2,1),(1),(2,1) in P2[9].

Definition 3.2.2. The intersection number of an incidence labeling of a diagram is the number

of ways to choose sets Z consisting of N distinct intersection points of the lines in the diagram

satisfying the following conditions:

(i) the number of points on each line is given by its label; and

(ii) Z contains all of the fixed marked points in the diagram.

It is easy to compute the intersection number of an incidence labeling: beginning with the

first vertical line, and for each vertical line in the diagram, choose horizontal lines and mark

those points of intersection. The label of the vertical line indicates how many horizontal lines
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to choose. We keep track of all such choices in a tree whose nodes are the diagram with marked

points and whose edges correspond to different choices of points to mark. We will often conflate

choices which occur with symmetry and indicate it by labeling the corresponding edge with a

multiplicity. It is useful to drop portions of the tree or to ignore choices which obviously will

not result in collections of points satisfying all the incidence labels of all the lines.
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·2 ·2

3 2 1

3 2 1 3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

Step 1:

·2

Step 2:

Step 3:

Step 4:

Figure 7: The tree for the unique incidence labeling of the diagram for the product

σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6].
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For instance, consider Figure 7, where we conduct the process for the unique incidence

labeling of the diagram for σ(0,(3,2,1),0) · σ(0,(2,2,1,1),0) in P2[6]. The first vertical line has a label

of three, there are four possible ways to choose three lines from the four horizontal ones, but up

to symmetry, only two choices need be expressed and we label the corresponding edges with ·2.

In the second step, we must choose two lines from the horizontal lines to pair with the second

vertical line. We ignore choices which obviously violate the incidence conditions, such as any

choice containing either of the bottom two lines in the left node. This leaves just one unique

choice for the left node, and three unique choices, two of which are the same up to symmetry,

for the right node. Finally, in each of the cases on the third step there is a unique choice of lines

satisfying the incidence conditions. We conclude that the intersection number of the incidence

labeling is eight.

The intersection number σα · σβ is the sum of the intersection numbers of all incidence

labelings of its diagram. We will omit the details of the computation, but the intersection

numbers for the incidence labelings in Figure 6 are, from left to right and then top to bottom,

5,5,6,9,9, and 12, so that the intersection number σ((3,1),(1),(2,1,1)) · σ((2,2,1),(1),(2,1) = 46.

3.3 Proof of Main Theorem 2

We must first fix some notation. Let σ be an element of the MS basis associated to the

triple of partitions α = (aα,bα, cα) and τ be an element of the MS basis associated to the triple

of partitions β = (aβ,bβ, cβ) such that σ and τ have complementary codimension; that is if

σ ∈ Ad(P2[N ]) then τ ∈ Ad(P2[N ]) = A2N−d(P2[N ]). Let (r, s, t) and (u, v, w) be the lengths of

the partitions in α and β, respectively, and let (e, f, g) and (i, j, k) be indices for the partitions

in α and β.
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We will fix general representatives of σ and τ . Fix r general lines Lαe with r general points

Pαe ∈ Lαe , fix s general lines Mα
f and fix a general point Qα. Similarly, fix u general lines Lβi

with u general points P βi ∈ L
β
i , fix s general lines Mβ

j and fix a general point Qβ. Define sets

Uα and Uβ as described in Section 2.4 such that σ =
[
Uα
]

and τ =
[
Uβ
]
.

Assuming there is no excess intersection, the intersection number σ · τ can be computed

as the number of points in Uα ∩ Uβ counted with multiplicity. The first goal is to establish

Proposition 3.3.1.

Proposition 3.3.1. The intersection number σ · τ is the number of points in the intersection

Uα ∩ Uβ counted with multiplicity one.

To that end, we begin with the following lemma. Recall that in each point Z ∈ Uα (respec-

tively, Uβ) there are subschemes Zα3,g (resp., Zβ3,k) of length at least cαg (resp., cβk) collinear with

Qα (resp., Qβ).

Lemma 3.3.2. Let Z be a scheme in the intersection Uα ∩ Uβ. Each subscheme Zα3,g ⊂ Z

collinear with Qα must contain a unique P βi . The number t of lines through Qα spanned by

subschemes Zα3,g ⊆ Z must equal the number u of fixed points defining the other locus Uβ.

Similarly, the number w of lines through Qβ spanned by subschemes Zβ3,k ⊆ Z must equal the

number r of fixed points defining the locus Uα.

Proof. Observe first that the fixed points P βi were chosen generally and therefore will not lie

in the lines Lαe or Mα
f defining the locus Uα, and furthermore the span of any two such fixed

points does not contain Qα. Therefore, any scheme Z in the intersection Uα ∩ Uβ contains, for

each i, a subscheme Zα3,g containing P βi . This establishes the inequality u ≤ t.
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By symmetry, we have that r ≤ w. Now the codimension of σ is N + r − t while the

dimension of τ is N + w − u, and these are equal, so

r + u = w + t

and if either u < t or r < w, this equality cannot hold.

We get an immediate corollary about the support of any such scheme Z in the intersection.

Corollary 3.3.3. Let Z be scheme in the intersection Uα ∩ Uβ. Z must satisfy all of the

following conditions.

1. The support of Z cannot contain the intersection point of any two of the r + s fixed lines

Lαe or Mα
f (respectively the u+ v fixed lines Lβi or Mβ

j ) defining the locus Uα (Uβ).

2. The support of Z cannot contain Qα or Qβ.

3. The line spanned by any of the subschemes Zα3,g ⊆ Z (respectively Zβ3,k ⊆ Z) cannot

contain a fixed point Pαe (P βi ).

4. The support of any of the subschemes Zα3,g ⊆ Z (respectively Zβ3,k ⊆ Z) cannot meet any

of the lines Lαe or Mα
f (Lβi or Mβ

j ).

5. Each subscheme Zα3,g ⊆ Z (respectively Zβ3,k ⊆ Z) must span a unique line through Qα

(Qβ).

Proof. We’ll address each individually.

1. The intersection of any two of the r+ s fixed lines Lαe or Mα
f will not be contained in any

of the u+ v fixed lines Lβi or Mβ
j , nor will they be contained in any of the spans 〈QβPαe 〉.
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2. The point Qα is not contained in any of the u+v fixed lines Lβi or Mβ
j , nor is it contained

in any of the spans 〈QβPαe 〉.

3. The points Pαe are not contained in any spans 〈QαP βi 〉.

4. Fix some subscheme Z3,g and let L be the line it spans (if Z3,g is a single point, then let

L be the line it spans with Qα). The intersection of L with any line Lαe or Mα
f is not

contained in any line Lβi or Mβ
j , nor is it contained in any of the spans 〈QβPαe 〉.

5. The lemma establishes that t = u, so every subscheme Z3,g contains a unique P βi , and

consequently they span distinct lines.

By symmetry, all the conclusions hold for the locus Uβ with the appropriate replacements.

This is turn allows us to conclude the following.

Corollary 3.3.4. Let Z be a scheme in the intersection Uα ∩ Uβ. Assume that Z contains a

nonreduced subscheme W whose support is a single point. W is contained in some fixed line

Lαe or Mα
f , or it is collinear with Qα.

Proof. Let {Zt} be a flat family of schemes in Uα whose limit is Z. There is a subfamily {Wt}

of subschemes Wt ⊆ Zt such that the flat limit of {Wt} is W .

By Corollary 3.3.3, the support of W is not the intersection of any two of the lines Lαe , Mα
f ,

or 〈QαP βi 〉, and the support is therefore contained in a unique such line.

Assume for the moment that the support of W is contained in a fixed line Lαe′ or Mα
f ′ . The

general scheme Wt in the family does not meet any line Lαe or Mα
f where e 6= e′ or f 6= f ′.

Furthermore, Wt for a general t cannot meet any of the subschemes Zαt,3,g collinear with Qα

since the support of the limit of any such scheme would be contained in some of the lines

〈QαP βi 〉. Hence Wt for general t is contained completely in the line Lαe′ or Mα
f ′ .
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Now assume that the support of W is contained in some line 〈QαP βi 〉. Since the support is

not contained in any fixed line Lαe or Mβ
f , the subscheme Wt does not meet these fixed lines for

any general t, and hence must be the limit of points in subschemes Zαt,3,g. But Corollary 3.3.3

assures us that the support of W is contained in a unique 〈QαP βi 〉 and is not Qα, and hence

Wt for general t must be a subscheme of some Zαt,3,g for some fixed g. Therefore W is collinear

with Qα.

Corollary 3.3.5. Let Z be a scheme in the intersection Uα∩Uβ. Z cannot contain a nonreduced

subscheme. Furthermore, Z is contained in Uα ∩ Uβ.

Proof. Assume that Z contains a nonreduced subscheme W supported at a point P . By Corol-

lary 3.3.4, W is contained in and determines some Lαe or Mα
f , or is collinear with Qα. Similarly,

W is contained in some Lβi or Mβ
j , or is collinear with Qβ. In any case, these lines are distinct

and therefore W cannot be contained in both.

It follows Z is reduced, and when combined with Corollary 3.3.3, that is it contained in the

open loci Uα and Uβ.

It follows that there are charts for P2[N ] isomorphic to (A2)N around any such Z, and we

can locally describe the loci Uα and Uβ in these charts explicitly. We will work for the moment

solely with Uα, but everything applies analogously to Uβ. We first write (A2)N as the product

(A2)a
α
1 × · · · × (A2)a

α
r × (A2)b

α
1 × · · · × (A2)b

α
s × (A2)c

α
1 × · · · × (A2)c

α
t (3.1)

with coordinates (xm, ym) for 1 ≤ m ≤ N on each factor of A2. For the fixed points Pαe =

(Pαe,x, P
α
e,y) in the locus, and consequently in the first factor of A2 in each grouped factor (A2)a

α
i ,

the locus is defined simply by the equations xm = Pe,x and ym = Pe,y. For the remaining points
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in each factor (A2)a
α
e or (A2)b

α
f the locus Uα is locally defined in each A2 factor by the equation

of the line Lαe or Mα
f , respectively.

Three points Q = (Qx, Qy), P = (Px, Py) and R = (Rx, Ry) in A2 are collinear if and only

if

det


1 1 1

Qx Px Rx

Qy Py Ry

 = 0.

Let Qα = (Qαx , Q
α
y ). It follows that the locus Uα in each factor (A2)c

α
g is defined by the set of

equations

det


1 1 1

Qαx xn xm

Qαy yn ym

 = 0

for all 1 ≤ n < m ≤ cαg . Indeed, the locus is defined by the cαg − 1 independent equations

obtained by fixing n = 1 and varying m. The Jacobian of this set of equations is then



y2 −Qαy Qαx − x2 Qαy − y1 x1 −Qαx 0 0 · · · 0

y3 −Qαy Qαx − x3 0 0 Qαy − y1 x1 −Qαx 0
...

...
...

...
...

. . .
. . .

. . . 0

ycαg−1 −Qαy Qαx − xcαg−1 0 0 · · · 0 Qαy − y1 x1 −Qαx


,

and evaluating at Z =
⋃

(zx,m, zy,m) and taking its kernel gives cαg − 1 equations

(zy,m −Qαy )x1 + (Qαx − zx,m)y1 = (zy,1 −Qαy )xm + (Qαx − zx,1)ym

for the tangent space TZUα. This leads us to the following conclusion.
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Lemma 3.3.6. The locus Uα is smooth.

Proof. The codimension of Uα is N + r − t. It suffices to check that the codimension of the

tangent space at the point Z ∈ Uα is the same. But that is clear: there are cαg − 1 independent

equations defining the tangent space in the factor (A2)c
α
g , bαf independent equations defining

the tangent space in the factor (A2)b
α
f , and aαe + 1 independent equations defining the tangent

space in the factor (A2)a
α
e for a total of

∑
(aαe + 1) +

∑(
bαf
)

+
∑(

cαg − 1
)

=
∑

(aαe ) +
∑(

bαf
)

+
∑(

cαg
)

+ r − t = N + r − t

independent equations defining the tangent space to Uα at a point.

Lemma 3.3.7. Let Z be a scheme in the intersection Uα ∩ Uβ. The tangent spaces TZUα and

TZUβ intersect in a point, so the intersection Uα ∩ Uβ is transverse.

Proof. By Corollaries 3.3.3 and 3.3.5, we can work locally in the charts isomorphic to (A2)N

around Z. It therefore suffices to check transversality in each factor of A2 or on smaller sub-

products when necessary.

In any factor where the point z of Z is the intersection of a fixed line defining Uα with a

fixed line defining Uβ, this is clear since the two lines are distinct and the homogeneous equation

of the line defines the tangent space to Uα and Uβ at the point.

There are three remaining possibilities: in some fixed factor A2

1. one locus is given by a fixed line and the other is locally given by a “moving” line,

2. both loci are given by “moving” lines, and

3. one loci is locally a fixed point and the other is a “moving” line.
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In the final case, the result is clear.

Let A2 be some fixed factor in the chart, and let z = (zx, zy) be the point of Z in this factor.

We may as well assume that in Uα the point z is contained in some “moving” line. As such,

with respect to the decomposition in Equation 3.1, it lives in some subproduct (A2)c
α
g of which

the first factor corresponds to a fixed point P βi in Uβ. For the moment, we may ignore the

remaining cαg − 2 factors that do not correspond to our point z and our fixed point P βi . Let

(x1, y1) be coordinates in the this first factor, let (x2, y2) be coordinates in the factor containing

z, and let Qα be the point (Qαx , Q
α
y ). If P βi has coordinates (P βi,x, P

β
i,y) in this chart then in this

subproduct A2 × A2 with local coordinates (x1, y1, x2, y2), the tangent space to Uα is defined

by the single equation

(zy −Qαy )x1 + (Qαx − zx)y1 = (P βi,y −Q
α
y )x2 + (Qαx − P

β
i,x)y2. (3.2)

The equations x1−P βi,x = 0 and y1−P βi,y = 0 define the locus Uβ and its tangent space is then

just the origin in the first factor. The defining equation in the second factor depends on which

situation we are in.

In the first case, Uβ is locally defined by the equation of the fixed line defining it. The

intersection fails to be transverse if the slope of this fixed line coincides with the slope of the

line defined by the right hand side of Equation 3.2. This only occurs if all three of the points

Qα, z, and P βi reside on the fixed line, which is not the case since neither P βi nor Qα does by

assumption.

In the second case, the point z is on some “moving” line in Uβ and we must consider a

third factor of A2. There is a decomposition of the charts with respect to Uβ as in Equation 3.1
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such that there is a subproduct (A2)c
β
k and that the first factor contains some fixed point

Pαe = (Pαe,x, P
α
e,y) of the locus Uα. Note first that this cannot coincide with either of the two

factors of A2 we’re already considering. Let coordinates for this factor be (x3, y3). The locus

Uα is therefore defined by x3 − Pαe,x = 0 and y3 − Pαe,y = 0 here, and the tangent space to Uβ

has the additional defining equation

(zy −Qβy )x3 + (Qβx − zx)y3 = (Pαe,y −Qβy )x2 + (Qβx − Pαe,x)y2.

The intersection fails to be transverse if the resulting lines defined by

(P βi,y −Q
α
y )x2 + (Qαx − P

β
i,x)y2 = 0 and (Pαe,y −Qβy )x2 + (Qβx − Pαe,x)y2 = 0

coincide. This can only occur if the two lines QαP βi and QβPαe are equal, since they share the

common point z, which is not the case.

In any case, the intersection of the tangent spaces in each of these factors is a single point,

and thus we’ve established the lemma.

We can now prove Proposition 3.3.1.

Proof of Proposition 3.3.1. By Corollary 3.3.5, the intersection Uα ∩ Uβ occurs only along the

open locus Uα∩Uβ, and by Lemma 3.3.7 the intersection of the tangent spaces to Uα and Uβ at

any such intersection point meet in a single point. It follows that there is no excess intersection,

and the intersection number σ · τ is the number of points in the intersection Uα ∩ Uβ.
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3.4 The Algorithm

We recall Definition 3.2.1 of the diagram and its incidence labelings associated to an inter-

section of classes σ and τ of complementary codimension in the MS basis, as well as Definition

3.2.2 of the intersection number of a labeled diagram.

Definition 3.2.1.

(a) The diagram Dα,β associated to the intersection σα · σβ is a set of r + s + t vertical lines

and a set of u + v + w horizontal lines along with fixed marked points given as follows.

Index the horizontal lines from top to bottom by m and the vertical lines from left to right

by n. Add a fixed marked point at the intersection of the m-th horizontal line with the

(r + s + m)-th vertical line for 1 ≤ m ≤ t and a fixed marked point at the intersection of

the (u+ v + n)-th line with the n-th line for 1 ≤ n ≤ w.

(b) An incidence labeling of Dα,β is given as follows. Label the first r vertical lines by the

sequence aα, the next s vertical lines by the sequence bα, and the last t vertical lines

by any permutation of the sequence cα. Label the horizontal lines similarly: the first u

horizontal lines with the sequence aβ, the next v horizontal lines with bβ, and the last w

horizontal lines with any permutation of cβ.

Definition 3.2.2. The intersection number of an incidence labeling of a diagram is the number

of ways to choose sets Z consisting of N distinct intersection points of the lines in the diagram

satisfying the following conditions:

(i) the number of points on each line is given by its label; and

(ii) Z contains all of the fixed marked points in the diagram.
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Proposition 3.4.1. The intersection number σ · τ of complementary codimension classes σ

and τ in the MS basis is the sum of the intersection numbers of all of the incidence labelings of

the diagram associated to it.

Proof. Let D be the diagram associated to the intersection σ · τ . The first r + s vertical lines

in D correspond, in order, to the fixed lines Lαe and Mα
f defining the locus Uα while the last t

vertical lines correspond to the spans QαP βi . The first u+ v horizontal lines in D correspond,

in order, to the fixed lines Lβi and Mβ
j defining Uβ, and the last w horizontal lines correspond

to the spans QβPαe . The fixed marked points in D correspond to the points Pαe and P βi .

Under this correspondence, a collection Σ of N points which are intersection points of the

vertical and horizontal lines in D corresponds to a reduced scheme Z ∈ P2[N ] given by the

intersections of the corresponding lines. If we further require that Σ is an intersection point

of an incidence labeling of D, i.e., that Σ contains all the fixed marked points and that the

number of points in Σ on each line in the diagram is given by its label, then the corresponding

scheme Z is indeed a point of the intersection Uα ∩ Uβ.

This correspondence is injective since two such collections Σ and Ω differ by the number of

points incident to some line in the diagram and therefore in the image. Furthermore, given a

point Z ∈ Uα ∩ Uβ, it is naturally the image under this correspondence of some intersection

point Σ of some incidence labeling of D since Lemma 3.3.2 and Corollary 3.3.5 classify the

schemes in the intersection Uα ∩ Uβ as precisely these.

This bijective correspondence combined with Proposition 3.3.1 proves the claim.
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3.4.1 Step 1 – Diagrams

Fix a set of r + s + t vertical lines indexed from top to bottom and a set of u + v + w

horizontal lines indexed from left to right in the plane. Mark the fixed intersection points of

the i-th horizontal line with the (u+ v+ i)-th vertical line and the (r+ s+ j)-th horizontal line

with the j-th vertical line for 1 ≤ i ≤ w and 1 ≤ j ≤ t. This establishes the diagram D as in

Definition 3.2.1. See Figure 8.

1

u− 1
u

u+ 1

u+ v

u+ v + 1

u+ v + w − 1

u+ v + w

r + s+ tr + sr1

Figure 8: The diagram for an arbitrary σ and τ . Lines are labeled by their indices. Indices are

omitted on some of the vertical lines for readability.
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3.4.2 Step 2 – Labels

Produce all incidence labelings of D (as in Definition 3.2.1): label the first r vertical lines

with the sequence aα, the next s vertical lines with bα, the first u horizontal lines with aβ,

and the next v horizontal lines with bβ. For any pair (dα,dβ) of permutations of cα and cβ,

respectively, obtain an incidence labeling by labeling the last t vertical lines by dα and the last

w horizontal lines by dβ. Let Ad be the set of all admissibly labeled diagrams. See Figure 9.

aβ1

aβu
bβ1

bβv
dβ1

dβw

dαtdα1bαsbα1aαraα1

Figure 9: An arbitrary incidence labeling of D. The sequences dα and dβ are any permutations

of cα and cβ, respectively.
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3.4.3 Step 3 – Counting Intersections in Trees

Fix an incidence labeling ` of D. Generate a tree T` as follows. The root of the tree consists

of the labeled diagram `.

Each node consists of ` with extra marked points. The number of marked points on each

line must not exceed its label. Let N be a node of depth d. Let z be the integer label of the

(d+ 1)st vertical line. Each child of N consists of N and an additional z marked points on the

(d+ 1)st vertical line. The extra points are the intersection of the (d+ 1)st vertical line with z

horizontal lines such that the resulting number of points on each horizontal line does not exceed

its label. There is one child for each such choice. If there are no such choices, then N has no

children.

3.4.4 Step 4 – Removing Erroneous Leaves

Beginning with a tree T`, repeatedly remove any leaves which do not contain the correct

number of marked points, given by the label, on each line.

Lemma 3.4.2. The intersection number i` of the incidence labeling ` (see Definition 3.2.2) is

the number of remaining leaves.

Proof. A leaf in the tree is either

1. an intersection point of the labeled diagram `, i.e., a collection of N points which are the

intersection points of the horizontal and vertical lines such that it contains all of the fixed

marked points and such that the number of points on each line is given by its label.

2. the labeled diagram `, possibly with extra marked points, but with fewer than N marked

points since some choice results in a situation in which there are no choices of horizontal

lines that can still satisfy the labeling.
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After removing the leaves of type two in 3.4.4, the number of remaining leaves is precisely the

intersection number.

We can now prove our main theorem.

Proof of Main Theorem 2. By Proposition 3.4.1 it suffices to count intersection points of σ · τ

as collections of N points satisfying each possible incidence labeling, as constructed in Step 1

(3.4.1) and Step 2 (3.4.2). By Lemma 3.4.2, it suffices to count the leaves of the trees constructed

in Step 3 (3.4.3) and modified in Step 4 (3.4.4).

Everything here is explicit, and this obviously terminates since all the choices are finite.

3.5 Further Remarks

One nice consequence of this algorithm is that it is positive in the strong sense that it counts

objects which correspond one to one with points in the intersection. Colloquially, one might

say that “there are no negative signs” in the count. It is also purely combinatorial in that

it requires no knowledge of the geometry of the intersection to count. One can simply run a

process and arrive at a number.



CHAPTER 4

THE ACTION OF H ON THE CHOW RING

We now move on to Main Theorem 1. Fix a general line in P2, and let H be the class of

the locus of schemes in P2[N ] such that their support meets this line. Let σ be any element of

the MS basis.

Main Theorem 1. There is an explicit algorithm to compute the class in the MS basis of the

intersection H · σ.

As was our approach before, we begin with a barrage of examples, each of which steadily

increases in complexity until one which approximately demonstrates the algorithm.

4.1 Initial Computations

Let α = (a,b, c) be a triple of partitions, let σ be the class in the MS basis associated to α,

and let Uα be some general representative of σ (See Section 2.4). When Uα contains no moving

lines, the intersection with H is relatively straightforward to compute.

For instance, consider the class in A4(P2[3]) defined by the triple of partitions α = ((2), (1), 0)

(see 2q). Fix two general lines L1 and L2 and a general point P ∈ L1, so that the representative

Uα is the closure of the locus of schemes in P2[3] which contain P , meet L1 in an additional

point, and meet L2. H is obtained by considering the locus of schemes meeting some third

general line M . The intersection H ∩Uα consists of the union of two loci. The first loci consists

of schemes which contain the intersection point L1 ∩M and the second loci consists of schemes

which contain the intersection point L2 ∩M . See Figure 10.

39
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(a) (0,(1),(1,1))

∩

(b) ((2),(1),0)

=

(c) ((2,1),0,0)

+

(d) ((1,1),(1),0)

Figure 10: The intersection H ∩ Uα.

4.1.1 A Simple Example of the MS Degeneration

The situation becomes more complex when there are lines containing fixed points which

contain subschemes of length greater than two along this line. For example, consider the triple

of partitions β = ((3), 0, 0) and the class associated to this triple in the MS basis (see Figure

2s). Fix a point P and a line L through this point and consider the locus Uβ ⊂ P2[3] of schemes

contained in L and containing P . If H is the locus of schemes whose support meets a fixed

general line M , then the intersection consists of the schemes contained in L, and which contain

P and the intersection point L ∩ M . See Figure 11. We will use a modified version of a

degeneration of Mallavibarrena and Sols to compute the class of this locus.
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(a) (0,(1),(1,1))

∩

(b) ((3),0,0)

=

(c)

Figure 11: The intersection H ∩ Uβ.

Consider a locus defined by the triple of partitions ((2, 1), 0, 0) (see Figure 2t) with respect

to these fixed objects. We degenerate the fixed point onto the line, and obtain two loci as in

Figure 12.

(a) ((2,1),0,0)

∼

(b)

+

(c)

Figure 12: An example of the modified degeneration of Mallavibarrena and Sols.

The first is the locus of interest, and the second is the locus of schemes containing two

fixed points, one of which supports a nonreduced structure of length two. We repeat a similar

degeneration to resolve the second locus. We begin with a locus defined by the triple of partitions
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((1, 1), (1), 0) (see Figure 2u) and degenerate one of the points onto the line. We again get two

loci as in Figure 13.

(a) ((1,1),(1),0)

∼

(b) ((2,1),0,0)

+

(c)

Figure 13: An example of the degeneration of Mallavibarrena and Sols.

Combining all this, we get that the class of the intersection is as seen in Figure 14.

(a) (0,(1),(1,1))

∩

(b) ((3),0,0)

= 2

(c) ((2,1),0,0)

−

(d) ((1,1),(1),0)

Figure 14: The class of the intersection H · σα in the MS basis.
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The general case of these degenerations was computed by Mallavibarrena and Sols. See

Proposition 4.3.7.

More complicated examples involve elements with “moving lines”. Consider now the class

in A1(P2[3]) given by the triple of partitions γ = (0, 0, (2, 1)) (see Figure 2c). To obtain a

representative Uγ , we fix a general point Q and let Uγ be the locus of schemes which contain

a subscheme of length two collinear with Q. Again let H be the locus of schemes which meet

a general fixed line M . The intersection consists of two loci. The first locus is that of schemes

which contain a subscheme of length two collinear with Q and whose remaining point meets

M . The second locus is the schemes which contain a subcheme of length two collinear with Q

which also meets M . See Figure 15.

(a) (0,(1),(1,1))

∩

(b) (0,0,(2,1))

=

(c) (0,(1),(2))

+

(d) X

Figure 15: The intersection H ∩ Uγ .

Let the final locus (see Figure 15d) be X. To realize the class [X] in the MS basis, we

degenerate the point Q onto the line M . The special fiber of this degeneration consists of two

components. The first is the locus of schemes containing a subscheme of length two contained
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in the line M , and the second is the locus of schemes containing the point Q. These have classes

given by the triples of partitions (0, (2), (1)) and ((1), 0, (1, 1)), respectively. See Figure 16.

(a) X

∼

(b) (0,(2),(1))

∪

(c) ((1),0,(1,1))

Figure 16: The degeneration of the locus X into two components.

It follows that [X] = a · σ(0,(2),(1)) + b · σ(1),0,(1,1)) for undetermined coefficients a and b. To

determine them, we pair both sides with the classes corresponding to the triples of partitions

((1), (1, 1), 0) and ((1, 1), 0, (1)). These classes are determined from the triples of partitions

representing the loci in the special fiber of the degeneration. The intersection numbers are

straightforward to compute and we record them in the Table II.
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X (0,(2),(1)) ((1),0,(1,1))

((1),(1,1),0) 2 1 0

((1,1),0,(1)) 2 0 1

TABLE II: The intersection numbers which determine the coefficients of the two components

of the special fiber of the degeneration of the locus X.

Putting it all together yields the equivalence of classes in Figure 17.

(a) (0,(1),(1,1))

·

(b) (0,0,(2,1))

=

(c) (0,(1),(2))

+2

(d) (0,(2),(1))

+2

(e) ((1),0,(1,1))

Figure 17: The class of the product H · σ(0,0,(2,1)) in the MS basis.

4.2 A More Complicated Example

More generally, for α = (aα,bα, cα) any reasonable triple of partitions and let σ be its

associated class in the MS basis. We can consider the intersection H · σ along each condition

for the locus Uα separately and then take the sum of the resulting classes. That is to say, we
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can intersect it with each fixed line coming from aα, each fixed line from bα, and each moving

line from cα individually, and then sum to achieve the class of the product. Since the process

for intersection along the fixed lines is trivial in the case of those containing no fixed points of

the schemes in the locus and a known result of Mallavibarrena and Sols for the others, we’ll

focus primarily on the intersections with moving lines.

To that end, let α = (0, 0, (3, 2, 1)) and σ be the associated class in the MS basis for A(P2[6]).

Fix a line L and let H be the locus of schemes whose support meets L, and fix a point P not

on L and let U be the locus of schemes which contain distinct subschemes of length one, two,

and three collinear with P . See Figure 18.

Figure 18: The schematic diagram for σ.

The intersection H ∩ U consists of three irreducible components: the first corresponding

to when the free point of U lies on L, the second corresponding to when of the points in the

subscheme of length two collinear with P lies on L, and finally when one of the points of the

subscheme of length three collinear with P lies on L. See Figure 19 for the corresponding

pictures. We have labeled each component with names that we will define precisely later.
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P

L

(a) Θ
P,(2,1,0)
L,3

P

L

(b) Θ
P,(2,1,0)
L,2

P

L

(c) Θ
P,(2,1,0)
L,1

Figure 19: The components of the intersection H · σ.

The first locus is already the class associated to the triple of partitions (0, (1), (3, 2)) in the

MS basis. We will resolve the class of the second and third locus via a series of degenerations.

We will start with the first component.

To do this, we degenerate the point P onto the line L. There are three components in the

limit each consisting of at most one of the points on each moving line colliding with the point

P . More precisely, they are the locus of schemes with a subscheme of length three varying on

L and a subscheme of length two collinear with P , the locus of subschemes containing P and

two disjoint subschemes of length two collinear with P , and the final component consisting of

subschemes containing a subscheme of length two supported at P and a subscheme of length

two collinear with P . See Figure 20 for the corresponding pictures. The first component is

numerically equivalent to the element of the MS basis associated to (0, (3), (2, 1)).
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P

L

(a) Θ
P,(2,1,0)
L,1

∼

(b) Θ
O,(2,1,0)
L,2

∪

(c) φ
(1,1,0)
1

∪
2

(d) φ
(1,0,0)
2

Figure 20: The three loci of the first degeneration.

To determine the multiplicities of each component, we pair both sides with explicit classes

in the MS basis. For the first component (Figure 20b), we will use the class associated to

the triple ((1, 1), (2, 1, 1), 0). To see why we chose this class, we look at the locus and fix two

general points to determine the moving lines. We then think of the three lines in the picture

(two determined moving lines and one fixed line) as horizontal. Since one of the moving lines

only needs to contain a single point, it is now satisfied. The other moving line still needs to

contain an additional point, and the fixed line must contain three points. We now fix a set

of general lines which we think of as vertical. The first vertical line we require to contain two

points to account for one point on each of the remaining unsatisfied two lines, and the remaining

two vertical lines we require to contain one point each to account for the two remaining points

on fixed line. Alternatively, take the partition (2, 1) and insert the 3 from the fixed line to

obtain (3, 2, 1), then subtract one from each entry coming from a moving line (for each fixed

point) to get (3, 1, 0), and take the conjugate partition (2, 1, 1). This will be the second entry

of the triple of partitions for the class.
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We repeat a similar process for the remaining two loci. We fix three general points to

determine the moving lines, and then view all of the lines as horizontal. For the second locus

(Figure 20c), we also fix a general line which must contain two points and allow the last point of

the locus to freely vary. For the third locus (Figure 20d), we instead fix a general line and require

it contain just a single point, but fix a final general point and require our schemes contain a

subscheme of length two collinear with this point. This forces there to be a single such subscheme

which is supported at the fixed point of the third locus, thus making the intersections easy to

compute. We get the classes associated to the triples ((1, 1, 1), (2), (1)) and ((1, 1, 1), (1), (2)).

We count each of the intersections by hand, and can even compute the tangent spaces to each

locus directly in this case. In general, we show that that these intersections occur transversely

at only points which are sufficiently nice. In Table III we record the intersection of this class

with the four loci from the degeneration, as well as the multiplicity of each component (obtained

by solving the resulting linear equation).

Θ
P,(2,1,0)
L,1 Θ

O,(2,1,0)
L,2 φ

(1,1,0)
1 φ

(1,0,0)
2

((1,1),(2,1,1),0) 6 2 0 0

((1,1,1),(2),(1)) 6 0 3 0

((1,1,1),(1),(2)) 6 0 0 3

Mult. of Comp. 3 2 2

TABLE III: The intersection numbers which determine the coefficients of the components of

the degeneration in Figure 20.
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Notice that none of these classes meets any of the other components due to the length of

the subschemes supported at P . In general, there may be multiple different components which

have the same length subscheme supported at P , and in such a situation we still get explicitly

determined classes for each component, but must solve a linear system resulting from pairing

both sides with these classes.

To write the remaining classes in the MS basis, we degenerate again. We start with a

locus which is identical except the subscheme of positive length is supported at a fixed point Q

distinct from P . We degenerate Q onto P , and obtain the locus we want as one of the irreducible

components. We always start with the loci with the lowest length at P (when multiple loci

appear with the same length at P , we do them all simultaneously). In our case, we degenerate

the second locus (Figure 20c) first. Starting with the class of the locus of subschemes containing

a fixed general point Q and two subschemes of length two collinear with the fixed general point

P , we degenerate Q onto P . The special fiber of this degeneration is supported along three

irreducible components consisting of at most one of the points in each moving subscheme of

length two colliding with P . Precisely, the first is the locus of schemes containing P and two

subschemes of length two collinear with P , the second is the locus of schemes containing a

length two subcheme supported at P and a subscheme of length two collinear with Q, and

the third is the locus of schemes containing a length three subscheme supported at P . See

Figure 21.
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(a) Φ
P,(1,1,0)
Q,1

∼

(b) φ
(1,1,0)
1

∪
2

(c) φ
(1,0,0)
2

∪
3

(d) φ
(0,0,0)
3

Figure 21: The three loci of the degeneration.

We will again pair both sides with classes to determine the multiplicities of each of the

components in the limit of the degeneration. We start with three fixed general points to

determine each of the moving lines. For the first component (Figure 21b) the class we want

will have an additional general fixed line containing a subscheme of length two. The class for

the second component (Figure 21c) will also consist of schemes whose support meets a general

fixed line and which contain a subscheme of length two collinear with a fixed general point. The

last component (Figure 21d) we want to pair with the locus of schemes containing these three

fixed general points and which contain subschemes of length three collinear with a fixed general

point. These are the three classes in the MS basis associated to the triples ((1, 1, 1), (2), (1)),

((1, 1, 1), (1), (2)), and ((1, 1, 1), 0, (3)). The results of this pairing we record in Table IV.
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Φ
P,(1,1,0)
Q,1 φ

(1,1,0)
1 φ

(1,0,0)
2 φ

(0,0,0)
3

((1,1,1),(2),(1)) 3 3 0 0

((1,1,1),(1),(2)) 6 0 3 0

((1,1,1),0,(3)) 3 0 0 1

Mult. of Comp. 1 2 3

TABLE IV: The intersection numbers which determine the coefficients of the components of

the degeneration in Figure 20.

Notice again that each class only meets the specific component we want it to because of

the length of the scheme contained at the point P . Again, in general, there may be multiple

components in the degeneration with the same length nonreduced subscheme supported at P ,

and in this case we must solve a system of equations to obtain the multiplicities.

Combining the result of these computations gives the equivalence of classes in Figure 22.
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P

L

(a) Θ
P,(2,1,0)
L,1

∼ 3

(b) Θ
O,(2,1,0)
L,2

+2

(c) Φ
P,(1,1,0)
Q,1

−2
2

(d) φ
(1,0,0)
2

−6
3

(e) φ
(0,0,0)
3

Figure 22: The equivalence of classes roughly halfway through determining the class in the MS

basis of the component in Figure 19a.

The point here is that we have replaced a class in the sum with a class in the MS basis at the

expense of adding classes comprised of schemes which contain nonreduced subschemes of higher

length at the point P . Unfortunately, we must also accept the possibility of negative signs, and

as a result our process is not positive. Since this length is bounded, the process eventually

terminates. We continue the process with the locus whose subscheme at P has length two

(Figure 22d).

We start with a locus which is identical except the nonreduced subscheme of length two is

supported a fixed point Q distinct from P . We degenerate the point Q onto P and obtain two

components of the special fiber of the degeneration. The first is the locus of schemes containing

a nonreduced subscheme of length two at P and a subscheme of length two collinear with P , and
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the second is the locus of schemes containing a nonreduced subscheme of length three at P . See

Figure 23. The classes we pair with these to determine the multiplicities of each component are

the same we used before, that is to say, they are the classes associated with ((1, 1, 1), (1), (2))

and ((1, 1, 1), 0, (3)), so it suffices to compute only the intersection of these classes with the

locus on the left hand side. These intersection numbers are both three, so the first component

appears with multiplicity one and the second with multiplicity three. Combining this with the

equality in Figure 22 we arrive at the equality in Figure 24. Notice that the contribution of the

class whose schemes contain subchemes of length three from this last degeneration cancel with

those we already have. At the moment, we have no conjecture as to how to detect when this

phenomenon occurs.

2

(a) Φ
P,(1,0,0)
Q,2

∼
2

(b) φ
(1,0,0)
2

∪
3

(c) φ
(0,0,0)
3

Figure 23: The loci of the second degeneration.
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P

L

(a) Θ
P,(2,1,0)
L,1

∼ 3

(b) Θ
O,(2,1,0)
L,2

+2

(c) Φ
P,(1,1,0)
Q,1

−2

2

(d) Φ
P,(1,0,0)
Q,2

Figure 24: The equivalence in Figure 22 after substituting in the results of the second degener-

ation.

At this point, we rely on the degeneration of Mallavibarrena and Sols to break up classes of

nonreduced subschemes supported at a fixed point into classes whose general member is com-

prised of distinct points contained in lines. Figure 25 shows the final result of our computation

after applying this degeneration.
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3

(a) σ(0,(3),(2,1))

+2

(b) σ((1),0,(2,2,1))

−2

(c) σ((1),(1),(2,1,1))

+2

(d) σ((2),0,(2,1,1))

Figure 25: The results of our hard work: the class of the component in Figure 19a in the MS

basis.

The computation of the class of the second component (Figure 19b) of the intersection is

completely analogous. The result of that computation is contained in Figure 26.

P

L

(a) σ(0,(3),(2,1))

∼ 2

(b) σ(0,(2),(3,1))

+2

(c) σ((1),0,(3,1,1))

Figure 26: The class of the component in Figure 19b in the MS basis.

4.3 Degenerations

We will now begin to prove the results necessary to establish Main Theorem 1. Brace

yourselves. Are you ready?
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We need notation for a few loci in the Hilbert scheme before we can describe the degenera-

tions. For that purpose, fix a partition m of N of length r. For the purpose of this section, we

allow partitions to have finitely many zeros and consider them when counting the length. Fix

i such that 1 ≤ i ≤ r and such that mi > mi+1. Let P and Q be distinct points in P2, let L be

a line in P2, and let q be a positive integer.

Let ΘP,m
L,i be the closure of the locus in P2[N+r] of schemes Z such that:

• for each 1 ≤ j ≤ r, Z contains a subscheme Zj of length mj + 1 collinear with P and

spanning a line Lj such that the support of Zj does not meet Lk for k 6= j, and

• the support of Zi meets L.

See Figure 27 for an example of this locus when m = (3, 2, 1) and i = 2.

L1

L3

P

L
L2

Figure 27: A schematic picture for the scheme Θ
P,(3,2,1)
L,2 .
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Notice that the general scheme in ΘP,m
L,i is supported at N + r distinct points. There are

mj + 2 degrees of freedom for each collinear subscheme except when j = i. In this case there

are mi + 1 degrees of freedom, so the dimension of ΘP,m
L,i is

mi + 1 +
∑
j 6=i

(mj + 2) = 2r +N − 1.

L1 L2 L3

PQ

(a) Φ
P,(3,2,1)
Q,2

L1 L2 L3

(b) φ
(3,2,1)
2

Figure 28: Pictures for the scheme Φ
P,(3,2,1)
Q,2 and φ

(3,2,1)
2 .

Let ΦP,m
Q,q be the closure of the locus in P2[N+r+q] of schemes Z such that:

• Z contains a nonreduced subscheme ZQ of length q at Q;

• for each 1 ≤ j ≤ r, Z contains a subscheme Zj of length mj + 1 collinear with P and

spanning a line Lj such that the support of any Zj does not meet Lj for k 6= j;

• and Q does not lie on Lj for any j.

Finally, let φmq be the closure of the locus in P2[N+q+r] of schemes Z such that:
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• Z contains a nonreduced subscheme ZO of length q at the origin;

• and for each 1 ≤ j ≤ r, Z contains a subscheme Zj of length mj + 2 collinear with the

origin and spanning a line Lj such that the support of any Zj does not meet Lk away

from the origin for k 6= j.

Note that φmq differs from ΦP,m
Q,q since P and Q are distinct. See Figure 28 for an example of each

locus when m = (3, 2, 1) and q = 2. In either case, there are q − 1 degrees of freedom defining

the length q subscheme at Q and mi + 2 degrees of freedom for each collinear subscheme, so

the dimension of ΦP,m
Q,q is

(q − 1) +
r∑
i=1

(mi + 2) = q + 2r +N − 1.

Notice that the general scheme in either locus is supported at N + r + 1 distinct points. It is

important to observe the following fact.

Lemma 4.3.1. The loci φmq and ΦP,m
Q,q are irreducible.

Proof. The loci φmq and ΦP,m
Q,q are defined as closures of loci which are isomorphic to the product

of a Briançon scheme and open sets defining elements of the MS basis, so they are irreducible

of the given dimensions.

Let Σj be the set of partitions obtained from some partition m by subtracting one j times,

at most once from each entry. Expressed as Young diagrams, the partitions obtained from

m = (2, 1, 1) are shown in Figure 29.
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Σ0 Σ1 Σ2 Σ3

Figure 29: The sets Σj for m = (2, 1, 1).

Recall that for the purpose of this section our partitions may have zeros, so that, for instance,

the unique partition of Σ3 obtained from the partition m = (2, 1, 1) is (1, 0, 0) and we consider

it to be of length three.

Additionally, let Σi
j be the set of partitions obtained from some partition m by subtracting

one j times, at most once from each entry, and always beginning with mi. This causes no issues

because our choice of i was such that mi > mi+1. For instance, if m = (2, 1, 1) as above, then

Σ2
j = Σ3

j = Σj for j = 0 and j > 1, but Σ2
1 = Σ3

1 is a singleton consisting of only the lower

partition shown under Σ1 in Figure 29.

4.3.1 The First Degeneration

Let O be the origin, let Pt be the point (0, t) in the plane with P = P1 = (0, 1), and let L

be the line {y = 0}. Let F be the family in P2[N+r] × C∗ such that the fiber Ft over t ∈ C∗ is

ΘPt,m
L,i . The closure F̂ of F in P2[N+r] × C is a flat family with special fiber F̂0.
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Proposition 4.3.2. The support of the special fiber F̂0 is contained in the union

ΘO,m
L,i ∪

r⋃
j=1

⋃
λ∈Σij

φλj .

Corollary 4.3.3. There is an equivalence of cycles

[
ΘP,m
L,i

]
∼ a

[
ΘO,m
L,i

]
+

r∑
j=1

∑
λ∈Σij

cλj

[
φλj

]

for nonnegative integers a and cλj .

Notice that every scheme in the component ΘO,m
L,i must have a subscheme of length mi

contained in L.

For an example, when the general fiber of the family is Θ
P,(2,1,1)
L,2 , Proposition 4.3.2 says that

the special fiber is supported on the irreducible components given by the Σ2
j . See Figure 30 for

pictures, but note that, for example, the locus φ
(0,0,0)
4 does not appear.
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L1

L3

L

(a) Θ
O,(2,1,1)
L,2

L1

L3

2

L
L2

(c) φ
(1,1,0)
2

L1

L3

3

L
L2

(d) φ
(1,0,0)
3

L1

L3

L
L2

(e) φ
(2,1,0)
1

L1

L3

2

L
L2

(f) φ
(2,0,0)
2

Figure 30: The irreducible components of the support of the special fiber.

We will use the following lemma in the proof of Proposition 4.3.2.

Lemma 4.3.4. A general nonreduced subscheme Z of length k > 0 supported at the origin has

length one along any general line L through the origin.

Proof. The general subscheme Z of length k supported at the origin is contained in a smooth

curve ζ of degree k − 1. The length `(Z ∩ L) of the scheme along the line L is the intersection

multiplicity IO(L, ζ) at the origin. Since the line L is general, this is readily seen to be one.

Proof of Proposition 4.3.2. Let Z0 be a general point of the special fiber F̂0 and let γ be a

curve in F specializing to Z0 such that the general point γt is contained in Ft. The general

γt contains subschemes γt,j of length mj + 1 for 1 ≤ j ≤ r such that γt,j spans a line Lt,j

through Pt. Furthermore, the support of the subscheme γt,j meets L. Each family of lines
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{Lt,j} specializes to a line L0,j through the origin O, and the support of Z0 is contained in

the union of these lines with the lengths `(Z0 ∩ L0,j) of Z0 along each line Lj at least mj + 1.

It follows that if the support of Z0 does not contain the origin, then Z0 ∈ ΘO,m
L,i . Otherwise,

Z0 contains a subscheme of length l > 0 supported at the origin and subschemes Zj of length

mj − lj + 1 disjoint from and collinear with the origin such that
∑
lj = l.

With that in mind, let C be a component of F̂0 described by a partition m′ = (m1−l1,m2−

l2, . . . ,mr − lr) for nonnegative integers li ≤ mi such that C is contained in the locus φm
′

l . It

follows that

dimC ≤ l − 1 +

r∑
j=1

(m′j + 2) = l − 1 +

r∑
j=1

(mj − lj + 2) = N + 2r − 1

with equality holding if and only if C = φm
′

l . The general scheme Ft in the family has dimension

N + 2r − 1, so C must too, and therefore C = φm
′

l .

Now, the general scheme Z ∈ φm′l consists of subschemes Zj of m′j distinct points spanning

a line Lj through the origin and a general length l subscheme ZO at the origin. By Lemma

4.3.4, the length of ZO along any of the lines Lj is one, so that

mj + 1 ≤ `(Z ∩ Lj) = (m′j + 1) + `(ZO ∩ Lj) = (mj − lj + 1) + 1,

and it follows that lj ≤ 1.

Additionally, since Z is the limit of some curve in F whose general member is contained in

Ft, the subscheme Zi ⊆ Z is the limit of subschemes Zt,i all meeting L and therefore must meet

L also. But then the support of Zi must meet the origin for general Z.
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4.3.2 The Second Degeneration

Now let q be a positive integer, let Qt be the point (0, t) in the plane, let Q = Q1 = (0, 1)

and let O be the origin. Consider the family F in P2[N+q+r] × C∗ such that the fiber Ft over

t ∈ C∗ is ΦO,m
Qt,q

. The closure F̂ of F in P2[N+q+r] × C is a flat family with special fiber F̂0.

Proposition 4.3.5. The support of the special fiber F̂0 is contained in the union

r⋃
j=0

⋃
λ∈Σj

φλq+j .

Corollary 4.3.6. There is an equivalence of cycles

[
ΦO,m
Q,q

]
∼

r∑
j=0

∑
λ∈Σj

cλj

[
φλq+j

]

for nonnegative integers cλj .

For example, when the general fiber of the family is Φ
O,(2,1,1)
Q,2 , Proposition 4.3.5 says that

the special fiber F̂0 is supported on the irreducible components given by the Σj in Figure 29.

See Figure 31 for the pictures of each locus, but note that, for instance, the locus φ
(0,0,0)
6 does

not appear.
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2

(a) φ
(2,1,1)
2

3

(b) φ
(1,1,1)
3

4

(c) φ
(1,1,0)
4

5

(d) φ
(1,0,0)
5

3

(e) φ
(2,1,0)
3

4

(f) φ
(2,0,0)
4

Figure 31: The irreducible components of the support of the special fiber.

Proof of Proposition 4.3.5. Let Z0 be a general point of the special fiber F̂0 and let γ be a curve

in F specializing to Z0 such that the general point γt is contained in Ft. The general γt contains

subschemes γt,i of length mi + 1 for 1 ≤ i ≤ r such that γt,i spans a line Lt,i through the origin

and a subscheme γt,Qt of length q supported at Qt. The family Lt,i for each i specializes to a line

L0,i and Qt specializes to the origin O, so that the support of Z0 is contained in {O}∪
⋃r
i=1 L0,i.

Furthermore, the length of Z0 along any of the L0,i is `(Z0 ∩ L0,i) ≥ mi + 1 and the length of

Z0 at O is `(Z0)O ≥ q.

The components of F̂0 therefore consist of loci comprised of schemes containing subschemes

whose support is disjoint from the origin, but which are collinear with the origin, of length

less than or equal to mi for each 1 ≤ i ≤ r and containing a subscheme of length q + j at

the origin for j ≥ 0. With that in mind, let C be a component of F̂0 described by a partition
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m′ = (m1 − l1,m2 − l2, . . . ,mr − lr) for nonnegative integers li, and let l be the sum of the li

such that C is the contained in the locus φm
′

q+l. It follows that

dimC ≤ (q + l − 1) +

r∑
i=1

(m′i + 2) = (q + l − 1) +

r∑
i=1

(mi − li + 2) = q +N + 2r − 1.

Equality holds if and only if C = φm
′

q+l. Since the dimension of each fiber Ft has dimension

q +N + 2r − 1, the dimension of C must be q +N + 2r − 1. Hence, the general point Z0 ∈ C

contains subschemes Z0,i consisting of m′i + 1 distinct points collinear with the origin and a

general subscheme Z0,O of length q + l supported at the origin.

Assume Z0 is a general point of C. As before, let L0,i be the lines through the origin spanned

by the subschemes Z0,i and Z0,O be the subscheme of length q + l supported at the origin. By

Lemma 4.3.4, `(Z0,O ∩ L0,i) = 1 for each i. On the other hand,

mi + 1 ≤ `(Z0 ∩ L0,i) = (m′i + 1) + `(Z0,O ∩ L0,i) = (mi − li + 1) + 1,

and it follows that li ≤ 1, as desired.

4.3.3 The MS Degeneration

We finish this section with a final degeneration which is due to Mallavibarrena and Sols

(30).

Let L be a line in P2, Q ∈ P2 a point, and let l and q be nonnegative integers. Define the

subset HL,l
Q,q to be the locus of schemes Z ∈ P2[l+q] such that

• the length `(Z ∩ L) ≥ l; and
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• the length `(Z)Q ≥ q.

Q

L

q

l

(a) HL,l
Q,q

=
Q

q

Ml

(b) HM,l+1
Q,q

+
Q

q + 1

Ml − 1

(c) HM,l
Q,q+1

Figure 32: The degeneration of Mallavibarrena and Sols.

Proposition 4.3.7. Let Q be a point of P2, L a line not containing Q, and M a line containing

Q. Let l and q be nonnegative integers. There is an equivalence of classes on P2[l+q]

[
HL,l
Q,q

]
∼
[
HM,l
Q,q+1

]
+
[
HM,l+1
Q,q

]
.

For a proof, see Mallavibarrena and Sols (30). A schematic picture can be found in Figure 32.

We obtain the obvious corollary.

Corollary 4.3.8. There is an equivalence of classes

[
HM,1
Q,q

]
=

q∑
i=1

(−1)i+1
[
HL,i
Q,q−i

]
+ (−1)q−1

[
HM,q
Q,1

]
.

A slight modification of the degeneration in Proposition 4.3.7 will allow us to resolve the

class of loci appearing naturally in the intersections H · σ. To that end, let Q be a point of P2,
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L be a line containing a fixed point P , and l, q be nonnegative integers. Define the locus GP,L,lQ,q

to be the schemes Z ∈ P2[l+q+1] such that

• P ∈ Z;

• the length `(Z ∩ L) ≥ l; and

• the length `(Z)Q ≥ q.

Notice that GP,L,lQ,q differs from HL,l
Q,q since its members contain the additional fixed point P ∈ L.

By fixing a point on L in Proposition 4.3.7, we obtain the following corollary.

Corollary 4.3.9. Let P and Q be distinct fixed points in P2, let L be the line they span, and

let R be a fixed point not contained in L. There is an equivalence of classes

[
GP,L,l+2
Q,1

]
=

l∑
i=0

(−1)i
[
GP,L,l+1−i
R,i

]
.

4.4 The Algorithm

In this section, we describe how to compute the class of the intersection of the divisor

σ(0,1,(N−1)) with any other class σα for a triple of partitions α = (a,b, c) in the Hilbert scheme

P2[N ]. We begin with some immediate observations and reductions.

First, we fix a general representative Uα for σα and H for σ(0,1,(N−1)). The intersection of

these two representatives is generically transverse as long as the lines and points defining Uα

and the line defining H are chosen generally with respect to each other, as is the case. The

irreducible components of the intersection are thus easy to identify: the point moving on the line

defining H must satisfy one of the three different types of conditions defining Uα which we call

type A, B, and C, respectively. Type A intersections contain as a fixed point the intersection
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point of the line defining H and one of the lines through a fixed point defining Uα. Type B

intersections contain as a fixed point the intersection point of the line defining H and one of

the fixed lines defining Uα which does not pass through a fixed point defining Uα. Type C

intersections occur when one of the points on a moving line through Q defining Uα resides on

the line defining H. See Figure 33 for schematic diagrams of these intersections.

L

a1 ai ar

(a) Type A Intersections

L

b1 bi bs

(b) Type B Intersections

c1

ct

ci−1

ci+1

L ci

(c) Type C Intersections

Figure 33: The three different types of intersections.

The class σ(a,b,c) ·σ(0,1,(N−1)) is the sum of the classes of each component of the intersection

of H with Uα. It remains to compute these classes. We will dispatch the easiest case first.

4.4.1 Type B

The simplest case is when the point moving on the line defining H meets any of the fixed

lines defining Uα coming from the partition b as shown in Figure 33b. The classes of these

components are already elements of the MS basis, and there is very little work to be done.
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If b = (b1, . . . ,bs), then the resulting class describing the intersection along these types is

given by the sum
s∑
i=1

σ
(ai,b̂i,c)

where b̂i is b with bi omitted and ai is a with bi inserted. Notice that if an entry of b is

repeated then there are repeated summands.

4.4.2 Type A

This occurs when the point moving on the line defining H meets any of the lines in Uα

through a fixed point of Uα as defined by a as shown in Figure 33a. Because the resulting locus

contains schemes with two fixed points on the same line, possibly with or without remaining

moving points on that line, we must resolve the class of this locus into elements of the MS basis.

QP Ml

Figure 34: A locus of type A, or GP,L,l+2
Q,1 .

For this we turn to the degeneration of Mallavibarrena and Sols given in Proposition 4.3.7.

Specifically, Corollary 4.3.9 allows us to write the class of the locus GP,L,l+2
Q,1 (Figure 34) of the

intersection as an alternating sum of the classes of loci consisting of a fixed point P with some

number of points on a line through P and a nonreduced subscheme supported at a point away

the line. The class of these loci can then be written in the MS basis by repeatedly applying

Corollary 4.3.8. Refer to Section 4.1.1 for a simple example of this process.
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4.4.3 Type C

Let c′ be the partition given by c− 1 := (c1 − 1, c2 − 1, . . . , ct − 1). This shift is necessary

to align with our notation from Section 4.3. Any locus of Type C as shown in Figure 33c is

consequently the locus ΘQ,c′

L,i for general line L defining the locus H and general point Q defining

Uα.

The general steps are as follows.

1. We apply the degeneration from Proposition 4.3.2 and Corollary 4.3.3 to write the class

[ΘQ,c′

L,i ] as a sum of classes of loci of type φλj . We determine the coefficients cλj in Corollary

4.3.3 by pairing with specific natural classes in the MS basis and solving the resulting

systems of equations; this process will be explained more precisely in Section 4.4.3.1.

2. We then resolve the classes [φλj ] in order of increasing j. To each locus we apply the

degeneration in Proposition 4.3.5 and Corollary 4.3.6. In doing so, we replace [φλj ] with

a class of [Φλ
Q,j ] at the cost of adding additional classes of loci φλ

′
k for k > j. We again

determine the coefficients cλ
′
k in Corollary 4.3.6 by pairing with explicit classes as described

in Section 4.4.3.1.

3. Repeat step 2 increasing the length of the subscheme common to all schemes in the locus

at each step. Since this is bounded above by the total number of points C, eventually

this terminates in the class [φ
(0,0,...,0)
C ] = [Φ

(0,0,...,0)
Q,C ].

4. We replace each class [Φλ
Q,j ] with a sum of classes in the MS basis using the degeneration

of Mallavibarrena and Sols in Proposition 4.3.7 and Corollary 4.3.8.
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4.4.3.1 Determining the Multiplicities

At the moment, we see no way to determine the coefficients cjλ of each component in Corol-

lary 4.3.3 or 4.3.6 except by explicit computation by hand, as it seems to depend on delicate

combinatorial information. See Section 4.2 for examples of this behavior. We end the section

with Conjecture 4.4.8 which is an explicit determination of these coefficients.

Fix an integer j ≥ 0 and let λ be a partition of a positive integer M possibly containing

zeros as our convention allows. Each component φλj naturally determines a class in the MS basis

which we use to determine the coefficients of the components with a nonreduced subscheme at

the origin of length j. Let r be the length of λ, let a = (1, 1, . . . , 1) be the unique partition of

length r consisting of only ones, and let λ′ be the conjugate partition to λ. Let τλ
′

j be the class

in the MS basis defined by the triple of partitions (a, λ′, (j)). Let e and f be indices for a and

λ′ and let s be the length of λ′. Let U be a general representative of τλ
′

j defined by fixing r

general points Pe, a general line Lf for each entry λ′f , and a general fixed point Q with which

the subschemes of length j must be collinear.

Lemma 4.4.1. The locus φmq does not meet a general representative of τλ
′

j for j 6= q.

Proof. First assume that j < q. The subschemes of any general member Z ∈ U which are not

collinear with Q are supported at the fixed points or on the fixed lines defining Σ which do not

pass through the origin. As such, the maximum length of any scheme in U at the origin is j.

Now assume that j > q. Any scheme Z in the locus φmq has subschemes Zk of length at

least mk + 1 collinear with the origin. If Z is also a member of U , then each such subscheme

must contain one of the r general points defining U , so that each line defined by Zk is distinct

from the others and is the span of the fixed point and the origin. Additionally, these lines do

not pass through Q.
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If Z contains a subscheme Y of length j at the origin, then this subscheme is the limit

of smaller subschemes Wk,t contained in the subschemes Zk,t of schemes Zt in φmq , so that

the length of Y along any of the lines defined by the Zk,0 = Zk is at least the length of the

subschemes Wk,t for a general t. It follows that the length of any scheme Y is at least two

along some line through the origin and one of the fixed points defining U . But any such scheme

is contained in the line spanned by Q and the origin, and therefore had length one along any

other line. Hence, there is no such scheme.

The above lemma allows us to pair each side of the equivalences in Corollaries 4.3.3 and 4.3.6

with well chosen classes in the MS basis to select out only those coefficients of the components

on the right hand side whose general member contains a subscheme of the correct length at

the origin. This reduces the problem of computing the classes to that of solving relatively

small systems of linear equations. Unfortunately, we see no way of pairing both sides of the

equivalences to obtain the coefficient of just a single component on the right.

Now let ρ be a partition of M also of length r and possibly with zeros as our convention

allows. Our immediate goal is to prove the following lemma.

Lemma 4.4.2. The intersection φρj ∩ U is transverse.

The outline of the proof is as follows. We first characterize the points of the intersection

using the fact that the classes have complementary codimension in the Hilbert scheme. This

allows us to put charts on the Hilbert scheme around each intersection point which give it the

local structure of a product. We then prove that that the intersection is transverse by computing

the tangent spaces directly in each of these factors. Note the similarity to the approach and

arguments in Section 3.3.
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Lemma 4.4.3. Any point Z of the intersection φρj ∩U consists of M + r distinct points and a

length j linear subscheme supported at the origin.

Proof. Let Z be a point of the intersection φρj ∩U . No two of the fixed points Pe defining U span

a line through the origin, so Z contains subschemes Ze of length at least ρe + 1 each of which

contains Pe and is contained in the line Ne spanned by Pe and the origin for each 1 ≤ e ≤ r.

Additionally, the origin is not contained in any fixed line Lf defining U and Z must therefore

contain a subscheme Z ′ of length j supported at the origin and contained in the line spanned

by the origin and Q. Furthermore, Z must meet the union of the lines Lf in M points, and the

common intersection points of the Lf do not lie on any of the lines Ne, so each Ze is supported

at the intersection points of the line Ne and some of the Lf ’s.

Let Y be a subscheme of Z supported at the intersection point R of some Ne with some Lf .

R is not the intersection point of two distinct Lf ’s, and R is not contained in the subscheme

of Z collinear with Q, so Y must be contained in the line Lf since it is the limit of distinct

points contained in Lf . Y must also be contained in Ne since it is the limit of distinct points

spanning a line through the origin and the limit in P2∗ of these spans is Ne. If the length of

Y is greater than one, then Y determines the line, but the lines Lf and Ne are distinct, so Y

must be reduced.

We will need the following lemma.

Lemma 4.4.4. The intersection in P2[j] of the class of the locus of schemes of length j supported

at a fixed point and the class of the locus of schemes of length j collinear with a fixed point is

the class of a single reduced point.
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q ∩
q

= q

Figure 35: The intersection in Lemma 4.4.4.

Proof. Let the first class be that of locus of subschemes of length q supported at the origin.

Let the second class be that of the locus of subschemes collinear with (−1, 0). The unique

subscheme in the intersection is given by the ideal (xj , y). There are charts for P2[j] isomorphic

to A2[j] around this point with coordinates given by coefficients of generators for the ideals

(xj − γj−1x
j−1 − · · · − γ1x− γ0, y − cj−1x

j−1 − · · · − c1x− c0).

The first locus is described by the equations γi = c0 = 0 for all 0 ≤ i ≤ q − 1. The second

locus can be described as those ideals containing the equation of a line through (−1, 0), and in

particular has equations ci = 0 for 2 ≤ i ≤ j− 1 and c1 = c0. It follows that the loci are locally

distinct linear spaces of complementary codimension, so they intersect transversally.

Proof of 4.4.2. Let Z be a scheme in the intersection φρj ∩U . Lemma 4.4.3 allows us to describe

the tangent spaces to φρj and U around Z. Since Z consists of a length j subscheme at the

origin and distinct points otherwise, PN+r is locally isomorphic to P2[j] ×AM+r. We can check

transversality in each of these factors individually. Lemma 4.4.4 shows that the intersection in

P2[j] is transverse.
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For the AM+r factor, the argument is identical to the one in the proof of Lemma 3.3.7.

It remains to show the following.

Lemma 4.4.5. The classes τλ
′

j are independent on the span of the classes [φλj ] as λ ranges over

Σj.

Proof. First, let the cardinality of Σj be m. Order the partitions λi ∈ Σj lexicographically so

that λ1 ≤ λ2 ≤ · · · ≤ λm. It suffices to show that the pairing matrix with columns τ
λ′i
j and

rows φλij is upper triangular.

In particular, it is enough to check that:

1. τλ
′

j · [φλj ] 6= 0, and

2. [φρj ] · τλ
′

j = 0 if ρ′ < λ′ for two partitions ρ and λ in Σj .

The first is straightforward: the fixed points of τ determine the moving lines of φ and each

subsequent fixed line of τ meets precisely the number of moving lines in φ necessary to form an

intersection – indeed, this intersection number is one once the moving lines of φ are ordered, so

that the intersection number is precisely the number of ways to order the moving lines in φ.

The second is similar: if ρ′ < λ′ then there is an i such that ρ′i < λ′i and ρ′k = λ′k for all

k < i. Now, the moving lines in φ are determined by the fixed points of τ , and ρ′1 is the number

of moving lines in φ which contain more than just a fixed point of τ . If i = 1 and ρ′1 < λ′1, then

no intersection can occur since the condition that the first fixed line of τ must contain λ′i points

cannot be satisfied. Otherwise, the first i− 1 fixed lines of τ are forced to meet all the moving

lines of φ possible, and then since ρ′i < λ′i the i-th fixed line in τ cannot contain a subscheme

of length λ′i.
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We have the following two immediate results.

Lemma 4.4.6. The coefficient a in Corollary 4.3.3 is mi + 1.

Proof. We prove this by intersecting both sides of the equivalence with a class τ in the MS

basis which does not meet any of the other classes on the right hand side but the class
[
Θm
L,i

]
.

Let m2 be the partition obtained from m by removing mi and inserting mi + 1, and let n

be the conjugate partition to m2 obtained by taking the columns in m′ to be the rows of n.

Let r be the length of m2 and let s be the length of n.

Let τ be the element of the MS basis defined by the mixed partition ((1, . . . , 1),n, 0) where

the first partition consists of r−1 entries. The codimension of τ is 2(r−1)+
∑s

j=1 nj = 2r+N−1.

Let T be a general representative (defined by fixing s general lines and r− 1 general points) of

τ . T does not meet any of the components φλj since the origin is not contained in any of the

lines defining T , so

τ ·
[
ΘP,m
L,i

]
= τ · a

[
Θm
L,i

]
.

Let {Pe} be the fixed points and {Mf} be the fixed lines defining T . Let Z be an intersection

point of either Θm
L,i ∩ T or ΘP,m

L,i ∩ T . The subscheme Zi of length mi + 1 which meets L does

not contain any of the Pe or it would also need to contain the intersection of the line L and the

line through the origin and Pe (or P and Pe, respectively) which is not contained in any of the

lines Mf . Hence the lines defined by the subschemes Zj of length mj + 1 in Z are the spans of

the origin and some Pe (or the spans of P and Pe, respectively). For each choice of lines OPe to

contain each Zj there is a unique choice of lines PPe and Zj , so fix once and for all the ordering

so that Zj is contained in the line OPj or PPj , respectively. We can assume from here on out

that m has no zero entries, since Pj ∈ Zj and if mj = 0 then `(Zj) ≥mj + 1 is satisfied.
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Now we restrict ourselves to the study of Z ∈ Θm
L,i ∩ T for the moment. Notice that the

subscheme Zi of Z must be contained in L. Each entry nk is the number of entries in m2 which

are less than or equal to k. For i 6= j ≤ k, the subschemes Zj must contain the intersection

points Mk ∩OPj and for k ≤mi + 1, the subscheme Zi must contain Mk ∩L. This determines

Z uniquely, and the intersection is one.

For Z ∈ ΘP,m
L,i ∩ T , Zi need not be contained in L. There are mi + 1 choices to consider

corresponding to Zi containing the intersection of L with Mf for f ≤mi + 1. Once this choice

is made, the line defined by Zi is determined, and similar reasoning to the above shows that

there is a unique scheme Z in the intersection.

This determines the coefficient a to be mi + 1.

Lemma 4.4.7. The coefficient c0
m in Corollary 4.3.6 is 1.

Proof. In this case, λ = m, the class we will pair both sides with is σ(a,m′,q) where m′ here is

the conjugate partition to m. Let U be a general representative for this class, and let R be the

fixed point defining U such that each scheme in U must have a subscheme of length q collinear

with R. We will show that the intersection of both ΦP,m
Q,q and φmq with U consist of the same

number of points.

Let Z be an intersection point of U with either ΦP,m
Q,q or φmq . The r fixed points of U are

general, so in particular the lines any pair of them span do not contain the origin or P . As

such, each must reside in a single subscheme Zj of Z of length mj . That is to say, for all

intersection points Z in either intersection, the lines Lj spanned by each Zj must be the spans

of the fixed points defining U with P or the origin, respectively. The subscheme Zq of Z of

length q collinear with R must be the unique length q subscheme of the plane supported at

P or the origin, respectively, and Zq must be contained in the line spanned by this point and
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R. It follows that the remaining points of Z must be the intersections of the lines Lj with the

fixed lines defining U . Since the lines Lj for either case have the same number of incidence

conditions (the labels mj), and since U was chosen generally, the intersection number is the

same for either ΦP,m
Q,q or φmq .

4.4.3.2 Determining the Coefficients in a Degeneration

The process to determine the coefficients cλj is then as follows.

1. Form the collection of classes τλ
′

j .

2. Choose general representatives for each (as defined in section 2.4).

3. Compute the intersection with both sides of the equivalences in Corollary 4.3.3 or Corol-

lary 4.3.6. This is simply a combinatorial count of collections of distinct points which

satisfy the incidence conditions on all the lines, as well as multipliers for ordering the

lines. For each λ, we obtain a linear equation in the cλj ’s in this way.

4. Solve the resulting system of linear equations. Lemma 4.4.5 establishes that the linear

equations obtained in the above step are independent.

Finally, we have a conjecture about the coefficients in the degenerations.

Conjecture 4.4.8. The multiplicity of each component φλq+i in the second degeneration is the

number of ways to choose i entries of λ such that adding one to each results in the original

partition m.
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APPENDIX

SOME COMPUTATIONS AND INTERSECTION NUMBERS

A.1 The Matrices for P2[3]

We refer to the elements of the MS basis for A(P2[3]) by their subfigure labels in Figure 2.

2t 2u

2b 1 1
2c 1 2

TABLE V: The pairing matrix for A1(P2[3])×A1(P2[3]).

2p 2s 2o 2q 2r

2d 1 0 0 0 0
2f 0 1 1 2 2
2g 0 0 1 1 2
2e 0 0 0 1 1
2h 0 0 0 0 1

TABLE VI: The pairing matrix for A2(P2[3])×A2(P2[3]).
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2i 2j 2k 2n 2l 2m

2i 6 3 1 0 0 0
2j 3 1 0 0 0 0
2k 1 0 0 0 0 0
2n 0 0 0 1 1 0
2l 0 0 0 1 1 1
2m 0 0 0 0 1 1

TABLE VII: The pairing matrix for A3(P2[3])×A3(P2[3]).

A.2 The Matrices for P2[5]

We list below the intersection matrices for P2[5]. We order the basis elements in ascending
lexicographic order given as follows:

If ϕ = (ϕ1, . . . , ϕr) and ψ = (ψ1, . . . , ψs) are partitions of integers R1 and R2, respectively,
then ϕ < ψ if R1 < R2, or if R1 = R2, then ϕ < ψ if for some i ≤ r we have ϕj = ψj for j < i
and ϕi < ψi.

If α = (α1, α2, α3) and β = (β1, β2, β3) are mixed partitions of an integer N , then α < β if
for some i ≤ 3 we have αj = βj and αi < βi.

In each matrix, the dimension d basis elements index the columns, while the codimension d
elements index the rows.

[
4 3
1 1

]
TABLE VIII: The pairing matrix for A1(P2[5])×A1(P2[5]).
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APPENDIX (Continued)

6 3 0 4 3 1
3 0 0 2 1 0
6 3 0 5 4 2
2 1 0 2 2 1
1 0 0 1 1 0
0 0 1 0 0 0


TABLE IX: The pairing matrix for A2(P2[5])×A2(P2[5]).



6 2 0 0 0 3 1 0 2 0 0 0
2 0 0 0 0 1 0 0 0 0 0 0
6 3 1 0 0 4 2 0 3 1 1 0
6 2 0 0 0 4 1 0 2 1 0 0
12 6 2 0 0 10 5 0 8 4 3 1
6 2 0 0 0 5 2 0 4 1 1 0
6 3 1 0 0 6 3 0 6 3 3 1
3 1 0 0 0 3 1 0 3 1 1 0
1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 3 3 0 0 2 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0


TABLE X: The pairing matrix for A3(P2[5])×A3(P2[5]).
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APPENDIX (Continued)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
12 5 2 1 0 0 0 0 0 6 2 0 0 0 0 1 0 0 0 0 0
6 2 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0
24 12 6 4 1 0 0 0 0 18 9 3 0 0 0 6 3 0 0 1 0
12 5 2 1 0 0 0 0 0 9 4 1 0 0 0 2 1 0 0 0 0
4 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0
24 12 6 4 1 0 0 0 0 24 12 4 0 0 0 12 6 0 0 4 1
12 5 2 1 0 0 0 0 0 12 5 1 0 0 0 5 2 0 0 1 0
6 2 1 0 0 0 0 0 0 6 2 0 0 0 0 2 1 0 0 0 0
4 1 0 0 0 0 0 0 0 4 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 2 1 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 2 4 4 2 0 0 0 0 3 3 0 0 2 1 0 0
0 0 0 0 0 1 2 2 1 0 0 0 0 2 2 0 0 2 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 4 2 0 0 0 0 2 3 0 0 2 1 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 1 2 0 0 2 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0


TABLE XI: The pairing matrix for A4(P2[5])×A4(P2[5]).
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APPENDIX (Continued)

120 60 30 20 10 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 27 12 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 12 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 3 1 3 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 3 6 3 6 3 1 0 0 2 4 4 2 0 1 1 0
0 0 0 0 0 0 0 0 1 3 1 3 1 0 0 0 1 2 2 1 0 0 0 0
0 0 0 0 0 0 0 1 3 6 3 6 3 1 0 0 3 6 6 3 0 3 3 1
0 0 0 0 0 0 0 0 1 3 1 3 1 0 0 0 1 3 3 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 2 1 3 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 4 2 6 3 1 0 0 1 3 4 2 0 1 1 0
0 0 0 0 0 0 0 0 1 4 2 6 3 1 0 0 1 4 6 3 0 2 3 1
0 0 0 0 0 0 0 0 0 2 1 3 1 0 0 0 0 2 3 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 1 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 1 3 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0


TABLE XII: The pairing matrix for A5(P2[5])×A5(P2[5]).

A.3 Some Python Code

The following code is an implementation of the algorithm found in Section 3.4. The function
compute_intersection_number takes as input two triples of partitions (given as two lists of
three lists each) which define classes σ and τ of complementary codimension and computes
the intersection number between them. The function compute_intersection_matrix takes as
input a number N and a codimension d and computes the entire intersection matrix between
classes of dimension d and codimension d.

1 #!/usr/bin/python

2

3 from itertools import ∗
4

5 ####

6 ## A Simple Tree Data Structure

7 ##

8
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9 class Tree():

10 def init (self, parent, horiz, vert):

11 self.parent = parent

12 self.children = []

13 self.horiz = horiz

14 self.vert = vert

15 self.numLeaf = 0

16

17 # generates mixed partitions for n

18 def mixed partition(n):

19 partition = [0 for i in range(n+1)]

20 k = 1

21 y = n − 1
22 while k != 0:

23 x = partition[k − 1] + 1
24 k −= 1
25 while 2∗x <= y:
26 partition[k] = x

27 y −= x
28 k += 1

29 l = k + 1

30 while x <= y:
31 partition[k] = x

32 partition[l] = y

33 if k + 2 <= 3:
34 output = list(reversed(partition[:k+2]))

35 output = output + [0] ∗ (1−k)
36 yield output

37 x += 1

38 y −= 1
39 partition[k] = x + y

40 y = x + y − 1
41 if k+1 <= 3:
42 output = list(reversed(partition[:k+1]))

43 output = output + [0] ∗ (2−k)
44 yield output

45

46 # Code from http://jeromekelleher.net/partitions.php cite later

47 # modified above to only emit partitions of length m if specified

48 def partition(n, m = None):

49 partition = [0 for i in range(n+1)]

50 k = 1

51 y = n − 1
52 while k != 0:

53 x = partition[k − 1] + 1
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54 k −= 1
55 while 2∗x <= y:
56 partition[k] = x

57 y −= x
58 k += 1

59 l = k + 1

60 while x <= y:
61 partition[k] = x

62 partition[l] = y

63 if not m or (k + 2) == m:

64 yield list(reversed(partition[:k + 2]))

65 x += 1

66 y −= 1
67 partition[k] = x + y

68 y = x + y − 1
69 if not m or k+1 == m:

70 yield list(reversed(partition[:k + 1]))

71

72 # A diagram is a list containing exactly three members:

73 # 0: A nonincreasing sequence of positive integers representing incidence

conditions on horizontal lines

74 # 1: A nonincreasing sequence of positive integers representing incidence

conditions on vertical lines

75 # 2: a set of (i,j) pairs corresponding to when the ith horizontal line must meet

the jth vertical line

76 # it’s assumed that the sum of the entries in the vertical list is equal the sum of

the entries in the horizontal list

77 def generate tree( diagram ):

78 deg tuple1 = diagram[1]

79 deg tuple2 = diagram[0]

80 point set = diagram[2]

81

82 t = Tree( None, deg tuple1 , deg tuple2 )

83 generate tree worker( t, point set , 0 )

84 return t

85

86 def generate tree worker( t, point set , height ):

87

88 if all( i == 0 for i in t.horiz):

89 if all( degree == 0 for degree in t.vert ):

90 return 1

91 else:

92 return 0

93

94 index list = [i for i, e in enumerate(t.vert) if e != 0]
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95 line = next((i for i,e in enumerate(t.horiz) if e != 0), None)

96 required points = {(x,y) for (x,y) in point set if x == line}
97 choices = t.horiz[line]

98 if choices > len( index list ):

99 return 0

100

101 number viable = 0

102 child deg tuple zero = list(t.horiz)

103 child deg tuple zero[line] = 0

104 subsequences = combinations(index list , choices)

105

106 for subsequence in subsequences:

107 if any(y not in subsequence for (x,y) in required points):

108 continue

109

110 new list = list( t.vert )

111 for i in subsequence:

112 new list[i] −= 1
113

114 child = Tree(t, child deg tuple zero , new list)

115 t.children.append(child)

116 number viable += generate tree worker(child, point set , height+1)

117

118 t.numLeaf = number viable;

119 return number viable

120 # this function takes as input two mixed partitions and returns all the diagrams to

compute the interseciton number for those corresponding basis elements

121 def generate diagrams(sigma, tau):

122 sigma fixed = sigma[0] + sigma[1]

123 tau fixed = tau[0] + tau[1]

124

125 list of diagrams = []

126

127 point set sigma = set( (len(sigma fixed)+i,i) for i in range(0,len(tau[0])) )

128 point set tau = set( (i,len(tau fixed)+i) for i in range(0, len(sigma[0])) )

129

130 point set = point set sigma | point set tau
131

132 all permutations sigma = {x for x in permutations(sigma[2])}
133 all permutations tau = {x for x in permutations(tau[2])}
134

135 for c tau in all permutations tau:

136 for c sigma in all permutations sigma:

137 final list sigma = sigma fixed + list(c sigma)

138 final list tau = tau fixed + list(c tau)
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139 list of diagrams.append([final list tau ,final list sigma ,point set])

140

141 return list of diagrams

142 # this takes as input two mixed partitions and computes the intersection number. it

is assumed that the length of the first element of the first mixed partition

is the length of the third element of the second, and vice versa

143 def compute intersection number( mixed partition 1 , mixed partition 2 ):

144 list of diagrams = generate diagrams( mixed partition 1 , mixed partition 2 )

145 number = 0

146 for diagram in list of diagrams:

147 t = generate tree( diagram )

148 number += t.numLeaf

149 return number

150

151 def print diagram(diagram):

152 horiz labels = [str(x) for x in diagram[0]]

153 vert labels = [str(x) for x in diagram[1]]

154 point set = diagram[2]

155 col size = max([len(x) for x in horiz labels] + [len(x) for x in vert labels])

156 print(" ".ljust(col size), " ".join([x.ljust(col size) for x in vert labels]))

157 for i in range(0,len(horiz labels)):

158 string = ""

159 hold = [x for (x,y) in point set if y == i]

160 if hold:

161 if hold[0] == 0:

162 string = "∗"
163 else:

164 string = "∗".rjust(hold[0]∗(col size+1) + 1)

165 print (horiz labels[i].ljust(col size), string)

166

167 def print diagrams( list of diagrams ):

168 for diagram in list of diagrams:

169 print diagram( diagram )

170

171 def print dfs(tree):

172 discovered = []

173 stack = []

174 stack.append((tree,0))

175 while stack:

176 nodepair = stack.pop()

177 node = nodepair[0]

178 depth = nodepair[1]

179 if node not in discovered:

180 print (str(depth) + ":: " + str(node.horiz) + "::" + str(node.vert) + "::"

+ str(node.numLeaf))
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181 discovered.append(node)

182 for child in node.children:

183 stack.append((child,depth + 1))

184

185 def generate basis(N, codim):

186 list of basis = []

187 fixed range = codim // 2 + 1

188 for mixed in mixed partition(N):

189 perms = {x for x in permutations(mixed)}
190 for perm in perms:

191 for fixed in range(0, fixed range):

192 moving = fixed + N − codim
193 on lines = N − moving − fixed
194 if perm[0] < fixed or perm[2] < moving or (not fixed and perm[0]) or (

not moving and perm[2]):

195 continue

196 for first in partition(perm[0], fixed):

197 if len(first) == 1 and first[0] == 0:

198 first = []

199 for second in partition(perm[1]):

200 if len(second) == 1 and second[0] == 0:

201 second = []

202 for third in partition(perm[2], moving):

203 if len(third) == 1 and third[0] == 0:

204 third = []

205 list of basis.append([first, second, third])

206 return list of basis

207

208 def order basis(list of basis):

209 print(list of basis.sort())

210 def key fcn(basis):

211 new base = []

212 for entry in basis:

213 a = sum(entry)

214 new base.append([a] + entry)

215 return new base

216

217

218 def compute intersection matrix(N, d):

219 basis = generate basis(N,d)

220 opposite basis = [list(reversed(x)) for x in basis]

221

222 basis = sorted(basis, key=key fcn)

223 opposite basis = sorted(opposite basis , key=key fcn)

224
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225 print(" −−−−− Basis Codim", d ,"(rows) −−−−− ")
226 for (i,b) in enumerate(basis):

227 print(i, ":: ", b, sep = "")

228 print(" −−−−− Basis Codim", 2∗N−d ,"(cols) −−−−− ")
229 for (i,b) in enumerate(opposite basis):

230 print(i, ":: ", b, sep="")

231

232 matrix = []

233

234 for b in basis:

235 row = []

236 for o in opposite basis:

237 if len(b[0]) == len(o[2]) and len(b[2]) == len(o[0]):

238 row.append(compute intersection number(b,o))

239 else:

240 row.append(0)

241 matrix.append(row)

242

243 return matrix

244

245 matrix = compute intersection matrix(5,4)

246

247 for row in matrix:

248 print(row)

A.4 Some triple intersection products in P2[6]

We include here some of early computations and intersection numbers computed in the
investigation of the Main Theorem 2.
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H · σ(0,0,(3,2,1)) Θ

(2,1,0),P
L,1

Θ
(2,1,0),P
L,2

Θ
(2,1,0),P
L,3

φ
(1,1,0)
1 φ

(2,0,0)
1 φ

(1,0,0)
2 φ

(0,0,0)
3

((1, 1), (1, 1, 1, 1), 0) 72 24 24 24 0 0 0 0
((1, 1), (2, 1, 1), 0) 24 6 8 10 0 0 0 0
((1, 1), (2, 2), 0) 8 0 4 4 0 0 0 0
((1, 1), (3, 1), 0) 2 0 0 2 0 0 0 0
((1, 1), (4), 0) 0 0 0 0 0 0 0 0
((1, 1, 1), 0, (3)) 0 0 0 0 0 0 0 1
((1, 1, 1), (1), (2)) 12 6 6 0 0 0 3 0
((1, 1, 1), (1, 1), (1)) 18 12 6 0 6 3 0 0
((1, 1, 1), (2), (1)) 6 6 0 0 3 0 0 0
((2, 1), (1, 1, 1), 0) 54 21 18 15 0 0 0 0
((2, 1), (2, 1), 0) 18 6 6 6 0 0 0 0
((2, 1), (3), 0) 1 0 0 1 0 0 0 0
((1, 1, 1, 1), 0, (1, 1)) 0 0 0 0 0 0 0 0
((2, 1, 1), 0, (2)) 8 4 4 0 0 0 2 0
((2, 1, 1), (1), (1)) 12 8 4 0 4 2 0 0
((2, 2), (1, 1), 0) 40 18 12 10 0 0 0 0
((2, 2), (2), 0) 14 6 4 4 0 0 0 0
((3, 1), (1, 1), 0) 10 3 4 3 0 0 0 0
((3, 1), (2), 0) 3 0 2 1 0 0 0 0
((2, 2, 1), 0, (1)) 8 6 2 0 3 1 0 0
((3, 1, 1), 0, (1)) 2 2 0 0 1 0 0 0
((3, 2), (1), 0) 7 3 2 2 0 0 0 0
((4, 1), (1), 0) 0 0 0 0 0 0 0 0
((3, 3), 0, 0) 0 0 0 0 0 0 0 0
((4, 2), 0, 0) 0 0 0 0 0 0 0 0
((5, 1), 0, 0) 0 0 0 0 0 0 0 0

TABLE XIII: The complete table of intersections of the loci in the degenerations to resolve the
class in the MS basis of the intersection H · σ(0,0,(3,2,1)).
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Figure 36: A scanned in set of notes depicting calculating the intersection product in P2[3].
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Figure 37: A scanned in set of notes depicting calculations of the classes of intersections H · σ
for many different MS basis elements σ. The triple intersection numbers with the basis elements
of the correct codimension are listed in each box with the elements ordered lexicographically
by their triples of partitions.
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